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Abstract. Warping a digital atlas toward a patient image allows the
simultaneous segmentation of several structures. This may be of great
interest for cerebral images, since the brain contains a large number of
small but important structures (optical nerves, grey nuclei, etc.). One
important application is the conformal radiotherapy of cerebral tumor,
where a precise delineation of all these structures is required. However,
in this case, the variability induced by the tumor or a surgical resection,
that are not present in the digital atlas, prevents an accurate registration
between the atlas and the patient images. Since our registration method
allows to locally control the amount of regularization, we are able to ex-
plicitly introduce those areas in the warping process. For computational
efficiency, we have created a parallel implementation that can be used
from the clinical environment through a grid interface.

1 Introduction

The treatment of cerebral tumor may involve surgery, radiotherapy, or chemother-
apy. Thanks to recent technological advances (on-line definition of the shape of
the irradiation beam, irradiation intensity modulation during the treatment),
conformal radiotherapy allows a high precision irradiation (homogeneous dose
distribution within complex shapes), permitting an improvement of local control
and the reduction of the complications.

This high precision radiotherapy is a powerful tool for the treatment of cere-
bral tumors, since the irradiation target may be close to critical structures (op-
tical nerves, brain stem, etc.). In order to determine the best characteristics of
the treatment planning, and to provide the patient follow-up, it is necessary to
accurately locate all the structures of interest in the brain and the tumor. Cur-
rently, the segmentation of brain structures is manual and each structure must
be delineated in each slice of a 3-D image (e.g. MRI). The treatment team spends
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a significant amount of time to delimit the various structures of interest with the
precision requested for the conformal radiotherapy. An automatic segmentation
algorithm of all the critical structures in a patient image is then an invaluable
tool for radiotherapy, and its main requirement is a precise delineation of the
structures of interest.

In order to extract all these structures in a specific patient’s image, we chose
to build a numerical reference atlas of all the structures we are interested in, and
to use matching techniques to warp this atlas onto one patient’s image. The atlas
(Fig. 1b) was manually labeled from an artificial MR image (obtained from the
Brainweb, see Fig. 1a). The first step is a rigid matching between atlas and the
patient MRIs (usually T1, T2 and T1 injected). The recovered transformation
is refined using non-rigid registration, and then applied to the atlas in order to
obtain a segmentation of the patient image.

Due to its multi-subject nature, this registration problem is generally dif-
ficult. The topology of the brain, the shape of the ventricles, the number and
shape of the sulci vary strongly from one individual to another. Thus, algorithms
have to deal with the ambiguity of the structures to match, but they also have to
take into account the large variability of the differences between the two brains.

A more important issue arises in our case with the presence of pathologies
in the patient image, such as tumors or surgical resections. These structures
have no equivalent in the atlas. They usually lead the non-rigid registration to
important errors, especially around the pathology which is the area of interest for
radiotherapy. Numerous methods and tools have been already devised to address
non-rigid registration [1], but much fewer deal with pathological abnormalities.

Kyriacou et al. [2] used a biomechanical modeling of the brain and tumor
based on non-linear elasticity. In the case of multi-subject patient/atlas regis-
tration, elastic models are of low relevancy, since the transformation to recover
does not correspond to a physical deformation. Christensen [3] showed that in
order to recover large deformations, such as the ones implied by multi-subject
registration, a viscous component is needed.

Some methods [4, 5] deal with the absence of pathology in the atlas by ar-
tificially introducing it. A first non-rigid registration between patient and atlas
yields an initial deformation that is used to implant a “pathology seed” inside
the atlas. This deformation is then refined by non-rigidly registering the subject
image with the seeded atlas. The main problem consists in performing the first
registration, which can easily fail, especially if the pathology is located closely
to the brain border or the ventricles.

We have presented in [6] a non-rigid registration algorithm that uses anatom-
ical information to locally adapt the regularization from fluid (for CSF) to visco-
elastic-like (for grey/white matter). In this paper, we show how to take explicitly
into account tumors and surgical resections in our framework. The first step, de-
tailed in Section 2 consist in segmenting these areas in the patient image. Then,
we recall in Section 3 the principle of the registration method, and show how the
pathology is modeled as a non-informative area. Last but not least, we present
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in Section 4 comparative results that demonstrate the improvements brought by
our method.

2 Segmentation of tumors and surgical resections

In order to obtain a priori information on the tumor and the surgical resection
to guide the atlas registration, we have to segment these regions in the patient’s
brain. Thereafter, we propose two different methods for automatically delineat-
ing respectively the surgical resection and the tumor.

2.1 Segmentation of a surgical resection

A surgical resection corresponds to an absence of matter in the considered region,
filled with CSF, and possibly connected with the ventricles. Its shape is more
spherical than the other structures of the CSF, and is composed of only one
big connected component. These are the basic properties that we exploit for
delineating the resection.

First, we extract all structures behaving like CSF in the joint MR T1 and
T2 histogram (low signal in T1 and high signal in T2) by fitting a 2D Gaussian
on the corresponding area of the histogram. Selecting all the voxels whose joint
intensity is statistically compatible gives us an oversized segmentation of CSF
which still contains structures like the eyes and the ventricles. The eyes are
quite easy to remove since they appear as two isolated connected components.
To select them, we robustly register an atlas with an affine transformation,
and remove the connected components that have an intersection with the eyes
of the atlas. To separate the ventricles from the surgical resection, we use a
region labeling algorithm based on a skeletonization by influence zone (SKIZ)
[7]. As this labeling is sensitive to narrowings in a connected component, it easily
classifies the surgical resection and the ventricle as different regions. The regions
that intersect the ventricles of the atlas are removed as above.

Finally, we have to select the surgical resection region among remaining struc-
tures. The sulci are relatively small with respect to a surgical resection and thus
easy to remove. The main problem comes from the possible presence of a CSF
component between the brain and the skull due to brain shift during the surgical
operation. The volume of this component may be quite large, but its shape is
mostly flat. Thus, we compute a distance map in each remaining CSF connected
component, and select the one that has the largest inscribed ball radius.

2.2 Delineation of the tumor

Delineating a tumor is a hard task due to the multiple forms it may take in the
image. The tumor may generate an edema at its frontiers, and contain a necrotic
center. The tumor tissues and the edema usually appear like partial volume (CSF
and grey matter) intensities, while the necrosis resembles the CSF.



4 Stefanescu et al.

Traditional Expectation-Maximization algorithms [8] fail to provide good
results because of the presence of these tissues. An alternative is to consider
tumor intensities as outliers in this mixture of Gaussians, or to add some specific
classes to model the tumor and edema intensities [9]. As this was often not
sufficient, some anatomical knowledge was added, either by combining geometric
priors given by the non-rigid registration of an atlas to a tissue classification [10],
or by using Markov Random Fields [11]. Other methods include region growing
from a region of interest delineated by one of the preceding methods using level-
sets methods [12].

All these methods end up in very complex algorithm as attempt to segment
all the tissues. In our case, we are only interested in the tumor segmentation,
so that we could rely on a very simple mathematical morphology scheme as we
developed in the previous section.

We fit this time the selected region of the joint T1 an T2 intensity histogram
by a mixture of two Gaussians: one for the necrotic part of the tumor (which ap-
pear like CSF), and a second one for the tumor tissues and its edema (resembling
partial volume CSF/grey matter). We obtain an oversized segmentation where
we need to remove structures like the sulci or the ventricles without removing
interesting parts. Indeed, we now have CSF and grey matter partial volume vox-
els, and the necrotic part of the tumor can be near a region containing CSF.
The ventricles and the eyes are removed like before. Then the remaining part
of the segmentation is labeled into SKIZ zones. Each region is then compared
with an a priori statistical atlas of the CSF to compute the mean probability
of belonging to the CSF. A threshold on this probability allows us to remove
the CSF structures like the ventricles or the sulci. In each of these two steps we
also compute a distance map to the CSF of the statistical atlas in each region
to avoid removing regions containing voxels too far from the expected CSF.

3 A Grid-powered registration algorithm

We developed in [6] an original registration method that appear particularly
well fitted to our current problem. The algorithm models the transformation as
a dense deformation field, which enables it to recover fine details. The degree
of regularity imposed on the deformation is locally adapted in order to let the
ventricles deform freely, while preserving the coherence of the brain. The user
may locally tune the weight of matching versus regularization in the registration
process. Finally, the resulting transformation is guaranteed to be invertible.

3.1 General description of the algorithm

Through this section, we consider J to be the source image, I the target image
and U = (U1, U2, U3) the displacement field that transforms J into I, so that for
each point p, the intensity of the transformed image (J ◦ U)(p) , J(p + U(p))
matches the one of the image I at point p. The estimation of U is twofold:
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first a small correction u = (u1, u2, u3) is computed by optimizing a similarity
criterion, and second it is composed with U before regularization.

Our registration problem is monomodal, thus the sum of squared differences
is a sufficient (and adapted) measure to estimate the similarity between the im-
ages to be matched. Let the similarity criterion by Sim(I, J) =

∑
p(I(p)−J(p))2.

A gradient descent scheme allows to optimize Sim(I, J ◦U ◦u), yielding a small
correction u. However, this raw deformation field is usually noisy. This is partic-
ularly true in areas of the images where the intensity is uniform and the regis-
tration is mainly driven by noise. To filter out the unreliable “matches” from the
raw deformation field, we use a method inspired by the image-guided anisotropic
diffusion: once the gradient u = ∇Sim of the similarity criterion is computed,
its values are filtered using a diffusion equation: ∂ui

∂t (p) = (1− k(p)) · (∆ui)(p),
where k(p) ∈ [0, 1]. The parameter k(p) measures the local degree of smoothing
applied to u, or the local confidence that we have in the similarity criterion. For
k(p) = 1, the local displacement ui(p) will be locally unaffected by this PDE,
whereas the field is locally smoothed or even interpolated from neighboring val-
ues for k(p) close to zero. For an intermediate value, this smoothing may be seen
as an approximation of a viscous-elastic behavior. In practice, k(p) is related to
the image gradient, so that diffusion occurs in homogeneous regions.

The regularized small correction u being computed, we compose it with U
(similarly to the regridding scheme proposed by [3]). This additionally allows for
an invertible transformation U .

Let us now consider the regularization of U . Some authors used elasticity,
but there are more evidences toward a visco-elastic behavior of brain material.
Moreover, the resolution of these biomechanical models is quite slow. We chose
a more heuristic approach that only approximates a biomechanical behavior,
but which is much faster. We use the same diffusion equation than above, now
with U , and with a stiffness field D(p) (instead of 1 − k(p)) that now depends
on the local nature of the tissues, as in [6]. Thus, combined with the above
regularization, this realizes a good approximation of a visco-elastic material.

For computational efficiency, the algorithm was implemented on an inexpen-
sive and powerful parallel machine: a cluster of workstations. However, such a
cluster is more easily located in a computing center than in a clinical environ-
ment. To provide the clinical user with a user friendly interface on a visualization
workstation located in its own environment, we proposed in [13] a grid service
running on a parallel computer outside the clinical environment which provides
on demand the computing power needed to perform the registration.

3.2 Using a-priori anatomical information about the patient

As for every registration algorithm, we explicitly assumes that the chosen sim-
ilarity metric describes a meaningful correspondence between the two images.
This assumption is of course violated when the patient image contains additional
structures, such as tumors or resections. Since there is no correspondent in the
atlas for voxels in the “pathological” region of the patient image, we remove the
influence of these voxels from the similarity metric: we assigned a null confidence
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to all voxels inside a dilated mask of the pathology. The dilation is necessary
in order to remove the influence of the gradient caused by the pathology. As a
consequence, the correspondences in this area will be determined by interpola-
tion from non-pathological neighboring voxels, for which correspondences can be
reliably estimated. We assign the pathological region the same stiffness D as the
surrounding tissues.

We use the methods described in Section 2 to estimate a binary mask of the
patient pathology. When performing the confidence-weighted filtering of unre-
liable matches, we assign a null confidence to each voxel inside the pathology.
Since we specify the confidence inside the source image, we use the patient im-
age as the source. After registration, we inverse the transformation in order to
resample the atlas labeling in the subject image.

4 Experimental results

Our test dataset contains 22 T1-weighted MR images of different patients. After
preliminary rigid registration, the images sizes are 256× 256× 60.

The pathology segmentation takes between 1 and 3 minute, and the non-rigid
registration takes about 4 minutes on a cluster of 15 personal computers (2GHz
Pentium IV processors, 1GB/s network), which amounts to a total computation
time of 5 to 10 minutes. The whole database has been processed. Results have
been visually inspected by a radiotherapist, and appear satisfactory.

Figures 1a and 1b show, respectively, the atlas used for the registration, and
its segmentation. The atlas has been registered with a patient image (Fig. 1c)
presenting a large tumor. The pathology has been automatically segmented, and
its segmentation has been introduced in the confidence field (Fig. 1d). If the tu-
mor is not taken into account in the non-rigid registration, the displacement field
is biased by the tumor. This results in a false segmentation of the right lenticular
nucleus and lateral ventricle (Fig. 1e,g). Taking in consideration the pathology
results in a interpolated displacement field in the tumor area. Therefore, the
correspondences around the right lenticular nucleus and lateral ventricle are no
longer biased, which leads to a better segmentation (Fig. 1f,h).

In Figure 2a, we present an example where the patient brain has a large
surgical resection, that we segmented using the algorithm in Section 2. In the
confidence, we assigned null values inside the resection area (see Fig. 2b). A sim-
ple non-rigid registration is not able to follow the contour of the cerebellum (see
white arrow in Fig. 2c). If we use the resection segmentation in our algorithm,
the segmentation is the cerebellum is largely improved (Fig. 2d).

5 Discussion

In this paper, we describe a non-rigid atlas to subject registration algorithm
aimed at automating a brain image segmentation method for conformal radio-
therapy. The main difficulty consists in the unpredictable and huge variability
introduced either by the tumor or the surgical resection in the patient image,
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Fig. 1. Segmentation of a 3D patient image containing a large tumor. Top left: slice of
atlas MRI (a) and segmentation (b). Top right: patient image (c), and confidence used
for the registration (d). The confidence is 0 inside the tumor (in black on the image).
Bottom line: transformation of the atlas segmentation into the patient geometry, by
simple registration (e), or by taking into account the tumor (f). Fig. (g) and (h) present
zooms on the same area of interest from figures (e) and (f).

a b c d

Fig. 2. Segmentation of a patient image containing a resection. (a) Patient image.
(b) Confidence (resection is in black). (c) Result produced by a simple registration,
un-aware of the resection. (d) Result produced by our algorithm, exhibiting a better
segmentation of the cerebellum (see white arrows).
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that has no correspondent in the digital atlas. These additional structures in-
troduce false matches in the transformation, and result in a local failure of the
registration around the pathology, that may also lead to errors because of the
regularization. Our method is based on segmenting the pathology and reducing
the weight of the voxels inside the pathology. In these regions, we locally increase
the degree of regularity of the deformation field, which enables us to compute the
matches by interpolation. As we use a fuzzy segmentation of the pathology, the
results of our algorithm gracefully degrade with the quality of the segmentation.

Results show an improvement of the segmentation in the pathology area.
In the near future, we will validate this method by comparing segmentations
produced by our algorithm to ones produced by clinical experts. Another future
improvement is the use of our segmentation as an a priori for the pathology
segmentation. We believe that iterating between registration and segmentation
will result in future accuracy gains. In the future, we hope that automating the
segmentation step will drastically reduce the time required by the conformal
radiotherapy planning.
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