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ABSTRACT: Although intensity-based similarity measures are in-
creasingly used for medical image registration, they often rely on
implicit assumptions regarding the imaging physics. This paper clar-
ifies the assumptions on which a number of popular similarity mea-
sures rely. After formalizing registration based on general image ac-
quisition models, we show that the search for an optimal measure can
be cast into a maximum likelihood estimation problem. We then
derive similarity measures corresponding to different modeling as-
sumptions and retrieve some well-known measures (correlation co-
efficient, correlation ratio, mutual information). Finally, we present
results of rigid registration between several image modalities to illus-
trate the importance of choosing an appropriate similarity measure.

tation step, they are often restricted to very specific registration
problems. Likewise, when dealing with images from different mo-
dalities, finding homologous landmarks is a very challenging task
due to the lack of redundancy in anatomical information.
Intensity-based techniques circumvent these difficulties because
they do not deal with identifying geometrical landmarks. Their basic
principle is to search, in a certain space of transformations, the one
that maximizes a criterion measuring the intensity similarity of
corresponding voxels. This paper focuses on this class of methods.
Over the last few years, they have been applied to a number of
registration problems, including monomodal, multimodal, rigid, and

© 2000 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 11, 71-80, 2000 nonrigid registration (Maintz and Viergever, 1998). Common to the

many proposed similarity measures is the idea that, when matched,
the image intensities should verify a certain relationship. The sim-
I. INTRODUCTION (he imag S e Onship. 1he Sir

) R ) o ilarity measure is intended to quantify how well this relationship is
Registration is a problem common to many tasks in medical imaggqified given a transformation between the images.
analysis. It can be necessary to compare images acquired from the ¢ qaging one measure adapted to a specific registration problem
same patient at different times or with different sensors. One usuallys ot aiways straightforward for at least two reasons. First, it is
distinguishes registration problems according to whether the imagesgan difficult to model the physical relation between the image
are from the same modality (monomodal registration) or from dif-

fergnt m'odalltles_ (multlqual _reglstr_at_lon)_ In gener_al, 'mrapat'emassumptions that are not fully explicit. We can roughly classify
registration consists of estimating a rigid transformation between th%xisting similarity measures according to four main kinds of hypoth-
images, but it can also involve a nonrigid transformation in order toeseS'

compensate for tissue deformations or geometrical distortions inher-"

ent to the IMaging processes. N . Identity Relationship. In this category, the basic assumption is
Registration is also useful for comparing images acquired fron}he conservation of intensity from one image to the other. This
different patients, e.g., to build statistical anatomical atlases. Much cludes a number of popular measures, e.g., the sum of s.quared

. . . . |
effort in this area has been devoted to the geometrical modeling af ) . . . :
anatomical variations from one subject to another. In general, inter'—ntenSIty dlfferencelst_(SSDg, the slugnszof ab;olu:e |nter]1‘st|:]y c:;f:fer-
patient registration involves nonrigid transformations (Toga, 1999).ences’ cross-correlation (Brown, ), and entropy of the differ-

Reviews of medical image registration methods were written bfnce im.age (Byzug and Weese, 1998). Although these measures are
(1993), Lavallee (1995), and Maintz andmt equivalent in terms of robustness and accuracy, none of them is

a comparison of algorithms base@ble to cope with relative intensity changes from one image to the
pther.

intensities. Second, most of the similarity measures rely on imaging

van den Elsen et al.
Viergever (1998). Quite recently,
on a retrospective evaluation was published by West et al. (1997) i

the context of intrapatient rigid registration. Registration methods . . )
are usually classified as being either feature or intensity based\ffine Relationship. The step beyond is to assume that the two

Methods from the former class proceed in two sequential steps. Thghages! andJ to be registered are related by an affine mapping, i.e.,

first is to segment homologous geometrical landmarks in the images;~ @J + B. The measures adapted to this situation are more or less
these can be points, lines, surfaces, or volumes. The problem thefqriants on the correlation coefficient (Brown, 1992), defined as the
reduces to a purely geometrical task, i.e., to evaluate the transfofatio between the covariance of the images and the product of
mation that best matches these landmarks. Because these methde@ividual standard deviations:

are highly dependent on the algorithms that are used in the segmen-

Cov(l, J)

p(l, ) = VVar(l) var(J)

)

Correspondence toAlexis Roche

© 2000 John Wiley & Sons, Inc.



The correlation coefficient is generally useful for matching imagesmeasures with results of rigid multimodal registration of three-
from the same modality. Nevertheless, the affine hypothesis islimensional (3D) brain images.

hardly valid for images from different modalities, and thus it has not

provided convincing results in multimodal registration. Il. FORMULATION

A. Maximum Likelihood Registration. Two imaged andJ to
Functional Relationship. For multimodal images, more com- pe registered, are related through the common anatomical reality that
plex relationships are involved. The approach we proposed in Rochgey measure. However, the way anatomical structures are repre-
et al. (1998b) was to assume that, at the registra’[ion pOSition, ON&ented depends on the physics of the |mag|ng involved in each
image could be approximated in terms of the other by applying somecquisition. Thus, modeling the relationship between the images
intensity function| ~ ¢(J). Making no assumption regarding the requires the knowledge of both the underlying anatomy and the
nature of the function, we derived a natural statistical measure, thﬁ}nage formation processes. A convenient model of the anatomy will

correlation ratio: be an image called segmentation or scene: by definition, a scene is
any image for which the intensity of a given voxel represents the
Var(l — $(J)) tissue class to which it belongs.
2 P S S . .
X119 =1 : (2 Assuming that we know a scene, we can model indirectly the
Var(l)

relationship betweehandJ based on image acquisition models. A
standard approach in computer vision is to interpret an image as
) ) i g fbeing a realization of a random process that corrupts the scene. This
| in terms ofJ (Papoulis, 1991). The _correlatlon ratio is closely means that the relationship betwdeandS (respectively,) andS)
related to a very popula!’ measure previously PrF’pO?ed t_)y Woods defined in terms of a conditional probability density function
c(all. (1£)993) and generalized using robust metrics in Nikou et al'P(I|S). The two following assumptions are usually stated:

1998).

whered(J) is the least squares optimal nonlinear approximation o

e (Al) The voxels of the image are conditionally independent

Statistical Relationship. Finally, assuming a functional relation- knowing the scene, i.e.,

ship is sometimes too restrictive. In these cases, it is more appro-
priate to use information theoretical measures; from this group, P9 = n P(i9),
mutual information (Maes et al., 1997; Viola and Wells, 1997) is e

today probably the most popular: . i .
where (), denotes the voxel grid of andi, = I(x,) is the

intensity of the voxel with coordinates, in a given frame

. p(i, j) attached to the gri€)
90, 3) = i) log 7 3 e grice,. o
@9 Z JZ p(i. J) log p()p(j) ®) e (A2) The noise is context free. In other words, the intensity of
a voxel depends only on its homologous in the scene:
where p(i, j) is the intensity joint probability distribution of the P(id9 = P(ids!), with s! =ST(x)) = (Se T)(x),
images ang(i) andp(j) the corresponding marginal distributions. ) . . )
This category is not fundamentally different from the previous one, whereT is the spatial transf_ormatlon that relates the coordinate
as the ideal case is still perfect functional dependence; mutual ~ rames of2, andQ, the grid ofS. In the case whereandS
information is, however, theoretically more robust to variations with are not supposed to be alignel,has no reason to be the
respect to this ideal situation. identity. Of course, to be meaningful, the transformatibn

A number of comparison studies have shown that similarity needs to be defined as a mapping frmto Qs i.e., a grid
measures yield different performances depending on the considered ~ POInt of | is supposed to match a grid point 8f In Section
modality combinations (West et al., 1997; Bro-Nielsen, 1997; Pen- D, we discuss how this may be achieved in practice.
ney et al., 1998; Nikou et al., 1998; Roche et al., 1998b). There is ) . -
probably no universal measure and, for a specific problem, the point Under these assumptions, the conditional probability lafiow-
is rather to choose the one that is best adapted to the nature of tHed the sceneS and the transformatiof is easily seen to be:
images.

The link between explicit modeling assumptions and similarity PSS, T) = ]_[ P(iss). 4)
measures has not yet been made clear. Some authors (Mort and XEQ
Srinath, 1988; Costa et al., 1993) proposed that image registration
could be seen as a maximum likelihood estimation problem. Others We can model the relationship betweérand S in the same
(Viola and Wells, 1997; Wells et al., 1996) suggested the analogy ofnanner. However, as we are only interested in the relative displace-
this approach with registration based on information theory. Notament betweerl and J, we will considerJ as a reference image
bly, other teams had motivated information-theoretical measureglready aligned with the scene, meaning that no transformation is
using different arguments (Maes et al., 1997; Studholme et alinvolved in the conditional probability,

1996).

In Section 2, we propose to formulate image registration as a PAIS = | P(jls), with j=3(y), s=Sy), (5)
general maximum likelihood estimation problem, examining care- yIEQ
fully the assumptions that are required. In Section 3, deriving
optimal similarity measures from specific modeling assumptions, we) ; = Q4 being the voxel grid ofl, which coincides with that o8.
retrieve the correlation ratio and mutual information. Section 4  Without knowledge of the scene, the probability of the image
proposes to illustrate the practical differences between these twpair (I, J) is obtained by integrating over all possible realizations of
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S. Assuming that the two acquisitions are independent, we Réve  in which we have regrouped the poiytsaccording to whether they
JIS, T) = P(l|S, T) P(J]9), and thus: match a point in(), or not. Then, applying the Fubini theorem, we
can invert the integral operands and the products, so that:

Pd I J PUIS DPUISPES dS © b, om =TT | PillsIPGis)PGs) ds
yIEA
The transformatiom appears as a parameter of this joint prob- X H f P(j|s)P(s) ds,
ability function. It is natural to invoke the maximum likelihood et
principle to formulate registration, as already proposed (Viola and
Wells, 1997; Leventon and Grimson, 1998; Bansal et al., 1998; Mort
and Srinath, 1988; Costa et al., 1993). This simply states that the =1 Pat iy x IT PGy,
most likely transformation betweednandJ is the one that maxi- € sl

mizes the joint probability ofl(, J),
Noting thatP(i,", j,) = P(i,"|j,) P(j,), we finally get:

[T PGy x T P,

VIEQ NEA

Unfortunately, the integral in Eq. (6) may be intractible unless H P(j) X H P(idjd),
we assume that the voxels of the scene are independently distributed, e %l @)
so thatP(S) = II,, P(s). This appears as a minimal way to
introduce prior anatomical information. Notice, however, this does
not mean that the voxels are identically distributed, so that spatial
dependences may still be incorporated into the model. Grisea
coupled field, there might not exist an analytical expressioR(bf where the last step is only a rewriting B(1|J, T) in the coordinate

JIT). Instead of the present maximum likelihood approach, a MaXt o me 0fQ,. In Eq. (7), the left term of the product is the marginal

iT“”m a posteriori (MAP) st_rategy could be empk_)yed. This alte"_]a'probability ofJ and is independent of the transformatibrOnly the
tive, using for example a Gibbs-Markov random field, would require

S . ) right term, the conditional probability df knowingJ and T, will
an explicit estlmatl??n of the scene that would be computatlonallyplay a role in the maximization with respect To We should note
very expensive in 3D images. . .

In order to simplify Eq. (6), we will also need the transformation thatP(1]3, T) is of the same factored form &[S, T):
T to be an injection mapping frof?, to Q,, i.e., T maps distinct _—
points from(}, to distinct points from(},. Let us denote the subset PO, T) = H P(i i),
of matched pointsgd = T(Q,) = {y, € Q,, Ix, € Q,, T(X,) = X
y,}. Recall that, because€ is assumed to be a mapping frdi to
Q, (assumption A2), the matched pointé are assumed to lie f P(idsHP(jt|sd)P(st)ds!
entirely within ;. The conditional probability?(1|S, T) can then with  P(ij}) = ®)
be evaluated in the same coordinate fram®@3S) andP(S): KK '

[ puispsies

P(l, J|T)

T= arg maxP(l, J|T).
T

Y —_—
P(J) P(13,T)

P, T) = [] PGds!) =[] PGi/'[s),
XEQ yEsd It turns out that the statistical relation betwdeandJ is of the
same form as that betweémndS. This result is obtained under the

where we have to be cautious that = I((T~*(y,)) represents the ~assumption that the scene voxels are mutually independent. There-
intensity of the unique voxet, such thafT(x,) = y,: it is defined ~ fore, the imagel can be considered as a scenelfor the sense that

iff y, € s1. We are now in a position to rewrite the joint probability P(l[J, T) verifies the assumptions (A1) and (A2) stated above.
of (1, J). Starting from Eq. (6), we have: However, it is important to realize that the conditional densities
P(isd) and P(i|j}) may have very different expressions.-Be
cause theP(i,Js} ) are intended to model acquisition noise, they
) ] may generally be chosen as single-mode densities (e.g., Gaussian
P, JIT) = f [T Pailisy IT Plils)pes) 1 ds, densities). On the other hand, tR¢i,|j,}) may have much more
et e e complicated forms because they incorporate the noise models cor-
responding to each image as well as the prior probabiliton

B 1 .
= f [1 PGi'Is)PGils)P(s) ds B. Estimating the Probability Densities. Until now, we have
et worked under the assumption that all the probability densities in-
volved in our model were perfectly known. We address here the

question of how to estimate them.
X J ]_[ P(ji|s)P(s)ds, Because these densities stand for anatomical and image acquisi-
yie sl tion models, they should vary significantly from one data set to
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another, due not only to interpatient anatomical variability but also
to changes in acquisition settings. For example, a tissue such ¢
white matter may have very different ranges of response in twc
differently acquired brain magnetic resonance (MR) scans. Very
often in practice, we cannot use information from previous data set
to model the relationship between the images we want to register
Therefore, the conditional densities have to be estimated online
in the same manner as we have to estimate the transforniatide
notice that estimating the densities would be easier if the image
were aligned; on the other hand, the registration process neec
density estimates to work. Thus, the trade-off is to alternate fromr
registration to density estimation: given a current estimatd,of )
estimate the densities, and given current estimates of the densitie T
update the transformation by maximizir(l, J|T), hoping for
convergence. Notice that because only the conditional densitie Image J — Image 1
P(i ] jd) play a role in the maximization with respectTo(see Eq.
7), we could forget about estimating the marginal densmgs). Figure 1. Effects of applying a continuous spatial transformation.
Within analogous formulations of image registration, several
methods have been proposed for the density estimation step. Violifference between the parametdrsand 6, except that the latter
and Wells (1997) use the method of Parzen windows to estimate th@odels the relation between the image intensities. In the context of
joint densitiesP(i, jki ), from which it would be straightforward to registrationT is the parameter in which we are really interested. For
obtain the conditional densitie®(i, |, ). Other authors (Maes et practical optimization, it is often more convenient to consider the
al., 1997; Studholme et al., 1996) construct the 2D histogram of th&@egative log-likelihood (to be minimized); thus, we will define the
images, which may be seen as a particular case of Parzen windo@nergy of a transformatiof as:
ing. In these techniques, the densities are not constrained by any
model of anatomy or image acquisition; this is perhaps both au(T) = —log maxP(1|J, T, 6) = min[— >, log Py(iJj¢)]. (9)
strength and a weakness. Moreover, we notice that they provide 0 0
density estimates that are independent of the spatial positions, in the
sense that two voxelg, and x,, are assumed to be identically D. Practical Issues. In Section IIA, we derived the likelihood
distributed provided that they have the same intensities in bothegistration criterion under the assumption that the transformation
images, i.e.j, = i, andj} = j. A way to incorporate explicit is searched for among mappings from the floating image €jdto
spatial dependence was recently suggested by Bansal et al. (199&)¢e reference image grid),. In other words, a grid point df was
who applied the maximum entropy principle to get nonstationarysupposed to always match a grid pointlofThe spatial resolution of
prior probabilitiesP(s,) for the tissue classes, implying nonstation the transformation is thus intrinsically limited by the resolution of
ary densitieP(i,|j ). the reference grid. Clearly, this assumption cannot deal with sub-
In the framework where the transformation is found by maxi- voxel accurate registration.
mum likelihood, the most natural way to estimate densities is also to In practice, we generally want to take into account continuous
use a maximum likelihood strategy. This means that we can searcdpatial transformations, not only for a question of accuracy but also
for the conditional densitie®(i|j,}) that maximize exactly the because the motion to be estimated is continuous in nature. Thus, we
same criterion as in Eq. (8). Basically, this is a parametric approachwould like the resolution of the reference grid to be as small as the
we assume that the(i,] j,} ) belong to a given class of distributions computer working precision. This is achieved in practice by over-
parameterized by a vector(regardless, for the moment, of what  sampling the imagé using fast interpolation techniques such as
represents); then their maximum likelihood estimates, for a giveririlinear or partial volume interpolation (Maes et al., 1997; Sarrut
estimate of the transformatioh, are found by: and Miguet, 1999; Sarut and Feschet, 1999; Pluim et al., 1999).
Notice that for evaluating the registration criterion Eq. (8), we do not
- o actually have to interpolate every point in space, but only, for a
6(T) = arg nlaxP(I|J, T, 0) = argmax ][ Pyiji). given transformation, the points that are put into correspondence
XL with voxels ofl, i.e., the subset! defined in Section IIA.
However, interpolation is possible only if the transformed posi-
The parametric form oP(I1|J, T, §) may be derived from the tion of a voxel falls inside the reference domain. Because this
modeling assumptions presented in Section IIA whenever all thelomain has a finite extension in space, other voxels may fall outside,
components of the mode®(i,/s! ), P(j,|s), andP(s)), are them so that there is not enough information to interpolate the intensity of
selves chosen as parametric densities. Then, from Eq. (8), the fortheir correspondent (Fig. 1). The problem of how to treat these
of P(1]J, T, 6) can be known. We show in Section IlI that under outside voxels plays an important role in voxel-based image regis-
some specific modeling assumptions, maximum likelihood densitytration. They are generally ignored by the registration criterion,
estimates can be computed explicitly. which necessitates some heuristic normalization to avoid nasty
effects such as disconnecting the images (Studholme et al., 1998;
C. Registration Energy. By substituting the estimated densities Viola and Wells, 1997; Roche et al., 1998b).
in Eq. (8), our registration criterion becomes the maximurR@fJ, Here, to keep consistent with the maximum likelihood frame-
T, 6) under 6 at fixed T. Actually, this is only a special way to work, we definitely cannot ignore them. Doing so, we would no
maximizeP(1|J, T, 6) with respect to T, 8). There is no formal longer maximize the image likelihoo®(1|J, T), but the likelihood
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of a part ofl, which is variable according to the considered trans-where 57 = 1/N; Zyeal (i — ?j)z is the image variance corre
formation. There is always a risk to isolate small image regions thasponding to the isosef2]. The registration energy(T) is then
seem very likely to be aligned (typically, in the background). Theobtained by substituting the optiméalparameter:
algorithm might then converge to an aberrant solution.

To tackle this problem, a natural approach is simply to extend the N N N ~
reference domain by assigning the external points to an arbitrary U(T) = 5 Iog[Zwe > Wj sz} = - log[2me Var(l — fa4))1.
intensity class] = j* and defining a specific conditional density j
corresponding to this class. Although this sounds like a computa-
tional artifice, this enables us to take into account every voxél of This result has a satisfying interpretatidd(T) decreases with
at each iteration of the registration process. Each voxel with intenthe variance of the difference image betwdeand the intensity
sity i, falling outside the reference domain will have a nonzerocorrected(J). The intensity functior is nothing but a least squares
contribution— log P(i,| j*) to the registration energy. Thus, we can fit of the imagel in terms of the referencé: it is in fact the same
expect the registration energy to vary little with image overlap as iditting function as in the definition of the correlation ratio (Eq. 2)
the effect achieved with classical normalization. (Roche et al., 1998a,b), and we see that the registration ey

is related to the correlation ratig?(1|J*) by:

lll. FROM MODELING ASSUMPTIONS TO SIMILARITY
MEASURES

The purpose of this section is to demonstrate the link between the n’(113%) =1 - K e, with k= 2e Var(l).

general maximum likelihood approach that has been presented and

two popular registration criteria: the correlation ratio and mutual |, e original version of the correlation ratio (Roche et al.,
information. We will show these measures can be derived from thﬂ998b), the quantitie®l and Var() were computed only in the

above formalism using specific modeling assumptions. overlap between the images, and thus, they could vary according to

. ) . the considered transformation. Their role was precisely to prevent
A. Gaussian Channel. Perhaps the simplest model we can imag-he image overlap from being minimized. In the implementation

ine is that the imagé be a valid sceneJ = S) and the imageé be  ,ohn5ed in Section IIDN and Var() are independent of the

a measure ofJ corrupted with additive and stationary Gaussian ¢qngjgered transformation. Minimizigd(T) is then strictly equiv-

white noise: alent to maximizing the correlation ratio, although it is not strictly
equivalent to maximizing the original version of the correlation

(X)) = F(S(T(x))) + €, ratio. In our experiments, this distinction seemed to have very little

impact on the results. Still there are reasons to believe that differ-

wheref is some unknown intensity function: each tissue cia&  ences may be observed in cases where the image overlap is suscep-

imaged inl with an average response valt@g) = f;. Then, the tible to rapidly changing with pose. In our experiments, this was not

conditional densitie®(i,|j,/ ) have the Gaussian form: the case. However, this question needs to be addressed with further
testing.
oy 1 itz Another remark is that, in practice, we may compute the corre-
Pli=iljc =) = J2mo er lation ratio using a reference image that is not a valid segmentation:

then there are as many tissue classes as image isointensity sets,
typically 256 for a 1-byte encoded image. For 2- or 4-byte images,

In order to minimize the negative log-likelihood (Eq. 9) with respect tNiS @pproach may be meaningless and we should impose constraints
to 6, we group the voxels, that match the same class. LettiNg= to the mtensﬂy fqnctlom. In the. appendm, we ggnerallze the nptlon
card), Qi = {x € Q,, |} =]}, and N, = Card), we have: of corre_latlon ratio to pon_nomlaI_ imaging functions. Notabl_y, if we
constrainf to follow an affine variation with respect joi.e.,f(j) =
aj + B, we get a similar equivalence with the correlation coefficient

and the parameter vectér= (f, f;, ..., o) needs to be estimated.

s L (= f(0)? defined in Eq. (1):
—log P(11J, T, 6) = N log y2mo + 5 > efined in Eq. (1):
XEQ 7
1
1 (i — )2 pA(1,3Y) =1 — L e with k= 2me Var(l).
-
=Nlog \2mo+5 > X ———. (10

b B. Unspecified Channel. A straightforward extension of the

previous model would be to assume the reference indagée also
The optimal parameters are then easily found by differentiating®Tupted with Gaussian noise. Then, having defined the prior prob-
the log-likelihood: abilities for the tissue classes, we could derive the analytical form of
the conditional densitieB(i,|j,* ) from Eq. (8). This case has been
investigated by Leventon and Grimson (1998). It turns out that there

_ alsifgp — _% E (i—f) > ﬂ = Ni E i is probably_ nothing mugh faster_than a_n E_xpectatior_l-Maximization
I o I q) (EM) algorithm to provide maximum likelihood estimates of the
density parameters.
alogP N 1 . Y N, In order to get explicit density estimates, we can relax every
T 9 o o > > (= fHF=>a2= N T formal constraint on the model. Then, the densifs,|j,}) are
i i totally unspecified, and we will only assume that they are stationary,
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Figure 2. Multimodal registration by maximization of CR. Images from left to right: MR-T1, MR-T2, CT, and PET. The images are resampled
in the same reference frame after registration. Contours extracted from the MR-T1 are superimposed on every other modality in order to better

visualize the quality of registration.

i.e.,P(i, =i|j} =])isindependent of the positiof. For the sake

C. Comparison of Measures. In the derivation of the correla-

of simplicity, we consider the case of discrete densities, but theion ratio (CR), it was assumed that the image to be registered is a
study is similar for continuous densities. The problem is now tomeasure of the reference corrupted with additive and stationary

minimize

—log P(113, T, ) = >, —log (i ji),

XE D

with respect tod = (f(0[0), f(1/0), ... ,f(1]1), ...,f(2]0), ...)

and under the constraintg;, C; = =, f(i|j) — 1 = 0. We regroup

the intensity pairsi(, j,* ) that have the same values:
Q=€ Q, 1(x) =1, IT(xJ) =j}, N;;= Cardl,

Then, the negative log-likelihood becomes:

—logP(1]3, T, 6) = — >, N;; log (il ).

i

Introducing Lagrange multipliers, there exists constangs
A4, - . ., SUCh that for any:

d log P aCj. N
af(ilj) 12 Toat(il) —filp) Y

Thus, taking into account the constraidisf(i|j) = 1, the optimal
parameters verify:

p(i, j)
p(j)

filj) =
i = " =
D=y

wherep(i, j) = N; ;/N is the image-normalized 2D histogram and

p(j) = = p(i, j) the corresponding marginal distribution far .

Equation (3) shows th&i(T) is nothing but a decreasing function of

mutual information:

p@i, j)
p(j)

U(T) = =N X, p(i, j) log = N[H() — 9(1, 31,
ij

whereH(l) is the entropy of imagé and is constant in the imple-

Gaussian white noise. In contrast, for deriving mutual information
(MI), no assumption was made apart from stationarity and, of
course, the assumptions (Al) and (A2) stated in Section Il. Does it
make MI necessarily a better registration measure than CR?

In principle, the answer is no whenever the assumptions of CR
are verified by the images. Basically, these are reasonable if the
reference image can be considered as a good anatomical model: in
practice, this is often a rough approximation. The problem then is to
determine what is better between an overconstrained and an under-
constrained measure, a question to which experiments can yield
some insight, as will be illustrated in the next section.

IV. EXPERIMENTS OF RIGID REGISTRATION

This section illustrates the practical differences between the CR and
MI measures in the context of 3D rigid registration of brain images

acquired from different modalities. Following the ideas proposed by

Maes et al. (1997), we implemented Powell's method (Press et al.,
1992) to optimize the measures with respect to the transformation
parameters. Partial volume interpolation (PV) was used in all the
experiments.

A. Vanderbilt Database. The registration algorithm was tested
using image data sets from 10 patients. For each patient, the fol-
lowing images were available:

e MR, T1 weighted (256X 256 X 20/26 voxels of 1.25%
1.25 X 4 mnt)

e MR, T2 weighted (256X 256 X 20/26 voxels of 1.25%X
1.25 X 4 mnt)

e Computed tomography (CT; 512 512 X 28/34 voxels of
0.65% 0.65 % 4 mnT)

e Positron emission tomography (PET; 128128 X 15 voxels
of 2.59 X 2.59 X 8 mn?)

The gold standard transformations between the modalities were
known thanks to a prospective, marker-based registration method
(West et al., 1997). We performed three kinds of registrations: T1 to
T2, CT to T1, and PET to T1 (Fig. 2). In all the experiments, the

mentation proposed in Section 1ID. The same remark as made itransformation was initially set either to the identity or to the gold
Section IlIA holds for the distinction between the usual implemen-standard: this was done to test if the algorithm was sensitive to

tation of mutual information and the one considered here.
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Table I. Rigid registration errors obtained over 10 intrapatient matrix RiR and the translation error is the Euclidean distance

experiments. betweent, andt, i.e., At = |t — t,|. Intrinsic errors were chosen
RMS because these are objective measures that are independent of any
) region of interest.
Experiment Measure A6 (deg) At (mm) € (mm) Table | shows Root Mean Squares (RMS¥pA 6, andAt for the
T1T2 CR 0.31 2.28 1.91 10 patients, for each modality combination. These have to be com-
M 0.58 2.19 2.16 pared to the image resolution, which is quite poor (4 mm in the
cTm CR 2.91 11.27 6.75  z-axis for the MR and CT data sets and 8 mm for the PET). The
M 0.77 3.98 331 reader may notice that errors reported here are higher than target
PET/TL I\(/flR 1%"1523 7‘1‘)‘;9 75;16 registration errors reported by other groups in the retrospective

registration evaluation project (Woods et al., 1993). Our guess is that
this is simply because our respective methods for computing errors
are different.
both types of initialization, we present only those obtained when In T1/T2 registration, CR and Ml give good and similar results.
starting from the identity. For the other combinations, more significant differences are ob-
After each registration, a typical errewas computed by taking served. Ml does a much better job for matching CT to T1. This
the average registration error of the eight vertices of a bounding boright be due to the fact that functional dependence is a crude
corresponding approximately to the head volume. Thuspresents  hypothesis in the CT/MR case (Wells et al., 1997). On the other
the error to be expected in the region of interest. We also computedand, CR tends to give slightly better results for PET/T1 registra-
the intrinsic rotation and translation errors (Pennec and Thiriontion.
1997). LetR, andt, be the ground truth rotation matrix and trans
lation vector. For a rotation matri® and a translation vectorfound B. US/MR. A very challenging registration problem consists of
by the registration algorithm, the intrinsic rotation ertbd is the  aligning an intraoperative ultrasound (US) image with a preopera-
norm of the rotation vector corresponding to the residual rotatiortive image such as an MR scan. We tested the registration algorithm

Figure 3. (Top left) Three orthogonal views of the MR image. (Top right) Corresponding views of the US image in a random initial position.
(Bottom left) Display of the initial US with contours from the MR superimposed. (Bottom right) Same display with the registered US.
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Table Il. RMS errors and percentages of failures in 3D US-MR rigid registration.

RMS RMS (successes)
Reference Image Similarity Measure A6 (deg) At (mm) A6 (deg) At (mm) Failures (%)

Original MR CR 11.49 23.33 1.11 0.42 14.0
MI 19.07 47.14 1.27 0.64 51.0

Filtered MR CR 12.64 26.29 0.92 0.52 12.5
(anisotropic diffusion) Ml 17.35 27.41 1.35 0.82 28.0
Distorted MR CR 28.51 18.08 3.21 2.04 36.0
(o = 10%) MI 44.23 45.06 1.84 1.36 90.0

with an MR, T1 weighted scan (258 256 X 124 voxels of 0.9x Studying the effects on accuracy would have been of great interest
0.9 X 1.1 mm) and an intraoperative 3D US image (28036 X too, but this was not possible here because the ground truth could not
188 voxels of 0.95 mm?®). be considered accurate enough.

Because the US image was acquired before opening the dura- We believe that the registration algorithm would greatly benefit
mater, we neglect the brain shift phenomenon. Thus, there is essefiem reducing noise in the US. Unfortunately, applying classical
tially a rigid displacement to find. The correct registration positionanisotropic diffusion to the US did not provide convincing results. It
was found manually using an interactive matching tool, and valitended to blur the image and did not remove speckle artifacts.
dated by a clinician. The estimated accuracy was 2° in rotation an&pecific filtering tools need to be developed for US images. This is
2 mm in translation. We took this first result as a ground truth forstill an open research track.
subsequent experiments.

We then performed 200 automatic registrations by initializing they, coNCLUSION
algorithm with random displacements from the ground truth positio

(Fig. 3): a rotation vectoAr with random direction and constant "We have formalized Image registration as a general maximum

likelihood estimation problem and shown that several existing sim-

magnitude|Ar|| = 15° and a translatiodt with random direction .~ ; L :
) ilarity measures may be reinterpreted in this framework. This en-
and constant magnitudét|| = 20 mm. These values correspond to o )
ables us to better understand the implicit assumptions we make

the variation between the ground truth and the original position. For . . .

; . . when using a particular measure, and hopefully, helps the selection
each random transformation, two registrations were performed USt 2n aporooriate strate iven a certain oroblem
ing, alternatively, CR and MI. To avoid interpolation artifacts due to pprop w9 P '

resampling, the algorithm did not take as an input the US resampled. Expenmental results Qf rigid rgglstratlon conflr'm (i Weede.d) that
) . . Similarity measures relating to different assumptions yield different
by the ground truth transformation, but always the original US itself. .
) 5 erformances. The CR measure was shown to be more efficient than
Another advantage of doing so is that the ground truth correspon

to a partial overlap between the MR volume and the original US I in the case of PET/MR and US/MR registration. As CR relies on

volume. Therefore, there is no reason to expect the registratiorrpore restrictive hypotheses than M, this suggests the importance of

results to be biased toward the ground truth due to the problemconstralnlng.the relationship between the images. On the other hand,
. . . . . e assumptions should also be founded. We are aware that CR relies
associated with changing the image overlap (see Section 1ID). . -
- ey . ; on a model that, although simpler, may not be realistic.
We observe two kinds of results: either the algorithm retrieves . .
. o ; Because the presented work allows us to derive systematically
the ground truth transformation (yielding errors systematically lower, S . . . o
the similarity measures from explicit modeling assumptions, this is

than ||8r] = 2° and ||8t| = 2 mm) or it converges to a local SR > )
maximum (yielding errors systematically larger thist|| = 10° a step toward taking into account more realistic models of image
acquisition and anatomy. In the future, we plan to develop this

and||8t]] = 10 mm). The main result is that CR fails in 14% of cases -~ ch for the challenaing problem of US/MR redistration
whereas Ml fails in 51% of cases (Table Il). The RMS errors PP ging p 9 '

computed on successful registrations are lower than the expected
accuracy of the ground truth; thus, they prove nothing but the facACKNOWLEDGMENTS
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APPENDIX

A. Generalization of the CR. For the problem considered in N z (k= 1(3))*
Section IlIA, we could define the unknown imaging functfoto be e
polynomial with degreeal:
Thus, the optimals is equal to the standard deviation of the
difference image betwednand the optimally corrected image .

¢ This yields the registration energy,

f(j) = 2 P
p=0

N .
U(T) = - log[2me Var(l — f(3'))],
Then, we aim at minimizing the log-likelihood, 2

1 (i —f(j))? a measure that directly generalizes the CR.
—log P(113, T, 6) = N log \Em+§ >

o
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