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ABSTRACT: Although intensity-based similarity measures are in-
creasingly used for medical image registration, they often rely on
implicit assumptions regarding the imaging physics. This paper clar-
ifies the assumptions on which a number of popular similarity mea-
sures rely. After formalizing registration based on general image ac-
quisition models, we show that the search for an optimal measure can
be cast into a maximum likelihood estimation problem. We then
derive similarity measures corresponding to different modeling as-
sumptions and retrieve some well-known measures (correlation co-
efficient, correlation ratio, mutual information). Finally, we present
results of rigid registration between several image modalities to illus-
trate the importance of choosing an appropriate similarity measure.
© 2000 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 11, 71–80, 2000

I. INTRODUCTION
Registration is a problem common to many tasks in medical image
analysis. It can be necessary to compare images acquired from the
same patient at different times or with different sensors. One usually
distinguishes registration problems according to whether the images
are from the same modality (monomodal registration) or from dif-
ferent modalities (multimodal registration). In general, intrapatient
registration consists of estimating a rigid transformation between the
images, but it can also involve a nonrigid transformation in order to
compensate for tissue deformations or geometrical distortions inher-
ent to the imaging processes.

Registration is also useful for comparing images acquired from
different patients, e.g., to build statistical anatomical atlases. Much
effort in this area has been devoted to the geometrical modeling of
anatomical variations from one subject to another. In general, inter-
patient registration involves nonrigid transformations (Toga, 1999).

Reviews of medical image registration methods were written by
van den Elsen et al. (1993), Lavallee (1995), and Maintz and
Viergever (1998). Quite recently, a comparison of algorithms based
on a retrospective evaluation was published by West et al. (1997) in
the context of intrapatient rigid registration. Registration methods
are usually classified as being either feature or intensity based.
Methods from the former class proceed in two sequential steps. The
first is to segment homologous geometrical landmarks in the images;
these can be points, lines, surfaces, or volumes. The problem then
reduces to a purely geometrical task, i.e., to evaluate the transfor-
mation that best matches these landmarks. Because these methods
are highly dependent on the algorithms that are used in the segmen-

tation step, they are often restricted to very specific registration
problems. Likewise, when dealing with images from different mo-
dalities, finding homologous landmarks is a very challenging task
due to the lack of redundancy in anatomical information.

Intensity-based techniques circumvent these difficulties because
they do not deal with identifying geometrical landmarks. Their basic
principle is to search, in a certain space of transformations, the one
that maximizes a criterion measuring the intensity similarity of
corresponding voxels. This paper focuses on this class of methods.
Over the last few years, they have been applied to a number of
registration problems, including monomodal, multimodal, rigid, and
nonrigid registration (Maintz and Viergever, 1998). Common to the
many proposed similarity measures is the idea that, when matched,
the image intensities should verify a certain relationship. The sim-
ilarity measure is intended to quantify how well this relationship is
verified given a transformation between the images.

Choosing one measure adapted to a specific registration problem
is not always straightforward for at least two reasons. First, it is
often difficult to model the physical relation between the image
intensities. Second, most of the similarity measures rely on imaging
assumptions that are not fully explicit. We can roughly classify
existing similarity measures according to four main kinds of hypoth-
eses:

Identity Relationship. In this category, the basic assumption is
the conservation of intensity from one image to the other. This
includes a number of popular measures, e.g., the sum of squared
intensity differences (SSD), the sum of absolute intensity differ-
ences, cross-correlation (Brown, 1992), and entropy of the differ-
ence image (Buzug and Weese, 1998). Although these measures are
not equivalent in terms of robustness and accuracy, none of them is
able to cope with relative intensity changes from one image to the
other.

Affine Relationship. The step beyond is to assume that the two
imagesI andJ to be registered are related by an affine mapping, i.e.,
I ' aJ 1 b. The measures adapted to this situation are more or less
variants on the correlation coefficient (Brown, 1992), defined as the
ratio between the covariance of the images and the product of
individual standard deviations:

r~I , J! 5
Cov~I , J!

ÎVar~I ! ÎVar~J!
. (1)
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The correlation coefficient is generally useful for matching images
from the same modality. Nevertheless, the affine hypothesis is
hardly valid for images from different modalities, and thus it has not
provided convincing results in multimodal registration.

Functional Relationship. For multimodal images, more com-
plex relationships are involved. The approach we proposed in Roche
et al. (1998b) was to assume that, at the registration position, one
image could be approximated in terms of the other by applying some
intensity function,I ' f( J). Making no assumption regarding the
nature of the function, we derived a natural statistical measure, the
correlation ratio:

h2~I uJ! 5 1 2
Var~I 2 f̂~J!!

Var~I !
, (2)

wheref̂( J) is the least squares optimal nonlinear approximation of
I in terms of J (Papoulis, 1991). The correlation ratio is closely
related to a very popular measure previously proposed by Woods et
al. (1993) and generalized using robust metrics in Nikou et al.
(1998).

Statistical Relationship. Finally, assuming a functional relation-
ship is sometimes too restrictive. In these cases, it is more appro-
priate to use information theoretical measures; from this group,
mutual information (Maes et al., 1997; Viola and Wells, 1997) is
today probably the most popular:

(~I , J! 5 O
i

O
j

p~i , j ! log
p~i , j !

p~i !p~ j !
, (3)

where p(i , j ) is the intensity joint probability distribution of the
images andp(i ) andp( j ) the corresponding marginal distributions.
This category is not fundamentally different from the previous one,
as the ideal case is still perfect functional dependence; mutual
information is, however, theoretically more robust to variations with
respect to this ideal situation.

A number of comparison studies have shown that similarity
measures yield different performances depending on the considered
modality combinations (West et al., 1997; Bro-Nielsen, 1997; Pen-
ney et al., 1998; Nikou et al., 1998; Roche et al., 1998b). There is
probably no universal measure and, for a specific problem, the point
is rather to choose the one that is best adapted to the nature of the
images.

The link between explicit modeling assumptions and similarity
measures has not yet been made clear. Some authors (Mort and
Srinath, 1988; Costa et al., 1993) proposed that image registration
could be seen as a maximum likelihood estimation problem. Others
(Viola and Wells, 1997; Wells et al., 1996) suggested the analogy of
this approach with registration based on information theory. Nota-
bly, other teams had motivated information-theoretical measures
using different arguments (Maes et al., 1997; Studholme et al.,
1996).

In Section 2, we propose to formulate image registration as a
general maximum likelihood estimation problem, examining care-
fully the assumptions that are required. In Section 3, deriving
optimal similarity measures from specific modeling assumptions, we
retrieve the correlation ratio and mutual information. Section 4
proposes to illustrate the practical differences between these two

measures with results of rigid multimodal registration of three-
dimensional (3D) brain images.

II. FORMULATION
A. Maximum Likelihood Registration. Two imagesI andJ to
be registered, are related through the common anatomical reality that
they measure. However, the way anatomical structures are repre-
sented depends on the physics of the imaging involved in each
acquisition. Thus, modeling the relationship between the images
requires the knowledge of both the underlying anatomy and the
image formation processes. A convenient model of the anatomy will
be an image called segmentation or scene: by definition, a scene is
any image for which the intensity of a given voxel represents the
tissue class to which it belongs.

Assuming that we know a scene, we can model indirectly the
relationship betweenI andJ based on image acquisition models. A
standard approach in computer vision is to interpret an image as
being a realization of a random process that corrupts the scene. This
means that the relationship betweenI andS (respectively,J andS)
is defined in terms of a conditional probability density function
P(I uS). The two following assumptions are usually stated:

● (A1) The voxels of the image are conditionally independent
knowing the scene, i.e.,

P~IuS! 5 P
xk[VI

P~ikuS!,

whereVI denotes the voxel grid ofI and i k [ I ( xk) is the
intensity of the voxel with coordinatesxk in a given frame
attached to the gridVI.

● (A2) The noise is context free. In other words, the intensity of
a voxel depends only on its homologous in the scene:

P~ikuS! 5 P~ikusk
2!, with sk

2 ; S~T~xk!! 5 ~S+ T!~xk!,

whereT is the spatial transformation that relates the coordinate
frames ofVI andVS, the grid ofS. In the case whereI andS
are not supposed to be aligned,T has no reason to be the
identity. Of course, to be meaningful, the transformationT
needs to be defined as a mapping fromVI to VS, i.e., a grid
point of I is supposed to match a grid point ofS. In Section
IID, we discuss how this may be achieved in practice.

Under these assumptions, the conditional probability ofI know-
ing the sceneS and the transformationT is easily seen to be:

P~I uS, T! 5 P
xk[VI

P~i kusk
2!. (4)

We can model the relationship betweenJ and S in the same
manner. However, as we are only interested in the relative displace-
ment betweenI and J, we will considerJ as a reference image
already aligned with the scene, meaning that no transformation is
involved in the conditional probability,

P~JuS! 5 P
yl[VJ

P~ j lusl!, with j l 5 J~yl!, sl 5 S~yl!, (5)

VJ [ VS being the voxel grid ofJ, which coincides with that ofS.
Without knowledge of the scene, the probability of the image

pair (I , J) is obtained by integrating over all possible realizations of
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S. Assuming that the two acquisitions are independent, we haveP(I ,
JuS, T) 5 P(I uS, T) P( JuS), and thus:

P~I , JuT! 5 E P~I uS, T!P~JuS!P~S! dS. (6)

The transformationT appears as a parameter of this joint prob-
ability function. It is natural to invoke the maximum likelihood
principle to formulate registration, as already proposed (Viola and
Wells, 1997; Leventon and Grimson, 1998; Bansal et al., 1998; Mort
and Srinath, 1988; Costa et al., 1993). This simply states that the
most likely transformation betweenI and J is the one that maxi-
mizes the joint probability of (I , J),

T̂ 5 arg max
T

P~I , JuT!.

Unfortunately, the integral in Eq. (6) may be intractible unless
we assume that the voxels of the scene are independently distributed,
so that P(S) 5 )yl

P(sl). This appears as a minimal way to
introduce prior anatomical information. Notice, however, this does
not mean that the voxels are identically distributed, so that spatial
dependences may still be incorporated into the model. OnceS is a
coupled field, there might not exist an analytical expression ofP(I ,
JuT). Instead of the present maximum likelihood approach, a max-
imum a posteriori (MAP) strategy could be employed. This alterna-
tive, using for example a Gibbs-Markov random field, would require
an explicit estimation of the scene that would be computationally
very expensive in 3D images.

In order to simplify Eq. (6), we will also need the transformation
T to be an injection mapping fromVI to VJ, i.e., T maps distinct
points fromVI to distinct points fromVJ. Let us denote the subset
of matched points,! [ T(VI) 5 { yl [ VJ, ?xk [ VI, T( xk) 5
yl}. Recall that, becauseT is assumed to be a mapping fromVI to
VJ (assumption A2), the matched points! are assumed to lie
entirely within VJ. The conditional probabilityP(I uS, T) can then
be evaluated in the same coordinate frame asP( JuS) andP(S):

P~I uS, T! 5 P
xk[VI

P~i kusk
2! 5 P

yl[!

P~i l
1usl!,

where we have to be cautious thati l
1 [ I ((T21( yl)) represents the

intensity of the unique voxelxk such thatT( xk) 5 yl: it is defined
iff yl [ !. We are now in a position to rewrite the joint probability
of (I , J). Starting from Eq. (6), we have:

P~I , JuT! 5 E P
yl[!

P~i l
1usl! P

yl[VJ

P~ j lusl!P~sl! P
yl[VJ

dsl,

5 E P
yl[!

P~i l
1usl!P~ j lusl!P~sl! dsl

3 E P
yl¸!

P~ j lusl!P~sl!dsl,

in which we have regrouped the pointsyl according to whether they
match a point inVI or not. Then, applying the Fubini theorem, we
can invert the integral operands and the products, so that:

P~I , JuT! 5 P
yl[!

E P~i l
1usl!P~ j lusl!P~sl! dsl

3 P
yl¸!

E P~ j lusl!P~sl! dsl,

5 P
yl[!

P~i l
1, j l! 3 P

yl¸!

P~ j l!,

Noting thatP(i l
1, j l) 5 P(i l

1u j l) P( j l), we finally get:

P~I , JuT! 5 P
yl[VJ

P~ j l! 3 P
yl[!

P~i l
1u j l!,

5 P
yl[VJ

P~ j l!

P~J!

3 P
xk[VI

P~i ku j k
2!,

P~I uJ,T!

(7)

where the last step is only a rewriting ofP(I uJ, T) in the coordinate
frame ofVI. In Eq. (7), the left term of the product is the marginal
probability ofJ and is independent of the transformationT. Only the
right term, the conditional probability ofI knowing J and T, will
play a role in the maximization with respect toT. We should note
that P(I uJ, T) is of the same factored form asP(I uS, T):

P~I uJ, T! 5 P
xk[VI

P~i ku j k
2!,

with P~i ku j k
2! 5

E P~i kusk
2!P~ j k

2usk
2!P~sk

2!dsk
2

E P~ j k
2usk

2!P~sk
2!dsk

2

. (8)

It turns out that the statistical relation betweenI andJ is of the
same form as that betweenI andS. This result is obtained under the
assumption that the scene voxels are mutually independent. There-
fore, the imageJ can be considered as a scene forI in the sense that
P(I uJ, T) verifies the assumptions (A1) and (A2) stated above.
However, it is important to realize that the conditional densities
P(i kusk

2) and P(i ku j k
2) may have very different expressions. Be-

cause theP(i kusk
2) are intended to model acquisition noise, they

may generally be chosen as single-mode densities (e.g., Gaussian
densities). On the other hand, theP(i ku j k

2) may have much more
complicated forms because they incorporate the noise models cor-
responding to each image as well as the prior probability onS.

B. Estimating the Probability Densities. Until now, we have
worked under the assumption that all the probability densities in-
volved in our model were perfectly known. We address here the
question of how to estimate them.

Because these densities stand for anatomical and image acquisi-
tion models, they should vary significantly from one data set to
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another, due not only to interpatient anatomical variability but also
to changes in acquisition settings. For example, a tissue such as
white matter may have very different ranges of response in two
differently acquired brain magnetic resonance (MR) scans. Very
often in practice, we cannot use information from previous data sets
to model the relationship between the images we want to register.

Therefore, the conditional densities have to be estimated online,
in the same manner as we have to estimate the transformationT. We
notice that estimating the densities would be easier if the images
were aligned; on the other hand, the registration process needs
density estimates to work. Thus, the trade-off is to alternate from
registration to density estimation: given a current estimate ofT,
estimate the densities, and given current estimates of the densities,
update the transformation by maximizingP(I , JuT), hoping for
convergence. Notice that because only the conditional densities
P(i ku j k

2) play a role in the maximization with respect toT (see Eq.
7), we could forget about estimating the marginal densitiesP( j l).

Within analogous formulations of image registration, several
methods have been proposed for the density estimation step. Viola
and Wells (1997) use the method of Parzen windows to estimate the
joint densitiesP(i k, j k

2), from which it would be straightforward to
obtain the conditional densitiesP(i ku j k

2). Other authors (Maes et
al., 1997; Studholme et al., 1996) construct the 2D histogram of the
images, which may be seen as a particular case of Parzen window-
ing. In these techniques, the densities are not constrained by any
model of anatomy or image acquisition; this is perhaps both a
strength and a weakness. Moreover, we notice that they provide
density estimates that are independent of the spatial positions, in the
sense that two voxelsxk and xk9 are assumed to be identically
distributed provided that they have the same intensities in both
images, i.e.,i k 5 i k9 and j k

2 5 j k9
2. A way to incorporate explicit

spatial dependence was recently suggested by Bansal et al. (1998),
who applied the maximum entropy principle to get nonstationary
prior probabilitiesP(sl) for the tissue classes, implying nonstation-
ary densitiesP(i ku j k

2).
In the framework where the transformation is found by maxi-

mum likelihood, the most natural way to estimate densities is also to
use a maximum likelihood strategy. This means that we can search
for the conditional densitiesP(i ku j k

2) that maximize exactly the
same criterion as in Eq. (8). Basically, this is a parametric approach:
we assume that theP(i ku j k

2) belong to a given class of distributions
parameterized by a vectoru (regardless, for the moment, of whatu
represents); then their maximum likelihood estimates, for a given
estimate of the transformationT, are found by:

û~T! 5 arg max
u

P~I uJ, T, u! 5 arg max
u

P
xk[VI

Pu~i ku j k
2!.

The parametric form ofP(I uJ, T, u ) may be derived from the
modeling assumptions presented in Section IIA whenever all the
components of the model,P(i kusk

2), P( j l usl), andP(sl), are them-
selves chosen as parametric densities. Then, from Eq. (8), the form
of P(I uJ, T, u ) can be known. We show in Section III that under
some specific modeling assumptions, maximum likelihood density
estimates can be computed explicitly.

C. Registration Energy. By substituting the estimated densities
in Eq. (8), our registration criterion becomes the maximum ofP(I uJ,
T, u ) underu at fixed T. Actually, this is only a special way to
maximizeP(I uJ, T, u ) with respect to (T, u ). There is no formal

difference between the parametersT and u, except that the latter
models the relation between the image intensities. In the context of
registration,T is the parameter in which we are really interested. For
practical optimization, it is often more convenient to consider the
negative log-likelihood (to be minimized); thus, we will define the
energy of a transformationT as:

U~T! 5 2log max
u

P~I uJ, T, u! 5 min
u

@2 O
xk[VI

log Pu~i ku j k
2!# . (9)

D. Practical Issues. In Section IIA, we derived the likelihood
registration criterion under the assumption that the transformationT
is searched for among mappings from the floating image grid,VI, to
the reference image grid,VJ. In other words, a grid point ofI was
supposed to always match a grid point ofJ. The spatial resolution of
the transformation is thus intrinsically limited by the resolution of
the reference grid. Clearly, this assumption cannot deal with sub-
voxel accurate registration.

In practice, we generally want to take into account continuous
spatial transformations, not only for a question of accuracy but also
because the motion to be estimated is continuous in nature. Thus, we
would like the resolution of the reference grid to be as small as the
computer working precision. This is achieved in practice by over-
sampling the imageJ using fast interpolation techniques such as
trilinear or partial volume interpolation (Maes et al., 1997; Sarrut
and Miguet, 1999; Sarut and Feschet, 1999; Pluim et al., 1999).
Notice that for evaluating the registration criterion Eq. (8), we do not
actually have to interpolate every point in space, but only, for a
given transformation, the points that are put into correspondence
with voxels of I , i.e., the subset! defined in Section IIA.

However, interpolation is possible only if the transformed posi-
tion of a voxel falls inside the reference domain. Because this
domain has a finite extension in space, other voxels may fall outside,
so that there is not enough information to interpolate the intensity of
their correspondent (Fig. 1). The problem of how to treat these
outside voxels plays an important role in voxel-based image regis-
tration. They are generally ignored by the registration criterion,
which necessitates some heuristic normalization to avoid nasty
effects such as disconnecting the images (Studholme et al., 1998;
Viola and Wells, 1997; Roche et al., 1998b).

Here, to keep consistent with the maximum likelihood frame-
work, we definitely cannot ignore them. Doing so, we would no
longer maximize the image likelihood,P(I uJ, T), but the likelihood

Figure 1. Effects of applying a continuous spatial transformation.
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of a part ofI , which is variable according to the considered trans-
formation. There is always a risk to isolate small image regions that
seem very likely to be aligned (typically, in the background). The
algorithm might then converge to an aberrant solution.

To tackle this problem, a natural approach is simply to extend the
reference domain by assigning the external points to an arbitrary
intensity classJ 5 j* and defining a specific conditional density
corresponding to this class. Although this sounds like a computa-
tional artifice, this enables us to take into account every voxel ofI
at each iteration of the registration process. Each voxel with inten-
sity i k falling outside the reference domain will have a nonzero
contribution2 log P(i ku j*) to the registration energy. Thus, we can
expect the registration energy to vary little with image overlap as is
the effect achieved with classical normalization.

III. FROM MODELING ASSUMPTIONS TO SIMILARITY
MEASURES
The purpose of this section is to demonstrate the link between the
general maximum likelihood approach that has been presented and
two popular registration criteria: the correlation ratio and mutual
information. We will show these measures can be derived from the
above formalism using specific modeling assumptions.

A. Gaussian Channel. Perhaps the simplest model we can imag-
ine is that the imageJ be a valid scene (J 5 S) and the imageI be
a measure ofJ corrupted with additive and stationary Gaussian
white noise:

I ~xk! 5 f~S~T~xk!!! 1 ek,

wheref is some unknown intensity function: each tissue classj is
imaged inI with an average response valuef( j ) 5 fj. Then, the
conditional densitiesP(i ku j k

2) have the Gaussian form:

P~i k 5 i u j k
2 5 j ! 5

1

Î2ps
e2~i2fj!2/2s2

,

and the parameter vectoru 5 ( f0, f1, . . . , s) needs to be estimated.
In order to minimize the negative log-likelihood (Eq. 9) with respect
to u, we group the voxelsxk that match the same class. LettingN 5
CardVI, VI

j 5 { xk [ VI, j k
2 5 j }, and Nj 5 CardVI

j , we have:

2 log P~I uJ, T, u! 5 N log Î2ps 1
1

2 O
xk[VI

~i k 2 f~ j k
2!!2

s2

5 N log Î2ps 1
1

2 O
j

O
xk[VI

j

~i k 2 fj!
2

s2 . (10)

The optimal parameters are then easily found by differentiating
the log-likelihood:

2
­ log P

­fj
5 2

1

s2 O
VI

j

~i k 2 fj! f f̂ j 5
1

Nj
O
VI

j

i k,

2
­ log P

­s
5

N

s
2

1

s3 O
j

O
VI

j

~i k 2 fj!
2f ŝ2 5 O

j

Nj

N
ŝ j

2,

where ŝj
2 [ 1/Nj ¥xk[VI

j (i k 2 f̂ j)
2 is the image variance corre-

sponding to the isosetVI
j . The registration energyU(T) is then

obtained by substituting the optimalu parameter:

U~T! 5
N

2
logF2pe O

j

Nj

N
ŝ j

2G 5
N

2
log@2pe Var~I 2 f̂~J2!!#.

This result has a satisfying interpretation:U(T) decreases with
the variance of the difference image betweenI and the intensity
correctedf̂( J). The intensity functionf̂ is nothing but a least squares
fit of the imageI in terms of the referenceJ: it is in fact the same
fitting function as in the definition of the correlation ratio (Eq. 2)
(Roche et al., 1998a,b), and we see that the registration energyU(T)
is related to the correlation ratioh2(I uJ2) by:

h2~I uJ2! 5 1 2
1

k
e2U~T!/N, with k 5 2pe Var~I !.

In the original version of the correlation ratio (Roche et al.,
1998b), the quantitiesN and Var(I ) were computed only in the
overlap between the images, and thus, they could vary according to
the considered transformation. Their role was precisely to prevent
the image overlap from being minimized. In the implementation
proposed in Section IID,N and Var(I ) are independent of the
considered transformation. MinimizingU(T) is then strictly equiv-
alent to maximizing the correlation ratio, although it is not strictly
equivalent to maximizing the original version of the correlation
ratio. In our experiments, this distinction seemed to have very little
impact on the results. Still there are reasons to believe that differ-
ences may be observed in cases where the image overlap is suscep-
tible to rapidly changing with pose. In our experiments, this was not
the case. However, this question needs to be addressed with further
testing.

Another remark is that, in practice, we may compute the corre-
lation ratio using a reference image that is not a valid segmentation:
then there are as many tissue classes as image isointensity sets,
typically 256 for a 1-byte encoded image. For 2- or 4-byte images,
this approach may be meaningless and we should impose constraints
to the intensity functionf. In the appendix, we generalize the notion
of correlation ratio to polynomial imaging functions. Notably, if we
constraintf to follow an affine variation with respect toj , i.e.,f( j ) 5
aj 1 b, we get a similar equivalence with the correlation coefficient
defined in Eq. (1):

r2~I , J2! 5 1 2
1

k
e2U~T!/N, with k 5 2pe Var~I !.

B. Unspecified Channel. A straightforward extension of the
previous model would be to assume the reference imageJ to be also
corrupted with Gaussian noise. Then, having defined the prior prob-
abilities for the tissue classes, we could derive the analytical form of
the conditional densitiesP(i ku j k

2) from Eq. (8). This case has been
investigated by Leventon and Grimson (1998). It turns out that there
is probably nothing much faster than an Expectation-Maximization
(EM) algorithm to provide maximum likelihood estimates of the
density parameters.

In order to get explicit density estimates, we can relax every
formal constraint on the model. Then, the densitiesP(i ku j k

2) are
totally unspecified, and we will only assume that they are stationary,
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i.e.,P(i k 5 i u j k
2 5 j ) is independent of the positionxk. For the sake

of simplicity, we consider the case of discrete densities, but the
study is similar for continuous densities. The problem is now to
minimize

2 log P~I uJ, T, u! 5 O
xk[VI

2 log f~i ku j k
2!,

with respect tou 5 ( f(0u0), f(1u0), . . . , f(1u1), . . . , f(2u0), . . . )
and under the constraints:@j, Cj 5 ¥i f(i u j ) 2 1 5 0. We regroup
the intensity pairs (i k, j k

2) that have the same values:

V i, j 5 $xk [ VI, I ~xk! 5 i , J~T~xk!! 5 j %, Ni, j 5 CardV i, j,

Then, the negative log-likelihood becomes:

2 log P~I uJ, T, u! 5 2O
i, j

Ni,j log f~i u j !.

Introducing Lagrange multipliers, there exists constantsl0,
l1, . . . , such that for anyj :

0 5
­ log P

­f~i u j !
2 O

j9

l j9

­Cj9

­f~i u j !
5

Ni, j

f~i u j !
2 l j.

Thus, taking into account the constraints¥i f(i u j ) 5 1, the optimal
parameters verify:

f̂~i u j ! 5
Ni, j

Nj
5

p~i , j !

p~ j !
,

wherep(i , j ) [ Ni , j/N is the image-normalized 2D histogram and
p( j ) [ ¥i p(i , j ) the corresponding marginal distribution forJ2.
Equation (3) shows thatU(T) is nothing but a decreasing function of
mutual information:

U~T! 5 2N O
i, j

p~i , j ! log
p~i , j !

p~ j !
5 N@H~I ! 2 (~I , J2!#,

whereH(I ) is the entropy of imageI and is constant in the imple-
mentation proposed in Section IID. The same remark as made in
Section IIIA holds for the distinction between the usual implemen-
tation of mutual information and the one considered here.

C. Comparison of Measures. In the derivation of the correla-
tion ratio (CR), it was assumed that the image to be registered is a
measure of the reference corrupted with additive and stationary
Gaussian white noise. In contrast, for deriving mutual information
(MI), no assumption was made apart from stationarity and, of
course, the assumptions (A1) and (A2) stated in Section II. Does it
make MI necessarily a better registration measure than CR?

In principle, the answer is no whenever the assumptions of CR
are verified by the images. Basically, these are reasonable if the
reference image can be considered as a good anatomical model: in
practice, this is often a rough approximation. The problem then is to
determine what is better between an overconstrained and an under-
constrained measure, a question to which experiments can yield
some insight, as will be illustrated in the next section.

IV. EXPERIMENTS OF RIGID REGISTRATION
This section illustrates the practical differences between the CR and
MI measures in the context of 3D rigid registration of brain images
acquired from different modalities. Following the ideas proposed by
Maes et al. (1997), we implemented Powell’s method (Press et al.,
1992) to optimize the measures with respect to the transformation
parameters. Partial volume interpolation (PV) was used in all the
experiments.

A. Vanderbilt Database. The registration algorithm was tested
using image data sets from 10 patients. For each patient, the fol-
lowing images were available:

● MR, T1 weighted (2563 256 3 20/26 voxels of 1.253
1.253 4 mm3)

● MR, T2 weighted (2563 256 3 20/26 voxels of 1.253
1.253 4 mm3)

● Computed tomography (CT; 5123 512 3 28/34 voxels of
0.653 0.653 4 mm3)

● Positron emission tomography (PET; 1283 1283 15 voxels
of 2.593 2.593 8 mm3)

The gold standard transformations between the modalities were
known thanks to a prospective, marker-based registration method
(West et al., 1997). We performed three kinds of registrations: T1 to
T2, CT to T1, and PET to T1 (Fig. 2). In all the experiments, the
transformation was initially set either to the identity or to the gold
standard: this was done to test if the algorithm was sensitive to
initialization. However, because the results were almost the same for

Figure 2. Multimodal registration by maximization of CR. Images from left to right: MR-T1, MR-T2, CT, and PET. The images are resampled
in the same reference frame after registration. Contours extracted from the MR-T1 are superimposed on every other modality in order to better
visualize the quality of registration.
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both types of initialization, we present only those obtained when
starting from the identity.

After each registration, a typical errore was computed by taking
the average registration error of the eight vertices of a bounding box
corresponding approximately to the head volume. Thus,e represents
the error to be expected in the region of interest. We also computed
the intrinsic rotation and translation errors (Pennec and Thirion,
1997). LetR* and t* be the ground truth rotation matrix and trans-
lation vector. For a rotation matrixR and a translation vectort found
by the registration algorithm, the intrinsic rotation errorDu is the
norm of the rotation vector corresponding to the residual rotation

matrix R*
t R and the translation error is the Euclidean distance

betweent* and t, i.e., Dt 5 it 2 t* i. Intrinsic errors were chosen
because these are objective measures that are independent of any
region of interest.

Table I shows Root Mean Squares (RMS) ofe, Du, andDt for the
10 patients, for each modality combination. These have to be com-
pared to the image resolution, which is quite poor (4 mm in the
z-axis for the MR and CT data sets and 8 mm for the PET). The
reader may notice that errors reported here are higher than target
registration errors reported by other groups in the retrospective
registration evaluation project (Woods et al., 1993). Our guess is that
this is simply because our respective methods for computing errors
are different.

In T1/T2 registration, CR and MI give good and similar results.
For the other combinations, more significant differences are ob-
served. MI does a much better job for matching CT to T1. This
might be due to the fact that functional dependence is a crude
hypothesis in the CT/MR case (Wells et al., 1997). On the other
hand, CR tends to give slightly better results for PET/T1 registra-
tion.

B. US/MR. A very challenging registration problem consists of
aligning an intraoperative ultrasound (US) image with a preopera-
tive image such as an MR scan. We tested the registration algorithm

Table I. Rigid registration errors obtained over 10 intrapatient
experiments.

Experiment Measure

RMS

Du (deg) Dt (mm) e (mm)

T1/T2 CR 0.31 2.28 1.91
MI 0.58 2.19 2.16

CT/T1 CR 2.91 11.27 6.75
MI 0.77 3.98 3.31

PET/T1 CR 1.53 5.49 5.16
MI 1.42 7.55 7.84

Figure 3. (Top left) Three orthogonal views of the MR image. (Top right) Corresponding views of the US image in a random initial position.
(Bottom left) Display of the initial US with contours from the MR superimposed. (Bottom right) Same display with the registered US.
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with an MR, T1 weighted scan (2563 2563 124 voxels of 0.93
0.9 3 1.1 mm) and an intraoperative 3D US image (1803 136 3
188 voxels of 0.953 mm3).

Because the US image was acquired before opening the dura-
mater, we neglect the brain shift phenomenon. Thus, there is essen-
tially a rigid displacement to find. The correct registration position
was found manually using an interactive matching tool, and vali-
dated by a clinician. The estimated accuracy was 2° in rotation and
2 mm in translation. We took this first result as a ground truth for
subsequent experiments.

We then performed 200 automatic registrations by initializing the
algorithm with random displacements from the ground truth position
(Fig. 3): a rotation vectorDr with random direction and constant
magnitudeiDr i 5 158 and a translationDt with random direction
and constant magnitudeiDti 5 20 mm. These values correspond to
the variation between the ground truth and the original position. For
each random transformation, two registrations were performed us-
ing, alternatively, CR and MI. To avoid interpolation artifacts due to
resampling, the algorithm did not take as an input the US resampled
by the ground truth transformation, but always the original US itself.
Another advantage of doing so is that the ground truth corresponds
to a partial overlap between the MR volume and the original US
volume. Therefore, there is no reason to expect the registration
results to be biased toward the ground truth due to the problems
associated with changing the image overlap (see Section IID).

We observe two kinds of results: either the algorithm retrieves
the ground truth transformation (yielding errors systematically lower
than idr i 5 28 and idti 5 2 mm) or it converges to a local
maximum (yielding errors systematically larger thanidr i 5 108
andidti 5 10 mm). The main result is that CR fails in 14% of cases
whereas MI fails in 51% of cases (Table II). The RMS errors
computed on successful registrations are lower than the expected
accuracy of the ground truth; thus, they prove nothing but the fact
that both CR and MI have a maximum in the neighborhood of the
ideal registration transformation (this is probably also a global
maximum). However, the percentages of success indicate that CR
may have a wider attraction basin, an observation consistent with
previous experiments with other modality combinations (Roche et
al., 1998b).

To study the effect of noise in the data, we repeated the same
experimental protocol twice, using as a reference image the MR
presegmented by anisotropic diffusion (Perona and Malik, 1990) and
the MR corrupted with Gaussian noise. The number of failures for
both measures is clearly affected by the amount of noise (Table II).
This comes as no surprise in the case of CR, because this measure
has been derived under the assumption that there is no noise in the
reference image (see Section IIIA). This is more surprising for MI,
as no such assumption was made.

We conclude that the attraction basin of the measures could be
extended by denoising the MR image in a preprocessing step.

Studying the effects on accuracy would have been of great interest
too, but this was not possible here because the ground truth could not
be considered accurate enough.

We believe that the registration algorithm would greatly benefit
from reducing noise in the US. Unfortunately, applying classical
anisotropic diffusion to the US did not provide convincing results. It
tended to blur the image and did not remove speckle artifacts.
Specific filtering tools need to be developed for US images. This is
still an open research track.

V. CONCLUSION
We have formalized image registration as a general maximum
likelihood estimation problem and shown that several existing sim-
ilarity measures may be reinterpreted in this framework. This en-
ables us to better understand the implicit assumptions we make
when using a particular measure, and hopefully, helps the selection
of an appropriate strategy given a certain problem.

Experimental results of rigid registration confirm (if needed) that
similarity measures relating to different assumptions yield different
performances. The CR measure was shown to be more efficient than
MI in the case of PET/MR and US/MR registration. As CR relies on
more restrictive hypotheses than MI, this suggests the importance of
constraining the relationship between the images. On the other hand,
the assumptions should also be founded. We are aware that CR relies
on a model that, although simpler, may not be realistic.

Because the presented work allows us to derive systematically
the similarity measures from explicit modeling assumptions, this is
a step toward taking into account more realistic models of image
acquisition and anatomy. In the future, we plan to develop this
approach for the challenging problem of US/MR registration.
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Table II. RMS errors and percentages of failures in 3D US-MR rigid registration.

Reference Image Similarity Measure

RMS RMS (successes)

Failures (%)Du (deg) Dt (mm) Du (deg) Dt (mm)

Original MR CR 11.49 23.33 1.11 0.42 14.0
MI 19.07 47.14 1.27 0.64 51.0

Filtered MR CR 12.64 26.29 0.92 0.52 12.5
(anisotropic diffusion) MI 17.35 27.41 1.35 0.82 28.0

Distorted MR CR 28.51 18.08 3.21 2.04 36.0
(s 5 10%) MI 44.23 45.06 1.84 1.36 90.0

78 Vol. 11, 71–80 (2000)



APPENDIX
A. Generalization of the CR. For the problem considered in
Section IIIA, we could define the unknown imaging functionf to be
polynomial with degreed:

f~ j ! 5 O
p50

d

apj
p.

Then, we aim at minimizing the log-likelihood,

2 log P~I uJ, T, u! 5 N log Î2ps 1
1

2 O
xk[VI

~i k 2 f~ j k
2!!2

s2

5 N log Î2p s 1
1

2s2 O
xk[VI

@i k 2 O
p50

d

ap j k
2p#2 ,

(11)

with respect tou 5 (a0, a1, . . . , ap, s). By differentiating Eq.
(11), we get:
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The polynomial coefficients are then seen to be solutions of the
linear systemAX 5 B, with

X 5 ~a0 a1 a2 · · · ad!
T
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N O j k
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T

In practice, we invert the (d 1 1) 3 (d 1 1) matrix A by the
method of singular value decomposition (SVD). This avoids numer-
ical explosion whenA comes close to singularity. To solve for the
standard deviations, we differentiate the log-likelihood:

2
­ log P

­s

5
N

s
2

1

s3 O
xk[VI

~i k 2 f~ j k
2!!2f ŝ2

5
1

N O
xk[VI

~i k 2 f̂~ j k
2!!2.

Thus, the optimals is equal to the standard deviation of the
difference image betweenI and the optimally corrected imageJ2.
This yields the registration energy,

U~T! 5
N

2
log@2pe Var~I 2 f̂~J2!!#,

a measure that directly generalizes the CR.
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