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Abstract

Real-time in vivo and in situ imaging at the cellular level can be achieved with fibered confocal microscopy. As interesting as dynamic
sequences may be, there is a need for the biologist or physician to get an efficient and complete representation of the entire imaged region.
For this demand, the potential of this imaging modality is enhanced by using video mosaicing techniques. Classical mosaicing algorithms
do not take into account the characteristics of fibered confocal microscopy, namely motion distortions, irregularly sampled frames and
non-rigid deformations of the imaged tissue. Our approach is based on a hierarchical framework that is able to recover a globally con-
sistent alignment of the input frames, to compensate for the motion distortions and to capture the non-rigid deformations. The proposed
global alignment scheme is seen as an estimation problem on a Lie group. We model the relationship between the motion and the motion
distortions to correct for these distortions. An efficient scattered data approximation scheme is proposed both for the construction of the
mosaic and to adapt the demons registration algorithm to our irregularly sampled inputs. Controlled experiments have been conducted to
evaluate the performance of our algorithm. Results on several sequences acquired in vivo on both human and mouse tissue also demon-

strate the relevance of our approach.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Fibered confocal microscopy (FCM) is a promising tool
for in vivo and in situ optical biopsy (Le Goualher et al.,
2004). This imaging modality unveils in real-time the cellu-
lar structure of the observed tissue. However, as interesting
as dynamic sequences may be during the time of the med-
ical procedure or biological experiment, there is a need for
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the expert to get an efficient and complete representation of
the entire imaged region. The goal of this work is to
enhance the possibilities offered by FCM. Image sequence
mosaicing techniques are used to provide this efficient
and complete representation and widen the field of view
(FOV). Several possible applications are targeted. First of
all, the rendering of wide-field micro-architectural informa-
tion on a single image will help experts to interpret the
acquired data. This representation will also make quantita-
tive and statistical analysis possible on a wide field of view.
Moreover, mosaicing for microscopic images is a mean of
filling the gap between microscopic and macroscopic scales.
It allows multi-modality and multi-scale information
fusion for the positioning of the optical microprobe.
FCM is a direct contact imaging technique. In order
to image and explore a region of interest, the optical
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microprobe is glided along the soft tissue. The displace-
ment of the optical microprobe across the tissue can be
described by a rigid motion. Since FCM is a laser scan-
ning device, an input frame does not represent a single
point in time. In contrast, each sampling point corre-
sponds to a different instant. This induces motion artifacts
when the optical microprobe moves with respect to the
imaged tissue. Furthermore, the interaction of the contact
optical microprobe with the soft tissue creates additional
small non-rigid deformations. Due to these non-linear
deformations, motion artifacts and irregular sampling of
the input frames, classical video mosaicing techniques
need to be adapted.

Our approach is based on a hierarchical framework that
is able to recover a globally consistent alignment of the
input frames, to compensate for the motion-induced distor-
tion of the input frames (simply called motion distortion
hereafter) and to capture the non-rigid deformations. The
global positioning is presented as an estimation problem
on a Lie group (Vercauteren et al., 2005). An efficient opti-
mization scheme is proposed to solve this estimation prob-
lem. Because the motion distortions are induced by the
motion of the optical microprobe, we model and use this
relationship to recover the motion distortions. An efficient
scattered data fitting method is also proposed to recon-
struct on a regular grid the irregularly sampled images that
arise from the inputs and from the mosaic construction
process. This reconstruction method is also used when we
recover the non-rigid deformations with an adapted
demons algorithm.

The remainder of the paper is organized as follows.
Section 2 presents the imaging modality in more detail.
The main steps of our algorithm are described in Section 3.
Section 4 provides a set a basic tools for Lie groups that
will be used in Section 5 to get a set of globally consistent
transformations from pairwise registration results. The
motion distortions and non-rigid deformations compensa-
tion algorithms are presented in Section 6. An efficient
scattered data fitting method is proposed in Section 7 to
reconstruct the irregularly sampled images that arise from
FCM and from the mosaic construction process. A con-
trolled evaluation of our method and results on sequences
acquired in vivo on both human and mouse tissue are
presented in Section 8. Finally Section 9 concludes the

paper.
2. Fibered confocal microscopy

FCM is based on the principle of confocal microscopy
which is the ability to reject light from out-of-focus planes
and provide a clear in-focus image of a thin section within
the sample. This optical sectioning property is what makes
the confocal microscope ideal for imaging thick biological
samples. The adaptation of a fibered confocal microscope
for in vivo and in situ imaging can be viewed as replacing
the microscope objective by a flexible microprobe of ade-
quate length and diameter in order to be able to perform

Laser source Laser scanning - ,.’; X
in the bundle. | g
i One fiberat /

a time.

I ;(-“ e l

[ o i i
T G Dictoicfier /‘%ignal
\/ y

{ Fiber

Photodetector \\ l {‘/ bundle
Dual%ianrling\4l//‘

mechanism:

* Fast X scanner q‘j

* Slow Y scanner

[llumination

Fig. 1. Schematic principle of fibered confocal microscopy.

in situ imaging. For such purpose, a flexible fiber bundle
is used as the link between the scanning device and the min-
iaturized microscope objective (see Fig. 1).

The Cellvizio, developed by Mauna Kea Technologies
(MKT), is a complete fibered confocal microscope with a
lateral and axial resolution comparable with a standard
confocal microscope. It is based on the combination of:

e a flexible optical microprobe consisting in a bundle of
tens of thousands of fiber optics, whose overall dimen-
sions are compatible with the accessory channel of a
standard endoscope;

e a proximal laser scanning unit, which assembles the
functions of light illumination, signal detection, and
XY robust and rapid scanning;

e a control and acquisition software providing real-time
image processing.

2.1. Image formation

The laser scanning unit, performs a scanning of the
proximal surface of the flexible optical microprobe with
the laser source by using two mirrors. Horizontal line scan-
ning is performed using a 4 kHz oscillating mirror while a
galvanometric mirror performs frame scanning at 12 Hz. A
custom synchronization hardware controls the mirrors and
digitizes, synchronously with the scanning, the signal com-
ing back from the tissue using a mono-pixel photodetector.
When organized according to the scanning, the output of
the FCM can be viewed as a raw image of the surface of
the flexible image bundle. Scanning amplitude and signal
sampling frequency have been adjusted to perform a spatial
over-sampling of the image bundle. This is clearly visible
on the raw image in Fig. 2 where one can see the individual
fibers composing the bundle.

A typical fiber bundle is composed of 30,000 fiber optics,
with a fiber inter-core distance di. = 3.3 um, and a fiber
core diameter of 1.9 pm. Fiber arrangement is locally quasi
hexagonal, but does not show any particular order at larger
scales.



T. Vercauteren et al. | Medical Image Analysis 10 (2006) 673692 675

Tttt T e Each fiber of the bundle provides one and only one sam-
pling point on the tissue. Associated with these sampling
Sl points comes a signal that depends on the imaged tissue
If:ff and on the single fiber characteristics. The role of the image
processing is first to build a mapping between the FCM
raw image and the fibers composing the image bundle.
Once the mapping between the raw data and each individ-
ual fiber is obtained, characteristics of each fiber are mea-

sured and the effective signal coming back from the tissue

Fig. 2. Portion of a raw image of a constant signal and corresponding is estimated.
fiber centers.

Fig. 3. Different types of images acquired with the Cellvizio. (a) In vivo mouse colon after instillation of acriflavine (Courtesy of D. Vignjevic, S. Robine,
D. Louvard, Institut Curie, Paris, France). (b) In vivo tumoral angiogenesis in mouse with FITC-Dextran high MW (Courtesy of A. Duconseille and
O. Clément, Descartes Image, Université Paris V, Paris, France). (c) In vivo reflectance imaging of human mouth mucosa. (d) Ex vivo Autofluorescence
imaging in human lung (Courtesy of Dr. P. Validire, Institut Mutualiste Monsouris, Paris, France). (¢) Microcirculation of the peritubular capillaries of a
live mouse kidney with FITC-Dextran high MW. (f) Dendritic receptors in a live Thyl-YFP mouse (Courtesy of I. Charvet, P. Meda, CMU, Geneva,
Switzerland and L. Stoppini, Biocell Interface, Geneva, Switzerland).
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Fig. 4. Imaging of a moving vertical segment by a scanning laser. The segment has a translation movement from the upper left corner to the lower right
corner of the image. The segment is first intersected by a scan line at instant ¢, (black disks represent imaged points). The following scan lines image the
segment at different positions (dotted segments). The resulting shape is the slanting segment of angle o.

The input of the mosaicing algorithm will therefore be
composed of non-uniformly sampled frames where each
sampling point corresponds to a center of a fiber in the flex-
ible fiber bundle. A collection of typical frames acquired
in vivo is shown in Fig. 3.

2.2. Influence of relative motion

The scanning of the laser can be decomposed into a fast
horizontal sinusoidal component and a slow linear uniform
vertical component. Horizontally, the imaging is done only
on the central part of the trajectory, where the spot velocity
is maximal and nearly constant. Since in this part, the spot
horizontal velocity V', (>5 m/s) is several orders of magni-
tude higher than the spot vertical velocity V, (~2 mm/s),
we assume that the horizontal spot velocity is infinite.

An interesting point of scanning imaging devices is that
the output image is not a representation of a given instant,
but a juxtaposition of points acquired at different times
(Savoire et al., 2004). Consequently, if the flexible micro-
probe moves with respect to the imaged tissue, what we
observe is not a frozen picture of the tissue, but a skewed
image of it. Each scan line indeed relates to a different
instant, and the flexible microprobe moved between each
scan line.

Let us consider a standard 2D + ¢ volume, without scan-
ning each acquired frame would correspond to a single time
instant ¢y and thus to a 2D horizontal slice of the volume.
With scanning a point of ordinate y corresponds to the time
to —l—VLJ The process of image formation therefore comes
down to imaging an oblique plane of the volume. Fig. 4 pre-
sents what will be observed when imaging a vertical segment
moving with respect to the flexible microprobe.

3. Problem statement and overview of the algorithm

The goal of many existing mosaicing algorithms is to
estimate the reference-to-frame mappings and use these

estimates to construct the mosaic (Irani et al., 1995). Small
residual misregistrations are then of little importance
because the mosaic is reconstructed by segmenting the field
into disjoint regions that use a single source image for the
reconstruction (Davis, 1998; Levin et al., 2004; Peleg et al.,
2000). Even if these reconstruction techniques can ignore
small local registration errors, a globally consistent align-
ment framework is needed to avoid large accumulated reg-
istration errors as shown in Fig. 5.

Since our input frames are rather noisy, we would like
to use all the available information to recover an approx-
imation of the true underlying scene. We will therefore
estimate the frame-to-reference transformations (instead
of the usual reference-to-frame) and consider all the input
sampling points as shifted sampling points of the mosaic.
This has several advantages for our problem. First of all,
this is really adapted to irregularly sampled input frames
because we will always use the original sampling points
and never interpolate the input data. This approach is also
more consistent with a model of noise appearing on the
observed frames rather than on the underlying truth.
Finally in this framework, it will be possible to get a
mosaic at a higher resolution than the input frames. The
challenge is that we need an accurate estimate of the
unknown transformations.

Frame 4

s&— Misalignment

Frame 8

Fig. 5. Accumulated registration errors result in global misalignment.
What should be an ellipse, appears like an open curve due to these errors.
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3.1. Observation model

Each frame of the input sequence is modeled as a noisy
and deformed partial view of a ground truth 2D scene (the
mosaic we want to recover). Let I be the unknown under-
lying truth and 7, be the observed frames. Each observed
sampling point p in the coordinate system €, associated
with the nth input frame can be mapped to a point in
the reference coordinate system Q by the nth frame-to-
reference mapping f,,. Each observed sampled value 7,(p)
can then be seen as a noisy observation of the ground truth

signal I(f,(p)):
Lu(p) = 1(f2(p)) + &u(p) Vp € Qu, (1)

where ¢,(p) is a noise term. Note that according to this
observation model, we need to recover the frame-to-
reference mappings as opposed to many existing mosaicing
algorithms that estimate the reference-to-frame mappings
(see Fig. 6).

We specifically designed our transformation model for
fibered confocal microscopy. The displacement of the opti-
cal microprobe across the tissue can be described by a rigid
shift denoted by r,. Since FCM is a laser scanning device,
this motion of the optical microprobe with respect to the
imaged tissue induces some motion artifacts. These distor-
tions can be modeled by a linear transformation v, that will
be described in more details in Section 6. Finally, due to the
interaction of the contact optical microprobe with the soft
tissue, a small non-rigid deformation b, appears. The
frame-to-reference mapping are thus modeled by:

Ju(p) = by oy 0v,(p). (2)

3.2. Qverview of the algorithm

As depicted in Fig. 7, our complete model of the frame-
to-reference transformations is quite complex. A typical
approach for dealing with the estimation of such complex
models is to have a hierarchical, coarse-to-fine, approach.
We will therefore focus on developing a method that itera-
tively refines the model while always keeping the global
consistency of the estimated frame-to-reference transfor-
mations. The frame-to-reference mappings are composed
of a motion-related distortion, a large rigid mapping and
a small non-rigid deformation due to the soft tissue
deformation.

Frame j LS
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;f, S S
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[ Reference
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Fig. 6. Overview of the global frame-to-reference transformations and the
local frame-to-frame transformations.
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Fig. 7. A schematic representation of the three-steps composing the global
frame-to-reference transformations.

We start by assuming that the motion distortions as well
as the non-rigid tissue deformations can be ignored. By
making the reasonable assumption that consecutive frames
are overlapping, an initial estimate of the global rigid map-
pings can be obtained by using a rigid registration tech-
nique to estimate the motion between the consecutive
frames. Global alignment is then obtained by composing
the local motions. This initial estimate suffers from the
well-known accumulation of error problem illustrated in
Fig. 5.

The first loop of our algorithm (steps 1, 2 and 3 in
Fig. 8) alternates between three steps. The first step
assumes that the motion distortions have been correctly
estimated and registers pairs of distortion compensated
frames under a rigid body transformation assumption.
The second step uses these local pairwise registration
results to make a globally consistent estimation of the rigid
mappings r,. The third step uses the relationship between
the motion and the motion distortions to provide an
updated and consistent set of rigid mappings and motion
compensations.

Once a globally consistent set of transformations is
found, the algorithm constructs a point cloud by mapping
all observed sampling points onto a common reference
coordinate system. An efficient scattered data fitting tech-
nique is then used on this point cloud to construct an initial
mosaic. The residual non-rigid deformations are finally
taken into account by iteratively registering an input frame
to the mosaic and updating the mosaic based on the new
estimate of the frame-to-mosaic mapping.

In step 2 of our algorithm, we use all available pairwise
rigid registration results to estimate a set of globally consis-
tent transformations. A sound choice is to consider a
least-square approach. However, the space of rigid body
transformations is not a vector space but rather a Lie
group that can be considered as a Riemannian manifold.
Classical notions using distances are therefore not trivial
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Fig. 8. Block diagram of the mosaicing algorithm.

to generalize. In what follows, we provide a basic toolbox
for estimation problems on Lie groups.

4. Basic tools for estimation problems on Lie groups

Many sets of primitives used in image processing and
computer vision can be considered as real Lie Groups or
as quotients of real Lie groups (e.g. 2D rigid body transfor-
mations, tensors (Fletcher and Joshi, 2004; Pennec et al.,
2006), quaternions, upper triangular matrices, M-reps
(Fletcher et al., 2004), vector spaces, etc.). Most of them
are not vector spaces and paradoxes such as Bertrand’s
paradox (Papoulis and Pillai, 2002) appear when one con-
siders a Lie Group as a vector space within an estimation
problem.

The goal of this section is to provide a basic toolbox for
estimation problems on real Lie groups. This synthesis uses
classical tools from differential geometry and focuses on
Lie groups to simplify the results and notations. We refer
the reader to the standard textbooks for a detailed treat-
ment of differential geometry (see e.g. do Carmo, 1992)
and Lie groups (see e.g. Helgason, 2001). By using differen-
tial geometry, we will be able to generalize many algo-
rithms designed for the usual vector space case.

A Lie Group ¥ is a smooth manifold together with a
smooth composition map (usually denoted as multiplica-
tion) and a smooth inverse map, that satisfy the group axi-
oms: closure, associativity, existence of a neutral element
(denoted hereafter as Id) and existence of an inverse.
Two important mappings for us are the left-compositions
and right-compositions by an element m:

L, :
R, :

xX€%9—L,(x) =mox €%,
XE€Y—R,(x)=xomeY.
They are diffeomorphisms by definition. Hence they natu-

rally induce the following differential maps (in a particular
local coordinate system or chart):

d
DLn(x): u€ T,%—DLy(x) u= "éoy € Ty,
-
d
DR,(x): u€ T,%—DR,(x) u=" ao S
-

which allow us to map the space 7,% of tangent vectors to
% at x to its counterpart 7,,,,% or T,., 9.

4.1. Left invariant metric and distance

Because many estimation problems involve a measure of
discrepancy between two elements, it is natural to look for
a definition of a distance between two elements of a Lie
group. This can be done by providing the Lie group with
a Riemannian metric which is a continuous collection of
dot products on the tangent space T7.(¥) at x:
(vw). =v" - G(x) - w. Because of the smoothness of the
Lie Group, we can smoothly translate a dot product at
the Id-tangent space to any other tangent space by left or
right composition thanks to the differential maps above.
In the sequel we focus on left invariant metrics. Thanks
to the left-composition differential map DL,, they can be
represented by the matrix field,

G(x) = DL.(Id)"" - G(1d) - DL, (Id)"". (3)

The Riemannian metric provides the intrinsic way of mea-
suring the length of any smooth curve on the Lie group.
The distance between two points of a Lie Group is then
the minimum length among the curves joining these
points. The curves realizing this minimum for any two points
of the manifold are called geodesics. The calculus of varia-
tion shows that the geodesics follow a second order differen-
tial system depending on the Riemannian metric. Therefore,
we know that there exists one and only one geodesic y(y.)(")
defined for all times (thanks to the left-invariance), going
through x at time r = 0 and having u as a tangent vector.

4.2. Riemannian exponential and log maps

A key notion of differential geometry is the exponential
map. Let us consider a given point x of the Lie group, a
vector u in the corresponding tangent space and the
uniquely associated geodesic y,,. The exponential map is
the function that maps u to the point 7, ,(1) reached after
a unit time by the geodesic:

{Tx(g) - @,
exp, : "

= expx(”) = y(xu)(l)
This function realizes a local diffeomorphism from a neigh-
borhood of 0 to a neighborhood of x by developing the
tangent space along the geodesics (see Fig. 9). Within this
neighborhood, the inverse of the exponential map exists
and is called the log map log,():
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u = log (y)

Fig. 9. Riemannian exponential and log maps on a unit sphere.

exp,u =y <= u = log,y.

In the context of Lie groups, the exponential map notion
can be ambiguous as one can use the Lie group exponential
or the Riemannian manifold one. Both definitions agree if
and only if the Lie group admits a left-and-right-invariant
Riemannian metric (such as for compact Lie groups) used
to define the geodesics. Unfortunately, for the group of
rigid body transformations, it can be shown that no
bi-invariant metric exists (Arsigny et al., 2006). In the
context of estimation problems, we are mainly interested
in distance measurements and we will therefore stick to
the Riemannian exponential.

When a left-invariant metric is used, the exponential and
log maps at any point of a Lie group can be related through
left composition to their counterpart at the identity with
the following equations:

log, (v) = DL,(Id)logy(x~" 0 y), 4)
exp, () = x o exp, (DL, (Id) 'u). (5)

With the log map, the (geodesic) distance between two
points is given by:

dist(r,y) = dist(Id,x™" 0 y) = [[loga(x™" o )|
= (logyg(x ™" o) | loggy(x " o y))'"2. (6)

As shown above, we see that even if we mainly use the Lie
group as a Riemannian manifold, its additional structure is
of great practical interest because it allows us to map every
tangent space to the one at the identity. We therefore only
need to have computational tools for one tangent space,
the tangent space at the identity.

4.3. Mean and covariance matrix

Lie groups are usually not vector spaces, and the notion
of expectation can not readily be extended to it. However,
for any metric space, it is possible to define probabilistic
spaces, random elements and probability density functions
(Papoulis and Pillai, 2002). Expectations and other usual
tools are then defined for random variables, which are
real-valued functions of the probabilistic events, but not
directly for random elements of the group (Pennec and

Ayache, 1998). However, by changing the definition of
the expectation and using the Riemannian geometry tools
presented in Section 4.2, it turns out that a consistent sta-
tistical framework (including the mean, the covariance and
the Mahalanobis distance) can be defined (Pennec, in
press).

In a vector space, the mean can be seen as the element
that minimizes the expected distance to a random vector.
This point of view allows us to generalize the mean for
Lie groups. Let x be a random element and let

ax(v) = E[dist(y,x)’]

be its variance at the (fixed) element y. Note that this is well
defined because dist(y,") is a real-valued function.

Let x be a random element of a Lie group ¥. If the var-
iance ¢2(y) is finite for all elements y € 4, every element
minimizing the variance is called a Fréchet mean element.
The set of Fréchet mean elements is thus given by

7, = argmin(E[dist(y, x)*)). (7)
yeY

It can be shown that under suitable conditions (that are as-
sumed to be fulfilled here), there exists one and only one
Fréchet mean which we denote as E[x].

To define higher moments of a distribution, on a Lie
group, the exponential map at the mean point is used.
The random feature is thus represented as a random vector
with zero mean in a star-shaped domain. With this repre-
sentation, the covariance matrix can be defined by:

2o = Efloggy (x) - loggy )"
= DL, (E[x]) - E[logyg(E[x] ™" o x) - logyq(E[x] ™
- DL, (E[x])". (8)

0x)']

Last but not least, the Mahalanobis distance, which plays a
key role to get a robust estimation of the global position-
ing, can be defined. The Mahalanobis distance is a classical
tool to define a statistical distance in a sample space with
known covariance matrix. Its definition can easily be ex-
tended to Lie groups by using the above definition of the
covariance matrix. The Mahalanobis distance of a point
» to a random feature with Fréchet mean E[x] and covari-
ance matrix X, is given by

1) = logey (1) 2 Mogey (v)- ©)

5. From local to global alignment

Now that all the necessary tools have been presented in
Section 4, we will show how the problem of global position-
ing can be cast to an estimation problems on a Lie group.
The first step of our algorithm is to find a globally consistent
set of transformations to map the input frames to a common
coordinate system. When the input frames arise from a sin-
gle gliding of the flexible microprobe along a straight line, it
may be possible to generate decent alignments by computing
only pairwise registrations between the consecutive frames.
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However in the general case, all spatial neighbors frames
might not be temporal neighbors, and accumulated errors
can lead to a poor global alignment as shown in Fig. 5.
Methods for producing globally consistent alignments are
therefore needed. The automatic multi-image alignment
algorithms developed so far broadly fall into two categories:
feature based (Brown and Lowe, 2003; Can et al., 2004) and
local to global methods (Davis, 1998; Sawhney et al., 1998).
Feature-based methods obviously rely on features extrac-
tion from the input frames. In order to get meaningful
extracted information, the chosen features are often tailored
to the types of images that are to be mosaiced (e.g. panora-
mas, retinal fundus images, aerial views, etc.) and have been
developed for classical uniformly sampled images. We want
an algorithm that is able to cope with non-uniformly sam-
pled inputs (possibly very noisy) arising from many different
types of tissue, as shown in Fig. 3. We therefore chose to
develop a method using local pairwise alignments to gener-
ate consistent global mappings.

5.1. Framework for global positioning

Given two input frames, we need to estimate the (pair-
wise) frame-to-frame transformation.

At this step of the algorithm, we assume that the non-
rigid tissue deformations can be ignored and that the
motion distortions have been correctly estimated. With
these assumptions, we need to perform rigid registrations
of distortion corrected input frames. For that purpose,
we use a classical registration framework based on a simi-
larity criterion optimization but any other technique (e.g.
block matching framework (Ourselin et al., 2000), Mellin
transform (Davis, 1998), etc.) can be used. Let rﬁbs) be
the pairwise rigid registration result between the distortion
corrected input frames 7 and j. This result is considered as a
noisy observation of rj‘l or;. Based on the set of all avail-
able observations, our algorithm looks for a globally con-
sistent estimate of the global parameters [ry,...,ry]. This
problem is addressed in (Davis, 1998) where a least squares
solution is given when linear transformations are consid-
ered. This technique cannot readily be adapted to rigid
body transformations. In Sawhney et al. (1998), the
authors propose a more general approach. Some chosen
corner points are transformed through r; and rjorj(fj.bs)
The squared distance between the transformed points
added to a regularization term is then minimized. These
techniques are sensitive to outliers, and are either tailored
to a specific type of transformation or need a somewhat
ad hoc choice of points. In this paper, we chose to rely
on the tools presented in Section 4 in order to provide con-
sistent and robust estimates of the global rigid body trans-
formations. Practical instantiations of the generic tools
presented in Section 4 are given, for 2D rigid body trans-
formations, in the Appendix.

The computational cost of registering all input frames
pairs is prohibitive and not all pairs of input frames are
overlapping. It is therefore necessary to choose which pairs

could provide informative registration results. For that
purpose, we chose the topology refinement approach pro-
posed in Sawhney et al. (1998). An initial guess of the glo-
bal parameters [rq,...,ry] is obtained by registering the
consecutive frames, the algorithm then iteratively chooses
a next pair of input frames to register (thus providing a
new observation rﬁf}bs)) and updates the global parameters
estimation. As we only consider the pairwise registration
results as noisy observations, we need many of them. In
order to minimize the computational cost of those numer-
ous registrations, we use a multiresolution registration
technique using a Gaussian image pyramid that stops at
a coarse level of the optimization.

5.2. A Lie group approach for global positioning

Let e be a random error whose Fréchet mean is the iden-
tity and whose covariance matrix is X,.. The observation
model is given by
rﬁbs) _ r;l 070 ej(_f;bw’ (10)
where €™ is a realization of the random error e.

Given the set of all available pairwise rigid registration
results ®, we need to estimate the true transformations.
A natural choice is to minimize the statistical distance
(i.e. Mahalanobis distance) between the observations rﬁ-ibs}
and the transformations r; "o 7, predicted by our model.
Our global criterion is thus given by:

* * : 1 0oDs
[r1,....ry] = arg min 3 > w2 (el™). (11)

[F1 ety (iee

It can be seen that this criterion is insensitive to a compo-
sition of all transformations with a fixed arbitrary transfor-
mation. We can therefore choose any transformation in
[r1,...,ry] to be the identity transformation Id. Without
loss of generality we can look for any minimizer in (11)
and then compose all estimates with a common rigid body
transformation so that we get for example rpy; = Id. The
covariance matrix used for the Mahalanobis metric de-
pends on the application. We typically start with a diagonal
matrix that weights the angles with respect to the transla-
tion. This matrix can further be estimated from the data
as explained in Section 5.3.

According to (9), each term of the sum in (11) is given by
(efi™) = logiy(€5™) 2, ogia(¢f™)

= [1See - logig(r; ! o 75 077

where S, is a matrix square root (e.g. Cholesky factoriza-
tion) of X'. We see that we need to solve the non-linear
least squares problem:

. .1 2
Fl,. oy = arg[rfnnrl’v] §||¢(r1, ool
where ¢(r1,...,ry) = Vect({Se - logy(r; ' 0 7 0 HiT™)} 1) o)
Note that this criterion is indeed non-linear because of
the composition involved in the computation of eE-Obs)

i
»
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5.3. Method for non-linear least squares problems on
Lie groups

Many usual optimization algorithms work by making a
series of straight steps towards the optimum (Press et al.,
2002). Most often, it first looks for a walking direction
and then finds a step length according to a predefined rule
(e.g. Gauss—Newton) or by using a line search technique
(e.g. conjugate gradient). In our Lie group framework,
the straightest paths are given by the geodesics. The idea
is thus to walk towards an optimum by a series of steps
taken along a geodesic of the Lie group rather than walk-
ing in the tangent vector space (i.e. using a usual optimiza-
tion routine on the representation of the elements).

Thanks to the exponential map, we have a canonical
way to follow a geodesic starting from a given point and
having a given initial tangent vector. It is thus possible to
combine the power of intrinsic geodesic walking and the
ease of use of classical optimization routines in a natural
way.

The Gauss—Newton method forms the basis for the effi-
cient methods that have been developed for non-linear least
squares optimization. We now show how it can be used in
the Lie group setting. Let x be an element of a Lie group ¢
and let § |¢(x)||* be the function we want to minimize. The
Gauss—Newton method is based on a linear approximation
of ¢() in a neighborhood of the current estimate. We
denote by ¢.(-) = ¢(exp.(-)) the expression of ¢(-) in a nor-
mal coordinate system at x. Its Taylor expansion around
the origin of this chart is given by:

$.(v) = $.(0) + J4(x) - v + O(II¥[I"),

()
oy

get the following apf)roximation:

where J4(x) = . By keeping only the linear part we
y=x

SO = SN +57 - T x)T - ) + 357 - Jolx)"
T(x) .

The Gauss—Newton step minimizes this approximation:

Ve = argmin v - J,(x)" - P(x) %VT Je@) " Ty(x) - v} .

It is well known that if J4(x) has full rank, this has a unique
minimizer which is the solution of Jd,(x)T “Jp(x) v =
—Jo(X)" " D(ri.).

Our optimization routine now follows the geodesic start-
ing from the current estimate x°'¥ and whose tangent vec-
tor is v,,. We thus get the following update equation:

(new)

X = €XPy(old) (/lvg,, )

— ylold) 4 expld(/lDL;ild) (Id)vg,,) (12)

The classical Gauss—Newton routine uses A = 1 at all steps,
but a line search could also be used.

We have shown how to adapt the Gauss—Newton proce-
dure for a non-linear least squares problem on a Lie group.
A very similar approach would also provide extensions of

other classical non-linear least squares optimizers (such
as the Levenberg—Marquardt method or Powell’s dog leg
method) for Lie groups.

This method is applied to solve (11), where the Lie
group we use is the Cartesian product of N rigid body
transformation groups. The Jacobian Jy([ri,...,ry]) can
easily be computed by seeing that:

dlogy(r o ry 0 H™
gy orjor ™) _ DR o (r;") - DIno(r;),
ar,- Tjor; i
dlogy,(r= o r; 0 o™
gId( i J Jil ) = DRﬁ(obSJ (r;l © r/) : DL"TI (I"/),
or; g | |
os~!
where Dinv(r) = S ‘s:r‘

Within this general framework, several improvements
can easily be added. In order to make the rigid registration
between the distortion corrected input frames, we chose to
optimize the squared correlation coefficient. It is then
straightforward to weight the terms of the cost function
(11) by this confidence measure. A well-known problem
of pure least squares approach is the sensitivity of the solu-
tion to outliers in the observations. Many solutions have
been proposed to handle the presence of outliers (Rous-
seeuw and Leroy, 1987). The most common ones rely on
using only a subset of the observations (e.g. least trimmed
squares, reweighted least squares) or on a minimization of
the sum of a function of the residuals (e.g. M-estimators).
In order to be able to use the efficient least-squares opti-
mizer presented above, the easiest is to use the first
approach or to solve the M-estimator problem using itera-
tively reweighted least squares.

In our particular setting we chose the simple reweighted
least squares approach:

« N o1 b
[ri,...,ry] = arg min > Z Wi P ,ug(eﬁ.f; S>),
[F1yern] (ieo
Wi = .
‘ 0 otherwise,

where p;; is the correlation coefficient between the regis-
tered distortion corrected frames i and j, and y is the 95%
quantile of the y* distribution with 3 degrees of freedom.
If enough observations are available, our procedure also
includes an estimation of the covariance matrix ..

6. Compensating the frame distortions
6.1. Motion distortions

In Section 2.2, we have shown that when using a laser
scanning device, the relative motion of the imaged object
with respect to the acquisition device induces distortions.
Without any further assumption, these distortions can have
a very general form. This can for example be seen in some
famous photographs by Henri Lartigue or Robert Dois-
neau shot with a slit-scan camera. In our particular case,
the main relative motion is due to the gliding of the flexible
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microprobe along the tissue and some residual movements
can be produced by the deformation of the soft tissue.

We again use a hierarchical approach and ignore the
effect of the tissue deformation. We thus face the problem
of recovering the gliding motion of the flexible microprobe.
This motion will typically be smooth and will mainly be
composed of a translation part because of an important
torsion resistance of the flexible microprobe. Note that
even if consecutive frames can only be slightly rotated,
more time distant frames can have a large rotational differ-
ence. In order to be able to robustly recover the gliding
motion, we need to further constrain it. We will therefore
assume that during the time period T,, taken by the laser
to scan a complete input frame, the flexible microprobe is
only animated with a translational motion with constant
velocity vector 77 = [if", if’].

Let p =[x, y] be a point in the coordinate system related
to the input frame. As shown in Section 2.2, each laser scan
line, indexed by the ordinate y of a point, corresponds to a
different time instant #(y) = #(0) + VLJ, where we recall that
V) is the vertical velocity of the laser scanning process.
The point p will therefore be shifted by (¢#(y) —#(0))-
n= ;—’yﬁ with respect to the center of the coordinate system.
In order to simplify the notations, we will from now on use
the normalized velocity n = Vifq We now have a way to
map a point p of an input frame to a point py in the
corresponding distortion compensated frame by using the
following linear transformation:

X

1 i
Pq =

0 1+ny}p:M(n)-p- (13)

This is the explicit expression for the motion distortion
transformations, i.e. vi(p) = M(ny) - p for a given frame k
(see Fig. 10).

From this distortion model, we can derive the transfor-
mation model mapping an input frame k to another frame
j. With the assumptions that the non-rigid deformations
can be ignored, we have f,=rjov; fr=rrouv; and
fik = fjfl o fr, where we recall that f, denotes a global
frame-to-reference mapping. This implies that:

fix = U;l orj’l O Fy O U 20;1 O ¥k O Ug. (14)

In the local-to-global positioning scheme presented in Sec-
tion 5, we mentioned that we needed to perform rigid reg-
istrations of distortion compensated frames. By using (14),

Input frame Distortion compensated frame

Scan ) _ 2 2N B X/2+71“Y/2‘
lines Speed | X v : X
\w' vetorn Motion
+¥ distortion \
Y2
"y vy

Fig. 10. Schematic representation of the motion distortion with a constant
translational velocity.

we see that it is possible to make these registrations without
the need to explicitly create the motion compensated
frames. We simply look for the best rigid body transforma-
tion r;; while keeping vz and v; fixed.

6.2. Velocity computation

In order to recover the motion distortions, one could try
to register the frames using the complete transformation
model (14). However, this would imply to ignore the rela-
tionship between positions and velocity and would thus
not really be robust. We therefore chose to compute the
velocities using the displacements information only.

Using finite difference equations, we can relate the glo-
bal positioning and the velocity #. Since our motion model
ignores the rotational velocity, we can focus on the dis-
placement of the center of the flexible microprobe. Let
r =[0,7] be the rigid mapping between two consecutive dis-
tortion compensated input frames. The center [0,0] of the
first distortion compensated frame is mapped through r
to the point 7 in the second motion distortion compensated
frame. The displacement of the center of the flexible micro-
probe during the corresponding interframe time period
Ttrame 18 thus given by 7. By using a forward difference
equation to relate the speed vector and the displacement
vector, we get:

IR
_Vy Tframe

n ‘T (15)
Now let us assume that, with the current estimates of the
rigid mapping #°'¥ and velocity 7°'Y, the two consecutive
input frames are correctly aligned. By using (14), we see
that the center [0,0] of the first (uncompensated) input
frame is mapped to the point ¢ = M(n°'Y)~! - 1°1Y in the
(uncompensated) second input frame. Let ™) and #™")
be the updated rigid mapping and velocity. In order to keep
a correct alignment, the center of the first (uncompensated)
input frame should still be mapped to the point ¢ in the
(uncompensated) second input frame. We therefore need
to have:

M(n(new))*l .T(new) _ M(n(old))*l .T(old). (16)
On the other hand, according to (15), we should have
1 1
(new) _ | . g(new) 17
1 Vy Tframe ‘ ( )

The above system is solved to get updated estimations. A
similar procedure is used with the backward difference
equation and the different estimations are averaged to get
the final update.

As shown in Fig. 8, our algorithm iterates between a glo-
bal positioning scheme during which the velocities are
assumed to be correctly estimated and the above motion
distortion compensation routine. The final step should be
a global positioning one because a typical user will be sen-
sitive to some slight misalignment but not to a slight incon-
sistency in the motion distortion.
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6.3. Soft tissue deformations

Once a globally consistent, motion compensated, mosaic
has been constructed, it is possible to make a refined multi-
image registration by iteratively registering each input
frame to the mosaic and updating the mosaic. The mosaic-
ing problem can be written as an optimization problem
over the unknown underlying image / and the unknown
transformations [f1, . . ., fy] of the following multi-image cri-
terion, S(f1,...,/n,I) = ZLS(I,,,I o f,), where S(1,,1) is
a usual pairwise similarity criterion between the two images
1, and I;,. With this framework our mosaic refinement pro-
cedure can be seen as an alternate optimization scheme.

We again use a hierarchical approach and divide the fine
frame-to-mosaic registrations into two loops of increasing
model complexity. First we refine the global linear map-
pings. Then, in order to account for the small non-rigid
deformations, we have adapted the demons algorithm
(Thirion, 1998) to our special case of irregularly sampled
input frames. The general demons scheme is modified as
follows:

e A fine reference grid is used to make a sparse grid I’
from the scattered point set representing the centers of
the fibers composing the flexible microprobe. All pixels
of I'y are selected in the input frame k to be demons.

e The non-rigid deformations b, is modeled by a list of
elementary displacements (one per fiber or demon).

e In order to get a regular displacement field, the sparse
displacement field is smoothed at each iteration by using
the scattered data approximation method that will be
presented in Section 7 (with a large smoothing factor).

e The optical flow is computed for all demons. Its compu-
tation requires the gradient of the reference image which
in our case is a non-uniformly sampled input frame. In
order to get an approximation of this gradient, we
reconstruct the non-uniformly sampled input frame on
a regular grid using the scattered data approximation
method that will be presented in Section 7. We then
use the gradient of this reconstruction.

We mainly used the above scheme because of its effi-
ciency and its adaptation to our particular data, but other
schemes could also be used. The residual deformation fields
[b1,...,by] could be modeled by using B-splines tensor
products on a predefined grid such as in Rueckert et al.
(1999). The framework can also easily be extended to use
any other non-rigid registration methods using landmarks-
based schemes or more accurate deformation models such
as in Cachier et al. (2003).

7. Efficient scattered data approximation

The iterative mosaic refinement scheme presented in
Section 6.3 requires a new mosaic construction at each iter-
ation. Furthermore, the adapted demons algorithm needs a
method for smoothing deformation fields that are defined

on a sparse grid, together with a method being able to con-
struct a regularly sampled image from an irregularly sam-
pled input.

These goals can be achieved with a single method for scat-
tered data approximation provided that it allows us to con-
trol the degree of smoothness of the reconstruction. Since
we want to register the input frames with the mosaic, control-
ling the smoothness of the reconstruction is also important.
We indeed need a mosaic that is smooth enough for the reg-
istration process not to be trapped in a local minimum but
detailed enough for the registration result to be accurate.

As appears above, the scattered data approximation
method will be used many times. It is therefore necessary
to use a very efficient algorithm.

The usual algorithms for scattered data interpolation
or approximation, such as triangulation based methods,
Kriging methods, radial basis functions interpolations,
B-Spline approximations or moving least squares methods
(see e.g. Amidror, 2002; Lee et al., 1997; Lodha and
Franke, 1999 and references therein) do not simultaneously
meet the requirements of efficiency, and control over the
smoothness of the approximation. In the sequel we develop
a main contribution which is an efficient scattered data fit-
ting algorithm that allows a control over the smoothness of
the reconstruction.

7.1. Discrete Shepard’s like method

Let {(p;,ix) € Q x R} be the set of sampling points and
their associated signal. Our goal is to get an approximation
of the underlying function on a regular grid I" defined in Q.
The main idea is to use a method close to Shepard’s inter-
polation. The value associated with a point in I' is a
weighted average of the nearby sampled values,

= Y mlplic= 3 s (18)

The usual choice is to take weights that are the inverse of
the distance, /i(p) = dist(p,pr)~". In such a case we get a
true interpolation (Amidror, 2002). An approximation is
obtained if a bounded weighting function /(p) is chosen.
We choose a Gaussian weight /7 (p) = G(p —p,) x
exp(—||p — p;]I7/26%) and (16) can thus be rewritten as

) — eGP = p) _ (G400, () (19)
>4Gp—py) (G340, ](p)
where 6, is a Dirac distribution centered at py.

Finding the sampling points that are close enough to a
given point is a time consuming task. Moreover, the posi-
tions of the sampling points are only known up to a certain
accuracy and the resolution of the reconstruction is always
limited by the spacing of the chosen grid I'. Our method
will therefore convert the point cloud to a list of pixels in
the reconstruction grid I" by using a nearest neighbor rule.
This mapping is the key to the very efficient method
presented here.
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Algorithm 1 (Discrete Shepard's like method).

I: Let {(p,,ix) € 2 x R} be the set of sampling points
and their associated signal. Let I" be a chosen recon-
struction grid.

2: Create two uniformly sampled images N and D
defined on I' and initialized to zero.

3: for all point indexes k do

4: Map the sampling point p to the closest pixel p; of
the chosen grid I'.

5: Update N: N(p}) < N(p}) +ix

6: Update D: D(p}) < D(p}) + 1

7: end for

8: Smooth N and D with a recursive Gaussian filter

(Deriche, 1993)
9: Create the final reconstruction R = %

This scattered data approximation technique requires
only two Gaussian filtering and one division and is thus
very efficient. The smoothness is controlled by the variance
of the Gaussian kernel.

7.2. Mosaic construction

The above algorithm can further be tailored for the
problem of mosaic reconstruction. Once an estimate j’ » of
the frame-to-reference mapping f, is available, we get a
point cloud composed of all transformed sampling points
from all the input frames

{(Perie)} = {(Fu(p): 1 (p))Ip € Awsn € [0,... N}, (20)

where A, is the set of sampling points in the input frame 7.
A common approach, when constructing mosaic images,
is to minimize the seam artifacts by using feathering or
alpha blending (Uyttendaele et al., 2001). With this
approach, the mosaic image is a weighted average on the
input images and the weighting factor depends, for exam-
ple, on the distance to the center of the image. This allows
to smooth the transitions between the input images.
Moreover one could have a confidence measure for each
input frame based, for example, on the estimated velocity
of the frame. Weighting the input frames with this confi-

i

- |

dence measure for the reconstruction of the mosaic could
help getting a visually more pleasing mosaic image.

Both approaches reduce to weighting the importance of
a given mapped input sampling point p; by some factor py.
This weight can readily be used in (17) and we get:

_ 2Pk G(p — pi) _ [G*D 2, piindp, | (p)
>PGp — i) [G*D 2P0y, ) (P) .

Adapting the algorithm is thus straightforward. We only
need to change the N and D update steps by N(p}) <
N(p;) + piix and D(p}) < D(p}) + p;. Finally there is often
no need to extrapolate the data too much or to reconstruct
zones that have a very small confidence. This can easily be
achieved by setting the value of the mosaic to an arbitrary
(but fixed) value when the total weight factor D(p) is below
a predefined threshold.

I(p)

8. Results
8.1. Experimental evaluation

The experimental evaluation of our approach was car-
ried out on a reflectance fibered confocal microscope from
Mauna Kea Technologies shown in Fig. 11b. For the par-
ticular flexible microprobe we used throughout these exper-
iments, the field of view is 220 x 200 pm.

In order to validate the global positioning and motion
distortion compensation framework, image sequences of
a rigid object were acquired. The object needed to have
structures that could be seen with the reflectance fibered
confocal microscope. For the mosaicing to be of interest,
we also needed to see shapes whose size were larger than
the field of view of our imaging device. We therefore chose
to image a silicon wafer.

A fair evaluation can only be made by comparing the
output of the algorithm with independent information.
Apart from simulated data, a ground truth of the imaged
region is very difficult to get. Even with a standard micro-
scope having a comparable resolution but a greater FOV it
is not easy to see on the wafer whether the exact same
region is being imaged or not. In addition to the mosaic,
our algorithm estimates the motion of the flexible micro-

Fig. 11. Experimental system used to control the motion of the flexible microprobe with respect to the imaged rigid object (a silicon wafer). (a) The
Deckel-Maho milling machine holding the flexible microprobe. (b) The Cellvizio, fibered confocal microscope.
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probe. The following evaluations use a computer numerical
control (CNC) milling machine, shown in Fig. 11a, to hold
the flexible microprobe and prescribe a motion with respect
to the silicon wafer whose accuracy is of the order of mag-
nitude of the apparent fiber inter-core distance
dic = % = 1.3 um (G = 2.5 is the magnification of the flex-
ible optical microprobe). This apparent fiber inter-core dis-
tance can be thought of as the resolution of the system. We
have thus been able to compare the prescribed motion with

the recovered one.

8.1.1. Translational motion

In the first experiment, the milling machine was pro-
grammed to perform two consecutive circles with a radius
of 125 um. The first circle is a clockwise one whereas the
second one is a counterclockwise one. The final shape thus
looks like an ““8”’. The motion starts and ends at the center
of this shape. The milling machine was programmed to
keep a constant tangential velocity vector during the exper-
iment. The radius of the circles were chosen so that in the
middle of the circles a small blind zone remains. We there-
fore have both regions where many frames overlap (the
center of the “8”), and regions where fewer frames do
(the top and bottom of the “8”).

As a point of comparison, we compute an initial mosaic
by registering the pairs of consecutive frames under a rigid
motion assumption. An initial global positioning is com-
puted by composing these local rigid body transforma-
tions. No frame distortion compensation is carried out.
Fig. 12a shows this initial mosaic. As shown in this figure
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Fig. 12. Mosaicing results using sequential rigid registrations only for a
video sequence during which the milling machine performed two opposite
circles of equal diameters. FOV: 465 x 725 um. Note the global inconsis-
tency of the alignments (due to accumulated registration errors) and the
geometric distortions (due to uncompensated motion artifacts). (a) Initial
output mosaic of the wafer. (b) Estimated trajectory.

and on the reconstructed path in Fig. 12b, geometrical dis-
tortions appear. The estimated motion is far from the pre-
scribed “8” and the mosaic has a wavy aspect.
Furthermore, the global inconsistency of the estimated
transformations is seen on the mosaic (the input frames
are not correctly aligned which is especially true in the mid-
dle of the “8”), and on the estimated trajectory (the estima-
tion of the first and last frame centers are far away).

In Fig. 13a, we applied our framework for global posi-
tioning and motion distortion compensation. The gain is
clear both in terms of geometry of the reconstruction and
visual quality. Fig. 13b shows the estimated motion. The
best fitted circle are shown for each half trajectory. The
radii of the estimated circles are Ry = 123.5 um and R, =
123.7 um which is quite close to the 125 pum expected.
The remaining difference can be explained by the uncer-
tainty we have on the horizontal and vertical magnifica-
tions G, and G, of the flexible microprobe. An unmodeled
discrepancy between these magnifications (ie. Gy # G,)
could also explain the oscillations in the error plot Fig. 14.

In order to further evaluate the quality of our recon-
struction we used a standard microscope to acquire images
of the silicon wafer on a similar zone (being able to image
the very same spot is a very difficult task due to the redun-
dancy of the wafer pattern). Fig. 15 shows this image. A
comparison is made between the standard microscope,
the reflectance fibered confocal microscope and our recon-
struction from the FCM by showing a zoom on a particu-
lar structure. Note the enhancement in visual quality we get
on the mosaic image with respect to the input signal we use.
Because of the importance of the noise level on the input
frames and of a small residual aliasing effect, our method
is even capable of producing mosaics that have a better
resolution that the input frames. This result is really crucial
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Fig. 13. Mosaicing results using global frame positioning and motion
distortion compensation on the same input sequence as in Fig. 12. FOV:
474 x 696 pm. (a) Globally consistent mosaic of the wafer. (b) Estimated
trajectory.
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Fig. 14. Distance of the estimated frame centers to the center of the circle that has been fitted to the estimated trajectory. The plot also shows the estimated
radius and a band of width two times the fiber inter-core distance which provides an idea of the accuracy of the estimation.

a

Fig. 15. Comparison of our mosaic with a typical input frames and with
an image acquired with a standard microscope. (a) Image of a similar zone
of the silicon wafer acquired with a standard microscope. (b) Zoom on a
portion of the wafer. Top to bottom: image acquired with a standard
microscope; a typical input frame; the reconstructed mosaic.

since we do not even need to perform computationally
expensive super-resolution algorithms as in Zomet and
Peleg (2000). The gain in resolution is clear on all parts
of the mosaic as shown in Fig. 16.

8.1.2. General motion

In the second experiment, the milling machine was again
programmed to perform two circles with radius 125 pm. In
addition to this motion, the table holding the silicon wafer
was programmed to perform a rotation of angle —§ around
a fixed axis. Both motions have been synchronized to start
and end at the same time instant. The rotational velocity of
the table was programmed to remain constant. Once again,
the milling machine was programmed to keep a constant
tangential velocity vector during the experiment. Because
of the custom made part needed for the milling machine
to hold the flexible microprobe, it was not possible to pro-
gram the center of rotation of the table to be aligned with
the center of the “8” motion imposed by the milling
machine. We have however been able to roughly position
it there.

Fig. 16. Zoom on a portion of the wafer. The first line shows some input frames and the second shows the corresponding reconstruction. Note the

achieved gain in both noise level and resolution.
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Fig. 17. Mosaicing results using global positioning and motion distortion
compensation for a video sequence during which the milling machine
performed two opposite circles of equal diameters while, in the meantime,

the table performed a rotation of angle —% with constant angle velocity.

The center of rotation of the table was relatively close to the center of the
“8” motion imposed by the milling machine but remains unknown. FOV:
514 x 758 um. (a) Mosaic using global frame positioning. (b) Estimated
angle and fitted line.

Fig. 17a shows the mosaic reconstructed using our glo-
bal positioning and motion distortions compensation algo-
rithms. We have superimposed the estimated trajectory of
the flexible microprobe together with two axes showing
the estimated orientation of the flexible microprobe. For
obvious reasons of clarity, only a subset of the estimated
positions are shown. Note that the first and last frame
(denoted by F and L in Fig. 17a) are not in the same posi-
tion. This is due to the rotation center of the table not
being aligned with the center of the first frame (i.e. the cen-
ter of the “8”” motion). Fig. 17b shows the estimated angu-
lar orientation of the frame together with the best fitted
line. The total angle of —% corresponds to a true angular
velocity of 4.60 x 1072 rad/s. Using the above least-squares
fit of the orientation, the estimated angular velocity is
4.50 x 10 "% rad/s which is once again very close to the
ground truth.

The power of our hierarchical scheme is shown in
Fig. 18 where different reconstructions are compared. The
first reconstruction uses sequential rigid registration only,

global inconsistency is obvious. The second shows the
reconstruction using motion distortion compensation but
no global alignment. Residual global misalignment implies
a blurred result. On the other hand, the mosaic using both
global alignment and motion distortion compensation is
really crisp.

8.2. In vivo studies

Fibered confocal microscopy is designed to visualize cel-
lular structures in living animals. In Fig. 3, we presented
different types of tissue imaged in vivo with the Cellvizio.
As a proof of concept, we applied our mosaicing algorithm
to the sequences corresponding to the images shown in
Fig. 3. We will first discuss the results obtained for colon
imaging in detail. Then we briefly present the results
obtained with the other sequences.

8.2.1. Colon imaging

In the field of colon cancer research, the development of
methods to enable reliable and early detection of tumors is
a major goal. In the colon, changes in crypt morphology
are known to be early indicators of cancer development.
The crypts that undergo these morphological changes are
referred to as Aberrant Crypt Foci (ACF) and they can
develop into cancerous lesions.

In laboratory rodents, ACF can ecither be induced by
colon-specific carcinogens or through transgenic muta-
tions. As in humans, ACF in mice are known to be reliable
biomarkers for colon cancer and are used to study initia-
tion, promotion and chemoprevention of colorectal cancer.
Currently, ACF are routinely imaged, detected and
counted under a dissecting microscope following staining
with methylene blue. In order to do this, the animal is sac-
rificed and the whole colon is excised and opened flat.

Compared to this method, fluorescence FCM enables
the operator to see the lesions in real-time and to make
an almost immediate evaluation without sacrificing the ani-
mal. This offers the possibility of studying groups of indi-
vidual animals over extended periods with the benefits of
reduced inter-animal statistical variation and reduced num-
ber of animals used per experiment (Cavé et al., 2005).
However, in many cases the limited field of view restricts
the confidence that the operator has in the ACF counting.

Fig. 18. Zoom on a portion of the reconstructed mosaic using the same input sequence as in Fig. 17. (a) Mosaic using sequential rigid registrations only.
(b) Mosaic using sequential rigid registrations and motion distortion compensation. (¢) Mosaic using global frame positioning and motion distortion

compensation.
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By offering an extended field of view, mosaicing techniques
can be an answer to this restriction.

The effectiveness and relevance of the proposed algo-
rithm for this study are shown on a sequence that has been
acquired in vivo on a mouse colon stained with acriflavine
at 0.001%. The mouse was treated with azoxymethane
(AOM) to induce a colon cancer. The input sequence is
composed of fifty frames, each with a field of view of
425 ym by 303 pm. As shown in Fig. 19¢c, our algorithm
allows for a simultaneous visualization of normal and aber-
rant crypts.

Fig. 19b shows the improvement we make with respect
to a simple mosaic construction, shown in Fig. 19a, by
using the global positioning and motion distortion com-
pensation. The imaged tissue is really soft and non-linear
deformations also occur. Fig. 19c¢ illustrates the gain we
obtain by taking into account those non-rigid deforma-
tions. Some details are lost if we only use rigid body trans-
formations and reappear on our final mosaic. The global
frame positioning mosaicing took approximately 3 min
on a 2 GHz P4 and 15 min if the non-rigid deformations
are compensated.

Fig. 19. Mosaics of 50 in vivo mouse colon images after instillation of
acriflavine (Courtesy of D. Vignjevic, S. Robine and D. Louvard, Institut
Curie, Paris, France). The arrows point to zones of the mosaic where the
visual gain is particularly appealing. (a) Mosaic using pairwise rigid
registrations between consecutive frames. (b) Mosaic using global posi-
tioning and motion distortion compensation. (c¢) Mosaic using our
complete algorithm (including non-rigid registration).

Fig. 20. Pseudo-color mosaics of the colon. (a) Ex vivo mouse colon
imaging after instillation of acriflavine (226 input frames). Courtesy of D.
Vignjevic, S. Robine and D. Louvard, Institut Curie, Paris, France. (b) In
vivo Mouse colon vascularization after injection of FITC-Dextran high
MW (300 input frames). Courtesy of M. Booth, MGH, Boston, MA. (c)
Ex vivo reflectance imaging of the human colon (1500 input frames). (d)
Ex vivo imaging of the human colon with methylene blue (51 input
frames). Courtesy of P. Validire, Institut Mutualiste Montsouris, Paris,
France.
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Our method has also been successfully applied to many
other types of sequences acquired in both mouse and
human colon as shown in Fig. 20. Fig. 20a provides
another example using a sequence that has been acquired
on a mouse colon stained with acriflavine. In Fig. 20b,
the vascularization of the mouse colon was imaged after
injection of FITC-Dextran high MW. We also provide
results on sequences that have been acquired ex vivo in
the human colon. Fig. 20c uses reflectance FCM whereas
Fig. 20d uses a sequence acquired with a 660 nm fluores-
cence FCM after methylene blue staining.

8.2.2. Other examples

The Cellvizio offers a new way to image and characterize
many types of tissue. In many cases, mosaicing can help
move beyond the limitations of FCM by offering an
extended field of view. We provide some insight of this
by showing the result of our algorithm on the remaining
sample sequences shown in Fig. 3.

Fig. 21a shows a mosaic constructed from 21 input
frames, each with a FOV of 417 um by 297 pum. In this fig-
ure, we can see mouse tumoral angiogenesis. The need for
in vivo imaging is urgent in this field. It can indeed help

50 pm
—
d

Fig. 21. Pseudo-color mosaics using different types of images acquired with the Cellvizio (Courtesy notes appear in Fig. 3). (a) In vivo tumoral
angiogenesis in mouse with FITC-Dextran high MW (21 input frames). (b) Ex vivo autofluorescence imaging in human lung (15 input frames).
(c) Microcirculation of the peritubular capillaries of a live mouse kidney with FITC-Dextran high MW (31 input frames). (d) Dendritic receptors in a live

Thyl-YFP mouse (70 input frames).
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a

Fig. 22. Reflectance imaging of human mouth mucosa. (a) First frame of the input sequence (cf. Fig. 3c). (b) Final mosaic (101 input frames). The dashed

circle corresponds to the first input frame shown in Fig. 22a.

assess the efficiency of angiogenesis therapy (McDonald
and Choyke, 2003). Mosaicing techniques can further help
in getting objective quantitative measurements.

The result shown in Fig. 21b is of much clinical interest
since it proves that obtaining a microscopic images of
human lung tissue without any staining is feasible. Our
mosaicing algorithm pushes this interest one step further
by showing multiple alveolar structures on a single image.

The mosaic in Fig. 21c, arising from 31 input frames,
shows the tubular architecture of the kidney. In this setting,
mosaicing could help getting objective statistical shape
measurements.

Fig. 21d shows the ability of the Cellvizio to image ner-
vous tissue down to the dendritic endings and shows how
mosaicing can help seeing many of those dendritic endings
simultaneously. 70 input frames all with a FOV of 397 pm
by 283 um were used to produce the mosaic.

Fig. 22 clearly shows that even in the in vivo case, we are
able to get a real gain both in terms of noise level and res-
olution. The input sequence was composed of 101 images
from the human mouth mucosa that have a FOV of
150 pm by 125p m.

The results shown in Figs. 19, 21 and 22 prove the fea-
sibility of mosaicing for in vivo soft tissue microscopy.

9. Conclusion and future work

The problem of video mosaicing for in vivo soft tissue
fibered confocal microscopy has been explored in this
paper. A fully automatic robust hierarchical approach
was proposed. Rigorous tools for estimation problems on
Lie groups were used to develop a robust algorithm to
recover consistent global alignment from local pairwise reg-
istration results. A model of the relationship between the
motion and the motion distortion was developed and used
to robustly compensate for the motion distortions arising
when using a laser scanning device. An efficient scattered
data fitting technique was proposed for the construction
of the mosaic. This tool was also used to adapt the demons

algorithm for non-rigid registration with irregularly sam-
pled images. The results shown on various types of images
acquired with a fibered confocal microscope are promising
and encourage the application of the proposed method for
qualitative and quantitative studies on the mosaics.

Future work aims at two different goals. The first goal is
technical and will focus on making the mosaicing process
more efficient. This could, for instance, be based on using
less accurate (yet globally consistent) frame-to-reference
transformations and compensate by using reconstruction
methods that are less sensitive to small misregistrations
(Burt and Adelson, 1983; Levin et al., 2004; Su et al.,
2004). We will also work on providing the user with a con-
fidence measure on the reconstructed mosaic. The second
goal we are aiming at is to evaluate the impact of our pow-
erful mosaicing framework in terms of both diagnosis effi-
ciency and diagnosis quality. We are expecting fibered
confocal optical biopsy, enhanced by our mosaicing frame-
work, to become a standard method in the field of colon
cancer screening.
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Appendix. Lie group tools for 2D rigid transformations

In this section, we provide the explicit expressions of the
tools defined in Section 4 for the specific case of interest,
the 2D rigid body transformations %.

A rigid body transformation r is composed of a rotation
of angle 0 (expressed in [0,2n] mod(2n)) followed by a
translation = (t%, 7). This set of parameters provides a
chart or local coordinate system. The composition and
inversion are easily expressed in this coordinate system.
Let r; and r, be two rigid body transformations represented
by (01,71) and (6,,75), we have:
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rpory:

(0, + 01, Ro,T1 + ),
e (=0,—R 1),

cos(a) —sin(a)
sin(o)  cos(a)

coordinate system, the differential maps previously pre-
sented are given by:

where R, = is a rotation matrix. In this

1 0 0
DL,(s)= [0 cos(0) —sin(0) |,
|0 sin(0)  cos(0)
[ 1 0 0
DR,(s) = | —sin(0)ty —cos(0)z, 1 0],
| cos(0)ri —sin(0)7, 0 1
-1 0 0
DiInv(r) = | sin(0)t" — cos(0)r" —cos(0) —sin(6)
cos(0)r +sin(0)rr  sin(@)  —cos(6)

We can notice here that the left composition differential
map DL,(s) does not depend on s.

We now look at the left-invariant Riemannian metric
G(x) we use on this Lie group. Let u; =(df;,dr;) and
u, = (d0,,dt,) be elements of the Id-tangent space T14(Z).
We choose the canonical dot product on T14(%):

<ll1 | u2>1d = d01d92 + df? . d’L'z g G(Id) = 13,

According to (3), the left invariant metric is thus given, at
all points, by the matrix G(x) = DL, " - I; - DL.' = I;. The
Riemannian metric is, in this case, of the simplest possible
form and does not depend on the tangent space. This par-
ticular Lie group is thus flat and geodesics are straight line.
The Riemannian logarithm at the identity is therefore sim-
ply given by the parameters expressed in the chart we
chose:

logld(r) = [07 Tx’ Ty]' (21)

Another common choice, would be to take G(Id)=
diag([4%,1,1]) in order to weight the influence of the angles
with respect to the translation, but using the Mahalanobis
distance defined in Section 4.3 makes this weighting
unnecessary.
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