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Abstract. Automatic processing of 3D ultrasound (US) is of great in-
terest for the development of innovative and low-cost computer-assisted
surgery tools. In this paper, we present a new image-based technique to
rigidly register intra-operative 3D US with pre-operative Magnetic Res-
onance (MR) data. Automatic registration is achieved by maximization
of a similarity measure that generalizes the correlation ratio (CR). This
novel similarity measure has been designed to better take into account
the nature of US images. A preliminary cross-validation study has been
carried out using a number of phantom and clinical data. This indicates
that the worst registration errors are of the order of the MR resolution.

1 Introduction

Over the last years, the development of real-time 3D ultrasound (US) imaging
has revealed a number of potential applications in image-guided surgery. The
major advantages of 3D US over existing intra-operative imaging techniques
are its comparatively low cost and simplicity of use. However, the automatic
processing of US images has not gained the same degree of development as other
medical imaging modalities, probably due to the low signal-to-noise ratio of US
images.

The registration of US with pre-operative Magnetic Resonance (MR) images
will allow the surgeon to accurately localize the course of instruments in the
operative field, resulting in minimally invasive procedures. At present, few pa-
pers have been published on this particular registration problem [5]. Most of
the approaches that have been proposed are based on stereotactic systems. For
instance, in [8] registration is achieved by tracking the US probe with a DC mag-
netic position sensor. Existing image-based methods match homologous features
extracted from both the US and MR data. Features are user-identified in [1],
while semi-automatically extracted in [2]. More recently, Ionescu et al [3] regis-
tered US with Computed Tomography (CT) data after automatically extracting
contours from the US using watershed segmentation.

The present registration technique expands on the correlation ratio (CR)
method [12]. It is an intensity-based approach as it does not rely on explicit



feature extraction. In a previous work [11], we reported preliminary results
of US/MR registration by maximization of CR and mutual information (MI).
While results obtained using CR were more satisfactory than when using MI,
the method was still lacking precision and robustness with respect to the initial-
isation of the transformation parameters.

In this paper, we have improved the CR method following three distinct axes:
(1) using the gradient information from the MR image, (2) reducing the number
of intensity parameters to be estimated, and (3) using a robust intensity distance.
These extensions are presented in the following section, while section 3 proposes
an original evaluation of the method accuracy using phantom and clinical data.

2 Method

2.1 Correlation ratio

Given two images I and J , the basic principle of the CR method is to search for a
spatial transformation T and an intensity mapping f such that, by displacing J
and remapping its intensities, the resulting image f(J ◦ T ) be as similar as
possible to I. In a first approach, this could be achieved by minimizing the
following cost function:

min
T,f

∑

k

[I(xk)− f(J(T (xk)))]2 , (1)

which integrates over the voxel positions xk in image I. In the following, we will
use the simplified notations ik ≡ I(xk), and j↓k ≡ J(T (xk)), where the arrow
expresses the dependence in T . This formulation is asymmetric in the sense
that the cost function changes when permuting the roles of I and J . Since the
positions and intensities of J actually serve to predict those of I, we will call J
the “template image”. In the context of US/MR registration, we always choose
the MR as the template.

In practice, the criterion defined in eq (1) cannot be computed exactly due
to the finite nature of the template image. One obvious problem is that the
transformed position of a voxel will generally not match a grid point of J , such
that the corresponding intensity j↓k is unknown. A classical approach is then
to linearly interpolate j↓k using the eight neighbours of T (xk) in the grid of J .
However, instead of interpolating the image intensity, we may directly interpolate
the incremental contribution of xk, i.e., [ik−f(j↓k)]2. The difference between these
two approaches is illustrated in figure 1. In fact, the last method is equivalent
to the so-called partial volume (PV) interpolation, originally proposed by Maes
et al [4] in the context of joint histogram computation. We have found PV to
generally outperform classical linear interpolation in terms of smoothness of the
resulting registration criterion.

Another difficulty to compute eq (1) is that some points xk may transform
outside the template domain and lack eight grid neighbours. We decide not to
take into account such points in the computation of the registration criterion.
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Fig. 1. Illustration of linear interpolation in the 2D case, and two related strategies of
interpolating the registration criterion.

Doing so without particular attention, the criterion would become zero when ev-
ery point xk transforms outside J . Hence, in order to avoid an absolute minimum
when the image overlap is small, we impose the additional constraint that the
variance of I be large in the overlapping region. Justifications of this particular
normalization strategy will be found in [12], while related normalization issues
are discussed in [15, 16].

These practical considerations lead us to the following modification of eq (1):

C(T, f) =

∑
k,l w

↓
kl [ik − f(jl)]

2

n↓Var(I↓)
, (2)

where jl is the intensity of a voxel with coordinates yl in the coordinate system
of J . The terms depending on T are marked with an arrow: w↓kl are the linear
interpolation weights, n↓ is the number of points xk such that T (xk) has eight
neighbours in the template grid, and Var(I↓) is the intensity variance computed
over these points.

If no constraint is imposed to the intensity mapping f , an important result
is that the optimal f at fixed T enjoys an explicit form that is very fast to
compute [12]. The minimization of eq (2) may then be performed by travelling
through the minima of C(T, f) at fixed T . This yields the correlation ratio,
η2

I|J(T ) = 1−minf C(T, f), a measure that reaches its maximum when C(T, f) is
minimal. In practice, the maximization of η2 is performed using Powell’s method.

2.2 Bivariate correlation ratio

Ultrasound images are commonly said to be “gradient images” as they enhance
the interfaces between anatomical structures. The physical reason is that the
amplitudes of the US echos are proportional to the difference of acoustical
impedance caused by successive tissue layers. Ideally, the US signal should be
high at the interfaces, and zero within homogeneous tissues.

As stated above, the CR method tries to predict the intensities of the US
by remapping those of the MR. Hence, uniform regions of the original MR will



remain uniform in the remapped MR and, thus, this procedure is not able to
account for intensity variations at the interfaces. To enable a better prediction,
we propose to use the modulus of the MR gradient as an additional explanatory
variable. In other terms, our template image J is now a vectorial image, J =
(M, ‖∇M‖), M standing for the MR image, and we search for a function f that
maps double-valued intensities to single-valued intensities. The MR gradient is
practically computed by convolution with a Gaussian kernel.

At first glance, using the modulus of the MR gradient does not appear to be
fully acceptable from the physics of US imaging. In fact, the US signal which is
produced at an interface also depends on the tissue orientation with respect to
the scan line. Thus, perhaps a more appropriate choice than ‖∇M‖ would be the
dot product, ∇M.u, where u is the scan direction. The main difficulty in using
this last expression is that u is unknown before registration since it depends on
the position of the US probe in the MR coordinate system.

We have not yet studied the effect of using the projected MR gradient versus
the modulus. Still, we believe that there are good reasons not to take into account
information from the gradient orientation, at least as a first-order approximation.
Through diffraction of the ultrasound beam on interfaces, the received echo is
actually less dependent on the direction propagation than would be the case with
perfectly specular reflection. This, added to log-compression, tends to equalize
the response values corresponding to different tissue orientations.

2.3 Parametric intensity fit

If we put no special constraint on the mapping f to be estimated, then f is
described by as many parameters as there are distinct intensity values in the
template image [11]. That approach makes sense as long as the number of inten-
sity classes in J is small with respect to the number of voxels used to draw an
estimate. In our case, J is a double-valued image (with, in general, floating pre-
cision encoding of the MR gradient component), and the number of parameters
to be estimated becomes virtually infinite.

We will therefore restrict our search to a polynomial function f . Let ml and gl

denote the intensity of the voxel with coordinates yl, respectively in the original
MR, M , and in ‖∇M‖. We are searching for a mapping of the form:

f(ml, gl) =
∑

p+q≤d

θpq mp
l g

q
l , (3)

where d is the specified polynomial degree. The number of parameters describ-
ing f then reduces to (d+1)(d+2)/2. In all the experiments presented below, the
degree was set to d = 3, implying that 10 coefficients were estimated. It is shown
in [13] that minimizing eq (2) with respect to the polynomial coefficients brings
us to a weighted least square (WLS) linear regression problem. As is standard,
this is solved by the method of singular value decomposition (SVD).

This polynomial fitting procedure, however, has significant extra computa-
tional cost with respect to the unconstrained fitting. Recall that, in the basic



version of the CR method, f is updated for each transformation trial. Such a
strategy is no longer affordable when estimating a polynomial function. Instead,
the minimization of eq (2) may be performed alternatively along T and f , result-
ing in the following algorithm: (1) given a current transformation estimate T ,
find the best polynomial f and remap J accordingly; (2) given a remapped image
f(J), minimize C(T, f) with respect to T using Powell’s method; (3), return to
(1) if T or f has evolved.

2.4 Robust intensity distance

Our method is based on the assumption that the intensities of the US may
be well predicted from the information available in the MR. Due to several
ultrasound artefacts, we do not expect this assumption to be perfectly true.
Shadowing, duplication or interference artefacts may cause large variations of
the US intensity from its predicted value, and this even when the images are
perfectly registered. Such bad intensity matches are false negative.

The sensitivity of the registration criterion to false negative may be reduced
by replacing the expression (1/n↓)

∑
k,l w

↓
kl [ik − f(jl)]

2 in eq (2) with a robust
scale estimate. A similar idea was developed in [6]. We propose here to build
such an estimate from a one-step S-estimator [14]:

Ŝ2(T, f) =
S2

0

Kn↓
∑

k,l

w↓kl ρ

(
ik − f(jl)

S0

)
,

where ρ is the objective function corresponding to a given M -estimator, K is
a normalization constant to ensure consistency with the normal distribution,
and S0 is some initial guess of the scale. The new registration criterion is then:
C(T, f) = Ŝ2(T, f)/Var(I↓).

This criterion implies few modifications of our alternate minimization strat-
egy. As a function of T , it may still be minimized by means of Powell’s method.
As a function of f , the solution is found by a simple iterative WLS procedure
as shown in [13], generally requiring no more than 5-6 iterations.

In our implementation, we have opted for the Geman-McClure ρ-function,
ρ(x) = 1

2x2/(1 + x2

c2 ), for its computational efficiency and good robustness prop-
erties, to which we always set a cut-off distance c = 3.648 corresponding to 95%
Gaussian efficiency. The normalization constant is then K = 0.416.

Initially, the intensity mapping f is estimated in a non-robust fashion. The
starting value S0 is then computed as the weighted median absolute deviation
of the corresponding residuals, {|ik − f(jl)|} (see [13] for details). Due to the
initial misalignment, S0 tends to be overestimated. Thus, it may not allow to
reject efficiently bad intensity matches. For that reason, we reset S0 at each new
iteration, i.e., after completing one minimization along T and one minimization
along f .



3 Experiments

The experiments related in this section were performed within the framework of
the European project ROBOSCOPE1. The goal is to assist neuro-surgical opera-
tions using real-time 3D ultrasound images and a robotic manipulator arm. The
operation is planned on a pre-operative MRI and 3D US images are acquired
during surgery to track in real time the deformation of anatomical structures.
In this context, the rigid registration of the pre-operative MR with the first US
image (dura mater still closed) is a fundamental task to relate the position of the
surgical instruments with the actual anatomical structure. This task being de-
terminant for the global accuracy of the system, different datasets were acquired
to simulate the final image quality and to perform accuracy evaluations.

It should be emphasized that all the US images provided in this project
were stored in Cartesian format, which means that the actual (log-compressed)
ultrasound signal is resampled on a regular cubic lattice. As a consequence, the
images undergo sever interpolation artifacts (blurring) in areas which are distant
from the probe. In the following, we will refer to US images as cubic images, but
one has to keep in mind that this is somewhat artificial. Notably, the voxel size
in Cartesian US images should not be confused with the real spatial resolution,
which is in fact spatially dependent.

We computed all the MR/US registrations using the previously described
algorithm. The location of the US probe being linked to the pathology and its
orientation being arbitrary (the rotation may be superior to 90 degrees), it was
necessary to provide a rough initial estimate of the transformation. Here, this
was done using an interactive interface that allows to draw lines in the images
and match them. This procedure was carried out by a non-expert, generally
taking less than 2 minutes. However this user interaction could be alleviated
using a calibration system such as the one described in [8]. After initialization,
we observed that the algorithm found residual displacements in the range of 10
mm and 10 degrees. In all the experiments, the gradient norm of the MR image
was computed by linear filtering using a Gaussian kernel with σ = 1 voxel.

3.1 Principle of the accuracy evaluation

To estimate the accuracy of the algorithm, one should ideally compare the result
of a registration with a gold-standard. Up to our knowledge, there is no such
gold-standard for MR/US registration. To get around this problem, our main
idea is to use several MR and/or US images to compute registration loops and
test for the residual error on test points. What we call a registration loop is a
succession of transformation compositions that sould ideally lead to the identity
transformation. A typical loop is a sequence of the form USi → MRi → MRj →
USj → USi in the case of the Phantom data described below.

If we were given perfectly registered images within each modality, this loop
would only be disturbed from the identity by errors on the two MR/US regis-
trations. As the variances are additive, the variance of the observed error should
1 http://www.ibmt.fhg.de/Roboscope/home.htm



roughly be: σ2
loop = 2σ2

MR/US . Unfortunately, we are not provided with a ground
truth registration within each modality: we need to estimate it. This time, as we
are combining one MR/MR, one US/US and two MR/US registrations, the vari-
ance of the loop error will be roughly: σ2

loop ' 2σ2
MR/US+σ2

MR/MR+σ2
US/US . The

expected MR/US accuracy is then σMR/US '
√

(σ2
loop − σ2

MR/MR − σ2
US/US)/2.

However, what we really measure is the maximum or conservative MR/US ac-
curacy, σMR/US ' σloop/

√
2. In order to minimize the influence of intra-modality

registrations errors in this figure, we need to provide very accurate MR/MR and
US/US registrations. For that purpose, we designed the following algorithm.

Multiple intra-modality registration To relate n images together, we need
to estimate n− 1 rigid registrations T̄i,i+1. To obtain a very good accuracy, we
chose to register all image pairs, thus obtaining n(n − 1) transformations T̄i,j ,
and estimate the transformations T̄i,i+1 that best explain our measurements in
the least-square sense, i.e. that minimizes the following criteria:

C(T̄1,2, . . . T̄n−1,n) =
∑

i 6=j

dist2(T̄i,j , Ti,j),

where T̄i,j is recursively defined by T̄i,j = T̄j−1,j ◦ . . . ◦ T̄i,i+1 if j > i, and
T̄i,j = T̄

(−1)
j,i if j < i.

We used a robust variant of the left invariant distance on rigid transforma-
tions introduced in [10]: let σr and σt be typical scales on the rotation angle and
on the translation magnitude and χ2 a threshold. If (r, t) are the rotation vector
and the translation of transformation T , the distance between two transforma-
tions is

dist2(T1, T2) = min
(
‖r(−1)

2 ◦ r1‖2/σ2
r + ‖t1 − t2‖2/σ2

t , χ2
)

.

The standard deviations σr and σt are manually adjusted to correspond roughly
to the residual rotation and translation error after convergence. To obtain the
minimum, we used a Newton gradient descent similar to the one described in
[10], but on all transformations T̄i,i+1 together (see [13] for details).

3.2 Data

MR and US compatible Phantom We developed for the European Project
ROBOSCOPE an MR and US compatible phantom made of two balloons that
can be inflated with known volumes in order to simulate deformations. In this
experiment, we used 8 acquisitions with different balloons volumes, each acquisi-
tion consisting of one 3D MR and one 3D US image. However, we cannot directly
compare the MR/US registrations as the phantom is moved between the acqui-
sitions. Thus, the first step is to rigidly register all the MR images together and
similarly for the US images.



The main problem for the multiple intra-modality registration of the phantom
images is that the balloons deform inbetween acquisitions. The only rigid part
is the outer part of the container. Thus, intra-modal registrations of MR images
were carried out using a feature-based registration algorithm known to handle
a large amount of outliers [9]. For the US images, since it is very difficult to
extract meaningful features on these images, we used the robust block matching
technique proposed in [7].

As we are testing the rigid registration, we cannot register MR and US images
across acquisitions. Thus, the simplest loops we can use for accuracy estimations
are the n(n−1) following loops: USi → MRi → MRj → USj → USi. Of course,
only n−1 loops are independent but since the ideal value is known (the identity)
there is no need to correct the estimation for the number of free parameters.

Baby dataset with degraded US images This dataset was acquired to
simulate the degradation of the US images quality with respect to the number
of converters used in the probe. Here, we have one MR T1 image of a baby’s head
and 5 transfontanel US images with different percentages of converters used.

As we have no or very few deformations within the images, we can rigidly
register all the US images onto our single MR and test the 30 following loops
USi → MR → USj → USi (only 5 of them being independent). For that, we
still need to register the US images together. Since there are no deformations
between the acquisitions (we only have a motion of the probe and a degradation
of the image quality) the algorithm is much more efficient and accurate than for
the Phantom.

Patient dataset during tumor resection This dataset is an actual surgical
case: two MR T1 images with and without a contrast agent were acquired before
surgery. After craniotomy (dura mater still closed), a set of 3D US images was
acquired to precisely locate the tumor to resect. In this experiment, we use the
three US images that are large enough to contain the ventricles.

The two MR images were registered using the feature based method with a
very high accuracy (probably overestimated as we only have two images) and
we tested the loops USi → MR0 → MR1 → USi. As the acquisition cone of
the US probe is completely within the Cartesian image (see Fig. 4), the region
of interest is much smaller than the images size: we took our typical points at
the corners of a 80× 80× 80 mm3 cube centered in the image.

3.3 Results and discussion

We put in table (1) the standard deviations of the residual rotation, of the
residual translation and of the displacement of the test points for the different
registration involved. Since we took the origin of the images at the center, the
σtrans value corresponds to the mean error at the center of the image while σtest
corresponds to the maximum registration error within the US image (except for
the patient experiment, the test points are taken at the corners of the image).
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Fig. 2. MR and US images of the Phantom and the rigid registrations that are involved.

Fig. 3. Example registration of the MR and US images of the baby. From left to right:
original MR T1, original US and registered MR.

Fig. 4. Example registration of the MR and US images of the patient. From left to right:
MR T1 image with a contrast agent, manual initialisation of the US image registration,
and result of the automatic registration with the MR contours superimposed.

The results on the Phantom show that the MR/US registration accuracy is
of the order of the MR resolution. One could probably expect a better conserva-
tive accuracy by acquiring larger US image including some rigid landmarks for
multiple US/US registration. One finds the same type of results for the other



Table 1. Estimated registration errors. See text for details.

σrot (deg) σtrans (mm) σtest (mm)

Phantom dataset
MR: 0.9× 0.9× 1 mm3

US: 0.413 mm3

Multiple MR/MR 0.06 0.10 0.13
Multiple US/US 0.60 0.40 0.71
Conservative MR/US 1.15 1.01 1.46
Expected MR/US 1.06 0.97 1.37

Baby dataset
MR: 0.93 mm3

US: 0.33 mm3

Multiple US/US 0.10 0.06 0.12
Conservative MR/US 1.21 0.36 0.90
Expected MR/US 1.21 0.36 0.89

Patient dataset
MR: 0.9× 0.9× 1.1 mm3

US: 0.633 and 0.953 mm3

MR/MR 0.02 0.02 0.03
Conservative MR/US 1.57 0.58 1.65
Expected MR/US 1.57 0.58 1.65

datasets: slightly under the MR voxel size for the baby data and a bit larger for
the patient data.

However, when we look more carefully at the patient results, we find that the
loop involving the smallest US image (real size 150×85×100 mm, voxel size 0.633

mm3) is responsible for a corner error of 2.61 mm (σtrans = 0.84 mm) while the
loops involving the two larger US images (real size 170× 130× 180, voxels size
0.953 mm3) do have a much smaller corner error of about 0.84 mm (σtrans = 0.39
mm). We suspect that a non-rigidity in the smallest US could accounts for the
registration difference between the two MR images. Another explanation could
be a misestimation of the sound speed for this small US acquisition leading to a
false voxel size and once again the violation of the rigidity assumption.

4 Conclusion

We have presented a new automated method to rigidly register 3D US with MR
images. It is based on a multivariate and robust generalization of the correlation
ratio (CR) measure that allows to better take into account the nature of US
images. Incidentally, we believe that the generalized CR could be considered in
other registration problems where conventional similarity measures fail.

Testings were performed on several phantom and clinical data, and accuracy
was evaluated using an original method that does not require the knowledge of a
ground truth. We estimated the worst registration errors (errors at the Cartesian
US corners) to be of the order of 1 millimeter.

In our experiments, registration was tested with US images stored in Carte-
sian format. This obviously does not help registration owing to the fact that: 1)
intensities of voxels distant from the probe are unreliable, 2) resampling on a
cubic lattice artificially increases the concentration of such voxels, consequently
increasing their influence on the registration criterion. The present algorithm
may be straightforwardly extended to use polar US images as inputs (without



interpolation of the US signal, see section 2). We believe that this could signifi-
cantly improve both the accuracy and the robustness of registration.

Further developments also include non-rigid registration, in order to correct
for false distance artefacts in US, as well as for tissue deformations due to brain
shift and operative manipulations.
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