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ABSTRACT
Over recent years, non-rigid registration has become a major issue in medical imag-

ing. It consists in recovering a dense point-to-point correspondence field between two
images, and usually takes a long time. This is in contrast to the needs of a clinical
environment, where usability and speed are major constraints, leading to the necessity
of reducing the computation time from slightly less than an hour to just a few minutes.
As financial pressure makes it hard for healthcare organizations to invest in expensive
high-performance computing (HPC) solutions, cluster computing proves to be a conve-
nient solution to our computation needs, offering a large processing power at a low cost.
Among the fast and efficient non-rigid registration methods, we chose the demons algo-
rithm for its simplicity and good performances. The parallel implementation decomposes
the correspondence field into spatial blocks, each block being assigned to a node of the
cluster. We obtained an acceleration of 11 by using 15 2GHz PC’s connected through
a 1GB/s Ethernet network and reduced the computation time from 40min to 3min30.
In order to further optimize the costs and the maintenance load, we investigate in the
second part the transparent use of shared computing resources, either through a graphic
client or a Web one.

Keywords: cluster computing, grid computing, medical imaging, registration.

1. Introduction

Registration is becoming an essential part of medical image processing algo-
rithms. The purpose of registration algorithms is to recover a geometric transforma-
tion between medical images. Depending on the complexity of the transformation,
several classes of registration can be distinguished. For example, rigid registration
recovers the rotations and the translations of the objects in the images. Non-rigid
registration recovers deformations.
∗{Radu.Stefanescu,Xavier.Pennec,Nicholas.Ayache}@sophia.inria.fr
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Applications can be found in many domains of medical imaging. For instance,
the follow-up of a pathology may be realized using medical images acquired at dif-
ferent moments in time. The physician has to compare the images, detect and
interpret the changes. The operation is non-trivial when the images are in two
dimensions, and even more difficult in three dimensions. Furthermore, the visual
examination produces qualitative, but not quantitative results, leaving the medical
decision to a subjective evaluation. After a rigid registration step aimed at recov-
ering the different position and orientation of the patient in the acquisition device,
non-rigid registration allows the identification of the more subtle deformations that
occurred in the tissues between the two time steps. An additional advantage of
non-rigid registration over visual comparison is that it gives quantitative and hence
more objective results. For this application, the computation time has to be small
with respect to the clinical examination, typically one to two minutes.

Another domain of application for registration is brain Image-Guided Surgery
(IGS)[1]. Since the brain contains very small but vital structures, accuracy is highly
important. Therefore, the planning of the operation is carefully prepared on pre-
operative images (acquired before the operation), and it takes hours to perform.
The surgeon selects the safest trajectory towards the target, while avoiding vital
locations inside the brain. At the beginning of the operation, the pre-operative
image is rigidly registered to the patient’s position and orientation. This allows
the surgeon to precisely locate the entry point and the trajectory as previously
planned. However, once the skull is open, some of the cerebro-spinal fluid (CSF)
that normally surrounds the brain leaks out. Therefore, the soft brain tends to
deform (brain shift). The changes in the brain shape should induce modifications of
the pre-operative planning, since the locations of the operation target and the high
risk locations have changed. By registering per-operative images (acquired during
the surgical procedure) with the pre-operative ones that where used for planning
the operation, the surgeon can recover the deformations that occurred due to the
opening of the skull. These deformations are subsequently applied to the initial
planning, in order to update it [2,3]. Since the registration is performed during the
operation, computation times smaller than one minute are required.

Non-rigid registration is a computationally intensive problem. In order to find
the solution, an iterative optimization process is necessary, and dealing with large
deformations usually requires a large number of iterations. A common approach to
achieve shorter computation times is to sacrifice the performance by either lowering
the resolution of the images or reducing the number of iterations. Our choice was to
implement the algorithm on a parallel computer, which enabled us to keep the per-
formances intact, while drastically lowering the computation times. This leads us
to the second issue: Funding is generally unavailable in healthcare organization for
purchasing and, more importantly, maintaining expensive high-performance com-
puting hardware, such as the shared memory computer used in [4]. An obvious
alternative is therefore a cluster of networked personal computers, as proposed in
[5]. Besides offering large computation power at a low cost, a cluster of worksta-
tions has the advantage of versatility: it allows the use of its nodes as individual
workstations in regular day to day use. Furthermore, a cluster of bi-processor PC’s
allows the simultaneous use of the cluster for parallel jobs and individual use, and
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such an environment will be present in many laboratories and clinical environments
in the near future.

Over time, several non-rigid registration algorithms have been proposed. In
1981, Broit [6] used the linear correlation as a measure of similarity between the
two images to match. Later, Bajcsy [7] differentiated this criterion and used a fixed
fraction of its gradient as an external force to interact with a linear elasticity model.
Thirion [8] proposed to consider non rigid registration as a diffusion process. He
introduced in the images entities (demons) that push according to local characteris-
tics. The forces he proposed were inspired from the optical flow equations. Recently,
Cachier [9,10] proposed an algorithm which replaces the optical flow equation from
[8] with a gradient descent on an energy function combining a similarity term be-
tween the images and a smoothness constraint. The transformation is represented
by a dense correspondence field, that describes the mapping of each point of the
image. Other algorithms use sparsely-controlled transformations: Rexilius [11] use
a finite element bio-mechanical model in order to describe the deformation. Rueck-
ert [12] uses the mutual information in order to find a deformation described using
B-splines. These algorithms suffer from the fact that they use sparsely-controlled
transformations: they are generally unable to retrieve fine deformations.

We chose Cachier’s algorithm [9] due to its combination of precision, robustness
and relatively low computation time (40 minutes on three-dimensional images of size
256× 256× 120). Furthermore, the rather regular structure of the algorithm makes
it a good candidate for parallelization. We begin this paper by briefly describing the
demons algorithm in Section 2. In Section 3, we establish the parallel decomposition
and the parallel algorithm and we finish by addressing the more delicate problem
of the Gaussian smoothing of images. Section 4 is dedicated to the presentation
of experimental results, while in Section 5 we discuss several issues raised by the
implementation of our system in a grid environment.

2. The sequential algorithm

The goal of the non-rigid registration is to estimate for each point p in the source
image J a corresponding or transformed point T (p) in the destination image I. Let
ΩI and ΩJ be the subsets of R3 containing the coordinates of the points in I and J

(we are considering three-dimensional images), then T is a mapping from ΩJ to ΩI .
Throughout this paper, each correspondence T (p) will be described by its associated
displacement U(p) = T (p) − p. Notice that U(p) = [U1(p), U2(p), U3(p)] is a three
component vector field. An important aspect of the algorithm is the definition of
how well two points match.

2.1. A similarity-based estimation of correspondences

We evaluate the degree of correspondence between a point p of the image J

and a point q of the image I by measuring the squared distance [J(p) − I(q)]2

between the image intensities of the two points. The larger this difference is, the
more the images are different at these points. Thus, to evaluate the quality of the
transformation T at point p, we simply need to compute [I(p) − J(T (p))]2. By
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integration over the image space, we obtain the Sum of Squared Distances (SSD)
similarity criterion between the two images:

SSD(I, J, U) =
∑

p

[I(p)− J(p + U(p))]2

This criterion is optimized with respect to U using a gradient descent. At each step,
a correction field CF proportional to the gradient of criterion is computed:

CF (p) = −∆t · ∇SSD(p) = −∆t · [J(p + U(p))− I(p)] · ∇J(p + U(p))

where ∆t is the time step.
A simple version of the algorithm would iteratively compute and add the correc-

tion field to update the current estimation of the displacement. However, there is
inevitably some noise in the image acquisition process that degrades the estimated
transformation. Furthermore, the transformation should be continuous in order to
have a geometric meaning.

The solution is to impose a smoothness constraint at each optimization step on
both the correction and displacement fields. Since the correction field can be inter-
preted as a velocity, its smoothing amounts to a kind of fluid constraint, whereas
smoothing the displacement field enforces an elastic behavior. An additional way to
reduce the noise on the correction field is to smooth the image while computing the
gradient ∇J . In order to smooth an image or a three-dimensional field, a simple,
yet efficient solution is to convolve component-wise with a Gaussian. In practice,
the gradient is computed by convolution with the derivatives of the Gaussian.

This yields a four-step iterative algorithm that successively estimates, regularizes
and adds the correction field to the current estimate of the displacements, and
finally regularizes this estimation (Algorithm 1). In this alternated optimization,
an identity transformation T (p) = p (U(p) = 0) is used as initialization.

Algorithm 1 Registration algorithm with small deformations.
1: Estimate a correction CF of the current

displacement field U
2: Smooth CF
3: Add U = U + CF
4: Smooth U and go to step 1 until convergence

2.2. A multi-resolution approach

The previous algorithm described is local: it can only recover small deforma-
tions with respect to the standard deviation of the Gaussian applied to J before
computing its gradient. Increasing the standard deviation enables the algorithm to
recover larger deformations, but it lowers its accuracy.
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In order to address this problem, a multi-resolution scheme is used, as shown
in Figure 1. The algorithm begins by registering two low resolution versions of the
images I2 and J2, obtained by reducing the resolution of the grid on which image
intensities are sampled (subsampling process). On these subsampled images, one
can retrieved only the low frequency deformations, but this can be done efficiently:
local details of the images, that would attract the algorithm into local minima,
are eliminated. By progressively increasing the resolution, one recovers finer and
finer details (Algorithm 2). We call an image pyramid the data structure contain-
ing versions of an image at different resolution levels. Figure 1 presents two such
pyramids.

Fig. 1. Multi-resolution approach: The registration is first done using the lowest resolution versions
I2 and J2 of I and J . After convergence, the resulting transformation U2 is interpolated onto the
higher resolution grid (over-sampling) and serves as an initial estimate for the registration between
I1 and J1 at the next level. This recursive process is performed up to the resolution of the original
images (I0 and J0), yielding the final solution U0.

Algorithm 2 Sequential multi-resolution algorithm.
let n be the number of resolution levels.
let I0, ..., In−1 be the image pyramid built by subsampling I
//I0 = I
let J0, ..., Jn−1 be the image pyramid built by subsampling J
//J0 = J
let Un−1 be the identity displacement field.
for i = n− 1 down to 0:

Use Algorithm 1 in order to compute the
displacement field Ui that deforms Ji into Ii

if i > 0:
oversample Ui to the size of Ii−1 and Ji−1

let Ui−1 = Ui

2.3. Gaussian filtering

For each resolution level, the gradient descent algorithm 1 is applied. The com-
putation of the gradient ∇J can be done once for all, but we need to smooth the
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correction and the displacement fields at each iteration. For efficiency reasons, this
Gaussian filter is computed using a recursive implementation [13] rather than by
convolution. The main advantage of this algorithm is that, unlike the convolution,
the computation time does not depend on the standard deviation of the Gaussian.
This time depends linearly on the image size. In one dimension, the algorithm
pre-computes the coefficients αj , βj , γj and ηj of two fourth order recursive filters
that corresponds to the required Gaussian’s standard deviation. Then, filter (1) is
applied forwards and filter (2) is applied backwards.

out+i =
j<5∑

j=0

αjini−j +
j<5∑

j=1

βjout+i−j (1)

out−i =
j<5∑

j=0

γjini+j +
j<5∑

j=1

ηjout−i+j (2)

The filtered version of the signal is obtained by taking the sum out+ + out− of the
signal filtered by (1) and (2).

In more dimensions, one takes advantage of the separability property of the
Gaussian, and successively filters the image along all directions. When applying
the filter to some image in a certain direction, the image is decomposed into lines
along that direction. Throughout this paper we will call the lines along the recursive
filtering direction scanlines. Each scanline is considered as an one-dimensional signal
that is filtered independently of the others using the forwards and backwards scheme
(Algorithm 3).
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Algorithm 3 Recursive Gaussian filtering.
compute the coefficients αj, βj, γj and ηj depending on σ
for each direction d ∈ {x, y, z}:

for each scanline l along d:

// filter forwards
for each point i in l in increasing order:

//Eq.(1)
out+i ← ∑j<5

j=0 αj li−j +
∑j<5

j=1 βjout+i−j

// filter backwards
for each point i in l in decreasing order:

//Eq.(2)
out−i ← ∑j<5

j=0 γj li+j +
∑j<5

j=1 ηjout−i+j

// write the result back into the line l
for each point i in l:

li ← out+i + out−i

3. The parallel algorithm

The demons algorithm has a regular structure with three main algorithmic com-
ponents:

• the subsampling of the images and the oversampling of the displacement field
for the multi-resolution approach;

• the computation of the correction field;

• the regularization of the correction and displacement fields.

In each algorithmic component, each point of the image is processed in a similar
manner. This makes the algorithm a good candidate for a parallelization using a
data decomposition, rather then a task decomposition.

3.1. The parallel block decomposition

Since all the three operations mentioned above are performed on the displace-
ment field, we chose to decompose this into parallel slices perpendicular to one axis
only (say x to simplify explanation), each slice being assigned to one processor (Fig-
ure 2). The correction field is decomposed accordingly. We shall see below that,
by adopting this block decomposition, each of the three algorithmic components
can be parallelized efficiently, avoiding time-costly data redistributions. One could
think to generalize the decomposition along the two other axes. However, our ex-
perience shows that this leads to slower results, and a much more complex code.
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The one-dimensional block decomposition has also an advantage in a heterogeneous
environment. By tuning the width of the slice assigned to each processor, one can
provide a static load balancing. Thus, machines with different computation powers
can be simultaneously used.

Proc. 1 Proc. 2 Proc. 3 Proc. 4 Proc. 5 Proc. 6

x

z

y

Fig. 2. The data decomposition of the displacement field with 6 equivalent processors: parallel
slices perpendicular on the x axis.

3.2. The parallel multi-resolution algorithm

In this block decomposition framework, the images themselves are not dis-
tributed since they need to be known entirely by each node (see Section 3.3). This
means that the preliminary part of the multi-resolution framework (the subsam-
pling of the images) has to be performed sequentially. During the multi-resolution
estimation itself, the displacement field has to be oversampled from one level to the
next. As it is distributed among the processors, its oversampling has to be done in
parallel. Since we use a tri-linear interpolation, processors only have to communi-
cate to their neighboring nodes the values of the displacement at the border of their
domain.

3.3. Estimation of the correction field

The second algorithmic component, the estimation of correction field at each
point p, is the simplest operation to parallelize: we only need to know the value
of the displacement field U(p), the intensity of the destination image I(p), and
the intensity and the gradient of the source image at the point p + U(p). Since
images I and J are constant during the execution of the algorithm, each processor
can memorize them entirely. The estimation can be performed by each processor
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independently of the others, without any need for communication. Notice that
even if p is within a given block of the decomposition, the displacement U(p) can
be arbitrarily large. Thus, each process has to access the whole image J and its
gradient.

3.4. Send-borders: a parallel Gaussian filtering algorithm for small variances

The last algorithmic component to parallelize is the component-wise smoothing
of the correction and displacement fields. We present below the case of scalar image,
but for a vector field the operation would have to be repeated for each of its com-
ponents. The Gaussian filter is separable, so convolving a three dimensional image
with an isotropic Gaussian is equivalent to successively convolving the image with
an one-dimensional Gaussian along each axis. By adopting a block decomposition
along one axis only, the filtering along two directions can be done within each block
without any communication. For filtering along the decomposition axis, one may
benefit from the exponential decay of the Gaussian: a good approximation is to
consider the Gaussian as null outside its [µ−3σ, µ+3σ] interval (where we denoted
with µ the Gaussian’s mean and with σ its standard deviation). Therefore, when
convolving a one-dimensional signal with a Gaussian, we can consider that the value
of the filtered signal in some point p depends only of the values of the points of the
initial signal within p±3σ. This leads to the following simple algorithm (Figure 3):

1. Each process sends its borders of width 3σ (in gray in Figure 3) to its neigh-
bors.

2. Each process receives the neighbors’ borders (in dashed grey) and adds them
to its own domain, obtaining an extended domain.

3. Each node recursively filters its own extended domain and then throws away
the received borders, in order to obtain a domain the size of the initial one.

For efficiency reasons, processes use the sequential recursive filtering algorithm in-
side their own domains.

This algorithm has two drawbacks: First, the produced results are not rigorously
correct since the value of a Gaussian is not perfectly null outside the 3σ interval.
Using larger borders will make the parallel algorithm less efficient. Second, each
process has to apply the filter to a domain that is larger than its own. And finally,
the amount of data sent through the network is proportional to the filter’s standard
deviation.

3.5. Pipeline: A truly recursive Gaussian filtering

An alternative is to directly parallelize the 4th order recursive implementation
of the Gaussian proposed by Deriche [13], as follows. Let us consider the lines of the
image along the block decomposition direction: they can be filtered independently
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Fig. 3. The send-borders algorithm: Each process sends its 3σ-wide borders to its neighbors and
then filters the enlarged domain.

of each other. Due to the recursive nature of the filter, computing the value of one
point depends on the filtered version of the previous point when filtering forwards,
and of the following point when filtering backwards. This means that the filtering
of one single line cannot be done in parallel. However, different processors can
deal with their parts of different lines simultaneously (Algorithm 4, Figure 4): At
step 1, the left process begins processing its part of the first scanline. Meanwhile,
processors 2 and 3 wait. Once processor 1 finished, it can pass on to processor 2
the contents of the 4 points (since the order of the filter is 4) that processor 2 needs
in order to process its first point of its part of the first scanline. Process 1 filters
its part of the second scanline while process 2 filters its part of the first scanline
and process 3 does nothing. At the end of this step, process 1 passes the last 4
points of its part of the second scanline on to process 2, while the latter one sends
the last 4 points of its part of the first scanline to the third process. This way, all
the processes work simultaneously without filtering one scanline in parallel. The
”process pipeline” however takes a number of steps equal to the number of processes
before working at its full capacity. The full acceleration is achieved if the number of
lines is much larger then the number of processes, which is usually true in a cluster
of workstations.

3.6. Comparative analysis of the two parallel filtering algorithms

Two methods to achieve parallel recursive Gaussian filtering were proposed. We
now quantify the algorithmic complexity of each of them: computational complexity,
network usage and maximal acceleration (when the communication time is null).
We assume below that we are filtering an image of size Nx × Ny × Nz using M

processors. The filter has a standard deviation σ. We assume that computing the
recursive filter (Equations (1) and (2)) for each point is done in a time t. This time
is the same for the sequential method and the two parallel algorithms.
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Algorithm 4 The pipeline parallel Gaussian recursive filter
for each direction d:

/* filter forwards */
for each scanline l along d:

if not the first processor along d:

receive from the preceding processor
along d its already-filtered last

4 points

filter forwards the line l
if not the last processor along d:

send the last 4 points to the
succeeding processor along d

/* filter backwards */
for each scanline l along d:

if not the last processor along d:

receive from the succeeding processor
along d its already-filtered first

4 points

filter backwards the line l
if not the first processor along d:

send the first 4 points of the line
to the preceding processor along d

Fig. 4. The pipeline parallel filtering of a 2D image of 10 lines with 3 processors. Inside each line,
the step at which it is processed is given. At the end of step 5, processor 1 has just finished filtering
its part of the fifth line, and is sending the last 4 points to processor 2. Meanwhile, processor 2
has just finished filtering its part of the fourth line and is sending its last 4 points to processor 3
who has just finished filtering its part of the third scanline. At step 6, the three processors will
filter their parts of lines 6, 5 and 4.
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Computational complexity In the first method, each process filters its own
domain plus the margins that the neighboring nodes sent. So the computation time
is NyNz ·

(
Nx

M + 6σ
) · t. The second method does not filter borders, but there is a

pipeline filling and emptying penalty. Therefore the computation time in this case
is NxNyNz

M · t + (M − 1)Nx

M t.

Network usage Another important quantifier of the algorithmic efficiency is the
total amount of data sent through the network. In the first algorithm, each processor
sends 3σ-wide borders to its neighbor, so the total amount of data sent by each
processor is 6NyNzσ. As we saw before, the amount of data sent by the second
algorithm does not depend on σ, each processor sending only the last 4 points
(original data and filter result). The total amount of data for this algorithm is
16NyNz.

Finally, for the first algorithm each processor sends only two messages contain-
ing the two borders. For the second algorithm, the number of messages is larger
(2NyNz), which can make the algorithm inefficient. However, a trade-off between
the number of messages to send and the maximum parallel acceleration can be made
as follows: Rather than sending the last four points of a single line at a time, one
can send the last four points of several lines in a single message at the cost of an
increase of the time necessary to fill the pipeline. If we denote this number of lines
with L, the number of messages for the second algorithm becomes 2NyNz

L and the
computation time becomes NxNyNz

M · t + (M − 1)LNx

M t.

Maximal acceleration Even if we consider a null communication time, the ac-
celeration is not linear in either of the cases. For the first algorithm, one must
take into account the additional time needed to filter the two received borders.
Therefore, the acceleration with M processors is:

A1(M) =
NxNyNz · t

NyNz ·
(

Nx

M + 6σ
) · t =

M

1 + 6σM
Nx

Notice that for one and two processors, the law above is not true: For one processor
no borders are added (A1(1) = 1), whereas for two processors, only one border is
added per processor (A1(2) = 2/

(
1 + 6σ

Nx

)
).

For the second algorithm, we must take into account the time necessary for
filling and emptying the pipeline:

A2(M) =
NxNyNz · t

(M − 1)LNx

M t + NxNyNz

M t
=

M

1 + L(M−1)
NyNz

Each of the two algorithms can be the most efficient in different situations. The
first algorithm is efficient if the standard deviation of the Gaussian is low and the
connection network has a high latency. The second one is more efficient in sparing
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Table 1: Theoretical performances of the two parallel recursive Gaussian filtering
algorithms.

Quantifier Borders sending algo 1 Pipeline algo 2

Computation time NyNz ·
(

Nx

M + 6σ
) · t NxNyNz

M · t + (M − 1)LNx

M t
Amount of data sent 6NyNzσ 16NyNz

Number of messages 2 2NyNz

L

Maximal acceleration M
1+ 6σM

Nx

M

1+
L(M−1)

NyNz

processor time and network bandwidth, especially if the standard deviation of the
filter’s Gaussian is high. The drawback of sending many messages can be dealt with
by tuning the L parameter (number of lines sent in one message). In practice, L is
determined experimentally, as a function of the network latency: it has high values
when the latency is high, while low latency networks can tolerate small L’s, thereby
improving the maximal acceleration. The second algorithm has another advantage:
The minimum width of a processor domain is 4 points, whereas in the case of the
first algorithm the minimal width is 6σ. This enables our pipeline recursive filtering
algorithm to properly work with a much higher number of processors. Another
advantage of the second algorithm is, off course, the fact that it is more accurate.
In our experiments we chose to use the pipeline recursive filtering over the borders
sending algorithm.

4. Results

In this section, we present an application for which non-rigid registration is
essential. The input data consists in magnetic resonance images of a size which is
typical for many clinical applications, which allows us to simulate the algorithm
behavior in real use.

4.1. Medical context

The application we present is related to functional neurosurgery for Parkinson’s
disease [14]. Electrodes are introduced in a small, deeply located, nucleus of the
brain, called the subthalamic nucleus. This nucleus is targeted on pre-operative
MRI acquisitions. During the intervention, which is performed in the operating
room, outside the MRI unit, an electrophysiological study is performed with the
electrodes to check the pre-operatively determined target position. This operation
is time-consuming and cerebro-spinal fluid (CSF) leaks can lead to pneumocephalus
(presence of air in the intracranial cavity). The pneumocephalus provokes a brain
deformation that can potentially cause errors in the pre-operatively determined
position of the nuclei. The purpose of the study [14] is to a posteriori validate
the pre-operative planning by using non-rigid registration in order to determine the
displacement of the subthalamic nuclei due to the per-operative pneumocephalus.

13



This is done after the intervention, and our time constraints are due to usability
needs: several minutes.

4.2. Experimental setup

One pre-operative and one post-operative three-dimensional T1 MR images of
sizes 256x256x120 were acquired (Figure 5). For each image, the area outside the
brain was masked. This enables the algorithm to better register the brain, without
taking into account the skull.

Two image pyramids of height 5 were built, and we used 40 iterations at each
pyramid level, which is usually enough in order to achieve a good registration. The
hardware platform consists of 15 2GHz Pentium IV PC’s with 1GB of RAM, linked
through a 1GB/s Ethernet network.

Figure 5(d) presents a detail of a 2D slice of the 3D post-operative image. Figure
5(e) presents the same detail of the slice at the same position in the pre-operative
image after rigid registration. On the post-operative image one can see that, due to
the fact that the two electrodes were not withdrawn simultaneously, the pneumo-
cephalus has a stronger influence on the left hemisphere of the brain (on the right
side of the images). The deformation produce by the pneumocephalus has been
corrected by the non-rigid registration (Figure 5(f)).

4.3. Performance results for the whole algorithm

The computation times and the parallel acceleration are presented in Figure 6.
By using 15 processors, we obtained an acceleration of 11 (reducing the computation
time from 40min to 3min30). This can be justified by the fact that some parts
of the algorithm (creation of the image pyramids, computation of the gradients)
are still sequential. For some configurations, the acceleration that was obtained
was larger than the number of processors. We link this fact to the performance
of the machines’ memory. Since the algorithm uses large quantities of memory,
cache misses are rather frequent when run sequentially. When spatial blocks are
smaller, cache misses occur much less often, which largely improves the algorithm
performances.

4.4. Performance results for the parallel filtering algorithms

The same setup as above was used, except that the computation time was only
measured for the parallel filtering section, performing a Gaussian smoothing with
a standard deviation of 5. Figure 7 shows the computation times for the two
algorithms compared to the theoretical time estimated by our analysis in section
3.4.3. The t parameter has been estimated based on the computation time with one
processor.

First, the pipeline recursive filtering algorithm is almost twice as fast when a
large number of processors is used. Second, for each of the two algorithms, the

14



(a) Slice of the post-
operative (source) im-
age.

(b) Slice of the pre-
operative (reference)
image.

(c) Slice of the registra-
tion result.

(d) Zoom of the post-
operative (source) im-
age.

(e) Zoom of the pre-
operative (reference) im-
age.

(f) Zoom of the registra-
tion result.

Fig. 5. Result of the non-rigid registration: The middle column displays a slice of the 3D pre-
operative image. The left column represents the slice at the same position in the post-operative
image, after rigid registration. The right column displays the result of the registration of the
post-operative image on the pre-operative one. The upper row (Figures (a), (b) and (c)) presents
complete slices of the three-dimensional post-operative, pre-operative and result images. The
lower row (Figures (d), (e) and (f)) presents a zoom on a significant area of the same slice. One
can see the strong pneumocephalus caused by the intervention at the upper right corner of the
brain in the post-operative image (Figure (a),(d)). From Figure (c) and (f), one can see that the
deformation has been corrected, and that the post-operative image has been deformed to best
match the pre-operative one (Figure (b) and (e)).
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(a) Computation time graph shows a reduc-
tion from about 40 minutes to 3min30.
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Fig. 6. Experiment results: computation time and parallel acceleration.
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Fig. 7. Recursive filtering times: The second algorithm scales better than the first. The measured
computation times are smaller than the predicted ones.
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measured time is almost always above the estimated one. In the case of the second
algorithm, an acceleration of 20 has been measured with 15 processors, whereas our
model predicted 13.4. We believe that this is also due to the low performance of
the personal computer memories (cache misses effect).

When performing this experiment, we chose a σ of 5, since a larger value would
not have allowed to use 15 processors with the first algorithm (the processor domains
would have been smaller than the borders they had to send). In practice, this is a
great advantage for the pipeline recursive filtering algorithm.

4.5. Controlling the registration software through a graphic interface

In our current system [15], the user has access to the algorithm functionality
through a graphic user interface running on a visualization workstation within the
clinical environment. By using an SSL-based secure connection, the graphical client
connects to a registration service running on a cluster within our laboratory. In or-
der to preserve the patient anonymity, the client only sends the image data that
is strictly necessary for the registration (image size and intensity values). Addi-
tional information already present inside the files (especially the one concerning the
patient’s identity) is not sent through the network. During the registration, the
user receives real-time information about the status of the algorithm, such as an
intermediate result. The user is thus able to fully control the registration and, if
needed, modify the registration parameters. Since the user and the computation
cluster are at distant locations and linked through a low-performance network, the
data is compressed before being sent through the network, and decompressed upon
receipt. Our tests show that the software has reasonable response times (about 30
seconds per image update) even if we use a network as slow as a 512kbits/s DSL
modem. Of course, the response time is largely improved by the usage of a faster
network.

4.6. Grid in a heterogeneous environment

Up to now, we considered the case of an algorithm running on an homogeneous
cluster. Performing the registration on a cluster that includes remotely located
nodes raises some problems:

Fault tolerance In such a cluster communications can fail more easily than in
one that is entirely locate in a single place. Some authors have addressed this
issue, and there are communication libraries, such as MPICH-V [16], that can
recover errors.

Performance For efficiency reasons, each node should communicate the same
quantity of data in the same time interval. If the nodes at distributed at
remote locations, they should be linked by a long distance high speed net-
work. Such a network is not in widespread use in the clinical environment,
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and its cost largely exceeds the price of the PC’s that we use of the registration.
Therefore, we believe that such a solution would be possible to implement,
but not financially interesting.

It is however possible for the user to be remotely located from the cluster. By
using a Web interface and Globus, we have tested the software with a cluster located
in a different city than the user [17]. After authentication, the user fills a Web form
with the algorithm parameters and the images file names, and gets back the results
at the end of the registration. This type of interaction has the advantage of not
requiring anything else but Internet access and a Web browser on the client side.
Experiments showed that, by using a low performance long distance network to
connect the user to the cluster, only a few minutes are added to the total execution
time.

5. Discussion

We currently use our parallel non-rigid registration software on two hardware plat-
forms. Users can either execute it on the dedicated cluster described in Section
4.2, or, if computation nodes are unavailable, they can use workstations available
in the laboratory. In the later case, the parallel algorithm shares bandwidth with
several network-intensive applications, such as NFS. Our experience proves that the
parallel implementation solves the computation time problem, but it creates other
needs:

• Usability through a graphics user interface (GUI): since the registration is
often integrated into a larger computational chain that generally contains
visualization, the challenge is to use the computational power provided by the
cluster while keeping the graphics performance intact [15];

• Access to data: data sources such as databases and medical image acquisition
equipment should be easily accessible by the computation cluster, even in the
presence of security mechanisms such as firewalls;

• Security and confidentiality issues arise when using long distance networks or
externalizing the images;

• Transparent management of the high-performance computing resources: sys-
tems already in use, such as Globus, provide access to distant computing
resources;

• The availability and the automatic localization of computing resources.

We believe that there are three low-cost solutions:

18



Community resources Large organizations can afford to purchase cluster nodes,
and locate them either in a centralized manner (a single data center) or in a dis-
tributed one (clusters located inside different organization departments). The costs
essentially consist in purchasing and maintaining a large hardware infrastructure.
The solution has several advantages: it provides a powerful computation infras-
tructure; and this structure is completely under the control of the organization,
which eliminates most of the possible security issues. The infrastructure challenges
are related to the usability through a GUI, and the ease of connectivity to data
sources.

The laboratory grid Another method to have easy access to computation power
is to use the workstations already in place. If bi-processor workstations with suf-
ficient memory and a reasonably fast network are available, they can be used as
a low cost pool of computing resources. The main advantage consists in the ac-
quisition price (one bi-processor workstation is cheaper than two mono-processor
ones) and the maintenance cost (fewer computers to administer). This platform
poses no security problem, and its high integration implies easier access to data
sources and graphics workstations. The main drawback is the system performance.
Furthermore, since the computation cluster has to be relatively homogeneous, the
organization should employ a centralized hardware acquisition policy [18].

The purchase of computing power The most flexible alternative is the pur-
chase of computing power from a professional provider. For the healthcare organi-
zation there is little or no initial investment, and the infrastructure is maintained by
professionals that insure the quality of service. The healthcare organization pays the
service on a contract basis. Two issues have to be addressed in this scenario. First,
the software running on the provider’s cluster should have access to data sources and
visualization equipment inside the healthcare organization. Second, the computing
power provider and the healthcare organization must trust each other. Indeed, reg-
ulations concerning the confidentiality of medical data make it hard for hospitals
to externalize medical images. Reciprocally, the computing power provider has to
insure the security of its own systems while running on them software coming from
various sources, and whose functioning is a priori not known.

To summarize, the first of the above scenarios (“community resources”) has the
advantage of providing a high computing power, but at a relatively high cost. The
second one (“the laboratory grid”) has a low cost, but it can only offer limited
computing power. The third scenario offers the best tradeoff between cost and
computing power, but it raises several interoperability and security issues.

6. Conclusions et perspectives
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We successfully managed to transform the long and cumbersome non-rigid reg-
istration process into a task that lasts only a few minutes, which was our goal. We
achieved this by using a low-cost cluster of workstations, linked through a regu-
lar Ethernet network. The algorithm uses the network in an efficient manner and
avoids one-to-all and all-to-all communications. We presented two algorithms that
perform recursive Gaussian filtering. The first one can take advantage of very high
latency networks. The second one can efficiently tackle the case of very wide Gaus-
sians, sparing processor time and network bandwidth. It can also adapt to high
latency networks by tuning one parameter. The parallel software currently runs in
our laboratory, either on a dedicated cluster or on production workstations in place,
and it can be controlled through a graphic interface or a Web one. However, in a
real clinical environment, several additional issues have to be addressed, such as the
transparent access to data sources and computing resources, and the security of the
system. These are currently central issues for medical grid environments.
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