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Abstract. As image registration becomes more and more central to
many biomedical imaging applications, the efficiency of the algorithms
becomes a key issue. Image registration is classically performed by op-
timizing a similarity criterion over a given spatial transformation space.
Even if this problem is considered as almost solved for linear registration,
we show in this paper that some tools that have recently been developed
in the field of vision-based robot control can outperform classical solu-
tions. The adequacy of these tools for linear image registration leads us to
revisit non-linear registration and allows us to provide interesting theo-
retical roots to the different variants of Thirion’s demons algorithm. This
analysis predicts a theoretical advantage to the symmetric forces variant
of the demons algorithm. We show that, on controlled experiments, this
advantage is confirmed, and yields a faster convergence.

1 Introduction

As the integration of information from multiple images finds more and more
applications in the fields of biomedical research and clinical applications, the
efficiency of the image registration procedures becomes a crucial point for the
end-users. Correspondingly there is a growing interest from the scientific com-
munity to better understand and optimize the registration procedures.

In this paper, we present an efficient approach to image registration that
encompass both linear and non-linear registration with a focus on mono-modal
image registration. In this setting, registration is classically performed by opti-
mizing a similarity criterion such as the mean squared error. Literature on image
registration and optimization theory already provide a wealth of algorithms that
can be used to solve this problem. However they do not always use all the speci-
ficity of mono-modal image registration. Our first contribution is to shed a new
light on this problem by showing that the tools that have recently been developed
by Malis [1] in the field of vision-based robot control can be used for biomedi-
cal image registration and that they outperform the well-known optimizers. The
efficient second-order minimization (ESM) technique [1] takes advantage of the
specificity of mono-modal image registration to boost its convergence rate. It is
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not tailored to a particular class of spatial transformations and can thus be used
for a broad class of problems.

Looking at non-linear image registration, one of the most efficient methods is
the demons algorithm proposed by Thirion [2]. Several variants of the algorithm
have been proposed depending on how the forces are computed. In [3, 4] an ad
hoc symmetrization of the demons force similar to the one proposed by Thirion
was shown to improve the results of the original demons algorithm. In [5] the
authors showed that the demons algorithm had connection with gradient descent
schemes. However, to the best of our knowledge, the different variants of the
demons have not been given a strong unified theoretical justification. Our second
and main contribution is to show that the image registration framework we use
in this work provides strong theoretical roots to the demons algorithm and that
the different variants are related to the use of different optimizers. One of the
main results of our theoretical analysis is to show that the symmetric forces
variant is related to the ESM scheme. This study thus explains why, from a
theoretical point of view, the symmetric forces demons algorithm seems to be
more efficient in practice. Our third contribution is to provide evidence that, in
practice, using symmetric forces indeed leads to a higher convergence rate.

The paper is organized as follows. In Section 2, we develop a unified frame-
work for mono-modal image registration and show how the classical optimizer
fit in the framework. Section 3 focuses on the efficient second-order minimiza-
tion (ESM) with an emphasis on sound mathematical treatment. A practical
example is worked out to compare the performance of the different approaches.
In Section 4 we show how to extend the framework for the study of the demons
algorithm. Finally Section 5 concludes the paper.

2 Registration using Newton Methods on Lie Groups

2.1 Image Registration Model

Given a fixed image F (.) and a moving image M(.) in a D-dimensional space,
intensity-based image registration is treated as an optimization problem that
aims at finding the spatial mapping that will align the fixed and moving images.
The transformation s(.), RD → RD, p 7→ s(p), models the spatial mapping of
points from the fixed image space to the moving image space. The similarity
criterion Sim(F,M ◦ s) measures the quality of a given transformation. In this
paper we will only consider the mean squared error similarity measure which
forms the basis of the intensity-based image registration algorithms:

Sim(F,M ◦ s) =
1
2
‖F −M ◦ s‖2 =

1
2 |ΩP |

∑
p∈ΩP

|F (p)−M(s(p))|2 , (1)

where ΩP is the region of overlap between F and M ◦ s.
In order to register the fixed and moving images, we need to optimize (1)

over a given space of spatial transformations. This can often be done by pa-
rameterizing the transformations. However most of the spatial transformations
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we use do not form vector spaces but only Lie groups (e.g. rigid body, affine,
projective, diffeomorphisms...), meaning that we can invert or compose these
transformations and obtain a spatial transformation of the same type. We thus
need to perform an optimization procedure on a Lie group such as in [1, 6, 7].

2.2 Newton Methods for Lie Groups

Optimization problems on Lie groups can often be related to constrained opti-
mization by embedding the Lie group in an Euclidean space. The classical way of
dealing with the structure of the group is to use Lagrange multipliers or when the
constraints are simple to have an ad hoc procedure to preserve the constraints
(e.g. renormalize a quaternion to have a unit quaternion). In this work we use an
alternative strategy known as geometric optimization which uses local canonical
coordinates [6]. This strategy intrinsically takes care of the geometric structure
of the group and allows the use of unconstrained optimization routines.

Let G be a Lie group for the composition ◦. We refer the reader to the
standard textbooks for a detailed treatment of Lie groups. To any Lie group can
be associated a Lie algebra g, whose underlying vector space is the tangent space
of G at the neutral element Id. This Lie algebra captures the local structure of
G. The Lie group and the Lie algebra are related through the group exponential
which is a diffeomorphism from a neighborhood of 0 in g to a neighborhood of
Id in G. Let e1, . . . , en be a basis of the Id-tangent space TId(G) corresponding
to a basis of g. Canonical coordinates provide local coordinate charts so that for
any x ∈ G in some neighborhood of s, there exists a vector u =

∑
i uiei ∈ TId(G)

such that x = s ◦ exp(u) = s ◦ exp(
∑

i uiei). They can be used to get the Taylor
expansion of a smooth function ϕ on G:

ϕ (s ◦ exp(u)) = ϕ(s) + Jϕ
s .u +

1
2
uT .Hϕ

s .u + O(‖u‖3), (2)

where [Jϕ
s ]i = ∂

∂ui
ϕ(s ◦ exp(u))

∣∣
u=0

and [Hϕ
s ]ij = ∂2

∂ui∂uj
ϕ(s ◦ exp(u))

∣∣
u=0

. It
is shown in [6], that this expansion allows us to adapt the classical Newton-
Raphson method by using an intrinsic update step,

s← s ◦ exp(u) (3)

where u solves Hϕ
s .u = −Jϕ

s
T .ϕ(s). As in the vector space case, this algorithm

has a local quadratic convergence, and is independent of the chosen basis of g.
In many cases, using the Newton-Raphson method is not advocated or sim-

ply not possible. The Hessian matrix is indeed often difficult or impossible to
compute, is not numerically well-behaved and convergence problem may arise
when it is not definite positive. To address these problems in the context of non-
linear least squares optimization, most of the available efficient methods (e.g.
Levenberg-Marquardt) are related to the Gauss-Newton method [8].

Let φ(.) = 1
2 ‖ϕ(.)‖2 = 1

2

∑
p ϕp(.)2 be a sum of squared smooth func-

tions. The Gauss-Newton method is based on a linear approximation of ϕ in



4 T. Vercauteren et al.

a neighborhood of the current estimate. From (2), we have ϕ (s ◦ exp(u)) =
ϕ(s) + Jϕ

s .u + O(‖u‖2). By keeping only the linear part we obtain a quadratic
approximation that we use to derive the Gauss-Newton method on a Lie group:

φ(s ◦ exp(u)) =
1
2
‖ϕ(s ◦ exp(u))‖2 ≈ 1

2
‖ϕ(s) + Jϕ

s .u‖2 . (4)

It is well known that if Jϕ
s has full rank, this equation admits a unique min-

imizer which is the solution of the so-called normal equations:
(
Jϕ

s
T .Jϕ

s

)
.u =

−Jϕ
s

T .ϕ(s). By using this solution in the intrinsic update step, s← s ◦ exp(u),
we get the Gauss-Newton method for Lie Groups. In a vector space, the local
convergence of the Gauss-Newton (and Levenberg-Marquardt) method is in gen-
eral not quadratic. In the Lie group setting, we also see that (4) is a first-order
approximation. We must therefore also expect only local linear convergence.

2.3 Gauss-Newton for Image Registration

For the registration problem (1), the Gauss-Newton algorithm can be used with
the following function involved in the nonlinear least squares problem:

ϕp(s ◦ exp(u)) = F (p)−M ◦ s ◦ exp(u)(p). (5)

We now need to know how to compute the Jacobian J
ϕp
s of this function.

In practice, we need a computational representation. By Whitney’s theorem,
we know that there exists an embedding Θ, G → RN , s 7→ Θ(s) of the Lie group
in an Euclidean space. This embedding also allows us to represent the Lie algebra.
An example is the matrix representation of the common spatial transformations
(e.g. rigid body, affine, projective) in homogeneous coordinates. In practice, this
Euclidean representation is used to compute the spatial transformation (using
e.g. matrix multiplication in homogeneous coordinates). Let us denote w(Θ(s), p)
the expression, in the Euclidean embedding space RN , of the transformation of a
point p ∈ RD through the mapping s ∈ G. Using this Euclidean representation,
the chain rule and the fact that the differential map of the exponential at Id is
the identity, the Jacobian of (5) can be decomposed as (cf. appendix):

Jϕp
s =

∂

∂uT
ϕp(s ◦ exp(u))

∣∣∣
u=0

= −∇T
p (M ◦ s).Jwp .eΘ, (6)

where ∇p(M ◦ s) is the gradient of the warped moving image (D × 1 vector),
Jwp = ∂w(X,p)

∂XT

∣∣
X=Θ(Id)

is the derivative of the mapping action expressed the
Euclidean embedding space (D×N matrix) and eΘ = [Θ(e1), . . . , Θ(en)] stacks
the basis vectors of g expressed in the Euclidean embedding space (N×n matrix).
A practical case for 2D rigid-body registration is given in Section 2.3.

3 Efficient Second-Order Minimization (ESM)

Image registration (especially mono-modal) is not any generic optimization prob-
lem, the algorithms can take advantage of the specificity of the problem to de-
velop more efficient schemes. We focus on the efficient second-order minimization
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(ESM) procedure of [1] that uses the following fact: when the images are aligned
with the optimal spatial transformation sopt, the fixed image and the warped
image as well as their gradient should be very close to each other.

The main idea behind the ESM is that we can use this information to improve
the search direction of the Newton methods. The Newton-Raphson uses the value
of ϕp, its first and second derivatives around 0 to build a second-order polynomial
approximation of ϕp. The Gauss-Newton case discards the second derivative and
can thus only build a first-order polynomial. What we do with the ESM is to use
the value of ϕp, its first derivative around 0 as well as its first derivative around
sopt to build a second-order polynomial without the need of second derivative
information. The ESM is thus a second-order minimization method that does
not need the computation of the Hessian matrix.

3.1 A Second-Order Linearization

With the ESM, the information about the Hessian that is discarded with the
Gauss-Newton iteration is recovered with a Taylor expansion of a Jacobian cal-
culated at the optimal transformation. Such an information can only be used
in the image registration settings because we should have ∇pM ◦ sopt ≈ ∇pF
up to a noise term. In order to use this very special property, let us define a
generalization of the Jacobian used in Section 2.2:

Jϕ
s (u) =

∂

∂vT
ϕ(s ◦ exp(v))

∣∣∣
v=u

. (7)

Note that Jϕ
s (0) = Jϕ

s . By using a first-order Taylor expansion around 0 we get:

Jϕ
s (u) = Jϕ

s (0) + uT .Hϕ
s + O(‖u‖2),

that can be rewritten as uT .Hϕ
s = Jϕ

s (u)− Jϕ
s (0) + O(‖u‖2). By incorporating

this expression into (2), this provides us with a true second-order approximation:

ϕ (s ◦ exp(u)) = ϕ(s) + Jϕ
s (0).u +

1
2

(Jϕ
s (u)− Jϕ

s (0)) .u + O(‖u‖3)

= ϕ(s) +
1
2

(Jϕ
s (u) + Jϕ

s ) .u + O(‖u‖3)
(8)

The non-linear least squares problem of Section 2.2 can thus be revisited to get
a second-order approximation of (4):

φ(s ◦ exp(u)) =
1
2
‖ϕ(s) +

1
2

(Jϕ
s (u) + Jϕ

s ) .u‖2. + O(‖u‖3) (9)

The computation of Jϕ
s (u) is a difficult problem in the general setting. Even

if we get a closed-form expression of it, a minimization problem that involves
this term might not be easy to solve in practice. In order to be able to use (9),
we need to use the special properties of our optimization problem.

From the current transformation s, the optimum step uopt
s that an optimizer

can make is such that sopt = s ◦ exp(uopt
s ). From a computational point of view,
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the main result of the ESM procedure is that, for this optimal step, the product
Jϕ

s (uopt
s ).uopt

s is linear in uopt
s . This allows for a simple minimization of (9).

The idea is to replace the gradient of the optimally warped image M ◦sopt =
M ◦ s ◦ exp(uopt

s ) by its equivalent, the gradient of the fixed image F . We then
get a simple linear approximation: Jϕ

s (uopt
s ).uopt

s ≈ ∇T
p F.Jwp .eΘ.uopt

s as shown
in the appendix. This can be used with (8) to get:

ϕ
(
s ◦ exp(uopt

s )
)

= ϕ(s) + JESM
s .uopt

s + O(‖uopt
s ‖3) (10)

JESMp
s , −1

2
(
∇T

p F +∇T
p (M ◦ s)

)
.Jwp .eΘ (11)

where we omit the image noise and where Jwp and eΘ are given in Section 2.3.
This efficient procedure can thus be summarized by the following algorithm:

Algorithm 1 (ESM and Gauss-Newton for Image Registration)

– Choose a starting spatial transformation s
– Iterate until convergence:
• Given s, let
∗ Jp = − 1

2

(
∇T

p F +∇T
p (M ◦ s)

)
.Jwp .eΘ for ESM

∗ Jp = −∇T
p (M ◦ s).Jwp .eΘ for Gauss-Newton

• Compute the update u by solving the linear system
(JT .J).u = −JT .ϕ(s) using e.g. a QR factorization of J

• Let s← s ◦ exp(λu), with λ = 1 or is given by a line search

Note that the two options have the same computational complexity since ∇pF
needs only be computed once during initialization.

3.2 A Practical Example: 2D Rigid Body Transformations

Let us now focus on the optimization of (1) for the Lie group SE(2) of 2D
rigid body transformations. In order to use the optimization method presented
in Algorithm 1, we need to know what the corresponding Lie algebra se(2) is
and to be able to compute the exponential map and the necessary Jacobian.

A 2D rigid body transformation r is composed of a rotation of angle α fol-
lowed by a translation τ = (τx, τy). This Lie group SE(2) can be represented us-
ing homogeneous coordinates by a 3×3 matrix group of the form Θ(r) =

[
Rα τ
0 1

]
,

where Rα is a rotation matrix. Since we have a matrix Lie group, the exponen-
tial map coincides with the matrix exponential. In this special case, we even
have a closed-form expression of the matrix exponential. Thanks to this matrix
representation (which is the Euclidean embedding space used in Section 2.3),
we see that the Lie Algebra can be represented by the vector space of matrices
of the form

[
dRα dτ

0 0

]
, where dRα is any skew-symmetric matrix and dτ is any

vector. We thus see that a convenient basis of se(2) is given (in matrix form)
by Θ(e1) =

[
0 −1 0
1 0 0
0 0 0

]
, Θ(e2) =

[
0 0 1
0 0 0
0 0 0

]
and Θ(e3) =

[
0 0 0
0 0 1
0 0 0

]
. In order to use

Algorithm 1, the only expression we still need to compute is Jwp . The spatial
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Fig. 1. Simple convergence experiment using two consecutive live mouse colon images
of a dynamic fibered confocal microscopy (FCM) sequence (left, image courtesy of D.
Vignjevic, S. Robine, D. Louvard, Institut Curie, Paris). We initialize the different
optimizers with a random rigid body transformations to compare them. The random
generator is Gaussian centered around the optimal transformation (validated by an
expert), uses σα = 0.3 rad for the rotation part and στ = 10 pixels for the translation
parts so as to get a sufficient number of divergent optimizations. The ESM is both
faster to converge with 50% of the trials converging in less than 19 iterations vs. 34
for the Gauss-Newton and more robust as 60% converge in less than 36 iterations with
ESM but we never reach 60% of convergence with the Gauss-Newton.

transformation r(p) of a point p through a 2D rigid body transformation r is a
simple matrix multiplication and this leads to Jwp =

[
px 0 0 py 0 0 1 0 0
0 px 0 0 py 0 0 1 0

]
. After

some basic simplifications we obtain a simple expression: Jwp .eΘ =
[
−py 1 0
px 0 1

]
.

Registration results: In the context of tracking for vision-based robot control,
a detailled comparison of the optimization schemes showed that, for the space
of homographies, the ESM outperformed classical solutions [9]. In this section,
we compare the performance of the ESM optimizer with respect to the Gauss-
Newton optimizer on a real-life biomedical image registration problem. A 2D+ t
dynamic sequence is acquired with a fibered confocal microscope (FCM) and we
need to perform a rigid body registration between the consecutive frames. In or-
der to get a statistically meaningful example, we chose two representative frames
and compared the optimizers with random starting points. Since the emphasis is
on the comparison of the various schemes and not on the final performance, no
multi-resolution scheme was used. Our results in Fig. 1 show that the analysis
of [9] can be extended to the problem of biomedical image registration. We in-
deed see that for rigid body registration the ESM has a faster convergence rate
and is more robust than the Gauss-Newton optimizer.

4 An Insight into the Demons Algorithm

In [2], the author proposed to consider non-linear registration as a diffusion
process. He introduced demons that push according to local characteristics of
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the images in a similar way Maxwell did for solving the Gibbs paradox. The
forces are inspired from the optical flow equations and the method alternates
between computation of the forces and their regularization by a simple Gaussian
smoothing. This results into a computationally efficient algorithm. Several teams
[10, 5, 11] have worked towards providing theoretical roots to the demon’s in
order to understand the underlying assumptions and potentially modify them.

The goal of this section is twofold. We first go one step further in providing
theoretical explanations of the demons and show that the different variants of
of this algorithm can all be cast into the image registration framework derived
above. One of the main results of this analysis is to show that the symmetric
forces demons can be cast to the ESM optimization method of [1]. This variant
should therefore be the most efficient one. Our second goal is thus to verify if
the theoretical advantage of the symmetric variant are noticeable in practice.

4.1 An Alternate Optimization Framework

In order to end-up with the global minimization of a well posed criterion, it
was proposed in [11] to introduce a hidden variable in the registration process:
correspondences. The idea is to consider the regularization criterion as a prior
on the smoothness of the transformation s. Instead of requiring that point cor-
respondences between image pixels (a vector field c) be exact realizations of
the transformation, one allows some error at each image point. Considering a
Gaussian noise on displacements, we end-up with the global energy:

E(c, s) = ‖ 1
σi

(F −M ◦ c)‖2 +
1
σ2

x

dist (s, c)2 +
1

σ2
T

Reg (s) (12)

where σi accounts for the noise on the image intensity, σx accounts for a spatial
uncertainty on the correspondences and σT controls the amount of regularization
we need. We classically have dist (s, c) = ‖c− s‖ and Reg (s) = ‖∇s‖ but the
regularization can also be modified to handle fluid-like constraints [11].

The interest of this auxiliary variable is that an alternate optimization over
c and s decouples the complex minimization into simple and very efficient steps:

Algorithm 2 (Demons Algorithm as an Alternate Optimization)

– Choose a starting spatial transformation (a vector field) s
– Iterate until convergence:
• Given s, compute a correspondence update field u by minimizing

Ecorr
s (u) = ‖F −M ◦ (s + u)‖2 + σ2

i

σ2
x
‖u‖2 with respect to u

• If a fluid-like regularization is used, let u← Kfluid ? u. The convolution
kernel will typically be a Gaussian kernel.

• Let c← s + u
• If a diffusion-like regularization is used, let s← Kdiff ?c (else let s← c).

The convolution kernel will also typically be a Gaussian kernel.

We focus on the first step of this alternate minimization and refer the reader
to [11] for a detailed coverage of the regularization questions.
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4.2 The Symmetric Forces Demons as an ESM Optimization

As one can see in Algorithm 2, the minimization of Ecorr
s (u) is very close to the

mean squared error image registration problem (1) we have been focusing on. The
space of free-form deformations used within the demons algorithm is a simple
vector space. It is therefore a trivial Lie group where the group composition is
the addition of free-form deformation fields, and the group exponential simply
maps a free-form deformation field onto itself. This implies that the optimization
step s◦exp(u) we have been using so far is simply expressed by an addition s+u.
The only remaining difference lies in the term ‖u‖2. We now show that the same
framework allows us to take care of this additional term.

The efficient image registration tools we showed in the previous sections can
easily be applied to get the following approximations:

F (p)−M ◦ (s + u)(p) ≈ F (p)−M ◦ s(p) + Jp.u(p)

where Jp = −∇T
p (M ◦ s) with Gauss-Newton, Jp = − 1

2

(
∇T

p F +∇T
p (M ◦ s)

)
with ESM and Jp = −∇T

p F with Thirion’s rule. As shown previously, the ap-
proximation order depends on this choice of Jp. These approximations can be
used to rewrite the correspondence energy used in the demons algorithm:

Ecorr
s (u) ≈ 1

2 |ΩP |
∑

p∈ΩP

∥∥∥[
F (p)−M◦s(p)

0

]
+

[
Jp

σi(p)
σx

I

]
.u(p)

∥∥∥2

,

where we recall that ΩP is the overlap between F and M ◦ s.

(a) Original image (b) Random warped grid

Fig. 2. Experiment using a random warp on a normal human colonic mucosa image
(FCM). Image Courtesy of PD. Dr. A. Meining, Klinikum rechts der Isar, Munich.

As opposed to the global transformation case (e.g. 2D rigid body transforma-
tions) we see that here, the approximations given for each pixel are independent
from each other. This greatly simplifies the minimization of Ecorr

s by splitting it
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into very simple systems for each pixel. We indeed only need to solve, at each
pixel p, the following normal equations:[

JpT σi(p)
σx

I
]
.

[
Jp

σi(p)
σx

I

]
.u(p) = −

[
JpT σi(p)

σx
I
]
.

[
F (p)−M ◦ s(p)

0

]
(

JpT .Jp +
σ2

i (p)
σ2

x

I

)
.u(p) = −(F (p)−M ◦ s(p)).JpT

From the Sherman-Morrison formula (matrix inversion lemma) we finally have:

u(p) = −F (p)−M ◦ s(p)

‖Jp‖2 + σ2
i
(p)

σ2
x

JpT (13)

We see that if we use the local estimation σi(p) = |F (p)−M ◦ c(p)| of the image
noise, and the ESM approximation of Jp we end up with the exact expression
of the symmetric forces demons algorithm. Note that σx then controls the max-
imum step length: ‖u(p)‖ ≤ σx/2.

4.3 Demons Results

To compare the performance of the different variants of the demons algorithm, we
present some results using synthetic data. We use a fibered confocal microscopy
image as our original image. For each random experiment, we generate a random
(MRF) smooth deformation field and warp the original image. We add some
random noise both to the original and the warped image. We then run the
different demons algorithm starting with an identity spatial transformation.
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Fig. 3. Registration on 100 random experiments such as the one presented in Fig. 2.
Note the faster convergence of the symmetric forces demons in terms of images intensi-
ties agreement (MSE), smoothness of the non-linear spatial transformation (harmonic
energy) and more importantly in terms of distance to the actual spatial transformation.

We used the same set of parameters for all the experiments: a maximum
step length of 2 pixels, a Gaussian fluid-like regularization with σfluid = 1 and
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a Gaussian diffusion-like regularization with σdiff = 1. As previously, no multi-
resolution scheme was used because the emphasis is on the comparison of the
various schemes and not the final performance. We can see on Fig. 3 that the
symmetric forces variants converges faster in terms of MSE, smoothness and
more importantly in terms of distance to the actual field.

5 Conclusion

We showed in this paper that some tools that have recently been developed in
the field of vision-based robot control can outperform classical image registration
algorithms by exploiting the special nature of the image registration problem.
We have focused on mono-modal registration but the ESM scheme can also
be extended to handle more complex intensity relationships. Robust estimation
techniques can be used to account for outliers in the cost function and we plan to
investigate on iterative intensity matching for the optimization of other simple
similarity metrics such as the correlation coefficient and the correlation ratio.

The adequacy of the ESM for linear image registration led us to revisit non-
linear registration and especially the demons algorithm. By using the ESM, the
matrix inversion lemma and the local estimation of the image noise, we improved
our understanding of the demons algorithm. This analysis predicted a theoretical
advantage to the symmetric forces variant of the demons algorithm which we
confirmed on the practical side.

If the confluence of the ESM theory and the alternate minimization frame-
work of the demons algorithm indeed leads to a unified theoretical explanation of
the demons, it could still be argued that all the aspects of the Lie group structure
used in the ESM theory are not fully exploited there. We believe contrastingly
that this Lie group point of view makes this theory much more powerfull. The
final goal of understanding an algorithm is indeed to improve it. One of the
main limitations of the demons algorithm is that it doesn’t provide diffeomor-
phic transformations contrarily to the algorithms developed in [12, 13]. Our next
goal will be to show how the ESM theory can be used in combination with
the Lie group structure of diffeomorphic transformations to adapt the demons
algorithm to this Lie group.

Appendix

Derivation of (6): We apply the chain rule to J
ϕp
s = −∂M◦s◦eu

∂uT |u=0 and get
(using the Euclidean embedding space),

[Jϕp
s ]i = −∂M ◦ s(q)

∂qT

∣∣∣
q=p

.
∂w(X, p)

∂XT

∣∣∣
X=Θ(Id)

.
∂Θ(exp(uiei))

∂ui

∣∣∣
ui=0

= −∇T
p (M ◦ s).

∂w(X, p)
∂XT

∣∣∣
x=Θ(Id)

.Θ(ei),

where we used that the differential map of the exponential at Id is the identity.
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Derivation of (10): We start by incorporating uopt
s into M ◦ s ◦ ev by writing

it as M ◦ s ◦ euopt
s ◦ e−uopt

s ◦ ev. By using the chain rule we find that J
ϕp
s (uopt

s )
can be decomposed into a product of three terms. The first one is given by:

∂

∂qT
M ◦ s ◦ euopt

s (q)
∣∣∣
q=e−u

opt
s ◦eu

opt
s (p)

= ∇T
p (M ◦ sopt) = ∇T

p F + ε,

where ε is a noise term. The second term is the same as the one appearing
in (6): ∂w(X,p)

∂XT

∣∣
X=Θ(e−u

opt
s ◦eu

opt
s )

= Jwp . And finally, the last term is given by

∂Θ(e−u
opt
s ◦eu)

∂uT

∣∣
u=uopt

s
. This last term is in general very difficult to compute but

in fact we only need to compute its product with uopt
s . This appears to be a

directional derivative. We can thus also write it as a rate of change to get:

∂Θ(e−uopt
s ◦ euopt

s +tuopt
s )

∂t

∣∣∣
t=0

=
∂Θ(etuopt

s )
∂t

∣∣∣
t=0

= eΘ.uopt
s .
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