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Three-Dimensional Multimodal Brain Warping
Using the Demons Algorithm and Adaptive Intensity
Corrections

Alexandre Guimond*, Alexis Roche, Nicholas Ayache, and Jean Meunier

Abstract—This paper presents an original method for three-di- These two trends have evolved separately mainly because
mensional elastic registration of multimodal images. We propose to the combined problem of identifying complex intensity corre-
make use of a scheme that iterates between correcting for intensity spondences along with a high-dimensional geometrical trans-

differences between images and performing standard monomodal f tion defi h d to t R H
registration. The core of our contribution resides in providing a ormation defines a search space arauous to traverse. kecently,

method that finds the transformation that maps the intensities of three groups have imposed different constraints on the search
one image to those of another. It makes the assumption that there space, enabling them to develop automatic multimodal non-

are at most two functional dependencies between the intensities of affine registration techniques. All three methods make use of
structures present in the images to register, and relies on robust es- block matching techniques to evaluate local translations. Two of

timation techniques to evaluate these functions. We provide results th tual inf i M) (11, [2 imilarit
showing successful registration between several imaging modali- €M use mutual information (MI) [1], [2] as a similarity mea-

ties involving segmentations, T1 magnetic resonance (MR), T2 MR, Sure and the other employs the correlation ratio [3].

proton density (PD) MR and computed tomography (CT). We also ~ The major difficulty in using Ml as a similarity measure for
argue that our intensity modeling may be more appropriate than  registration is to compute the conditional probabilities of one
mutual information (MI) in the context of evaluating high-dimen- ,546's intensities with respect to those of the other. To do so,
sional de_formatlons, as it puts more constraints on the parameters Maintz et al. [4] proposed to use conditional probabilities after
to be estimated and, thus, permits a better search of the parameter "' : ; - .
space. rigid matching of the images as an estimate of the real condi-
tional probabilities after local transformations. Hence, the prob-
abilities are evaluated only once before fluid registration. How-
ever, Gaenst al.[5] argued that the assumption that probabili-
ties computed after affine registration are good approximations
. INTRODUCTION of the same probabilities after fluid matching is unsuitable. They

VER the last decade, automatic registration techniqud! Proposed a method in which local displacements are found
of medical images of the head have been developed &R that the global Ml increases at each iteration, permitting in-
lowing two main trends: 1) registration of multimodal image§remental changes of the probabilities during registration. Their
using low degree transformations (rigid or affine); 2) registrépeth‘)d necessitatgs the computation of gonditional probabili-
tion of monomodal images using high-dimensional volumetrf€s over the whole image for every voxel displacement. To alle-
maps (elastic or fluid deformations). The first category mainfggte themselves from such computations owing to the fact that
addresses the fusion of complementary information obtainbll requires many samples to estimate probabilities, egal.
from different imaging modalities. The second category’s pr&] have chosen a different similarity measure. Due to the ro-
dominant purpose is the evaluation of either the anatomical eyStness of the correlation ratio with regards to sparse data [3],
lution process present in a particular subject or of anatomidhY employed it to assess the similarity of neighboring blocks.
variations between different subjects. Hence no global computation is required when moving subre-
gions of the image.
Our method distinguishes itself by looking at the problem
from a different angle. In the last years, our group has had
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The rational behind our formulation is that there is a fungrimarily the demons algorithm [7], [8]. It finds the displace-
tional relationship between the intensity of a majority of struenentu(x) for each voxek of T' so it matches the corresponding
tures when imaged with different modalities. This assumptionamatomical location irt. The solution is found using the itera-
partly justified by the fact that the Woods criterion [9] as well asve scheme shown in (1) at the bottom of the page, wligre
the correlation ratio [3] which evaluate a functional dependenizea Gaussian filter with a variance of, @ denotes the con-
between the images to match, have been used with succesgointion, o denotes the compositioR is the gradient operator
the past, and sometimes lead to better results than MI [10], [1&hd the transformatioh(x) is related to the displacement by
which assumes a more general constraint. h(z) = = +v(z).

The idea of estimating an intensity transformation during reg- Briefly, (1) finds voxel displacements in the gradient direc-
istration is not new in itself. For example, Feldnedml.[12] as tion V(S o h,)(z). These displacements are proportional to
well as Barber [13] have both published methods in which intethe intensity difference betweeh o h,, () andT(x) and are
sity corrections are proposed. These methods restrict themselveisnalized for numerical stability. Convolution with a Gaussian
to estimating linear intensity transformations in a monomodkérnel G, is performed to model a smoothly varying displace-
registration context. Fristoet al.[14] also proposed a methodment field. As is common with registration methods, we also
to estimate spatial and intensity functions to put positron emistake use of multilevel techniques to accelerate convergence.
sion tomography (PET) and magnetic resonance (MR) imagdestails about the number of levels and iterations as well as filter
into register using a standard least squares solution. Their modplementation issues are addressed in Section IV.
eling of the problem is similar to ours but their solution requires For details on how we obtained (1) and information on the
segmentation of the images and is not robust to outliers. We prelevance of the resulting transformation, see [16] and [17].
pose here a registration model based on one or two high-degree
polynomials found using a robust regression technique to enaBte Modeling the Intensity Transformation
the registration of raw images from different modalities. Prior to each iteration of the geometrical transformation an

The remaining sections of this paper are organized in the fghtensity correction is performed ofi so that the intensity of
lowing manner. First, we detail our multimodal elastic registrats structures matches those’fiy a requirement for the use of
tion method. We then describe what kind of images were usgq. The intensity correction process starts by defining th€set
to test our method and how they were acquired. Next, resufiSintensity couples from corresponding voxelsiognd of the
obtained by registering different images obtained from seveglrrent resampled source imagje /2, which will be designated

modalities are presented and discussed, and future trackst®yg in this section for simplicity. Hence, the s&tis defined as
suggested.
C=1{(5(2), T(x));1 <= < N} @)

. METHOD whereNN is the number of voxels in the image#.«) and7'(x)

Our registration algorithm is iterative and each iteration cogorrespond to the intensity value of tht¢h voxel of S and
sists of two parts. The first one transforms the intensities @f, respectively, when adopting the customary convention of
anatomical structures of a source ima§jso that they match considering images as one-dimensional arrays. From there, we
the intensities of the corresponding structures of a target imagi®w how to perform intensity correction if we can assume that
T. The second part regards the registratios gafter intensity a single intensity value irf has either 1) exactly one corre-
transformation) withl” using our elastic registration algorithm.sponding intensity value i’ (monofunctional dependence) or

In the following, we first describe the three-dimensional) at least one and at most two corresponding intensity values
(3-D) geometrical transformation model and then the intensity 7" (bifunctional dependence).
transformation model. We believe this ordering is more con- 1) Monofunctional Dependence AssumptidDur goal is to
venient since it is easier to see what result must provide thwdel the transformation that characterizes the mapping from
intensity transformation once the geometrical transformatimoxel intensities irf to those iriZ’, knowing that some elements
procedure is clarified. However, we wish to make clear to th# C are erroneous, i.e., that would not be preseidt ih S and
reader thaeach iterationof our registration method proceeds!’ were perfectly matched. If we can assume a monofunctional
first by estimating the intensity transformation and then thdependence of the intensitiesBfwith regards to the those of
geometrical transformation. S as well as additive stationary Gaussian white naism the

intensity values of/’, then we can adopt the model

. : T(z) = f(S(z)) + n(z) ®)
Many algorithms have been developed that deform one brain
so its shape matches that of another [15]. The procedure usdteref is an unknown function to be estimated. This is exactly
in the following work was influenced by a variety of methodsthe model employed by Rocle¢al.[10], [11] which leads to the

A. Modeling the Geometrical Transformation

Sohy(z)—T(x) - -
T IR o )@ £ 8o hale) —T@P * o )> @

Upp1(2) =G, @ <vn
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correlation ratio as the measure to be maximized for registratiavhere p(z) is the zth smallest value of the set
In that approach, for a given transformation, the authors seek thé1), ..., 7(N)?}. This corresponds to a standard LS on the
function that best describ&sin terms ofS. They show thatina c values that best approximates the function we are looking for.
maximum likelihood context, the intensity functighthat best Essentially,c/N represents the percentage of “good” points
approximates' is a least squares (LS) fit df in terms ofS. in C' and must be at leagtv + p + 2)/2N, which is the
The major difference between our respective problems is thatakdown value of the LTS method [19], i.e., the minimum
we seek a high-dimensional geometrical transformation. As gpercentage of points required for a proper estimate. A lesser
posed to affine registration where the transformation is governealue would allow to estimate parameters that model a minority
by the majority of good matches, the elastic registration mod# points which could then all be outlierswill vary according
of (1) finds displacements using mainly local information (i.etp the modalities registered. The values used for our result and
gradients, local averages, etc.). Hence, we cannot expect gdwelcorresponding modalities are discussed in Section IV.
displacements in one structure to correct for bad ones in an\We have not developed a procedure to findutomatically,
other; we have to make certain each voxel is moved propelyt have found reasonaldel hocestimates that provide satis-
during each iteration. For this, since the geometrical transfdactory results. A more in depth analysis of the influence of
mation is found using intensity similarity, the most precise iren our results and its relation with different modalities is be-
tensity transformation is required. Consequently, instead of pgond the scope of this article, but we have found from visual
forming a standard least squares regression, we have optedrigpection that a variation af by 5% does not influence the
a robust linear regression estimator which will remove outlyingegistration result in a significant way.
elements ofC during the estimation of the intensity transfor- Our method for LTS minimization is a simple iterative tech-
mation. To estimatg we use the least trimmed squares (LTS)ique. First, we randomly pickpoints fromC'. We then iterate
method followed by a binary reweighted least squares (RLS) éstween calculatingusing the standard LS technique on the se-
timation [18]. The combination of these two methods providdscted points and choosing thelosest points frond’. Recently,
a very robust regression technique with outlier detection, whiRousseeuw and Van Driessen [19] proved that this method re-
ensuring that a maximum of pertinent points are used for tdeces the error ol at each iteration. Hence, we carry this
final estimation. process unti£t_; p(z) stops decreasing, usually requiring less
a) LTS Computation:For our particular problem, we will than five iterations. This provides adequate results for our pur-
constrain ourselves to the estimation of a polynomial functigroses. Note that this finds a local minimum, although not guar-
from the elements i®’. We can then relate the intensity correantying the global minimum. Since we assume a good global
spondences with a set of equations of the form registration previous to the estimation process, that might not
) make a large difference. Still, in the same paper, the authors also
T(x) = 6o +015(x) + 025(x)" + -+~ +6,5(x)"  (4)  proposed a new efficient algorithm to find a good approximate

whered = [6, 6,] needs to be estimated api the degree solution of the LTS minimization. This strategy will be looked
yees Oy )

to in future implementations.
ofthe ol nomlal funct|on A regression estimator will providd”
ad _p[eoy... 6,] which can bg used to predict the vglue of b) RLS Computation:Once# is obtained using LTS, we

T(x) from S(x) can compute the standard erroof our points with respect to
our estimate. Of course, this value will also be an estimate cor-

T(x) = 0o+ 0,5(x) + 025(x)> +--- +6,5(x) (5) responding to

as well as the residual errors

r(x) = T(x) — T(z). (6)
A popular method to obtai® is to minimize the sum of
squared residual errors K= 9)
N
min Z r(z)? @)
® a1 where g(z ) is the normalized Gaussian distribution
which leads to the standard LS solution. It is found by solving: = 0,0 = 1) and a is the (0.5 + ¢/2N)th quantile
a linear system using the singular value decomposition (SVB§g(x). In (9), K is a normalization factor introduced because

method. See [11] for a more detailed study. This method ié1/NE5-1p(z) is not a consistent estimator of since we
known to be very sensitive to outliers and, thus, is expected@8ly choose th‘r?i/N smallestp(z).

provide a poor estimate of the monofunctional mapping fom  Using this average deviation of the points from the estimates,
to T. The LTS method solves this problem by minimizing th&/e then perform an RLS regression by finding a nghat
same sum on a subset of all residual errors, thus rejecting lafg@imizes the sum of squared residual for all points within
ones corresponding to outliers of the previous estimate,

c N . ~
min 3~ p(z) ® min Y weple), where w, = { L ifp(z) < 36 1)
r=1 =1

0, otherwise.
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This optimizes the number of points used to comrﬂl&y con- In order to compute the intensity correction (12), we now
sidering all the points that relate well to the LTS estimate, naoeed to identify the parameters of our model, i.e., the polyno-
only the best/N. mial coefficients off; and f, as well as the mixing proportions

2) Bifunctional Dependence AssumptioRunctional de- (s)andma(s)and the variance?. For this, we employ aad
pendence as expressed in (3) implicitly assumes that tivocstrategy that proceeds as follows.
structures having similar intensity rangesSirshould also have  First, @ is estimated using the method described in Sec-
similar intensity ranges ifi". With some combinations of im- tion 1I-B. The points not used to comput in a number
ages, this is a crude approximation. For example, ventricles dvetween zero antf — ¢, are used to estimate = [y, . . ., 1]
bones generally give similar response values in a T1 weightstill using the same method. Note that if this number is less than
image while they appear with very distinct values in a CT scah0 x p, p being the polynomial degree, monofunctional depen-
Conversely, white and gray matter are well contrasted in a @&nce is assumed and we fall back to the method described in
image while they correspond to similar intensities in a CT. the previous section.
To circumvent this difficulty, we have developed a strategy This provides a natural estimation of the “selector” variable
that enables the mapping of an intensity valu&ito not only for each voxel: the,; points that were used to build are likely
one, but two possible intensity valuesdn This method is a to correspond te = 1, while then, points used to build,;, are
natural extension of the previous section. Instead of computilikely to correspond te = 2. Finally, the points that are rejected
a single function that maps the intensitiessdb those of/’, two  while estimatingy are considered as bad intensity matches. A
functions are estimated and the mapping becomes a weightedural estimator for the varianeé is then
sum of these two functions. o N .. na g
We start with the assumption that if a point has an intensity T T et - n1+ng 2 (15)
s in S, the corresponding point i has an intensity that is
normally distributed around two possible values depending ¥fhieresi ands; are the variances found, respectively, for
s, f1(s) and f2(s). In statistical terms, this means that given andfz during the RLS regression (see Section II-B). Similarly,

t is drawn from a mixture of Gaussian distribution the mixing proportions are computed according to
i) = ") —{1,2 (16)
P(t]s) = m(s)N(f(5), 0%) + ()N (fols),0”)  (10) )= ey T2

wherer; (s) andm(s) = 1 -7 (s) are mixing proportions that in which n.(s) is Fhe number .of voer; having_an intensity
depend on the intensity in the source image, ahdepresents $ and used to build the functioff.. Notice that in the case
the variance of the noise in the target image. Consistently wHfi€réni(s) = na(s) = 0 (i.e,, no voxel corresponding to
the functional case, we will restrict ourselves to polynomial ifh€ intensitys has been taken into account in the computation
tensity functions, i.e.f1(s) = 6o + 015 + 625> + --- + 6,57, gf fior ng), then we arbitrarily set the mixing proportions to
and fo(s) = o + 115 + has? 4 - - + PP 71(s) :'7r2(s.) =05 .

An intuitive way to interpret this modeling is to state that for 1he intensity correction of can now be performed by rein-
any voxel, there is a binary “selector” variable= {1,2} that Jecting the estimated parameters in (14) and (12).
would tell us, if it was observed, which of the two functiofis
or f, actually serves to magpto ¢. Without knowledge ot, the

best intensity correction to apply £(in the minimum variance ~ As stated previously, the use of (1) in Section II-A to model
sense) is a weighted sum of the two functions geometrical transformations makes the assumption that the in-

tensities of structures i matches those ifi". When dealing
A= Ple = 1ls.t Ple = 9ls.t 12y With images obtained from (_jifferent modalities, this re.quire—
fst) (¢ [3:D)1(s) + P(e [s:0)/2(s) - (12) ment is not met. To solve this problem, we presented in Sec-

in which the weights correspond to the probability that the poiHPn II-B a method to rectify intensity differences between cor-

be mapped according to either the first or the second functiéﬁqundiqg sl;[_rfuctur_es i? an(;j?_lrjﬁing anl ur;dr?rlying mono-
Applying Bayes’ law, we find that unctional or bifunctional model. The result of this intensity cor-

rection on$ for the nth iteration will be denoted by} with
S§ = S. In the monofunctional casé;*(z) = f(S(x)) [see
(3)] and in the bifunctional casg*(z) = f(S(x),T(z)) [see

C. Combining the Intensity and Geometrical Transformations

Ple=1]s)P(tle=1,s)

Ple=1ls,t) =

P(t]s) (12)]. Considering this and (1), the geometrical transformation
Ple=2|s,t) = Ple = 2|s)P(te = 2, 5) (13) is found using (17), shown at the bottom of the next page.
P(t]s) The reader might wonder why we restricted our technique to

estimating at most two functions. In theory, our technique can
well accommodate for more than two. The problem encountered
regards finding proper values fer i.e., the number of points
used for the LTS computation of each function. As mentioned
Ples,t) = me(s) Go(t — fe(s)) previously,c needs to be at leaglV +p+2) /2 for the first poly-
’ m1(8) Go(t — f1(8)) + ma(s) G4 (t — f2(s)) nomial. The number of points available to compute the second
e={1,2}. (14) function are then at mo$tv —p—2)/2 and may well be less due

and thus, using the fact th#t(c|s) = n.(s) and P(tle,s) =
G,(t — f.(s)), the weights are determined by
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to the RLS regression. This means that at best, less than 25% of TABLE |

all points would be available to compute a third function. 12.5% INTENSITY VALUES CORRESPONDING TO THEDIFFERENT TISSUE TYPES
. o PRESENT IN THEDISCRETEPHANTOM ATLAS

for a fourth function, and so on. We expect that the intensity

correspondences reflected by these third and fourth functions Tissue type | Intensity | Tissue type | Intensity
would not be of real value, especially during the first iterations Background 0 Muscle / Skin | 140
of the registration process, where the number of outliets is CSF 28 | Skin 168
its highest. Gra?r Matter 56 Sk}lll 196
atits hig White Matter 84 Glial Matter 224
Fat 112 Connective 252

D. Mutual Information

Another approach we tested to compute incremental displace-

G h We also use a T1 MR image and a CT image, both from dif-
ments was inspired by the works of Viadaal.[1] and Maest %rent subjects and having a resolution of 1 x 1 mm?. Both

al. [2]. Inthese approaches, the rigid/affine registration betwe%’I ; . . . .
two images is formulated as a maximization of their M. Thig ese images were affinely registered with the atlas using the

choice is motivated by the fact that Ml models the similarity bec_orrféastgner::trsgglmethod [3]. The two images are called T1 and

tween the images while resorting to assumptions that are mt%%h . I t th logical tion. i
more general than functional dependence. Consequently, an € Images a rgsp(?c € neurological convention, 1.€., on
al slices, the patient’s left is on the left side of the image.

contrary to the approach that was presented in Section II-B, th%)§)
do not attempt to apply an intensity correction to one image so
that it matches the other. Instead, they model the intensity de-
pendence in a purely statistical fashion. Vielaal. [1] do this In the following section, we present registration results in-
modeling using Parzen windowing, which enables them to difelving images obtained from several different kinds of modal-
ferentiate the M criterion with respect to the geometrical trangies. First, we show a typical example where monofunctional
formation. dependence can be assumed: registration of an atlas with an MR

As shown by Rocheet al. [16] and Guimondet al. [17], image. Then more practical examples are shown where images
our incremental displacements closely relate with a gradient desm different modalities are registered and where bifunctional
scent on the sum of squared difference (SSD) criterion. Usidgpendence may be assumed. We also provide registration re-
this analogy, we implemented an alternative matching strategiyits obtained from our implementation of Ml maximization as
where the incremental displacements given by (1) are replads=bcribed in Section 11-D.

IV. RESULTS AND DISCUSSION

with the following formula: The multilevel process was performed at three resolution
levels, namely 4, 2 and 1mm/voxel. Displacement fields at one
Un41(2) = Go @ (vn + VM I(vy,)) (18) level are initialized from the result of the previous level. The

: . . . . . initial displacement fieldy, is set to zero. 128 iterations are per-
in which o is a positive constant arfd.M(v,) is the gradient formed at 4 mm/voxel, 32 at 2 mm/voxel and 8 at 1 mm/voxel.

of the M| criterion with respect to theth displacement vector,_ These are twice the number of iterations used for registration of

whose mathematical expression is found in [1]. This UpOIatIr}ﬁonomodal images using the conventional demons algorithm.

corresponds to a first-order gradient descent on the Ml Cm\‘la\ie believe that making use of a better stopping criterion, such

rion, Of.COL.'rse up to the Gaussian filtering which is used asa% the difference of the SSD values between iterations, would
regularization constraint.

o : . . . . grobably improve the results shown below but this aspect has

Nonrigid registration results using mutual information as pre- . . . . .
sented here are shown in Section IV-C. hot been |n\_/est|g_ated. It should be in future |mp_Iementat|ons.
The Gaussian filterG, used to smooth the displacement
field has a standard deviation of one voxel regardless of the
resolution. This models stronger constraints on the deformation

Most of the data used in the following experiments were offield at the beginning of the registration process to correct for
tained from BrainWeb [20], [21]. This tool uses an atlas [2Ajross displacements, and weaker constraints near the end when
with a resolution of % 1 x 1 mm? comprising nine segmentedfine displacements are sought. The resampling process makes
regions (see Table I) from which T1, T2, and PD images caise of trilinear interpolation, except in the case of the atlas
be generated [23]. We use the discrete phantom atlas and thwhere nearest-neighbor interpolation is used.
simulated MR images, one of each modality, with the same res-Computation time to obtain the following results is around
olution as the atlas, 5% noise and no intensity honuniformit§0 min on a 450-MHz PC with 500 MB of RAM (10 min at 4
These three images are named ,TT2,, and PQQ, respectively. mm, 20 min at 2 mm and 30 min at 1 mm). Most of this time (
Since they are generated from the same atlas, they represen8tié) is devoted to the intensity correction part, which has not
same underlying anatomy and are all perfectly matched.  been optimized in this first version of our program. The other

. DATA

" o) = " Sk o hy(z) —T(x) <o bV
1) G"®< " NG o )@+ 5% o ha(@) — TP * o © )>

17)
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(a) (b) (c) (d)

Fig. 1. Corresponding axial slices of the atlas to T1 registration result. Contours were obtained using a Canny—Deriche edge detector on Tid andtwverla
other images to better assess the quality of registration. Arrows point to examples of bad intensity correction. (a) Atlas. (b) T1. (c) Atlageniiutorrection
after registration with T1. (d) Atlas with intensity correction after registration with T1.

@) (b) (© (d)

Fig. 2. Corresponding axial slices of the atlas td fieistration result. Contours were obtained using a Canny—Deriche edge detectérama Berlaid on the
other images to better assess the quality of registration. (a) Atlas. {b{cJ Atlas without intensity correction after registration with’T@d) Atlas with intensity
correction after registration with T1

15% is taken by the standard registration code which is stalpl@cedure. Fig. 1(d) shows the image resulting from the regis-
and well optimized. tration process. It has the same shape as the resampled atlas and
intensities have been transformed using the intensity correction.
As can be seen, there is one obvious problem with this result:
although the shape of the atlas seems well corrected, the CSF
We present here the result of registering the atlas with Tihtensity is not, as can be seen in the ventricles and around the
Since the atlas can be used to generate realistic MR images, ddastex [see arrows in Fig. 1(d)]. This reflects on the matching,
safe to assume a functional dependence between the intensityoEan be observed around the anterior aspect of the lateral ven-
the atlas and those of T1. Also, since T1 and the atlas are weitles on Fig. 1(c) and (d).
aligned due to the affine registration, we have roughly estimatedThis problem can also be observed by looking at the inten-
that the number of points already well matched, i.e., the numlsty transformation function presented in Fig. 3 (Intensity values
of good points inC', are at least 0.80N, to which we have set corresponding to the different tissue types presentin the atlas are
the value ot. Since ten classes are present in the atlas, the pafjrown in Table I.) This is due to a spatial overlap of the CSF in
nomial degree chosen was set to nine. Having a polynomialtb atlas and the gray and white matter in T1, especially around
this degree will accommodate any permutation of the structutee cortical area which is known to present large variations be-
intensities in the atlas. This is true because it is always possibheen subjects. We believe this is due to the strong smoothness
to fit a polynomial of degree nine to match ten points exactly.constraints imposed by the Gaussian regularization which may
The result of registration is presented in Fig. 1. Fig. 1(g@revent the assessment of large and uneven displacements re-
shows one slice of the atlas. Fig. 1(b) is the corresponding sligeired to match the cortex.
of T1. Fig. 1(c) and (d) presents the result of registering the atlasTo verify this assumption, we registered ,T¥ith T1 and
with T1 using our algorithm. Fig. 1(c) shows the result withouteformed T1 using the resulting displacement field. This
the intensity transformation; we have simply applied to the atlasovided an image T% that closely resembles T1 [Compare
the geometrical transformation resulting from the registratidfigs. 1(b) and 2(b)] and for which we are assured that the shape

A. Monofunctional Dependence
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atlas). This structure forms a small envelope around the ventri-
cles and is represented by so few points that they are consid-
ered as outliers. This could be corrected by considering more
0.5 { points during the intensity transformation. In factshould be
increased at each iteration to reflect that, during registration,
gradually aligns witlf” and more points id' can be considered
‘8 0 ' as well matched.

When registering images from different modalities, mono-
functional dependence may not necessarily be assumed. Here,
" [ we applied the method described in Section II-B where two
polynomial functions of degree 12 are estimated. This number
| { was set arbitrarily to a relatively high value to enable important
" ian ety - intensity transformations.
Fig. 5 presents the result of registering, ith CT. Using
Fig. 3. Intensity transformation found by registering the atlas with T1 arfi€Se last two modalities, most intensities of, Tshould be
assuming monofunctional dependence. The funcfigs overlaid on the joint mapped to gray and only the skull, representing a small por-
histogram of the two images after registration. The joint histogram Va‘.'ufﬁ)n of the image data, should be mapped to white. After affine
have been compressed logarithmically and normalized as is depicted in the . . .
color scale. The tissue types corresponding to the different atlas intensities@@istration almost all voxels are well matched, i.e., the number
presented in Table I. of good points inC' is large. Hence, in this particular case, we
have chosen a high value forset to 0.90x V.

' As we can see in Fig. 5, the skull, shown in black in the MR
image and in white in the CT scan, is well registered and the
intensity transformation adequate. Fig. 6(a) presents the joint
histogram of the two images after registration. This histogram
is color-coded and ranges from red representing high point den-
i sities to blue depicting low point densities. Fig. 6(b) presents the

functions f; and f» found during the registration process. The
| | red line corresponds tfy and the blue one t@,. The line width
|. for a given intensitys is proportional to the value of the corre-
spondingr.(s). The gray values represent the joint histogram
" | after registration.
{ As can be observed in Fig. 6(b), the polynomials found fit
] | well with the high density clusters of the joint histogram. Still,
- g = some points need to be addressed.
Alias intenafy We can observe that due to the restricted polynomial degree,
_ _ , o _ /1, (shown in red) oscillates around the CT gray value instead of
Fig. 4. _Intensity transformation found by registering the atlas withad - g, straight line. This is reflected in the intensity corrected
assuming monofunctional dependence. The funcfias overlaid on the joint
histogram of the two images after registration. The joint histogram valué®age, shown in Fig. 5(d), where the underlying anatomy can
have been comp_ressed logarithmically gnd normal_ized as is dgpicteq_in 8l be observed by small intensity variations inside the skull.
g?éggf:&egnt?aebﬁ':sﬁe types corresponding to the different atlas intensities pie o » ita ot has insubstantial consequences during the registra-
tion process since the difference between most of the voxels of
variation from the atlas can be assessed by our algorithm. Weand S is zero, resulting in null displacements. The displace-
then registered the atlas with TIThis result is presented in ments driving the deformation will be those of the skull and the
Fig. 2. As can be observed, the CSF intensity value is na@kin contours, and will be propagated in the rest of the image
well corrected. By looking at the intensity transformatiomvith the Gaussian filtering of the displacement field.
shown in Fig. 4, we also notice that each atlas structure hadVe also notice thaffs (shown in blue), which is mainly
corresponding intensity ranges in T1 that are less extendedponsible for the mapping of the skull, does not properly
than those of Fig. 3, reflecting a better match between theodel the cluster it represents for intensities smaller than five.
images. This finding puts forth that the displacement fielilhe mapping for these intensities is slightly underestimated.
regularization has to be able to accommodate the large uneWiénis may have two causes. First, as in the previous case, it
displacement of the cortex. To cope with large displacementsight be due to the restricted polynomial degree. Second, we
Gaussian filtering may probably be replaced with anothean notice that some of the background values in iHat
regularization strategy such as that based on a fluid model [2¥§ve an intensity close to zero are mapped to gray values
or on a nonquadratic potential energy [25]. in the CT which correspond to soft tissues. This means that
Another difference between Figs. 3 and 4 is the difference some of the background in Tlis matched with the skin in
the intensity mapping of the glial matter (Intensity 224 in ththe CT. This has the effect of “pullingf, closer to the small

= . ‘ ‘ I || B. Bifunctional Dependence
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(d)

Fig. 5. Corresponding axial slices of JT1o CT registration result. Contours were obtained using a Canny—Deriche edge detector on CT (Fig. 1) and overlaid on
the other images to better assess the quality of registration. (aY@ICT. (c) T1, without intensity correction after registration with CT. (d).TWith intensity

correction after registration with CT
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Fig. 6. Intensity transformation found when registering With CT and assuming bifunctional dependence. (a) The joint histogram values have been compressed
logarithmically and normalized as is depicted in the color scale. Values range from red representing high point densities to blue depictingémwsipenib)
The red line corresponds #a and the blue one tf, . The line width for a given intensity valuein T1, corresponds to the value of the correspondings). The

gray values represent the joint histogram after registration.

(d)

Fig. 7. T2, without intensity correction after registration with T1. ,T@ith intensity correction after registration with T1. Corresponding axial slices gf T2
to T1 registration result. Contours were obtained using a Canny—Deriche edge detector on T1 (b)and overlaid on the other images to better alityest the qu
registration. (a) T2 (b) T1. (c) T2 without intensity correction after registration with T1. (d).T®ith intensity correction after registration with T1.

cluster positioned around (2,65). If the underestimation of In Figs. 7 and 9 we present the result of registering
f2 arises because of the second reason, letting the algoritfi), and PL, respectively, with T1. Figs. 8 and 10 show
iterate longer might provide a better result. the corresponding intensity transformations. For these ex-
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Fig. 8. Intensity transformation found when registering, Mith T1 and assuming bifunctional dependence. (a) The joint histogram pfam@d T1 after
registration. The joint histogram values have been compressed logarithmically and normalized as is depicted in the color scale. Values rdmgprizsentig
high point densities to blue depicting low point densities. (b) The red line corresporfidata the blue one tf.. The line width for a given intensity valuein
T2, corresponds to the value of the correspondings). The gray values represent the joint histogram after registration.

(b) (© (d)

Fig. 9. Corresponding axial slices of Pib T1 registration result. Contours were obtained using a Canny—Deriche edge detector on T1 (b) and overlaid on the
other images to better assess the quality of registration. (g) @D T1. (c) PD. without intensity correction after registration with T1. (d) P@ith intensity
correction after registration with T1.

periments,c was set t00.60 x N, a value we have found about how the intensities ifi are distributed. This models the

to be effective for these types of modalities after affinetensities ofS without noise, which may not necessarily be

registration. well justified, but enables the use of linear regression to estimate
One observation that can be made by looking at the joint hie intensity transformation.

tograms of Figs. 8(a) and 10(a) is that there seems to be a funcFhe effect of noise it$ is reflected in the joint histograms by

tional dependence between the images intensities, i.e., thererikarging clusters along theaxis. This, added to bad matches

a function that can go though the major clusters of the joint hiand partial volume effect, creates many outlier€'iand makes

tograms. This is also reflected by the closely similar shapestbe assessment of the true intensity transformation more diffi-

the corresponding; and f>. cult and more resistant to our robust regression technique. Pre-
Thus, we have registered PWvith T1 using the monofunc- processing ofS using for example anisotropic diffusion may

tional model and = 0.8. This result is presented in Fig. 11 andharrow the clusters and provide better results [10].

the corresponding intensity transformation in Fig. 13. As can beAdding the estimation of a second function in the bifunctional

seen by comparing the Figs. 9(d) and 11(d), the intensity tramsedel helps counter the effect of noise $nFor example, the

formation does not correct as well the CSF intensities and t&@&F in the PR image has intensity values ranging from about

distinction between the different structures is less contrasted200 to 240 and gray matter from about 175 to 210. In T1,
This may be explained by a closer look at our bifunctionghese ranges are about 30 to 70 and 55 to 80, respectively. As

intensity modeling. Equation (11) reflects the assumption thean be seen in Fig. 1¢; models well the gray matter cluster

if an anatomical point has an intensityn S, the corresponding but fails to reflect the CSF transformation. This is also well

point has an intensityin 7" that is distributed normally around depicted in Fig. 11 in which the CSF and gray matter intensity

two possible values depending earBut it makes no assumptiontransformation is modeled using a single polynomial. In this



GUIMOND et al: THREE-DIMENSIONAL MULTIMODAL BRAIN WARPING 67

2150
:
=
; 00
L
i} 150 1|:.'|:| 1&-&
PDa inbarsity POa intensity
(@) (b)

Fig. 10. Intensity transformation found when registering,Riith T1 and assuming bifunctional dependence. (a) The joint histogram ofdPD T1 after
registration. The joint histogram values have been compressed logarithmically and normalized as is depicted in the color scale. Values rdmgprigsenting
high point densities to blue depicting low point densities. (b) The red line correspoifidsata the blue one tf.. The line width for a given intensity valuein
PD, corresponds to the value of the correspondings). The gray values represent the joint histogram after registration.

(d)

Fig. 11. Corresponding axial slices of PMo T1 registration result using the monofunctional model. Contours were obtained using a Canny—Deriche edge
detector on T1 (b) and overlaid on the other images to better assess the quality of regidtration. (&) PD (c) PD. without intensity correction after registration
with T1. (d) PD, with intensity correction after registration with T1.

(b) (©)

Fig. 12. Corresponding axial slices Jto CT registration result using MI. Contours were obtained using a Canny—Deriche edge detector on CT (b) and overlaid
on the other images to better assess the quality of registration. (af)ICT. (c) T4, after registration with CT.

case, the CSF is often mapped as gray matter. EstimatindNote that for the registration of the atlas to T1 and of T1
the second polynomiaf, solves this problem by consideringto CT, we have always deformed the image with the most in-
the CSF cluster. formation, i.e., the one with the higher number of perceivable
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=0 y ] TABLE I
| | | STATISTICS REGARDING THE DIFFERENCESBETWEEN DISPLACEMENTS
PROVIDED BY EACH TYPE OF REGISTRATION. EACH CELL PRESENTS THE
| MEDIAN LENGTH, THE AVERAGE LENGTH WITH THE CORRESPONDING
a0 i | STANDARD DEVIATION AND THE MAXIMUM LENGTH. ALL MEASURESARE IN
[ 0.5 MILLIMETERS
[ Atlas-T1 | Atlas-T1 | Atlas-T1 | Atlas-T1 | T2,-T1
Z150] { Atlas-TT’ | T1,-T1 | T2,-T1 | PD,-T1 | PD,-T1
E 0 [ median 0.85 1.46 1.13 1.67 1.32
E . | average 0.97 1.58 1.23 1.76 1.40
= 0l I std. dev. 0.60 0.84 0.63 0.79 0.68
= | | maximum 4.57 6.99 5.14 7.10 6.86
Atlas-T1’ | Atlas-T1’ | Atlas-T1’ | T1,-T1 | T1,-T1
; T1,-T1 T2,-T1 PD,-T1 | T2,-T1 | PD,-T1
=0 | median 0.89 0.95 1.15 1.00 1.01
average 1.00 1.07 1.25 1.18 1.16
| std. dev. 0.55 0.60 0.64 0.78 0.71
maximum 4.48 5.46 7.43 7.17 8.08

S0 I[I{I-. . 150 200
PDa intansity

clude that Ml is not well-suited for elastic registration, a partial
Fig. 13. Intensity transformation found by registering PBith T1 and ~ explanation may be given. What Ml does is to measure the sim-
assuming monofunctional dependence. The funcfies overlaid on the joint . . . .. . . .
histogram of the two images after registration. The joint histogram values ha{b@my of the images from the joint probability density function
been compressed logarithmically and normalized as is depicted in the cdjpdf) of their intensities. In most of the MI-based approaches,
scale. the joint pdf is considered as being the image (normalized) joint

histogram [2]. There is actually a hidden estimation problem
structures. This is simply because our algorithm permits mamjen using Ml, as already pointed out by [1]. It can be shown
structures of the deformed image to be mapped to a single ihat the joint histogram is the maximum likelihood estimate of
tensity, as is the case when transforming a T1 image into a @i joint pdf among the set of every possible discrete pdf’'s [10].
image (see Fig. 5). But a single intensity in the deformed imad#is set has a dimensidn x k; — 1, wherek, andk, are the
can be mapped to at most two intensities in the targetimage. Rombers of intensity levels, respectively, in the source and target
example, if we used the CT image as the image to be deformedages.
the dominant gray intensity value in this image would have to beln the context of rigid/affine registration, where no more than
mapped to gray matter, white matter, CSF, etc. This would r&2 geometrical parameters need to be estimated, such an enor-
quire more than two functions to be estimated and complicat@®us search space is usually affordable. However, with elastic
the algorithm. Hence, it is always better to use the image withgistration, the geometrical transformation is granted many de-
the most number of structures visible as the source image. grees of freedom and maximizing MI might then become an

under-constrained problem. The use of Parzen windowing may
C. Mutual Information be viewed as a regularization strategy as it imposes constraints

We present in Fig. 12 the result of registering, Mith CT 0 the intensity space. While Parzen windowing is a nonpara-
using the MI method described in Section I1-D. A typical diffmetric approach, our method explicitly restricts the intensity
ference between using our bifunctional method instead of otface using polynomial functions. In the case where monofunc-
MI implementation can be appreciated by comparing Figs. 5(¢§nal dependence is assumed, oply- 1 parameters are es-
and 12(c). As can be seen, the contours of corresponding striféated to model the intensity dependengeyeing the poly-
tures do not match after registration using MI. The head cofomial degree. When assuming a bifunctional relationship, this
tours seem to be attracted by the image borders, which me8Hgoer becomes(p + 1) + 1 + 2k;.
that the driving forces have misleading directions in this region. ) .

This outcome might be due to the fact that Parzen windowitty Displacement Field Comparison

provides too little information on how to match the intensities of Since the atlas, T.1 T2,, and PQQ have all been registered
the images. As a consequence, the direction of the MI gradientth T1, it is relevant to compare some statistics of the resulting
from which the local driving force is derived, might be unredisplacement fields to assess if our algorithm provides consis-
liable. Many registrations were performed using the Ml critdent results across modalities.

rion with varying values for the step lengthand several Parzen We computed statistics regarding the difference between any
window sizes. The results we obtained using this strategy wewen of these displacement fields. The length of the vectors of the
much less convincing than the ones we obtained using our tesulting difference fields were calculated. Each cell of Table II
functional method; the source image deformed very little unlepsesents, for each combination of displacement fields, the me-
the « parameter was set to a high value, in which case the diian length, the average length with the corresponding standard
placements looked random. deviation and the maximum length of the difference field.

The poor results obtained with our implementation of Ml The two largest average differences are 1.76 and 1.58 mm
might sound surprising as MI performs generally very well iand were found when registering the atlas with, Bhd P0,
rigid/affine registration. Although it would be irrelevant to confespectively. This may be explained by the intensity correction
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bias for the CSF that would tend to attenuate displacements ang]
produce larger errors, a problem invoked in Section IV-A. Aside
from these, the average error length varies between 0.97 and
1.40 mm and the median error is between 0.85 and 1.32 mm,
with the largest errors occurring in the cortex area. These ard’]
values in the range of the image resolution of 1.0 mm. Note also
that all the standard deviations are below this value.

We point out that these are global measures that are presentdél
to provide an idea of the differences between the displacement
fields. They do not strictly provide a validation of the method, [9]
but do show a certain coherence between the different results
we obtained. [10]

[11]
V. CONCLUSION

In this paper, we introduced an original method to perform[
nonrigid registration of multimodal images. This iterative algo-
rithm is composed of two steps: the geometrical transformatiom]
and the intensity transformation. Two intensity transformation
models were described which assume either monofunctional &¥4]
bifunctional dependence between the images to match. Both of
these models are built using robust estimators to enable pre-
cise and accurate transformation solutions. Results of regisirﬂ%g}
tion were presented and showed that the algorithm perfor
very well for several kinds of modalities including T1, T2, PD,
CT, and segmentations, and provides consistent results acrd$l
modalities. Our algorithm was compared with the maximiza-
tion of the Ml criterion and seems to be more apt at evaluating
high-dimensional deformations. Our explanation is that it puts
more constraints on the intensity transformation that relates th%gl

images and, thus, permits a better search of the parameter space.

(19]
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