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Three-Dimensional Multimodal Brain Warping
Using the Demons Algorithm and Adaptive Intensity

Corrections
Alexandre Guimond*, Alexis Roche, Nicholas Ayache, and Jean Meunier

Abstract—This paper presents an original method for three-di-
mensional elastic registration of multimodal images. We propose to
make use of a scheme that iterates between correcting for intensity
differences between images and performing standard monomodal
registration. The core of our contribution resides in providing a
method that finds the transformation that maps the intensities of
one image to those of another. It makes the assumption that there
are at most two functional dependencies between the intensities of
structures present in the images to register, and relies on robust es-
timation techniques to evaluate these functions. We provide results
showing successful registration between several imaging modali-
ties involving segmentations, T1 magnetic resonance (MR), T2 MR,
proton density (PD) MR and computed tomography (CT). We also
argue that our intensity modeling may be more appropriate than
mutual information (MI) in the context of evaluating high-dimen-
sional deformations, as it puts more constraints on the parameters
to be estimated and, thus, permits a better search of the parameter
space.

Index Terms—Elastic registration, intensity correction, medical
imaging, multimodality, robust estimation.

I. INTRODUCTION

OVER the last decade, automatic registration techniques
of medical images of the head have been developed fol-

lowing two main trends: 1) registration of multimodal images
using low degree transformations (rigid or affine); 2) registra-
tion of monomodal images using high-dimensional volumetric
maps (elastic or fluid deformations). The first category mainly
addresses the fusion of complementary information obtained
from different imaging modalities. The second category’s pre-
dominant purpose is the evaluation of either the anatomical evo-
lution process present in a particular subject or of anatomical
variations between different subjects.
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These two trends have evolved separately mainly because
the combined problem of identifying complex intensity corre-
spondences along with a high-dimensional geometrical trans-
formation defines a search space arduous to traverse. Recently,
three groups have imposed different constraints on the search
space, enabling them to develop automatic multimodal non-
affine registration techniques. All three methods make use of
block matching techniques to evaluate local translations. Two of
them use mutual information (MI) [1], [2] as a similarity mea-
sure and the other employs the correlation ratio [3].

The major difficulty in using MI as a similarity measure for
registration is to compute the conditional probabilities of one
image’s intensities with respect to those of the other. To do so,
Maintz et al. [4] proposed to use conditional probabilities after
rigid matching of the images as an estimate of the real condi-
tional probabilities after local transformations. Hence, the prob-
abilities are evaluated only once before fluid registration. How-
ever, Gaenset al. [5] argued that the assumption that probabili-
ties computed after affine registration are good approximations
of the same probabilities after fluid matching is unsuitable. They
also proposed a method in which local displacements are found
so that the global MI increases at each iteration, permitting in-
cremental changes of the probabilities during registration. Their
method necessitates the computation of conditional probabili-
ties over the whole image for every voxel displacement. To alle-
viate themselves from such computations owing to the fact that
MI requires many samples to estimate probabilities, Lauet al.
[6] have chosen a different similarity measure. Due to the ro-
bustness of the correlation ratio with regards to sparse data [3],
they employed it to assess the similarity of neighboring blocks.
Hence no global computation is required when moving subre-
gions of the image.

Our method distinguishes itself by looking at the problem
from a different angle. In the last years, our group has had
some success with monomodal image registration using the
demons method [7], [8] an optical flow variant when dealing
with monomodal volumetric images. If we were able to model
the imaging processes that created the images to register, and
assuming these processes are invertible, one could transform
one of the images so that they are both represented in the
same modality. Then we could use our monomodal registration
algorithm to register them. We have, thus, developed a com-
pletely automatic method to transform the different structures
intensities in one image so that they match the intensities of
the corresponding structures in another image, and this without
resorting to any segmentation method.
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The rational behind our formulation is that there is a func-
tional relationship between the intensity of a majority of struc-
tures when imaged with different modalities. This assumption is
partly justified by the fact that the Woods criterion [9] as well as
the correlation ratio [3] which evaluate a functional dependence
between the images to match, have been used with success in
the past, and sometimes lead to better results than MI [10], [11],
which assumes a more general constraint.

The idea of estimating an intensity transformation during reg-
istration is not new in itself. For example, Feldmaret al. [12] as
well as Barber [13] have both published methods in which inten-
sity corrections are proposed. These methods restrict themselves
to estimating linear intensity transformations in a monomodal
registration context. Fristonet al. [14] also proposed a method
to estimate spatial and intensity functions to put positron emis-
sion tomography (PET) and magnetic resonance (MR) images
into register using a standard least squares solution. Their mod-
eling of the problem is similar to ours but their solution requires
segmentation of the images and is not robust to outliers. We pro-
pose here a registration model based on one or two high-degree
polynomials found using a robust regression technique to enable
the registration of raw images from different modalities.

The remaining sections of this paper are organized in the fol-
lowing manner. First, we detail our multimodal elastic registra-
tion method. We then describe what kind of images were used
to test our method and how they were acquired. Next, results
obtained by registering different images obtained from several
modalities are presented and discussed, and future tracks are
suggested.

II. M ETHOD

Our registration algorithm is iterative and each iteration con-
sists of two parts. The first one transforms the intensities of
anatomical structures of a source imageso that they match
the intensities of the corresponding structures of a target image

. The second part regards the registration of(after intensity
transformation) with using our elastic registration algorithm.

In the following, we first describe the three-dimensional
(3-D) geometrical transformation model and then the intensity
transformation model. We believe this ordering is more con-
venient since it is easier to see what result must provide the
intensity transformation once the geometrical transformation
procedure is clarified. However, we wish to make clear to the
reader thateach iterationof our registration method proceeds
first by estimating the intensity transformation and then the
geometrical transformation.

A. Modeling the Geometrical Transformation

Many algorithms have been developed that deform one brain
so its shape matches that of another [15]. The procedure used
in the following work was influenced by a variety of methods,

primarily the demons algorithm [7], [8]. It finds the displace-
ment for each voxel of so it matches the corresponding
anatomical location in . The solution is found using the itera-
tive scheme shown in (1) at the bottom of the page, where
is a Gaussian filter with a variance of , denotes the con-
volution, denotes the composition, is the gradient operator
and the transformation is related to the displacement by

.
Briefly, (1) finds voxel displacements in the gradient direc-

tion . These displacements are proportional to
the intensity difference between and and are
normalized for numerical stability. Convolution with a Gaussian
kernel is performed to model a smoothly varying displace-
ment field. As is common with registration methods, we also
make use of multilevel techniques to accelerate convergence.
Details about the number of levels and iterations as well as filter
implementation issues are addressed in Section IV.

For details on how we obtained (1) and information on the
relevance of the resulting transformation, see [16] and [17].

B. Modeling the Intensity Transformation

Prior to each iteration of the geometrical transformation an
intensity correction is performed on so that the intensity of
its structures matches those in, a requirement for the use of
(1). The intensity correction process starts by defining the set
of intensity couples from corresponding voxels ofand of the
current resampled source image , which will be designated
by in this section for simplicity. Hence, the setis defined as

(2)

where is the number of voxels in the images. and
correspond to the intensity value of theth voxel of and

, respectively, when adopting the customary convention of
considering images as one-dimensional arrays. From there, we
show how to perform intensity correction if we can assume that
a single intensity value in has either 1) exactly one corre-
sponding intensity value in (monofunctional dependence) or
2) at least one and at most two corresponding intensity values
in (bifunctional dependence).

1) Monofunctional Dependence Assumption:Our goal is to
model the transformation that characterizes the mapping from
voxel intensities in to those in , knowing that some elements
of are erroneous, i.e., that would not be present inif and

were perfectly matched. If we can assume a monofunctional
dependence of the intensities ofwith regards to the those of

as well as additive stationary Gaussian white noiseon the
intensity values of , then we can adopt the model

(3)

where is an unknown function to be estimated. This is exactly
the model employed by Rocheet al.[10], [11] which leads to the

(1)
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correlation ratio as the measure to be maximized for registration.
In that approach, for a given transformation, the authors seek the
function that best describesin terms of . They show that in a
maximum likelihood context, the intensity functionthat best
approximates is a least squares (LS) fit of in terms of .

The major difference between our respective problems is that
we seek a high-dimensional geometrical transformation. As op-
posed to affine registration where the transformation is governed
by the majority of good matches, the elastic registration model
of (1) finds displacements using mainly local information (i.e.,
gradients, local averages, etc.). Hence, we cannot expect good
displacements in one structure to correct for bad ones in an-
other; we have to make certain each voxel is moved properly
during each iteration. For this, since the geometrical transfor-
mation is found using intensity similarity, the most precise in-
tensity transformation is required. Consequently, instead of per-
forming a standard least squares regression, we have opted for
a robust linear regression estimator which will remove outlying
elements of during the estimation of the intensity transfor-
mation. To estimate we use the least trimmed squares (LTS)
method followed by a binary reweighted least squares (RLS) es-
timation [18]. The combination of these two methods provides
a very robust regression technique with outlier detection, while
ensuring that a maximum of pertinent points are used for the
final estimation.

a) LTS Computation:For our particular problem, we will
constrain ourselves to the estimation of a polynomial function
from the elements in . We can then relate the intensity corre-
spondences with a set of equations of the form

(4)

where needs to be estimated andis the degree
of the polynomial function. A regression estimator will provide
a which can be used to predict the value of

from

(5)

as well as the residual errors

(6)

A popular method to obtain is to minimize the sum of
squared residual errors

(7)

which leads to the standard LS solution. It is found by solving
a linear system using the singular value decomposition (SVD)
method. See [11] for a more detailed study. This method is
known to be very sensitive to outliers and, thus, is expected to
provide a poor estimate of the monofunctional mapping from
to . The LTS method solves this problem by minimizing the
same sum on a subset of all residual errors, thus rejecting large
ones corresponding to outliers

(8)

where is the th smallest value of the set
. This corresponds to a standard LS on the

values that best approximates the function we are looking for.
Essentially, represents the percentage of “good” points
in and must be at least , which is the
breakdown value of the LTS method [19], i.e., the minimum
percentage of points required for a proper estimate. A lesser
value would allow to estimate parameters that model a minority
of points which could then all be outliers.will vary according
to the modalities registered. The values used for our result and
the corresponding modalities are discussed in Section IV.

We have not developed a procedure to findautomatically,
but have found reasonablead hocestimates that provide satis-
factory results. A more in depth analysis of the influence of
on our results and its relation with different modalities is be-
yond the scope of this article, but we have found from visual
inspection that a variation of by 5% does not influence the
registration result in a significant way.

Our method for LTS minimization is a simple iterative tech-
nique. First, we randomly pickpoints from . We then iterate
between calculatingusing the standard LS technique on the se-
lected points and choosing theclosest points from . Recently,
Rousseeuw and Van Driessen [19] proved that this method re-
duces the error on at each iteration. Hence, we carry this
process until stops decreasing, usually requiring less
than five iterations. This provides adequate results for our pur-
poses. Note that this finds a local minimum, although not guar-
antying the global minimum. Since we assume a good global
registration previous to the estimation process, that might not
make a large difference. Still, in the same paper, the authors also
proposed a new efficient algorithm to find a good approximate
solution of the LTS minimization. This strategy will be looked
into in future implementations.

b) RLS Computation:Once is obtained using LTS, we
can compute the standard errorof our points with respect to
our estimate. Of course, this value will also be an estimate cor-
responding to

(9)

where is the normalized Gaussian distribution
and is the th quantile

of . In (9), is a normalization factor introduced because
is not a consistent estimator of since we

only choose the smallest .
Using this average deviation of the points from the estimates,

we then perform an RLS regression by finding a newthat
minimizes the sum of squared residual for all points within
of the previous estimate,

where
if
otherwise.

(10)
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This optimizes the number of points used to computeby con-
sidering all the points that relate well to the LTS estimate, not
only the best .

2) Bifunctional Dependence Assumption:Functional de-
pendence as expressed in (3) implicitly assumes that two
structures having similar intensity ranges inshould also have
similar intensity ranges in . With some combinations of im-
ages, this is a crude approximation. For example, ventricles and
bones generally give similar response values in a T1 weighted
image while they appear with very distinct values in a CT scan.
Conversely, white and gray matter are well contrasted in a T1
image while they correspond to similar intensities in a CT.

To circumvent this difficulty, we have developed a strategy
that enables the mapping of an intensity value into not only
one, but two possible intensity values in. This method is a
natural extension of the previous section. Instead of computing
a single function that maps the intensities ofto those of , two
functions are estimated and the mapping becomes a weighted
sum of these two functions.

We start with the assumption that if a point has an intensity
in , the corresponding point in has an intensity that is

normally distributed around two possible values depending on
, and . In statistical terms, this means that given,
is drawn from a mixture of Gaussian distribution

(11)

where and are mixing proportions that
depend on the intensity in the source image, andrepresents
the variance of the noise in the target image. Consistently with
the functional case, we will restrict ourselves to polynomial in-
tensity functions, i.e., ,
and .

An intuitive way to interpret this modeling is to state that for
any voxel, there is a binary “selector” variable that
would tell us, if it was observed, which of the two functions
or actually serves to mapto . Without knowledge of , the
best intensity correction to apply to(in the minimum variance
sense) is a weighted sum of the two functions

(12)

in which the weights correspond to the probability that the point
be mapped according to either the first or the second function.
Applying Bayes’ law, we find that

(13)

and thus, using the fact that and
, the weights are determined by

(14)

In order to compute the intensity correction (12), we now
need to identify the parameters of our model, i.e., the polyno-
mial coefficients of and , as well as the mixing proportions

and and the variance . For this, we employ anad
hocstrategy that proceeds as follows.

First, is estimated using the method described in Sec-
tion II-B. The points not used to compute, in a number
between zero and , are used to estimate
still using the same method. Note that if this number is less than

, being the polynomial degree, monofunctional depen-
dence is assumed and we fall back to the method described in
the previous section.

This provides a natural estimation of the “selector” variable
for each voxel: the points that were used to build are likely
to correspond to , while the points used to build are
likely to correspond to 2. Finally, the points that are rejected
while estimating are considered as bad intensity matches. A
natural estimator for the variance is then

(15)

where and are the variances found, respectively, for
and during the RLS regression (see Section II-B). Similarly,
the mixing proportions are computed according to

(16)

in which is the number of voxels having an intensity
and used to build the function . Notice that in the case

where (i.e., no voxel corresponding to
the intensity has been taken into account in the computation
of or ), then we arbitrarily set the mixing proportions to

.
The intensity correction of can now be performed by rein-

jecting the estimated parameters in (14) and (12).

C. Combining the Intensity and Geometrical Transformations

As stated previously, the use of (1) in Section II-A to model
geometrical transformations makes the assumption that the in-
tensities of structures in matches those in . When dealing
with images obtained from different modalities, this require-
ment is not met. To solve this problem, we presented in Sec-
tion II-B a method to rectify intensity differences between cor-
responding structures in and using an underlying mono-
functional or bifunctional model. The result of this intensity cor-
rection on for the th iteration will be denoted by with

. In the monofunctional case, [see
(3)] and in the bifunctional case [see
(12)]. Considering this and (1), the geometrical transformation
is found using (17), shown at the bottom of the next page.

The reader might wonder why we restricted our technique to
estimating at most two functions. In theory, our technique can
well accommodate for more than two. The problem encountered
regards finding proper values for, i.e., the number of points
used for the LTS computation of each function. As mentioned
previously, needs to be at least for the first poly-
nomial. The number of points available to compute the second
function are then at most and may well be less due
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to the RLS regression. This means that at best, less than 25% of
all points would be available to compute a third function, 12.5%
for a fourth function, and so on. We expect that the intensity
correspondences reflected by these third and fourth functions
would not be of real value, especially during the first iterations
of the registration process, where the number of outliers inis
at its highest.

D. Mutual Information

Another approach we tested to compute incremental displace-
ments was inspired by the works of Violaet al. [1] and Maeset
al. [2]. In these approaches, the rigid/affine registration between
two images is formulated as a maximization of their MI. This
choice is motivated by the fact that MI models the similarity be-
tween the images while resorting to assumptions that are much
more general than functional dependence. Consequently, and
contrary to the approach that was presented in Section II-B, they
do not attempt to apply an intensity correction to one image so
that it matches the other. Instead, they model the intensity de-
pendence in a purely statistical fashion. Violaet al. [1] do this
modeling using Parzen windowing, which enables them to dif-
ferentiate the MI criterion with respect to the geometrical trans-
formation.

As shown by Rocheet al. [16] and Guimondet al. [17],
our incremental displacements closely relate with a gradient de-
scent on the sum of squared difference (SSD) criterion. Using
this analogy, we implemented an alternative matching strategy
where the incremental displacements given by (1) are replaced
with the following formula:

(18)

in which is a positive constant and is the gradient
of the MI criterion with respect to theth displacement vector,
whose mathematical expression is found in [1]. This updating
corresponds to a first-order gradient descent on the MI crite-
rion, of course up to the Gaussian filtering which is used as a
regularization constraint.

Nonrigid registration results using mutual information as pre-
sented here are shown in Section IV-C.

III. D ATA

Most of the data used in the following experiments were ob-
tained from BrainWeb [20], [21]. This tool uses an atlas [22]
with a resolution of 1 1 1 mm comprising nine segmented
regions (see Table I) from which T1, T2, and PD images can
be generated [23]. We use the discrete phantom atlas and three
simulated MR images, one of each modality, with the same res-
olution as the atlas, 5% noise and no intensity nonuniformity.
These three images are named T1, T2 , and PD, respectively.
Since they are generated from the same atlas, they represent the
same underlying anatomy and are all perfectly matched.

TABLE I
INTENSITY VALUES CORRESPONDING TO THEDIFFERENTTISSUETYPES

PRESENT IN THEDISCRETEPHANTOM ATLAS

We also use a T1 MR image and a CT image, both from dif-
ferent subjects and having a resolution of 11 1 mm . Both
these images were affinely registered with the atlas using the
correlation ratio method [3]. The two images are called T1 and
CT, respectively.

The images all respect the neurological convention, i.e., on
axial slices, the patient’s left is on the left side of the image.

IV. RESULTS AND DISCUSSION

In the following section, we present registration results in-
volving images obtained from several different kinds of modal-
ities. First, we show a typical example where monofunctional
dependence can be assumed: registration of an atlas with an MR
image. Then more practical examples are shown where images
from different modalities are registered and where bifunctional
dependence may be assumed. We also provide registration re-
sults obtained from our implementation of MI maximization as
described in Section II-D.

The multilevel process was performed at three resolution
levels, namely 4, 2 and 1mm/voxel. Displacement fields at one
level are initialized from the result of the previous level. The
initial displacement field is set to zero. 128 iterations are per-
formed at 4 mm/voxel, 32 at 2 mm/voxel and 8 at 1 mm/voxel.
These are twice the number of iterations used for registration of
monomodal images using the conventional demons algorithm.
We believe that making use of a better stopping criterion, such
as the difference of the SSD values between iterations, would
probably improve the results shown below but this aspect has
not been investigated. It should be in future implementations.
The Gaussian filter used to smooth the displacement
field has a standard deviation of one voxel regardless of the
resolution. This models stronger constraints on the deformation
field at the beginning of the registration process to correct for
gross displacements, and weaker constraints near the end when
fine displacements are sought. The resampling process makes
use of trilinear interpolation, except in the case of the atlas
where nearest-neighbor interpolation is used.

Computation time to obtain the following results is around
60 min on a 450-MHz PC with 500 MB of RAM (10 min at 4
mm, 20 min at 2 mm and 30 min at 1 mm). Most of this time (
85%) is devoted to the intensity correction part, which has not
been optimized in this first version of our program. The other

(17)
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(a) (b) (c) (d)

Fig. 1. Corresponding axial slices of the atlas to T1 registration result. Contours were obtained using a Canny–Deriche edge detector on T1 and overlaid on the
other images to better assess the quality of registration. Arrows point to examples of bad intensity correction. (a) Atlas. (b) T1. (c) Atlas without intensity correction
after registration with T1. (d) Atlas with intensity correction after registration with T1.

(a) (b) (c) (d)

Fig. 2. Corresponding axial slices of the atlas to T1registration result. Contours were obtained using a Canny–Deriche edge detector on T1and overlaid on the
other images to better assess the quality of registration. (a) Atlas. (b) T1. (c) Atlas without intensity correction after registration with T1. (d) Atlas with intensity
correction after registration with T1.

15% is taken by the standard registration code which is stable
and well optimized.

A. Monofunctional Dependence

We present here the result of registering the atlas with T1.
Since the atlas can be used to generate realistic MR images, it is
safe to assume a functional dependence between the intensity of
the atlas and those of T1. Also, since T1 and the atlas are well
aligned due to the affine registration, we have roughly estimated
that the number of points already well matched, i.e., the number
of good points in , are at least 0.80 , to which we have set
the value of . Since ten classes are present in the atlas, the poly-
nomial degree chosen was set to nine. Having a polynomial of
this degree will accommodate any permutation of the structure
intensities in the atlas. This is true because it is always possible
to fit a polynomial of degree nine to match ten points exactly.

The result of registration is presented in Fig. 1. Fig. 1(a)
shows one slice of the atlas. Fig. 1(b) is the corresponding slice
of T1. Fig. 1(c) and (d) presents the result of registering the atlas
with T1 using our algorithm. Fig. 1(c) shows the result without
the intensity transformation; we have simply applied to the atlas
the geometrical transformation resulting from the registration

procedure. Fig. 1(d) shows the image resulting from the regis-
tration process. It has the same shape as the resampled atlas and
intensities have been transformed using the intensity correction.

As can be seen, there is one obvious problem with this result:
although the shape of the atlas seems well corrected, the CSF
intensity is not, as can be seen in the ventricles and around the
cortex [see arrows in Fig. 1(d)]. This reflects on the matching,
as can be observed around the anterior aspect of the lateral ven-
tricles on Fig. 1(c) and (d).

This problem can also be observed by looking at the inten-
sity transformation function presented in Fig. 3 (Intensity values
corresponding to the different tissue types present in the atlas are
shown in Table I.) This is due to a spatial overlap of the CSF in
the atlas and the gray and white matter in T1, especially around
the cortical area which is known to present large variations be-
tween subjects. We believe this is due to the strong smoothness
constraints imposed by the Gaussian regularization which may
prevent the assessment of large and uneven displacements re-
quired to match the cortex.

To verify this assumption, we registered T1with T1 and
deformed T1 using the resulting displacement field. This
provided an image T1 that closely resembles T1 [Compare
Figs. 1(b) and 2(b)] and for which we are assured that the shape
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Fig. 3. Intensity transformation found by registering the atlas with T1 and
assuming monofunctional dependence. The functionf is overlaid on the joint
histogram of the two images after registration. The joint histogram values
have been compressed logarithmically and normalized as is depicted in the
color scale. The tissue types corresponding to the different atlas intensities are
presented in Table I.

Fig. 4. Intensity transformation found by registering the atlas with T1and
assuming monofunctional dependence. The functionf is overlaid on the joint
histogram of the two images after registration. The joint histogram values
have been compressed logarithmically and normalized as is depicted in the
color scale. The tissue types corresponding to the different atlas intensities are
presented in Table I.

variation from the atlas can be assessed by our algorithm. We
then registered the atlas with T1. This result is presented in
Fig. 2. As can be observed, the CSF intensity value is now
well corrected. By looking at the intensity transformation
shown in Fig. 4, we also notice that each atlas structure has
corresponding intensity ranges in T1 that are less extended
than those of Fig. 3, reflecting a better match between the
images. This finding puts forth that the displacement field
regularization has to be able to accommodate the large uneven
displacement of the cortex. To cope with large displacements,
Gaussian filtering may probably be replaced with another
regularization strategy such as that based on a fluid model [24]
or on a nonquadratic potential energy [25].

Another difference between Figs. 3 and 4 is the difference in
the intensity mapping of the glial matter (Intensity 224 in the

atlas). This structure forms a small envelope around the ventri-
cles and is represented by so few points that they are consid-
ered as outliers. This could be corrected by considering more
points during the intensity transformation. In fact,should be
increased at each iteration to reflect that, during registration,
gradually aligns with and more points in can be considered
as well matched.

B. Bifunctional Dependence

When registering images from different modalities, mono-
functional dependence may not necessarily be assumed. Here,
we applied the method described in Section II-B where two
polynomial functions of degree 12 are estimated. This number
was set arbitrarily to a relatively high value to enable important
intensity transformations.

Fig. 5 presents the result of registering T1with CT. Using
these last two modalities, most intensities of T1should be
mapped to gray and only the skull, representing a small por-
tion of the image data, should be mapped to white. After affine
registration almost all voxels are well matched, i.e., the number
of good points in is large. Hence, in this particular case, we
have chosen a high value forset to 0.90 .

As we can see in Fig. 5, the skull, shown in black in the MR
image and in white in the CT scan, is well registered and the
intensity transformation adequate. Fig. 6(a) presents the joint
histogram of the two images after registration. This histogram
is color-coded and ranges from red representing high point den-
sities to blue depicting low point densities. Fig. 6(b) presents the
functions and found during the registration process. The
red line corresponds to and the blue one to . The line width
for a given intensity is proportional to the value of the corre-
sponding . The gray values represent the joint histogram
after registration.

As can be observed in Fig. 6(b), the polynomials found fit
well with the high density clusters of the joint histogram. Still,
some points need to be addressed.

We can observe that due to the restricted polynomial degree,
, (shown in red) oscillates around the CT gray value instead of

fitting a straight line. This is reflected in the intensity corrected
image, shown in Fig. 5(d), where the underlying anatomy can
still be observed by small intensity variations inside the skull.
This artifact has insubstantial consequences during the registra-
tion process since the difference between most of the voxels of

and is zero, resulting in null displacements. The displace-
ments driving the deformation will be those of the skull and the
skin contours, and will be propagated in the rest of the image
with the Gaussian filtering of the displacement field.

We also notice that (shown in blue), which is mainly
responsible for the mapping of the skull, does not properly
model the cluster it represents for intensities smaller than five.
The mapping for these intensities is slightly underestimated.
This may have two causes. First, as in the previous case, it
might be due to the restricted polynomial degree. Second, we
can notice that some of the background values in T1that
have an intensity close to zero are mapped to gray values
in the CT which correspond to soft tissues. This means that
some of the background in T1is matched with the skin in
the CT. This has the effect of “pulling” closer to the small
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(a) (b) (c) (d)

Fig. 5. Corresponding axial slices of T1to CT registration result. Contours were obtained using a Canny–Deriche edge detector on CT (Fig. 1) and overlaid on
the other images to better assess the quality of registration. (a) T1. (b) CT. (c) T1 without intensity correction after registration with CT. (d) T1with intensity
correction after registration with CT

(a) (b)

Fig. 6. Intensity transformation found when registering T1with CT and assuming bifunctional dependence. (a) The joint histogram values have been compressed
logarithmically and normalized as is depicted in the color scale. Values range from red representing high point densities to blue depicting low pointdensities. (b)
The red line corresponds tof and the blue one tof . The line width for a given intensity values in T1 corresponds to the value of the corresponding� (s). The
gray values represent the joint histogram after registration.

(a) (b) (c) (d)

Fig. 7. T2 without intensity correction after registration with T1. T2with intensity correction after registration with T1. Corresponding axial slices of T2
to T1 registration result. Contours were obtained using a Canny–Deriche edge detector on T1 (b)and overlaid on the other images to better assess the quality of
registration. (a) T2. (b) T1. (c) T2 without intensity correction after registration with T1. (d) T2with intensity correction after registration with T1.

cluster positioned around (2,65). If the underestimation of
arises because of the second reason, letting the algorithm

iterate longer might provide a better result.

In Figs. 7 and 9 we present the result of registering
T2 and PD, respectively, with T1. Figs. 8 and 10 show
the corresponding intensity transformations. For these ex-
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(a) (b)

Fig. 8. Intensity transformation found when registering T2with T1 and assuming bifunctional dependence. (a) The joint histogram of T2and T1 after
registration. The joint histogram values have been compressed logarithmically and normalized as is depicted in the color scale. Values range from red representing
high point densities to blue depicting low point densities. (b) The red line corresponds tof and the blue one tof . The line width for a given intensity values in
T2 corresponds to the value of the corresponding� (s). The gray values represent the joint histogram after registration.

(a) (b) (c) (d)

Fig. 9. Corresponding axial slices of PDto T1 registration result. Contours were obtained using a Canny–Deriche edge detector on T1 (b) and overlaid on the
other images to better assess the quality of registration. (a) PD. (b) T1. (c) PD without intensity correction after registration with T1. (d) PDwith intensity
correction after registration with T1.

periments, was set to , a value we have found
to be effective for these types of modalities after affine
registration.

One observation that can be made by looking at the joint his-
tograms of Figs. 8(a) and 10(a) is that there seems to be a func-
tional dependence between the images intensities, i.e., there is
a function that can go though the major clusters of the joint his-
tograms. This is also reflected by the closely similar shapes of
the corresponding and .

Thus, we have registered PDwith T1 using the monofunc-
tional model and 0.8. This result is presented in Fig. 11 and
the corresponding intensity transformation in Fig. 13. As can be
seen by comparing the Figs. 9(d) and 11(d), the intensity trans-
formation does not correct as well the CSF intensities and the
distinction between the different structures is less contrasted.

This may be explained by a closer look at our bifunctional
intensity modeling. Equation (11) reflects the assumption that
if an anatomical point has an intensityin , the corresponding
point has an intensityin that is distributed normally around
two possible values depending on. But it makes no assumption

about how the intensities in are distributed. This models the
intensities of without noise, which may not necessarily be
well justified, but enables the use of linear regression to estimate
the intensity transformation.

The effect of noise in is reflected in the joint histograms by
enlarging clusters along theaxis. This, added to bad matches
and partial volume effect, creates many outliers inand makes
the assessment of the true intensity transformation more diffi-
cult and more resistant to our robust regression technique. Pre-
processing of using for example anisotropic diffusion may
narrow the clusters and provide better results [10].

Adding the estimation of a second function in the bifunctional
model helps counter the effect of noise on. For example, the
CSF in the PD image has intensity values ranging from about
200 to 240 and gray matter from about 175 to 210. In T1,
these ranges are about 30 to 70 and 55 to 80, respectively. As
can be seen in Fig. 10, models well the gray matter cluster
but fails to reflect the CSF transformation. This is also well
depicted in Fig. 11 in which the CSF and gray matter intensity
transformation is modeled using a single polynomial. In this
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(a) (b)

Fig. 10. Intensity transformation found when registering PDwith T1 and assuming bifunctional dependence. (a) The joint histogram of PDand T1 after
registration. The joint histogram values have been compressed logarithmically and normalized as is depicted in the color scale. Values range from red representing
high point densities to blue depicting low point densities. (b) The red line corresponds tof and the blue one tof . The line width for a given intensity values in
PD corresponds to the value of the corresponding� (s). The gray values represent the joint histogram after registration.

(a) (b) (c) (d)

Fig. 11. Corresponding axial slices of PDto T1 registration result using the monofunctional model. Contours were obtained using a Canny–Deriche edge
detector on T1 (b) and overlaid on the other images to better assess the quality of regidtration. (a) PD. (b) T1. (c) PD without intensity correction after registration
with T1. (d) PD with intensity correction after registration with T1.

(a) (b) (c)

Fig. 12. Corresponding axial slices T1to CT registration result using MI. Contours were obtained using a Canny–Deriche edge detector on CT (b) and overlaid
on the other images to better assess the quality of registration. (a) T1. (b) CT. (c) T1 after registration with CT.

case, the CSF is often mapped as gray matter. Estimating
the second polynomial solves this problem by considering
the CSF cluster.

Note that for the registration of the atlas to T1 and of T1
to CT, we have always deformed the image with the most in-
formation, i.e., the one with the higher number of perceivable
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Fig. 13. Intensity transformation found by registering PDwith T1 and
assuming monofunctional dependence. The functionf is overlaid on the joint
histogram of the two images after registration. The joint histogram values have
been compressed logarithmically and normalized as is depicted in the color
scale.

structures. This is simply because our algorithm permits many
structures of the deformed image to be mapped to a single in-
tensity, as is the case when transforming a T1 image into a CT
image (see Fig. 5). But a single intensity in the deformed image
can be mapped to at most two intensities in the target image. For
example, if we used the CT image as the image to be deformed,
the dominant gray intensity value in this image would have to be
mapped to gray matter, white matter, CSF, etc. This would re-
quire more than two functions to be estimated and complicates
the algorithm. Hence, it is always better to use the image with
the most number of structures visible as the source image.

C. Mutual Information

We present in Fig. 12 the result of registering T1with CT
using the MI method described in Section II-D. A typical dif-
ference between using our bifunctional method instead of our
MI implementation can be appreciated by comparing Figs. 5(c)
and 12(c). As can be seen, the contours of corresponding struc-
tures do not match after registration using MI. The head con-
tours seem to be attracted by the image borders, which means
that the driving forces have misleading directions in this region.
This outcome might be due to the fact that Parzen windowing
provides too little information on how to match the intensities of
the images. As a consequence, the direction of the MI gradient,
from which the local driving force is derived, might be unre-
liable. Many registrations were performed using the MI crite-
rion with varying values for the step lengthand several Parzen
window sizes. The results we obtained using this strategy were
much less convincing than the ones we obtained using our bi-
functional method; the source image deformed very little unless
the parameter was set to a high value, in which case the dis-
placements looked random.

The poor results obtained with our implementation of MI
might sound surprising as MI performs generally very well in
rigid/affine registration. Although it would be irrelevant to con-

TABLE II
STATISTICS REGARDING THE DIFFERENCESBETWEEN DISPLACEMENTS

PROVIDED BY EACH TYPE OFREGISTRATION. EACH CELL PRESENTS THE

MEDIAN LENGTH, THE AVERAGE LENGTH WITH THE CORRESPONDING

STANDARD DEVIATION AND THE MAXIMUM LENGTH. ALL MEASURESARE IN

MILLIMETERS

clude that MI is not well-suited for elastic registration, a partial
explanation may be given. What MI does is to measure the sim-
ilarity of the images from the joint probability density function
(pdf) of their intensities. In most of the MI-based approaches,
the joint pdf is considered as being the image (normalized) joint
histogram [2]. There is actually a hidden estimation problem
when using MI, as already pointed out by [1]. It can be shown
that the joint histogram is the maximum likelihood estimate of
the joint pdf among the set of every possible discrete pdf’s [10].
This set has a dimension , where and are the
numbers of intensity levels, respectively, in the source and target
images.

In the context of rigid/affine registration, where no more than
12 geometrical parameters need to be estimated, such an enor-
mous search space is usually affordable. However, with elastic
registration, the geometrical transformation is granted many de-
grees of freedom and maximizing MI might then become an
under-constrained problem. The use of Parzen windowing may
be viewed as a regularization strategy as it imposes constraints
to the intensity space. While Parzen windowing is a nonpara-
metric approach, our method explicitly restricts the intensity
space using polynomial functions. In the case where monofunc-
tional dependence is assumed, only parameters are es-
timated to model the intensity dependence,being the poly-
nomial degree. When assuming a bifunctional relationship, this
number becomes .

D. Displacement Field Comparison

Since the atlas, T1, T2 , and PD have all been registered
with T1, it is relevant to compare some statistics of the resulting
displacement fields to assess if our algorithm provides consis-
tent results across modalities.

We computed statistics regarding the difference between any
two of these displacement fields. The length of the vectors of the
resulting difference fields were calculated. Each cell of Table II
presents, for each combination of displacement fields, the me-
dian length, the average length with the corresponding standard
deviation and the maximum length of the difference field.

The two largest average differences are 1.76 and 1.58 mm
and were found when registering the atlas with T1and PD,
respectively. This may be explained by the intensity correction
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bias for the CSF that would tend to attenuate displacements and
produce larger errors, a problem invoked in Section IV-A. Aside
from these, the average error length varies between 0.97 and
1.40 mm and the median error is between 0.85 and 1.32 mm,
with the largest errors occurring in the cortex area. These are
values in the range of the image resolution of 1.0 mm. Note also
that all the standard deviations are below this value.

We point out that these are global measures that are presented
to provide an idea of the differences between the displacement
fields. They do not strictly provide a validation of the method,
but do show a certain coherence between the different results
we obtained.

V. CONCLUSION

In this paper, we introduced an original method to perform
nonrigid registration of multimodal images. This iterative algo-
rithm is composed of two steps: the geometrical transformation
and the intensity transformation. Two intensity transformation
models were described which assume either monofunctional or
bifunctional dependence between the images to match. Both of
these models are built using robust estimators to enable pre-
cise and accurate transformation solutions. Results of registra-
tion were presented and showed that the algorithm performs
very well for several kinds of modalities including T1, T2, PD,
CT, and segmentations, and provides consistent results across
modalities. Our algorithm was compared with the maximiza-
tion of the MI criterion and seems to be more apt at evaluating
high-dimensional deformations. Our explanation is that it puts
more constraints on the intensity transformation that relates the
images and, thus, permits a better search of the parameter space.
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