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Abstract - We propose an automated method for 
extracting anatomical structures in magnetic resonance 
images (MRI) based on texture classification. It consists of 
two consecutive stages. The textures of an input MRI are 
first classified by a network of adaptive spline neurons, 
organized within a hybrid master classifier/mixtures-of-
experts architecture (stage I). The output map is then fed 
into a second neural network, which aims to better contrast 
the target structure and eliminate the mistakes of the first 
phase via local shape/texture analysis and a carefully 
designed learning process (stage II).  Results are 
demonstrated on medical imagery with the segmentation of 
various brain structures. 

 
 

I. INTRODUCTION 
 
Image segmentation, that is, the division of an image 

pixel set into a number of disjoint regions that are 
homogeneous with respect to a set of characteristics, is a 
major goal of computer vision and image processing.  

Effective identification and labeling of anatomical 
structures in possibly complex magnetic resonance 
images (MRI) proves to be especially challenging, given 
the wide variety of shapes and intensities each anatomical 
structure can present. Given the complex intensity 
distribution, general lack of contrast and rather poor 
resolution of MR images, most segmentation approaches 
rely primarily on shape information to extract the 
boundary of the target structure (see [11] for a review of 
deformable template-oriented techniques).  Sometimes, 
tissue classification is used as a pre-processing step to 
facilitate the segmentation task (see [1] for a survey of 
segmentation techniques applied to medical images). 
However, a tissue classifier usually partitions the input 
voxels into 3 or 4 tissue classes (gray matter, white 
matter, cerebro-spinal fluid and “other”) independently of 
the target structure. 

Yet, when expert neuro-scientists manually delineate 
these structures, they also use texture to guide the 
segmentation. For instance, even though both the fornix 
and corpus callosum consists of white matter (Figure 4), a 
different orientation of the fibers yields two different 
textures. Similarly, even though the mean intensity of 

hippocampus (Figure 5, middle) is very close to that of 
its neighborhood, it exhibits a characteristic set of 
textures. 

 Intensity and textural information gathered from the 
vicinity of the target structure also helps the extraction 
process. It is clear from Figure 5 (left) that the typical 
darker and homogeneous appearance of the ventricle is a 
useful clue in finding the caudate nucleus. 
 

This paper addresses the problem of extracting an 
anatomical structure from a series of MR images using 
texture information. Our segmentation system has 2 
stages: 

- stage I : texture classification 
A hybrid master classifier/mixtures of experts neural 

architecture is used in conjunction with adaptive spline 
neurons (ASN) to classify the textures of the input MRI. 
The initial weights and shapes of the ASNs’ activation 
functions are determined by an a priori distribution 
describing the selectivity and accuracy of a statistically- 
derived bank of texture filters. 

- stage II : local shape/texture analysis 
We then use a multi-scale neural network, subject to 

node pruning, to further contrast the target structure and 
correct the possible mistakes of the first stage. This 
separate stage allows us to design a learning set 
concentrated along the classification boundary between 
the desired textures and the others. It also takes 
advantage of a larger neighborhood to enhance the 
quality of the segmentation by using intensity 
information from nearby structures. 

 
We detail our texture classifier in the following 

Section 2, before discussing in Section 3 some 
segmentation results. 
 

 
II. ARCHITECTURE AND LEARNING PROCESS 

 
A. Texture classification via hybrid master classifier / 
mixtures of experts architecture 

 



 

A number of texture descriptors have been discussed 
in the literature (see [13] for a review). These make use of  
statistical measures, time-space-frequency 
decompositions, or fractal parameters for instance. As 
every descriptor has weaknesses and strengths, one 
usually combines them to improve the classification 
performance. 

We chose to use linear discriminant analysis (LDA) 
[10] to evaluate a large number of texture descriptors on a 
training database and help in selecting the most pertinent 
ones. For each anatomical structure to be segmented, we 
compiled a series of MR images, along with their 
associated manually segmented images to form the 
training database. We then used Wilks’ stepwise method 
to find the coefficients of the discriminant function: only 
the descriptors with the highest coefficients were selected 
for classification. 

We give below a short description of these 
descriptors before detailing how we combined them 
within a neural architecture. 

 
Texture descriptors. Following our LDA results, we 
selected: 

- co-occurrence matrices [3]: these embed in a single 
array the relative frequencies of gray level pairs of pixels 
for a series of translations. We use 8 translations. 

- discrete cosine transform [12]: we used a 3x3 DCT 
without critical sampling. 

- dyadic Gabor filters [5]: we chose 3 different 
frequency bands and 4 orientations, and derived the 
energy and entropy for each of the 3x4=12 filtered 
windows. 

- local Hölder exponent [16]: this corresponds to an 
intuitive perception of regularity: it is computed by 
comparing the total variation of the gray levels in the sub-
window with functions of the form: ε→εα. 

 
Hybrid master classifier / mixtures of experts 
architecture. For each pixel in the input MRI, we consider 
a surrounding sub-window (5x5 pixels) and “normalize” 
the intensities by subtracting that of the central pixel from 
the others, before applying the various texture filters. 
Once computed, texture features can be combined in a 
number of ways: 

- they can be concatenated into a single feature vector 
to be classified all together; 

- each feature can be classified separately and the 
results subsequently combined with a voter;  

- a master classifier [4] can be used to classify the 
results of several slave classifiers; 

- or, an independent classifier (associative switch 
[18]) decides which feature filter is considered as 
providing the final result. 

 

Note that the LDA feature selection step we 
implemented yields only a coarse approximation of the 
optimal set of filters that can be classified. In particular, 
some classes may not be separable in certain feature 
space. In [6], Jain et al. suggest using a neural network, 
subject to node pruning, to select the appropriate feature 
filters and eliminate the less relevant ones. A mixtures of 
experts algorithm [7] can also be used to overcome the 
feature selection issue. It consists of a number of experts, 
which receive the same feature vector as input, and a 
decision module (the gate), with one output per expert, 
which controls the extent to which each expert 
contributes to the final classification result: the ith output 
of the gate represents the confidence in the classification 
result of the ith expert. 

We propose a neural network architecture that 
blends together a master classifier and a specialized 
mixtures of experts [17] architecture (Figure 1). The 
network consists of N=4 “expert” networks E = {Ei} , a 
gate G that receives input directly from the MRI, and a 
master classifier in the form of a 2-layered feed-forward 
perceptron (MLP; [14]). As the number of outputs of 
each texture filter varies, we use the same number of 
neurons in the hidden layer of each expert to “normalize” 
the overall feature vector. 

To take full advantage of both types of architecture, 
we use adaptive spline neurons (see [2] for a detailed 
presentation) instead of standard sigmoid activated ones 
for the input layer of the master classifier network. The 
activation function of an ASN consists of a 
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Figure 1. Stage I: texture segmentation. 



 

parameterized spline, whose coefficients are adjusted 
during the training process. By adapting the activation 
function of each ASN together with its weights, we in fact 
implement a feature selection scheme: when a neuron’s 
activation function comes close to the horizontal axis, for 
instance, the corresponding feature expert plays only a 
minor role in the classification process. 

 
Learning process. For each anatomical structure to be 
segmented, the learning set consists of a series of MR 
images, together with the associated manually hand-
drawn structures. We select, at random, points across the 
images and ensure that the number of samples belonging 
to the target structure is roughly the same as those which 
do not. 

The learning process then consists of 3 consecutive 
phases: 

a. We replace the master classifier by a two-level 
hierarchical mixture of experts, as described by 
Jordan and Jacobs in [7]. We then train the 
network using Walter et al. ’s modified version 
[17] of their EM algorithm. 

b. The master classifier with ASNs is trained to 
mimic the behavior of the two-level mixture of 
experts when receiving the inputs from the expert 
networks and the gate. We use the gradient-based 
learning rules detailed in [2]. 

c. The entire network is re-trained by a gradient 
descent algorithm based on that of Gu arnieri et al.: 
we use an adaptive weight learning rate (µw in [2]) 
where µw is small for the experts and the gate and 
high for the master classifier.  

 
Phase (c) enables us to specialize the master 

classifier with the ASN (and thus increase the 
classification performance) while still improving on the 
mixture of experts. Experimental results showed that this 
learning method yielded better results than those obtained 
when using a modified version of Jordan et al. ’s gradient 
descent algorithm adapted to handle the ASN. 

 
The initial activation functions and weights of the 

ASN in phase (b) are set to reflect the a priori confidence 
in the corresponding feature selector. We use our LDA 
results to determine the confidence distribution. The 
initial activation functions take the form of sigmoid 
functions: F = {Fi: x→Fi(x) = αi.tanh(βi.x)} and consist 
of 11 control points. {αi}i and {βi}i are determined from 
the coefficients of the discriminant function found by the 
LDA. 

Note that modifying the activation function while 
training the network not only triggers faster convergence, 
but also enables the learning process to better escape local 
minima. 

Figure 2 shows characteristic shapes of a few ASNs 
upon completion of the learning process, for the 
segmentation of corpus callosum (learning set: 5 MRI in 
mid-sagittal section). Note the flat shape of the activation 
function of the neuron linked to the co-occurrence filter, 
which reflects its poor classification capabilities (this is 
especially clear since the weight of the link to the gate is 
also very small: 3.10-5). 

 
 

B. Local shape/texture analysis via multi-scale neural 
net 

 
The first classification stage uses textural 

information in the input MRI in a very local fashion: a 
somewhat limited 5x5 sub-window is used to compute 
the texture features and the points are considered 
independently from each other. Hence the need for a 
second classification stage whose task is: 

a. to take into account a larger neighborhood for 
each point and make use of the nearby structures to help 
the segmentation; 

b. to correct possible mistakes of the first stage; 
c. to regularize the shape and texture of the 

segmented outcome. 
 

Multi-scale architecture. We used a multi-scale neural 
network with standard sigmoid neurons (see Figure 3). A 
larger sub-window (9x9 pixels) and two downsampled 
versions of it (scale 1.5 and 3) are fed into a layer of 
hidden units. We adapted an input connection pattern 
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Figure 2. Typical activation functions after the learning 
process. 



 

commonly used in the speech and character recognition 
literature. It consists of 3 distinct blocks with 9 neurons 
each. The first block looks at vertical stripes (each of the 
9 neurons in this hidden layer block is fully connected to 
the 9 neurons of the associated vert ical line in the input 
layer); the second looks at similar horizontal stripes; and 
the third block looks at 3x3 input sub-regions. These 
specialized groups of neurons are responsible for 
detecting local features and relative positions of nearby 
structures. The blocks are fully connected to a second 
hidden layer (20 neurons) connected to the output. 

As the overall number of connections is quite large 
(~5000 weights), we use node pruning [9] to further adapt 
the architecture of the neural network to the segmentation 
problem at hand. 

 
Learning process. A major problem of neural networks 
when used as classifiers lies in their lack of good rejection 
capabilities: a neural network has to assign every input 
feature vector to a class even though some vectors may 
not belong to any of the learnt classes. During the 
learning phase, classification boundaries are constructed 
that may acutely depend on the distribution of samples in 
the learning set. In our case, it is easy to select learning 
patterns belonging to the set of textures of the target 
anatomical structure and much more difficult to give a 
“representative” set of those which do not belong to it. 
   

By using a separate second texture classification 
stage, we can design a learning set that lies along the 
classification boundary. This technique is similar to those 
described in [15] and [8]. 

We insert in the learning set 90% of the misclassified 
points from the outcome of stage I and an equal number 

of correctly classified points drawn at random across the 
entire set of images. 

Figure 4 illustrates one feature of interest in our 
approach. In 4(b), the fornix,  which is not part of the 
corpus callosum, has not been properly erased by stage I 
as its texture closely resembles that of the target corpus 
callosum. The second stage readily removes it (4.c) and 
additionally smoothes the contours of the callosum. 

 
 

III. RESULTS  
 

We first applied our algorithms to the segmentation 
of the corpus callosum, caudate nucleus and 
hippocampus in T1-weighted MRI data (1mm isotropic 
resolution) of the brain. For each structure, the learning 
set consists of 5 volumetric brain MRI datasets taken 
from 5 different individual, at the same relative position. 

Figure 5 shows the outcome of each stage for 3 
additional test images (which do not belong to the 
learning set). As the texture of corpus callosum is quite 
different from that of the surrounding structures (with 
the exception of the fornix), stage I has no difficulty 
segmenting it. Stage II further regularizes the boundary. 
Notice how the second stage also successfully manages 
to remove most of the structures and tissues surrounding 
the caudate nucleus in spite of the poor contrast in the 
input MRI. The salt and pepper noise left around 
hippocampus can easily be removed by morphological 
cleaning. 
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Figure 3. Stage II: local shape/texture analysis. 
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Figure 4. Texture segmentation of corpus callosum. 
The second stage (c) successfully manages to remove 
the fornix that was not completely erased in the first 
one (b). 



 

 
Table I gives the classification rates (ratio of the 

number of correctly classified pixels over the total 
number of pixels) of the two consecutive stages for these 
3 structures. We report the average rates computed over 
10 test images (which do not belong to the learning set), 
within the windows of Figure 5 (results are given in the 
form mean ± standard deviation). Stage II not only 
substantially increases the performance of the classifier 
but also makes it more consistent as the standard 
deviations are significantly smaller. Note that the 
combined use of our 2 stages enables a better 
classification mostly in the immediate neighborhood of 
the structures, as depicted in Figure 5. Our approach 
could be most effectively used as a pre-processing step in 
a boundary segmentation application. 
 
 

TABLE I. CLASSIFICATION RATES FOR BOTH STAGES 
 

 caudate 
nucleus 

hippocampus corpus 
callosum 

Stage I 0.81 ± 0.05 0.86 ± 0.08 0.94 ± 0.04 
Stage II 0.90 ± 0.02 0.91 ± 0.03 0.98 ± 0.01 

 
 

We then compared the hybrid architecture of stage I 
to a specialized mixture of experts (SME) without master 
classifier. Table II reports the classification rate for both 
stages. Comparison between the first rows of tables I and 
II demonstrates the superiority of the hybrid approach, 
especially on difficult structures such as hippocampus. 
Incidentally, it appears that the second stage somewhat 
reduces the performance differences between the 
methods: by using a separate learning set, it manages to 
compensate for the increased number of mistakes. 

 
 

TABLE II. CLASSIFICATION RATES FOR SME 
 

 caudate 
nucleus 

hippocampus corpus 
callosum 

Stage I 0.77 ± 0.08 0.75 ± 0.12 0.92 ± 0.02 
Stage II 0.88 ± 0.03 0.89 ± 0.04 0.95 ± 0.02 

 
 

IV. CONCLUSION 
 
We have presented an approach to segment 

anatomical structures from MR images via texture 
classification. 

The hybrid master classifier / mixtures of experts 
architecture we developed shows good promises in that it 
achieves both better classification results and a faster 
convergence during the learning phase. 

By decomposing the classification process into two 
consecutive sub-processes, we also give the system a 
greater tolerance to mistakes as the second texture 
classification stage can correct the errors of the first one. 

Finally, it is of additional interest to analyze the 
neural architecture that a given anatomical structure 
yields (both in the first and second stages). By 
understanding the relationships between the complexity 
of the target structure (texture composition, shape 
variability, etc.) it may be possible to create even better 
systems. 
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Figure 5. Outputs of the two sequential stages of our approach for 3 anatomical structures in the 
brain: the caudate nucleus (left), hippocampus (middle) and corpus callosum (right). 


