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Abstract. We propose a non-parametric diffeomorphic image registra-
tion algorithm based on Thirion’s demons algorithm. The demons algo-
rithm can be seen as an optimization procedure on the entire space of
displacement fields. The main idea of our algorithm is to adapt this pro-
cedure to a space of diffeomorphic transformations. In contrast to many
diffeomorphic registration algorithms, our solution is computationally
efficient since in practice it only replaces an addition of free form defor-
mations by a few compositions. Our experiments show that in addition
to being diffeomorphic, our algorithm provides results that are similar to
the ones from the demons algorithm but with transformations that are
much smoother and closer to the true ones in terms of Jacobians.

1 Introduction

With the development of computational anatomy and in the absence of a justified
physical model of inter-subject variability, statistics on diffeomorphisms becomes
an important topic [1]. Diffeomorphic registration algorithms are at the core of
this research field since they often provide the input data. They usually rely
on the computationally heavy solution of a partial differential equation [2–4] or
use very small optimization steps [5]. In [6], the authors proposed a parametric
approach by composing a set of constrained B-spline transformations. Since the
composition of B-spline transformations cannot be expressed on a B-spline basis,
the advantage of using a parametric approach is not clear in this case. In this
work, we propose a non-parametric diffeomorphic image registration algorithm
based on the demons algorithm. It has been shown in [7, 8] that the original
demons algorithm could be seen as an optimization procedure on the entire
space of displacement fields. We build on this point of view in Section 2. The
main idea of our algorithm is to adapt this optimization procedure to a space of
diffeomorphic transformations. In Section 3, we show that a Lie group structure
on diffeomorphic transformations that has recently been proposed in [1] can
be used in combination with some optimization tools on Lie groups to derive
our diffeomorphic image registration algorithm. Our approach is evaluated in
Section 4 in both a simulated and a realistic registration setup. We show that in
addition to being diffeomorphic, our algorithm provides results that are similar
to the ones from the demons but with transformations that are much smoother
and closer to the true ones in terms of Jacobians.
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2 Non-parametric Image Registration

2.1 Image Registration Framework

Given a fixed image F (.) and a moving image M(.), non-parametric image regis-
tration is treated as an optimization problem that aims at finding the displace-
ment of each pixel in order to get a reasonable alignment of the images. The
transformation s(.), p 7→ s(p), models the spatial mapping of points from the
fixed image space to the moving image space. The similarity criterion Sim (., .)
measures the resemblance of two images. In this paper we will only consider the
mean squared error which forms the basis of intensity-based registration:

Sim (F, M ◦ s) =
1

2
‖F −M ◦ s‖2 =

1

2 |ΩP |

∑

p∈ΩP

|F (p)−M(s(p))|2 , (1)

where ΩP is the region of overlap between F and M ◦ s. A simple optimization
of (1) over a space of dense deformation fields leads to a ill-posed problem with
unstable and non-smooth solutions. In order to avoid this and possibly add some
a priori knowledge, a regularization term Reg (s) is introduced to get the global
energy E(s) = σ−2

i Sim (F, M ◦ s)+σ−2
T Reg (s), where σi accounts for the noise

on the image intensity, and σT controls the amount of regularization we need.
This energy indeed provides a well-posed framework but the mixing of the

similarity and the regularization terms leads in general to computationally inten-
sive optimization steps. On the other hand an efficient algorithm was proposed in
[9] and has often been considered as somewhat ad hoc. The algorithm is inspired
from the optical flow equations and the method alternates between computation
of the forces and their regularization by a simple Gaussian smoothing.

In order to cast the demons algorithm to the minimization of a well-posed
criterion, it was proposed in [7] to introduce a hidden variable in the registration
process: correspondences. The idea is to consider the regularization criterion as a
prior on the smoothness of the transformation s. Instead of requiring that point
correspondences between image pixels (a vector field c) be exact realizations of
the transformation, one allows some error at each image point. Considering a
Gaussian noise on displacements, we end-up with the global energy:

E(c, s) =
1

σ2
i

Sim (F, M ◦ c) +
1

σ2
x

dist (s, c)
2

+
1

σ2
T

Reg (s) (2)

where σx accounts for a spatial uncertainty on the correspondences. We classi-
cally have dist (s, c) = ‖c− s‖ and Reg (s) = ‖∇s‖

2
but the regularization can

also be modified to handle fluid-like constraints [7].

2.2 Demons Algorithm as an Alternate Optimization

In order to register the fixed and moving images, we need to optimize (2) over
a given space of spatial transformations. With the original demons algorithm,
the optimization is performed over the entire space of displacement fields. These
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spatial transformations form a vector space and transformations can thus simply
be added. This implies that we can use classical descent methods based on
additive iterations of the form s← s+u. The interest of the auxiliary variable c is
that an alternate optimization over c and s decouples the complex minimization
into simple and very efficient steps:

Algorithm 1 (Demons Algorithm)

– Choose a starting spatial transformation (a vector field) s
– Iterate until convergence:
• Given s, compute a correspondence update field u by minimizing

Ecorr
s (u) = ‖F −M ◦ (s + u)‖

2
+

σ2

i

σ2
x

‖u‖
2

with respect to u

• If a fluid-like regularization is used, let u← Kfluid ⋆ u. The convolution
kernel will typically be Gaussian
• Let c← s + u

• If a diffusion-like regularization is used, let s← Kdiff ⋆c (else let s← c).
The convolution kernel will also typically be Gaussian

In this work, we focus on the first step of this alternate minimization and
refer the reader to [7] for a detailed coverage of the regularization questions.
By using classical Taylor expansions, we see that we only need to solve, at each
pixel p, the following normal equations:

(

JpT .Jp +σ2
i (p)σ−2

x I
)

.u(p) = −
(

F (p)−

M ◦ s(p)
)

.JpT , where Jp = −∇T
p (M ◦ s) with a standard Taylor expansion or

Jp = −∇T
p F with Thirion’s rule. From the Sherman-Morrison formula we get:

u(p) = −
F (p)−M ◦ s(p)

‖Jp‖
2
+

σ2

i
(p)

σ2
x

JpT (3)

We see that if we use the local estimation σi(p) = |F (p)−M ◦ c(p)| of the image
noise we end up with the expression of the demons algorithm. Note that σx then
controls the maximum step length: ‖u(p)‖ ≤ σx/2.

3 Diffeomorphic Image Registration

In this section, we show that the alternate optimization scheme we presented
can be used in combination with a Lie group structure on diffeomorphic trans-
formations to adapt the demons algorithm.

3.1 Newton Methods for Lie Groups

Like most spatial transformation spaces used in medical imaging, diffeomor-
phisms do not form a vector space but only a Lie group. The most straightforward
way to adapt the demons algorithm to make it diffeomorphic is to optimize (2)
over a space of diffeomorphisms. We thus perform an optimization procedure on
a Lie group such as in [10, 11]. Optimization on Lie groups can often be related
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to constrained optimization by using an embedding. In this work we use an alter-
native strategy known as geometric optimization which uses the local canonical
coordinates [11]. This strategy intrinsically takes care of the geometric structure
of the group and allows us to use unconstrained optimization routines.

Let G be a Lie group for the composition ◦. To any Lie group can be associated
a Lie algebra g. G and g are related through the group exponential which is
a diffeomorphism from a neighborhood of 0 in g to a neighborhood of Id in
G. The exponential map can be used to get the Taylor expansion of a smooth
function ϕ on G: ϕ (s ◦ exp(u)) = ϕ(s)+Jϕ

s .u+O(‖u‖
2
), where [Jϕ

s ]i = ∂
∂ui

ϕ(s◦

exp(u))
∣

∣

u=0
. This approximation is used in [11] to adapt the classical Newton-

Raphson method by using an intrinsic update step:

s← s ◦ exp(u). (4)

One of the main advantages of this geometric optimization is that it has the
same guaranteed convergence as the classical Newton methods on vector spaces.

3.2 A Lie Group Structure on Diffeomorphisms

The Newton methods for Lie groups are in theory really well fit for diffeomorphic
image registration. In practice however it can only be used if a fast and tractable
numerical scheme for the computation of the exponential is available. We would
indeed have to use it at each iteration. Such an efficient scheme clearly relies on
a good parameterization of the Lie group and the Lie algebra.

In the context of image registration, it has been proposed in [4] to parame-
terize diffeomorphic transformations using time-varying speed vector fields. This
has the advantage of fully using the group structure. However the computation
of a deformation field requires the numerical integration of a time-varying ODE.
In [1] the authors proposed a practical approximation of such a Lie group struc-
ture on diffeomorphisms by using stationary speed vector fields only. This has
the significant advantage of yielding very fast computations of exponentials. It
becomes indeed possible to use the scaling and squaring method and compute
the exponential with just a few compositions. On a strictly theoretical level,
many technicalities arise when dealing with infinite dimensional Lie groups and
further work is necessary to evaluate the well-posedness of this algorithm.

By generalizing to vector fields the equivalence that exists in the finite-
dimensional case between one-parameters subgroups and the exponential map,
the exponential exp(u) of a smooth vector field u is defined in [1] as the flow
at time one of the stationary ODE, ∂p(t)/∂t = u(p(t)). From the properties
of one-parameters subgroups (t 7→ exp(tu)), we see that for any integer K we
have exp(u) = exp(K−1

u)K . This yields the following efficient algorithm for the
computation of vector fields exponentials:

Algorithm 2 (Fast Computation of Vector Field Exponentials)

– Choose N such that 2−N
u is close enough to 0, e.g. max

∥

∥2−N
u(p)

∥

∥ ≤ 0.5
– Perform an explicit first order integration: v(p)← 2−N

u(p) for all pixels
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Fig. 1. Original image (FCM) of a normal human colonic mucosa image (image cour-
tesy of PD. Dr. A. Meining, Klinikum rechts der Isar, Munich) and one example random
warp used in our controlled experimental setup.

– Do N (not 2N !) recursive squarings of v: v ← v ◦ v

3.3 Efficient Diffeomorphic Demons

We now have all the tools to derive our non-parametric diffeomorphic image
registration algorithm. For the registration problem (2), the tools presented in
Section 3.1 can be used to get the following approximation:

F (p)−M ◦ s ◦ exp(u)(p) ≈ F (p)−M ◦ s(p) + Jp.u(p)

where Jp = −∇T
p (M ◦ s) or Jp = −∇T

p F with Thirion’s rule. Due to space
constraints, we omit the technical details necessary to derive this approximation
and refer the reader to [10] for a derivation on projective transformations.

As in Section 2.2, we focus on the first step of the minimization rather than
on the regularization step. In order to get a computationally tractable expres-
sion of the correspondence energy, we chose the following distance between two
diffeomorphisms: dist (s, c) =

∥

∥Id−s−1 ◦ c
∥

∥. We then get dist (s, s ◦ exp(u)) =
‖Id− exp(u)‖ ≈ ‖u‖. These approximations can be used to rewrite the corre-
spondence energy used in the alternate optimization framework:

Ecorr
s (u) ≈

1

2 |ΩP |

∑

p∈ΩP

∥

∥

∥

[

F (p)−M ◦ s(p)
0

]

+

[

Jp

σi(p)
σx

I

]

.u(p)
∥

∥

∥

2

. (5)

We see from (5) that we get the same expression as with the classical demons
but that we consider u as a speed vector field instead of a deformation field. We
thus obtain our non-parametric diffeomorphic image registration algorithm:

Algorithm 3 (Diffeomorphic Demons Iteration)

– Compute the correspondence update field u using (3)
– If a fluid-like regularization is used, let u← Kfluid ⋆ u.
– Let c← s ◦ exp(u), where exp(u) is computed using Algorithm 2
– If a diffusion-like regularization is used, let s← Kdiff ⋆ c (else let s← c).
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Fig. 2. Registration on 100 random experiments such as the one presented in Fig.1.
Note that for similar performance in terms of MSE and distance to the true field, the dif-
feomorphic demons algorithm provides much smoother results and smaller distance to
the true Jacobian of the transformation than the original demons algorithm. Most im-
portantly we see that we provide diffeomorphic transformations whereas min(|Jac(s)|)
goes way below zero with the original demons algorithm.

4 Registration Results

To evaluate the performance of the diffeomorphic demons algorithm with respect
to the original demons algorithm, two sets of results are presented. We used the
same set of parameters for all the experiments: Thirion’s rule with a maximum
step length of 2 pixels was used in the demons force (3), a Gaussian fluid-like
regularization with σfluid = 1 and a Gaussian diffusion-like regularization with
σdiff = 1 were used. Since the emphasis is on the comparison of the various
schemes and not on the final performance, no multi-resolution scheme was used.

The first experiments provide a completely controlled setup. We use a fibered
confocal microscopy image. For each experiment, we generate a random diffeo-
morphic deformation field (by passing a Markov random field through the ex-
ponential) and warp the original image. We add some noise both to the original
and the warped image. We then run the registration algorithms starting with
an identity spatial transformation. We can see on Fig. 2 that in terms of MSE
and distance to the true field, the performance of Thirion’s demons algorithm
and of the diffeomorphic demons algorithm are similar. However the harmonic
energy and the minimum and maximum values of the determinant of the Ja-
cobian of the transformation show that our algorithm provides much smoother
spatial transformations. We also see that our algorithm provides better results
in terms of distance to the true Jacobian of the transformation. Moreover this is
accomplished with a reasonable 50% increase of computation time per iteration
with respect to the computationally efficient demons algorithm.
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Fig. 3. Registration of two synthetic T1 MR images of distinct anatomies. For visually
similar results, our algorithm provides smoother diffeomorphic transformations.

Table 1. Comparison (Dice similarity coefficient * 100) of the discrete segmentations
obtained from the registration of the synthetic T1-weighted MR images shown in Fig. 3.

CSF GM WM Fat Muscle Skin Skull Vessels Fat2 Dura Marrow

Initial 41.73 63.06 61.51 19.30 20.14 66.65 42.75 14.26 6.06 14.74 28.19
Thirion 63.41 78.99 79.23 47.74 36.40 78.57 64.91 27.21 14.75 23.13 45.05
Diffeo 64.37 78.94 78.43 47.22 36.11 79.39 65.02 27.25 14.70 24.56 43.92

Our second setup is a more realistic case study were a gold standard is still
available. We use synthetic T1 MR images from two different anatomies available
from BrainWeb [12]. These datasets are distributed along with a segmentation
of eleven different tissue classes. We can see on Fig. 4 and Table 1, that on
this dataset also, the demons algorithm and our algorithm provide very similar
results in terms of visual appearance, MSE and segmentation accuracy. However
we see that our algorithm does it with much better spatial transformations. We
indeed get smoother deformations that are diffeomorphic.

5 Conclusion

We have proposed an efficient non-parametric diffeomorphic registration algo-
rithm. We first showed that the demons algorithm could be seen as an opti-
mization procedure on the entire space of displacement fields. By combining a
recently developed Lie group framework on diffeomorphisms and an optimiza-
tion procedure for Lie groups, we showed that the framework in which we cast
the demons algorithm could be adapted to provide non-parametric free-form
diffeomorphic transformations. Our experiments have shown that our algorithm
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Fig. 4. Comparison of Thirion’s demons algorithm with the diffeomorphic demons
algorithm on the BrainWeb images shown in Fig. 3. For similar performance in terms of
MSE, our algorithm provides much smoother transformations than the original demons
algorithm. Most importantly we see that we provide diffeomorphic transformations
whereas min(|Jac(s)|) goes way below zero with the original demons.

provides, with respect to the demons algorithm, very similar results in terms
of MSE. This is however achieved with diffeomorphic transformations that are
smoother and closer to the true transformations in terms of Jacobians.
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4. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. Int’l J. Comp. Vision
61(2) (February 2005)

5. Chefd’hotel, C., Hermosillo, G., Faugeras, O.: Flows of diffeomorphisms for mul-
timodal image registration. In: Proc. ISBI’02. (2002) 753–756

6. Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeo-
morphic registration using B-splines. In: Proc. MICCAI’06. (2006) 702–709

7. Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature
based nonrigid registration: The PASHA algorithm. CVIU — Special Issue on
Nonrigid Registration 89(2-3) (Feb.-march 2003) 272–298

8. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University
Press (2004)

9. Thirion, J.P.: Image matching as a diffusion process: An analogy with Maxwell’s
demons. Medical Image Analysis 2(3) (1998) 243–260

10. Malis, E.: Improving vision-based control using efficient second-order minimization
techniques. In: Proc. ICRA’04. (April 2004)

11. Mahony, R., Manton, J.H.: The geometry of the Newton method on non-compact
Lie-groups. J. Global Optim. 23(3) (August 2002) 309–327

12. Aubert-Broche, B., Griffin, M., Pike, G.B., Evans, A.C., Collins, D.L.: Twenty new
digital brain phantoms for creation of validation image data bases. IEEE Trans.
Med. Imag. 25(11) (November 2006) 1410–1416


