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Abstract. While intensity-based similarity measures are increasingly
used for medical image registration, they often rely on implicit assump-
tions regarding the physics of imaging. The motivation of this paper is
to determine what are the assumptions corresponding to a number of
popular similarity measures in order to better understand their use, and
finally help choosing the one which is the most appropriate for a given
class of problems. After formalizing registration based on general im-
age acquisition models, we show that the search for an optimal measure
can be cast into a maximum likelihood estimation problem. We then de-
rive similarity measures corresponding to different modeling assumptions
and retrieve some well-known measures (correlation coefficient, correla-
tion ratio, mutual information). Finally, we present results of registration
between 3D MR and 3D Ultrasound images to illustrate the importance
of choosing an appropriate similarity measure.

1 Introduction

Over the last years, intensity-based (or iconic) techniques have been applied to
a number of registration problems including monomodal as well as multimodal,
and rigid as well as non-rigid registration [8]. Their basic principle is to maximize
a criterion measuring the intensity similarity of corresponding voxels. Common
to the many proposed similarity measures is the idea that, when matched, the
images should verify a certain relationship; the similarity measure is intended
to quantify how well this relationship is verified depending on the considered
transformation between the images.

Choosing one measure adapted to a specific registration problem is not al-
ways straightforward for at least two reasons. First, it is often difficult to model
the physical relationship that exists between two images. Second, most of the
similarity measures rely on imaging assumptions that are not fully explicit. Ex-
isting similarity measures may be classified into four main kinds of hypotheses:

Identity relationship. The basic assumption is that when matched the images are
identical. This includes a number of popular measures: the sum of squared inten-
sity differences (SSD), the sum of absolute intensity differences, cross-correlation



[3], entropy of the difference image [4],... Although these measures are not equiv-
alent in terms of robustness and accuracy, none of them is able to cope with
relative intensity changes from one image to the other.

Affine relationship. The step beyond is to assume that the two images I and J
to be registered are related by an affine mapping, i.e. I ≈ α J +β. The measures
adapted to this situation are more or less variants from the correlation coeffi-
cient [3], defined as the ratio between the images’ covariance and the product of
individual standard deviations:

ρ(I, J) =
Cov(I, J)√

Var(I)
√

Var(J)
. (1)

The correlation coefficient is generally useful for matching images from the same
modality. Nevertheless, the affine hypothesis is hardly valid for images from dif-
ferent modalities, and thus it has not provided convincing results in multimodal
registration.

Functional relationship. For multimodal images, more complex relationships are
involved. The approach we proposed in [15] was to assume that, at the registra-
tion position, one image could be approximated in terms of the other by applying
some intensity function, I ≈ f(J). Making no assumption regarding the nature
of the function, we derived a natural statistical measure, the correlation ratio:

η2(I|J) = 1− Var(I − f̂(J))
Var(I)

, (2)

where f̂(J) is the least square optimal non-linear approximation of I in terms
of J [11]. The correlation ratio is closely related to a very popular measure
previously proposed by Woods et al.[23], and generalized using robust metrics
in [10].

Statistical relationship. Finally, assuming a functional relationship is sometimes
too restrictive. Then, it is more appropriate to use information theoretic mea-
sures, from which mutual information [7, 20] is today probably the most popular:

I (I, J) =
∑

i

∑

j

log
p(i, j)

p(i) p(j)
, (3)

where p(i, j) is the intensity joint probability distribution of the images, and
p(i) and p(j) the corresponding marginal distributions. This category is not
fundamentally different from the previous one, as the ideal case is still perfect
functional dependence; mutual information is however theoretically more robust
to variations with respect to this ideal situation.

A number of comparison studies have shown that similarity measures yield
different performances depending on the considered modality combinations [22,
2, 13, 10, 15]. There is probably no universal measure and, for a specific problem,



the point is rather to choose the one that is best adapted to the nature of the
images.

Up to now, the link between explicit modeling assumptions and similarity
measures has not been made clear. After some authors [9, 5] proposed that image
registration could be seen as a maximum likelihood estimation problem, Viola
et al. [20, 21] suggested the analogy of this approach with registration using in-
formation theory. Remarkably, other teams had motivated information-theoretic
measures by other arguments [7, 17].

In section 2, we propose to formulate image registration as a general maxi-
mum likelihood estimation problem. Then, deriving optimal similarity measures
from specific modeling assumptions, we retrieve the correlation ratio and mutual
information in section 3. Section 4 proposes to illustrate the practical differences
between these two measures with results of registration between 3D MR and 3D
Ultrasound images.

2 Formulation

2.1 Maximum likelihood registration

Two images I and J to be registered are related through the common anatomical
reality that they measure. But the way anatomical structures are represented de-
pends on the physics of imaging involved in each acquisition. Thus, modeling the
relationship between the images requires the knowledge of both the underlying
anatomy and the image formation processes. A convenient model of the anatomy
will be an image called “segmentation” or “scene”: by definition, a scene is any
image for which the intensity of a given voxel represents directly the tissue class
it belongs to.

Assuming that we know a scene, we can model indirectly the relationship
between I and J based on image acquisition models. A standard approach is
to interpret an image as being a realization of a random process that corrupts
the scene. This means that the relationship between I and S (resp. J and S) is
defined in terms of a conditional probability density function P (I|S). The two
following assumptions are usually stated:

– The voxels of the image are conditionally independent knowing the scene,
that is:

P (I|S) =
∏

xk∈ΩI

P (ik|S),

where ΩI denotes the voxel grid of I, and ik ≡ I(xk) is the intensity of the
voxel with coordinates xk in a given frame attached to the grid ΩI .

– The noise is context-free. In other words, the intensity of a voxel depends
only on its homologous in the scene:

P (ik|S) = P (ik|s↓k), with s↓k ≡ S(T (xk)) = (S ◦ T )(xk),

where T is the spatial transformation that relates the coordinate frames of
ΩI and ΩS , the grid of S. In the case where I and S are not supposed to be
aligned, T has no reason to be the identity.



Under these assumptions, the conditional probability of I knowing the scene,
S, and the transformation, T , is easily seen to be:

P (I|S, T ) =
∏

xk∈ΩI

P (ik|s↓k). (4)

We can model the relationship between J and S in the same manner. How-
ever, as we are interested only in the relative displacement between I and J ,
we will consider J as a “reference” image being already aligned with the scene,
meaning that no transformation is involved in the conditional probability,

P (J |S) =
∏

yl∈ΩJ

P (jl|sl), with jl = J(yl), sl = S(yl), (5)

ΩJ ≡ ΩS being the voxel grid of J , which coincides with that of S. Without
knowledge of the scene, the probability of the image pair (I, J) is obtained by
integrating over all possible realizations of S. Assuming that the two acquisitions
are independent, we have P (I, J |S, T ) = P (I|S, T )P (J |S), and thus:

P (I, J |T ) =
∫

P (I|S, T )P (J |S) P (S) dS = P (J)
∫

P (I|S, T )P (S|J) dS

︸ ︷︷ ︸
P (I|J,T )

, (6)

where the last step relies on Bayes rule. The transformation T appears as a
parameter of this joint probability function, and it is natural to invoke the
maximum likelihood principle to formulate registration, as already proposed for
instance in [20, 6, 1, 9, 5]. It simply states that the most likely transformation
between I and J is the one that maximizes the joint probability of (I, J),

T̂ = arg max
T

P (I, J |T ) = arg max
T

P (I|J, T ),

the last equivalence holding because J is independent of T .
Evaluating the integral of (6) may be somewhat cumbersome if the prior

probability on S is a complex function. For mathematical convenience, we will
assume that the voxels of the scene are independently distributed, yielding the
factored form: P (S) =

∏
yl

P (sl). Thus, no auto-correlation is assumed for the
scene: this is the minimal way to introduce prior anatomical information. No-
tice that this does not mean that the voxels are identically distributed, such
that spatial dependences may be incorporated to the model. If this modeling
is still insufficient, a maximum a posteriori (MAP) estimation strategy would
be employed. This alternative, using for example a Gibbs-Markov random field
prior, requires an explicit estimation of the scene that is computationally very
expensive in the case of 3D images.

Under these assumptions, we show in [16] that P (I|J, T ) is of the same fac-
tored form as P (I|S, T ); letting j↓k ≡ J (T (xk)), we have:

P (I|J, T ) =
∏

xk∈ΩI

P (ik|j↓k), (7)

with P (ik|j↓k) =
∫

P (ik|s↓k = s)P (s↓k = s|j↓k) ds. (8)



2.2 Estimating the conditional densities

In the framework where the transformation is found by maximum likelihood,
the most natural way to estimate densities is also to use a maximum likelihood
strategy. This means that we can search for the conditional densities P (ik|j↓k)
that maximize exactly the same criterion as in (7). Basically, this is a parametric
approach: we assume that the P (ik|j↓k)’ belong to a given class of distributions
parameterized by a vector θ (regardless, for the moment, of what θ represents);
then their maximum likelihood estimates, for a given estimate of the transfor-
mation T , are found by:

θ̂(T ) = arg max
θ

P (I|J, T, θ) = arg max
θ

∏

xk∈ΩI

Pθ(ik|j↓k).

The parametric form of P (I|J, T, θ) may be derived from the modeling as-
sumptions presented in section 2.1 whenever all the components of the model,
P (I|S, T ), P (J |S), and P (S) are themselves chosen as parametric densities.
Then, from (8), the form of P (I|J, T, θ) can be known. In section 3, we will
show that under some specific modeling assumptions, maximum likelihood den-
sity estimates can be computed explicitly.

For practical optimization, it is more convenient to consider the negative
log-likelihood (to be minimized); thus, we will define the energy of a transfor-
mation T as:

U(T ) = − log max
θ

P (I|J, T, θ) = min
θ

[
−

∑

xk∈ΩI

log Pθ(ik|j↓k)

]
. (9)

2.3 Practical issues

In section 2.1, we have derived the likelihood registration criterion under the
implicit assumption that the transformation T is searched among mappings from
the floating image grid, ΩI , to the reference image grid, ΩJ . This means that a
given voxel of image I is always supposed to match a node of the reference grid.
Therefore, the spatial resolution of the transformation is intrinsically limited by
the resolution of the reference grid, and clearly this assumption cannot deal with
sub-voxel accurate registration.

In order to manipulate continuous transformations, we can oversample the
reference image using interpolation techniques [7]. But this is possible only if
the transformed position of a voxel falls inside the reference domain. Since this
domain has a finite extension in space, other voxels may fall outside, so that there
is not enough information to extrapolate the intensity of their correspondent
(see figure 1). The problem of how to treat these “outside” voxels plays an
important role in voxel-based image registration. They are generally ignored
by the registration criterion, which necessitates some heuristic normalization to
avoid nasty effects such as disconnecting the images [18, 20, 15].

We discuss in [16] that ignoring these voxels would not be consistent with the
maximum likelihood framework. Instead, a natural approach is simply to extend



??

?

Image IImage J T

Fig. 1. Effects of applying a continuous spatial transformation. The point marked with
’?’ can be interpolated, unlike the point marked with ’??’. Instead, this latter point
may be assigned an arbitrary intensity j∗.

the reference domain by assigning the external points to a constant and arbitrary
intensity J = j∗. Although this is a computational artifice, this enables us to
take into account every voxel of I at each iteration of the registration process.

3 From modeling assumptions to similarity measures

3.1 Gaussian channel

Perhaps the simplest model we can imagine is that the image J be a valid
scene (J = S) and the image I be a measure of J corrupted with additive and
stationary Gaussian white noise:

I(xk) = f (J (T (xk))) + εk,

where f is some unknown intensity function: each tissue class j is imaged
in I with an average response value f(j) = fj . Then, the conditional densi-
ties P (ik|j↓k) are of the Gaussian form:

P (ik = i|j↓k = j) =
1√
2π σ

e−
(i−fj)2

2 σ2 ,

and the parameter vector θ = (f0, f1, . . . , σ) needs to be estimated. In order to
minimize the negative log-likelihood (equation 9) with respect to θ, we group
the voxels xk that match the same class. Letting N = Card ΩI , Ωj

I = {xk ∈
ΩI , j↓k = j}, and Nj = Card Ωj

I , we have:

− log P (I|J, T, θ) = N log
√

2π σ +
1
2

∑

xk∈ΩI

(ik − f(j↓k))2

σ2

= N log
√

2π σ +
1
2

∑

j

∑

xk∈Ωj
I

(ik − fj)2

σ2
. (10)



The optimal parameters are then easily found by differentiating the log-
likelihood:

−∂ log P

∂fj
= − 1

σ2

∑

Ωj
I

(ik − fj) =⇒ f̂j =
1

Nj

∑

Ωj
I

ik,

−∂ log P

∂σ
=

N

σ
− 1

σ3

∑

j

∑

Ωj
I

(ik − fj)2 =⇒ σ̂2 =
∑

j

Nj

N
σ̂2

j ,

where σ̂2
j ≡ 1

Nj

∑
xk∈Ωj

I
(ik − f̂j)2 is the image variance corresponding to the

iso-set Ωj
I . The registration energy U(T ) is then obtained by substituting the

optimal θ parameter:

U(T ) = N log


√2π e

∑

j

Nj

N
σ̂2

j


 = N log

[√
2π e Var(I − f̂(J↓))

]
.

This result has a satisfying interpretation: U(T ) decreases with the variance
of the difference image between I and the intensity corrected f̂(J). The intensity
function f̂ is nothing but a least-square fit of the image I in terms of the reference
J : it is in fact the same fitting function as in the definition of the correlation
ratio (equation 2) [15], and we see that the registration energy U(T ) is related
to the correlation ratio η2(I|J↓) by:

η2(I|J↓) = 1− 1
k

e
U(T )

N , with k =
√

2π e Var(I).

In the original version of the correlation ratio [15], the quantities N and
Var(I) were computed only in the overlap between the images, and thus they
could vary according to the considered transformation. Their role was precisely
to prevent the image overlap from being minimized. In the implementation pro-
posed in section 2.3, N and Var(I) are independent of the considered transforma-
tion. Minimizing U(T ) is then strictly equivalent to maximizing the correlation
ratio, although is not strictly equivalent to maximizing the original version of
the correlation ratio. In our experiments, this distinction seemed to have very
little impact on the results.

Another remark is that we can impose constraints to the intensity function f ,
e.g. to be polynomial [16]. Notably, if we constraint f to follow an affine variation
with respect to j, i.e. f(j) = α j + β, we get a similar equivalence with the
correlation coefficient defined in (1):

ρ2(I, J↓) = 1− 1
k

e
U(T )

N , with k =
√

2π e Var(I).

3.2 Unspecified channel

A straightforward extension of the previous model would be to assume the ref-
erence image J to be also corrupted with Gaussian noise. Then, having defined



the prior probabilities for the tissue classes, we could derive the analytical form
of the conditional densities P (ik|j↓k) from (8). This case has been investigated
by Leventon and Grimson [6]: it turns out that there is probably nothing much
faster than a EM algorithm to provide maximum likelihood estimates of the
density parameters.

In order to get explicit density estimates, we can relax every formal constraint
on the model. Then, the densities P (ik|j↓k) are totally unspecified, and we will
only assume that they are stationary, i.e. P (ik = i|j↓k = j) is independent of the
position xk. For the sake of simplicity, we consider the case of discrete densities,
but the study is similar for continuous densities. The problem is now to minimize

− log P (I|J, T, θ) =
∑

xk∈ΩI

− log f(ik|j↓k),

with respect to θ = (f(0|0), f(1|0), . . . , f(1|1), . . . , f(2|0), . . .) and under the con-
straints: ∀j, Cj =

∑
i f(i|j)− 1 = 0. We regroup the intensity pairs (ik, j↓k) that

have the same values:

Ωi,j = {xk ∈ ΩI , I(xk) = i, J(T (xk)) = j}, Ni,j = CardΩi,j .

Then, the negative log-likelihood becomes:

− log P (I|J, T, θ) = −
∑

i,j

Ni,j log f(i|j).

Introducing Lagrange multipliers, there exist constants λ0, λ1, . . ., such that for
any j:

0 =
∂ log P

∂f(i|j) −
∑

j′
λj′

∂Cj′

∂f(i|j) =
Ni,j

f(i|j) − λj .

Thus, taking into account the constraints
∑

i f(i|j) = 1, the optimal parameters
verify:

f̂(i|j) =
Ni,j

Nj
=

p(i, j)
p(j)

,

where p(i, j) ≡ Ni,j/N is the image normalized 2D histogram and p(j) ≡∑
i p(i, j) the corresponding marginal distribution for J↓. From (3), we see that

U(T ) is nothing but a decreasing function of mutual information:

U(T ) = −N
∑

i,j

p(i, j) log
p(i, j)
p(j)

= N
[
H(I)− I (I, J↓)

]
,

where H(I) is the entropy of image I and is constant in the implementation
proposed in section 2.3. The same remark as in 3.1 holds for the distinction
between the usual implementation of mutual information and the one considered
here.



3.3 Comparison of measures

In the derivation of the correlation ratio (CR), it was assumed that the im-
age to be registered is a measure of the reference corrupted with additive and
stationary Gaussian white noise. In contrast, for deriving mutual information
(MI), no assumption was made apart from stationarity and, of course, the gen-
eral assumptions discussed in section 2. Does it make MI necessarily a better
registration measure than CR ?

In principle, the answer is no whenever the assumptions of CR are verified by
the images. Basically, these are reasonable if the reference image can be consid-
ered as a good anatomical model: in practice, this is seldom pefectly true. The
problem then becomes to determine what is better between an over-constrained
and an under-constrained measure, a question to which experiments can yield
some insight, as will be illustrated in the next section.

4 Experiments

In order to illustrate the practical differences between CR and MI, we present
results of 3D rigid registration between two brain images of the same patient: an
MR, T1 weighted scan (256×256×124 voxels of 0.9×0.9×1.1 mm), and an intra-
operative 3D ultrasound (US) image (180×136×188 voxels of 0.953 mm). As the
US image was acquired before opening the duramater, there is essentially a rigid
displacement to find. In these experiments, we used a registration algorithm
similar to MIRIT [7], using Powell’s method as an optimization strategy and
partial volume (PV) interpolation.

The correct registration position was found manually using an interactive
matching tool, and then validated by a clinician. The estimated accuracy was
2 degrees in rotation and 2 mm in translation [12]. We took this result as a
“ground truth” for subsequent experiments.

We then performed 200 automatic registrations by initializing the algorithm
with random displacements from the “ground truth” position: a rotation vector
∆r with random direction and constant magnitude ‖∆r‖ = 15 degrees, and
a translation ∆t with random direction and constant magnitude ‖∆t‖ = 20
mm. These values correspond to the variation between the “ground truth” and
the original position. For each random transformation, two registrations were
performed using alternatively CR and MI.

Two kinds of results are observed: either the algorithm retrieves the “ground
truth” transformation (yielding errors systematically lower than ‖δr‖ = 2 de-
grees and ‖δt‖ = 2 mm), or it converges to a local maximum (yielding errors
systematically larger than ‖δr‖ = 10 degrees and ‖δt‖ = 10 mm). The main
result is that CR fails in 14% cases while MI fails in 51% cases (see table 1). The
RMS errors computed on successful registrations are lower than the expected
accuracy of the “ground truth”; thus, they prove nothing but the fact that both
CR and MI have a maximum in the neighborhood of the ideal registration trans-
formation (this is probably also a global maximum). However, the percentages



Fig. 2. Result of US/MR registration by maximization of CR. Left, three orthogonal
views of a MR, T1 weighted image. Right, corresponding views of the registered US
image with contours from the MR overlayed.

of success indicate that CR may have a wider attraction basin, an observation
consistent with previous experiments with other modality combinations [15].

Table 1. RMS errors and percentages of failures in 3D US-MR rigid registration.

Reference Similarity RMS RMS (successes) Failures (%)
Image Measure ∆ θ (deg) ∆ t (mm) ∆ θ (deg) ∆ t (mm)

Original MR CR 11.49 23.33 1.11 0.42 14.0
MI 19.07 47.14 1.27 0.64 51.0

Diffused MR CR 12.64 26.29 0.92 0.52 12.5
MI 17.35 27.41 1.35 0.82 28.0

Distorted MR CR 28.51 18.08 3.21 2.04 36.0
(σ = 10%) MI 44.23 45.06 1.84 1.36 90.0

To study the effect of noise in the reference image, we repeated the same
experimental protocol twice, using as a reference image the MR pre-segmented
by anisotropic diffusion [14], and the MR corrupted with Gaussian noise. The
number of failures for both measures are clearly affected by the amount of noise,
as can be seen on table 1. This comes as no surprise in the case of CR, since
this measure has been derived under the assumption that there is no noise in
the reference image (see section 3.1). This is more surprising for MI, as no such
assumption was made.

We conclude that the attraction basin of the measures could be extended
by denoising the reference image as a preprocessing step. Studying effects on
accuracy would have been of great interest too, but this was not possible here
because the “ground truth” was not accurate enough.



5 Conclusion

We have formalized image registration as a general maximum likelihood esti-
mation problem and shown that several existing similarity measures may be
reinterpreted in this framework. This enables us to better understand the im-
plicit assumptions we make when using a particular measure, and hopefully help
the selection of an appropriate strategy given a certain problem.

Experimental results of US/MR registration confirm (if needed) that sim-
ilarity measures relating to different assumptions yield different performances.
The CR measure was shown to be more robust than MI with respect to the
initialization of registration. As CR relies on more restrictive hypotheses than
MI, this suggests the importance of constraining the relationship between the
images. On the other hand, the assumptions should also be founded, and we are
aware that CR relies on a model that is simpler than realistic.

Because the presented work allows to systematically derive similarity mea-
sures from explicit modeling assumptions, this is a step towards taking into
account more realistic models of image acquisition and anatomy. In the future,
we plan to develop this approach for the challenging problem of US/MR regis-
tration.

Acknowledgments

The images were provided by ISM, Salzburg, Austria, for the US datasets, and
the Max Planck Institute for Psychiatry, AG-NMR, Munich, Germany, for the
MR datasets, as part of the EC-funded ROBOSCOPE project HC 4018, a col-
laboration between The Fraunhofer Institute (Germany), Fokker Control System
(Netherlands), Imperial College (UK), INRIA Sophia Antipolis (France), ISM-
Salzburg and Kretz Technik (Austria).

Part of this work was supported by la Région PACA (France).
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