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Adaptive Elastic Segmentation of Brain MRI via
Shape-Model-Guided Evolutionary Programming

Alain Pitiot, Arthur W. Toga, and Paul M. Thompson*

Abstract—This paper presents a fully automated segmentation
method for medical images. The goal is to localize and parame-
terize a variety of types of structure in these images for subsequent
quantitative analysis. We propose a new hybrid strategy that com-
bines a general elastic template matching approach and an evo-
lutionary heuristic. The evolutionary algorithm uses prior statis-
tical information about the shape of the target structure to control
the behavior of a number of deformable templates. Each template,
modeled in the form of a -spline, is warped in a potential field
which is itself dynamically adapted.

Such a hybrid scheme proves to be promising: by maintaining
a population of templates, we cover a large domain of the solution
space under the global guidance of the evolutionary heuristic, and
thoroughly explore interesting areas.

We address key issues of automated image segmentation sys-
tems.

— The potential fields are initially designed based on the spatial
features of the edges in the input image, and are subjected to
spatially adaptive diffusion to guarantee the deformation of
the template. This also improves its global consistency and
convergence speed.

— The deformation algorithm can modify the internal struc-
ture of the templates to allow a better match.

— We investigate in detail the preprocessing phase that the im-
ages undergo before they can be used more effectively in
the iterative elastic matching procedure: a texture classifier,
trained via linear discriminant analysis of a learning set, is
used to enhance the contrast of the target structure with re-
spect to surrounding tissues.

— We show how these techniques interact within a statistically
driven evolutionary scheme to achieve a better tradeoff
between template flexibility and sensitivity to noise and
outliers.

We focus on understanding the features of template matching that
are most beneficial in terms of the achieved match. Examples from
simulated and real image data are discussed, with considerations
of algorithmic efficiency.

Index Terms—Adaptive algorithms, deformable templates, hy-
brid evolutionary algorithms, segmentation.
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I. INTRODUCTION

I MAGE segmentation, that is, the division of an image pixel
set into a number of disjoint regions that are homogeneous

with respect to a set of characteristics, is a major goal of com-
puter vision and image processing. Effective identification and
labeling of anatomical structures in possibly complex magnetic
resonance imaging (MRI) proves to be especially challenging,
given the wide variety of shapes and intensities each anatom-
ical structure can present. Automated image segmentation can
be used to assist medical diagnosis or analysis, and calls for high
precision: indeed, the quality of the diagnosis often depends on
how accurately the various structures in the image can be iden-
tified. Similarly, brain atlases (see [1] for a review), which can
guide stereotaxic neurosurgical procedures and provide a pre-
cise quantitative framework for multimodality brain mapping,
turn out to be rather tedious to build, as many components typi-
cally have to be interactively outlined. Thus, automated segmen-
tation systems are powerful tools to help in drawing consistent
diagnosis from a number of images [2], to classify pictorial data
[3], or collect statistical information on anatomical variability
[4].

This paper addresses the problem of retrieving the boundary
of a brain structure from MRI data. We approach the issue of
boundary finding as a process of fitting a series of deformable
templates to the target contour. A template is modeled by
using a parameterized curve whose coefficients are iteratively
updated to minimize an objective function. This function mea-
sures the match between the deformed template and a modified
edge image, and the elastic deformation energy required in the
warping process. Each template evolves, within an adaptive
gradient descent scheme, in a potential field which is itself
progressively refined during the deformation process. We
introduce an evolutionary heuristic to control the behavior of
the various templates by 1) incorporating statistical constraints
to bias the deformations toward a range of shapes derived from
a statistical analysis of a learning set, and 2) selecting and
favoring the most promising templates at each round.

In this paper, our goal is to determine and analyze the features
of template matching algorithms that play a determining role in
terms of their efficiency and accuracy. We try to address in a
methodical fashion what we identify the following as the main
issues of fully automated segmentation algorithms:

— initial positioning of the deformable template with respect
to the target structure;

— capture range of the target structure;
— tradeoff between flexibility of the template and robustness

to noise and decoys;
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— use ofa priori statistical information about the shape of
the target structure;

— search for a global solution in a computationally effective
fashion.

The remainder of the paper is organized as follows. We re-
view in Section II template matching methods and hybrid evo-
lutionary algorithms. In Section III, we introduce our elastic ap-
proach to shape matching and the associated template modifi-
cation scheme in the two–dimensional (2-D) case. Section IV
discusses the preprocessing stage and how it influences the ef-
ficiency and accuracy of the template matching scheme. Sec-
tion V presents the shape model guided evolutionary heuristic
that controls the deformable templates. Finally, several experi-
ments are analyzed in Section VI, aiming to parameterize highly
variable structures in a large medical image database. We dis-
cuss the strengths and limitations of our approach. We also con-
sider an extension of our 2-D model to the three-dimensional
(3-D) case.

II. BACKGROUND

A. Elastic Template Matching

Depending on their underlying structure, most elastic tem-
plate approaches can be partitioned into two classes:free-form
and parametric.

Free-form methods do not assume any specific global struc-
ture for the template and, therefore, can be applied to a variety
of domains. The only possible constraints are local continuity
and smoothness, which provide considerable flexibility to rep-
resent arbitrarily complex shapes. The potential field induced
by a salient edge image is used to iteratively deform the tem-
plate over an image. An early elastic deformable model in this
category was proposed by Burr [5], who used a set of lines as
a template. His matching approach consisted of designing an
elastic model for the template, and letting it deform under local
forces. Eventually, correspondence was defined by tracking an
image point over the set of image data. In the active contour
model proposed by Kasset al. [6], splines were used in favor of
a set of lines. The “snake”—a deformable spline—was actively
warped, seeking a local minimum in a potential field by adapting
its shape and position. The potential field was made up of three
factors: an internal spline force, the attraction force of the image,
and an external constraint force. Among other deformable tech-
niques, Sapiro [7] introduced color snakes evolving in a color
or vector-valued image: object boundaries were then obtained
as geodesic-weighted distance curves in a Riemannian space.
Yet another approach, presented by Sethian and Osher [8], used
level sets as a convenient means to handle complex topolog-
ical changes: here, a raster image template was deformed and
boundaries were inferred from the motion of its zero-level set.
Lately, Leventonet al. [9] proposed a way to embed statistical
information in the level set formulation.

Parametric methods, on the other hand, assume some prior
knowledge of the geometrical shape, encoded in the form of a
small number of parameters. This can be either as 1) the image
of a prototype template under a parametric mapping or 2) a col-
lection of parameterized curves or surfaces.

The first method consists of two elements: a prototype tem-
plate that captures the basic shape, and a parametric mapping,
which governs the template deformation during the warping
process and determines the degree of freedom of the deforma-
tion. Its high versatility is due to the fact that different choices of
the model template and of the deformation parameters will yield
different warped outcomes. The prototype template may con-
sist of a “mean” shape computed from a learning set. The para-
metric mapping may also be tuned so as to reward the most “nat-
ural” transformation—in the specific application domain—and
penalize those which are less likely to be appropriate. When a
learning set is unavailable, a uniform distribution of the pos-
sible deformations, a Gibbs prior, or a Tikhonov stabilizer is
assumed to serve as prior knowledge. Grenander and Miller
[10] developed a systematic pattern-theoretic framework to deal
with variable shape structures under parametric mappings. In
their paper on “active shape models,” Cooteset al. [11] used
linear combinations of the eigenvectors of the covariance ma-
trix of deviations from the mean shape to determine the pa-
rameters of the possible deformations. The mean shape was
previously drawn from a training set of labeled objects. Their
model implemented a learning process where the underlying
structure of a shape class as well as the most relevant trans-
formations that occur within a class are derived from the ex-
ample set. A similar scheme was used by Jain [12]. The pro-
totype template consisted of a bitmap that encoded the shape
of the object. The whole bitmap was transformed according to
probabilistic transformations. A Bayesian scheme controlled the
matching process by maximizing a posterior probability based
on both the severity of the template deformation and the agree-
ment between the deformed template and the edge image. An-
other benefit with Bayesian models is that other statistical esti-
mators (such as MVE and a measure of confidence in the solu-
tion) can be derived [13].

In the second parametric approach to elastic matching,
the characteristics of the template are described by a set of
curves/surfaces, controlled by a set of parameters. The template
geometry entirely depends on the values of these parameters.
The deformable template seeks local minima in a potential
field based on salient image features. The warping process is
conducted by updating the parameters. Staib and Duncan [14],
for instance, used elliptic Fourier decomposition to encode the
boundaries of a template. The parameters to be evolved were
the Fourier coefficients. They introduced a likelihood func-
tional, based on the correlation between the template and the
edge image, to be maximized under a Bayesian model. Székely
et al. [15] also chose Fourier contours to model an elastic
template and segment 2-D or 3-D objects from MRI data. In
[3], Del Bimbo and Pala favored fourth-order-splines to
model deformable templates, whose coefficients were modified
in a gradient descent scheme.

Our elastic matching scheme falls into the second category of
parametric methods.

B. Hybrid Evolutionary Algorithms

As opposed to sequential methods which progress step-by-
step from an initial solution to the optimization problem (here,
the initial estimate of the target structure) to a neighbor solu-
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tion by performing some elementary modification (parameter
updates), evolutionary techniques deal with apopulationof so-
lutions [16]. The pivotal idea is to use the collective properties of
a group of solutions to search the global solution space. Once an
initial population of solutions has been generated, it is improved
by a cyclic two-phase evolution process: an exploration phase
(cooperation) and an exploitation phase (self-adaptation). In the
exploration phase, solutions of the current population exchange
information (recombining in a probabilistic fashion) with the
aim of producing new solutions which inherit good attributes.
In the exploitation phase, solutions change their internal struc-
ture without any interaction with the other members. Optimal
solutions are thus evolved by iteratively producing new gener-
ations of solutions and selectively favoring the most successful
ones.

A promising innovation in the field of general heuristics, hy-
brid evolutionary systems embed a sequential local search within
the framework of a population-based strategy. The combination
of a local searchand a global control heuristic yields an algorithm
with significantly better performance than that of both search
methods running separately [17]. In a hybrid algorithm, the role
of the sequential search is to explore thoroughly disjoint areas of
the solution space, whereas the evolutionary procedure provides
global guidance through the space.

Hybrid evolutionary techniques have been successfully
applied to many combinatorial optimization problems: the
traveling salesman problem [18], the quadratic assignment
problem [19], the bin-packing problem [20] or the graph col-
oring problem [21] among others. To the best of our knowledge,
there is, however, only a very limited body of applications
related to template matching. In [22], Cooteset al.used genetic
algorithms (a variety of evolutionary methods) to generate
a number of starting positions to be evolved by their active
shape model (ASM). They briefly mentioned the possibility of
incorporating the ASM directly into the genetic search but did
not elaborate on it.

Our approach proceeds along these lines by integrating a local
elastic template matching method within a global evolutionary
scheme.

III. A N ELASTIC DEFORMABLE MODEL

We describe here the deformable template scheme we imple-
mented in the 2-D case. We will discuss later, in Section VI-D,
how it could be extended to the 3-D case.

A. Deformable Template

The input data image is defined by its intensity value at each
point : ; . The initial template (prototype)
consists of a 2-D curve: , parameterized
with respect to a scalar,.

The algorithm’s goal is to find a pictorial object inwhose
overall boundary shape fits that of. To decrease the dis-
crepancy between the actual imaged object and the prototype
template, we allow the latter to undergo deformation. Let:

, be the parameterized deformation,
then the deformed template is given by:

, .

To guide the deformation process and drive the template to-
ward the required object shape, we introduce a compound func-
tional , whose minimum we aim to determine. is made up
of two components: the match between the deformed template
and a modified form of the edge image, and the elastic defor-
mation energy spent in the warping process.

We use for the matching term an approach based on intensity
features integrated along the template

where is a binary edge image drawn fromand :
is a smoothing operator.

is related to the likelihood of the contour of the warped
template being the true boundary of the target pictorial element,
once the parameters ofare given.

Note that, as a measure of the match, is particularly
sensitive to local geometric variations in the template and the
target pattern. Indeed, it does not encompass any information
about the template’s global shape, hence the need for a mod-
erate smoothing filter which reduces the measure’s local
sensitivity without sacrificing its accuracy and capture range.
As it is, is a poor approximation of the human perception of
shape similarity. Other measures based on shape decomposition
have been proposed in the literature (see VeltKamp [23] for
a survey of shape similarity measures). However, they often
turn out to be computationally expensive and not as suitable as
expected within an elastic matching framework.

Using the thin-plate under tension model [24], the elastic de-
formation energy of the template is

where and respectively approximate the stretching energy
and the bending energy associated with the warped template

, and where and are weights.
The energy component can be regarded as a constraint placed

on the extent to which the template can stretch and bend: by
increasing and , one limits the range of possible evolution,
that is the degree of freedom of the deformation process.

Finally, we get

where is the relative weight of the attraction exerted by the
image edges.

Note that since makes use of the first and second derivatives
of only, pure translations, achieved whenis a constant, or
rotations of the template (isometries) do not augment the defor-
mation energy. Also, since is independent of , the degree of
complexity of the prototype template does not bias the warping
process: this creates a general template matching scheme that
can cope with a variety of shapes.
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B. Numerical Solution

We use cubic -splines to model both the prototypeand
the elastic deformation template. Our choice was motivated
by the following observations.

1) Cubic -splines are regular enough to cope with the
first- and second-order derivatives involved in the compound
functional (see Zhong [25] or Blakeet al. [26] for a com-
prehensive study of the respective merits of-splines, Fourier
or wavelet decompositions).

2) They offer the potential for a large variability while still
maintaining the required degree of smoothness, as opposed to
Bézier curves for instance, for which additional constraints have
to be added to preserve continuity. Besides, only the control
points have to be warped, which results in a significant savings
over the use of explicit parametric polynomial functions.

3) Finally, open curves are easily modeled by triplicating
the end-points, and closed curves are readily accommodated by
equating the last three control points with the first three.

We get the following expressions forand :

and

where are the control
points of the fourth-order -splines ;

are the control points of the fourth-order -splines
; and are the fourth-order -spline blending functions.
We now have to minimize the compound functionalwith

respect to variables . A variety of minimization
techniques have been presented in the literature (see [27] for
a review) using a combination of deterministic/stochastic dis-
crete/continuous algorithms. In Section V, we will discuss how
the use of an evolutionary heuristic enables an effective and
broad exploration of the solution space by controlling the ini-
tial shape and pose of each template. Such a method manages
to quickly discover the many attraction basins of the solution
space. Here, we choose a deterministic adaptive gradient de-
scent scheme to evolve the templates and reach the bottom of
those basins.

Gradient Descent:At iteration ,
is the parameter vector asso-

ciated with the prototype template .
The parameters of are then iteratively updated as follows:

with

Strictly speaking, we do not modify the-spline point by
point but rather update its control points. This can induce oscil-
lations in the matching process since only the control points are
modified, whereas the objective function is evaluated over the
whole curve. Nonetheless, considering a slightly filtered edge
image in the evaluation of the objective functionmoderates

Fig. 1. Dynamics of the incrementation parameter". A deformable template
(in white) evolves in a dynamic potential field (gray levels) within an adaptive
gradient descent scheme controlled by".

this effect by introducing information about the neighborhood
of the control points.

Adaptive Gradient Descent:In view of the complexity of the
potential field induced by the edges of an input MRI and the
form of the compound objective function, there are no general
prescriptions for selecting an appropriate incrementation pa-
rameter for the gradient descent scheme, in order to avoid os-
cillation and converge to an acceptable local minimum quickly.
Further, no fixed increment is usually suitable for the entire de-
formation process. Both problems can, however, be solved by
adapting to the local structure of the potential surface.

We start with a given and monitor the value of after each
gradient descent step.

If decreases, we assume that the minimization process
evolves in the right direction andis increased by a multiplica-
tive factor : the deformation process speeds up.

Conversely, an increase in the value of(an “accident”
during the minimization process) is taken as an indication that
the step which occurred was too long:is decreased by a factor

and the last change is canceled. This process of reduction is
repeated until a step that decreases the energy value is found
(this will inevitably happen since the search direction is that of
the negative gradient). Note that with a standard gradient de-
scent scheme, such a case cannot occur since the path followed
always goes downhill. With , on the other hand, there is
no more guarantee as to the monotonicity of.

Fig. 1 displays the dynamics of the incrementation parameter
in a typical example.

is initialized with . At early stages of the defor-
mation process [Fig. 1(a)], the template’s control points follow
a regular path through the smooth potential field, since they are
relatively far away from the edges:regularly increases.

Later on, when the global shape of the template more ac-
curately fits that of the pattern in the input image, the potential
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field is refined a first time (see Section III-D) and the motion
of the control points becomes more sensitive to local potential
field variations: the incrementation parameter,, decreases ac-
cordingly to adapt the gradient descent scheme [Fig. 1(b)].

Another increasing phase [Fig. 1(c)] follows, during which
the template, which already achieves a good match over most of
the target pattern, has to stretch to fit the U-shape in the bottom-
right corner of the input image:increases until a new potential
refinement occurs to allow a more precise adaptation:then
progressively decreases [Fig. 1(d)] until the matching process
is stopped. As it is, can be regarded as an indicator of good
convergence.

Also, the value of and can be fixed once and for all. We
chose slightly larger than unity ( ) in order to avoid
frequent occurrences of an increase of, since in such cases the
evaluation is wasted. Similarly, we took to be significantly
less than unity ( ) so that the algorithm quickly reverts to
finding a step which decreases, again to minimize the wasted
computation.

Note that this approach bears resemblance to the “bold driver”
technique developed by Voglet al.[28] to train neural networks:
in that case, an error function based on the discrepancy between
the output of the neural network and the expected output has to
be minimized by iteratively updating the various weights (pa-
rameters) of the network. It is also similar to the choice of kappa,
the over-relaxation parameter, in successive over-relaxation.

C. Dynamic Number of Control Points

Intuitively, the larger the number of control points in the de-
formable template, the better the local fidelity of the match is
likely to be. However, using a large number of points during
early iterations gives an unnecessarily high computational cost
and induces too many local minima thus complicating the search
for a solution. Initial steps usually let the deformable template
modify its global shape to that of the pattern in the image, and
only later on are more points required to achieve a precise adap-
tation. This creates the need for a structural modification scheme
in the form of a dynamic number of control points.

First, we need to supervise the dynamic behavior of the
number of control points. The simplest method consists of
regularly increasing the number of points every iterations
( constant). The obvious drawback lies in the relative
independence of this policy from the accuracy of the defor-
mation process. A more sophisticated approach based on the
quality of the match would introduce new points only when the
match reaches a given threshold; this threshold would then be
increased by a constant or variable factor and the process would
go on until the match reaches the new threshold. Similarly, a
statistical method would wait for the match to stabilize around
a sufficiently high value, assuming that for a givenand the
template cannot achieve a better match because the required
stretch and bending energies are too high. Thus, introducing
more control points would enable the template to warp further
toward the edges. Unfortunately, the potential of the matching
functional to oscillate makes it difficult for an automated
system to distinguish between a stabilization phase and a slowly
increasing one. Yet another technique would monitor the stretch
and bend energies and , and introduce new points when

Fig. 2. Dynamic number of control points and regional insertion.

these energies reach a certain threshold. However, appropriate
values depend on the nature of the target shape: a square, for
instance, will require a high value of at the corners and very
low values along the sides, while a circle is more uniform.
Presently, none of those approaches is a panacea. Incidentally,
the template could very well be warping over “decoy features”
(i.e., edge features which do not belong to the target object
boundary) in which case adding new control points would
enable it to achieve an even better adaptation to the decoy
shape. We chose to increase the number of control points every

iterations ( constant) as this achieved the best results in
practice: although this regime is independent of the state of the
deformation process, it is also less sensitive to noise.

Once we have decided to add new points, we determine the
segment (whose shape is parameterized by four control points)
of the -spline that achieves the lowest match by computing the
partial match of each segment over the diffused edge image (to
avoid getting a large number of null matches). We then locally
refine that segment, inserting new control points.

Adding new control points somewhat overrides the influence
of the weighting parametersand , since the first and second
derivatives are now computed along a smaller segment. In
Fig. 2(a), smoothness constraints are too high to allow the
template to warp further toward the boundaries of thecaudate
nucleus. We introduce new control points along the segment
that presents the lowest match (arrows). The new template then
achieves a greater deformation along that segment and is able
to match the inferior portion [Fig. 2(b)].

D. Adaptive Edge Potential

An elastic deformation method such as that of Jain [12],
Cohen and Cohen [29], Davatzikos [30], or ours requires that
the gradient of the edge features of the input image be extracted.
That edge potential has to be tuned carefully, as its accuracy
conditions the efficiency of the warping scheme. Namely, if the
potential field is too sharp, the deformable template will not be
driven toward the image contour if it does not overlap an area
with nonzero amplitude [Fig. 3(a)]. Similarly, if the potential is
too smooth, the template is misled toward amplitude maxima
that do not correspond to actual edges but to areas in between
them. In Fig. 3(b), the edge potential is not sufficiently well-de-
fined: the capture areas of the main edges (green lines) are
all “melted” together: the deformable template will be unable
to discriminate between these and will warp toward arbitrary
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Fig. 3. Capture range of the potential field: (a) the potential is too sharp for the initial template to be captured and deformed; (b) the potential is too smooth for
the adaptation process to be accurate.

maxima of amplitude. However, smooth edge potentials induce
regular nets of iso-curves and their associated normals. These
potential fields turn out to be particularly useful for adjusting
the overall shape of the template to that of the pattern in the
image at coarse levels.

The issue of the potential field’s capture range has been ad-
dressed in the literature [29]–[31] and many methods have been
developed to increase it. In most cases, the potential is com-
puted before the deformation process starts, based on the initial
edge image. Yet at any time during the deformation process, we
wish to have an “optimal” potential field with a support just wide
enough to let the template warp toward the edges but with suf-
ficient local structure to achieve precise adaptation.

Diffusion of the Edge Potential:In Section IV-B, we present
a texture filter capable of selectivelyenhancing the contrast of the
target structure. That filter effectively decreases the fuzziness of
the transition boundaries (essentially due to partial volume ef-
fects or line-type edges) between the structure to be segmented
and the surrounding tissues: we can thereafter assume a step edge
model and we choose the Canny–Deriche approach to compute
the gradient magnitude of the input image. We then have to de-
cide upon a scale for the Gaussian smoothing. In Section IV-C,
we explain how to choose an initial scale based on the configu-
ration of the image. We detail, here, how the scale dynamically
evolves along with the deformation process.

Our approach is based on the following observation: points
of the deformable template that belong to the-spline segment
with the lowest local match are those for which the mean distance
to the closest edge is maximal (that is, they belong to the segment
with the largest undirected Hausdorff distance). Everyitera-
tions ( integer constant), the new scale is set to the 95% quan-
tile of the Hausdorff distance. We chose a partial distance to pre-
vent the edge potential from being too coarse in case only a small
proportion of the template was far from the closest edges.

Fig. 4 shows six steps of the deformation process where the
potential field is progressively refined to achieve a better match.
By dynamically computing the Gaussian scale, we manage to
diffuse while maintaining a good separability among features

of the potential field. Additionally, progressively refining the
edge potential helps maintain the convexity of the search space
and prevent the minimization algorithm from converging toward
obvious local minima.

Monotone Remapping:In this scheme, the potential’s am-
plitude decreases very rapidly with increasing distance from an
edge. We thus used a monotone transfer function
with , ( for instance) to remap the in-
terval [0, 1] onto itself in order to derive an enhanced poten-
tial field. The remapped potential field still strictly increases
toward the edges but presents better characteristics with glob-
ally higher gradient values and increased smoothness. Also, it
re-equilibrates the speed at which each control point is driven
toward the edges.

Note that for efficiency reasons, a number of potential fields
are precomputed ahead of time.

IV. THE PREPROCESSINGPHASE

We present here the various image treatments carried out be-
fore initiating the template deformation processes. In view of
the complexity of the segmentation task, we believe that an
adequate preprocessing phase determines to a large extent the
quality of the final match, improves the convergence speed, and
strongly influences the ability of the method to avoid and/or es-
cape local minima.

A. Nonuniformity Correction

The removal of intensity nonuniformity proves to be an essen-
tial prerequisite for the quantitative analysis of MRI data. As it
is, spatial variations of the image signal unrelated to anatomic
information often significantly reduce the accuracy of compu-
tational procedures such as tissue classification or brain-surface
extraction. A number of techniques have been discussed in the
literature [32]–[34]. Following the results of the comparative
study reported by Arnoldet al. [35], we chose the method
[32] to treat the input MRI data.
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Fig. 4. Adaptive potential field. 0: MRI and initial template; 1: initial potential; 2, 3, 4, 5, and 6: five deformation steps; and 7: MRI and final deformed template.

Fig. 5. (a) Two-input MRIs with the associated intensity profile (along the
red line). (b) Texture-filtered version with sharpened profile. Shaded boxes
correspond to the target structure.

B. Texture Filtering

Even though certain brain structures, such as thecorpus
callosum,are relatively smooth and well contrasted in brain
MRI, most of them present fuzzy boundaries or line-type edges
like valleys or ridges [Fig. 5(a)]. Furthermore, many anatomical
structures are surrounded by decoy elements with equally
sharp (or dull) contrast: in Fig. 5(a), thefornix is not part
of the corpus callosum,yet it presents very similar intensity
characteristics. Also, in spite of the nonuniformity correction
step, all or part of the data may be corrupted by noise. Thus,

the use of only intensity information along the contour of the
structure is not sufficient to drive an accurate segmentation.
Mudigondaet al. [36] uses the distribution of the intensity
along the normals to the template surface. We propose the use
of texture to prepare for the segmentation of the input MRI by
enhancing the contrast of the target structure.

Texture Descriptors:A number of texture descriptors have
been discussed in the literature (see [37] for a review) making use
of statistical measures, time–space-frequency decompositions,
or fractal parameters for instance. As every descriptor has weak-
nesses and strengths, one usually combines them to improve on
the classification performance. Following the review of [37] and
comments of [38], we selected the following descriptors.

— Cooccurrence Matrices [39]:These embed in a single
array the relative frequencies of gray level pairs of pixels
for a series of translations. We used eight translations and
five of the texture features introduced by Haralick (energy,
contrast, entropy, homogeneity, and correlation).

— Discrete Cosine Transform [40]:We used the low fre-
quency component of a 3 3 DCT without critical sam-
pling (eight features in total).

— Dyadic Gabor Filters [41]:We chose three different fre-
quency bands and four orientations, and derived the en-
ergy and entropy for each of the 34 12 filtered win-
dows.

— Local Hölder Exponent [38]:This corresponds to an intu-
itive perception of regularity: it is computed by comparing
the total variation of the gray levels in the subwindow with
functions of the form: .

Classification: Given a target brain structure, we want to
combine the texture descriptors ( )
within a classification function in an optimal fashion. That is,
we are looking for a function : which is maximal
for the target pixels and minimal elsewhere. For each anatomical
structure we compile a series of MR images together with their
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associated manually segmented structures. For each image, we
select at random a number of subwindows (88 pixels) be-
longing either to the target or not, to form a training database.
Each subwindow is “normalized” by subtracting the intensity of
the central pixel from the other ones. Then, we use linear dis-
criminant analysis [42] to find the coefficients of the linear
discriminant function: where are the
outputs of the texture descriptors.

To process an input MRI, we consider a surrounding sub-
window around each pixel and normalize the intensities before
applying the various texture filters and computing the value
of the discriminant function. Fig. 5(b) shows two texture-clas-
sified images: the target structures are thecorpus callosum
[Fig. 5 (top)] and thehippocampus[Fig. 5 (bottom)]. It appears
that the combination of texture filters effectively removed the
fornix and cleared the neighborhood of thehippocampuswhile
homogenizing both structures.

Note that our approach is rather scanner and protocol de-
pendent: the texture characteristics of the target structures may
vary from one acquisition to the next if the scanner parameters
change (as pointed out in [43]). In that case, a few test images
have to be manually delineated to retrain the classifier. We are
currently investigating the extent of that dependence in the hope
of overcoming it by using nonlinear classifiers to better capture
scanner/protocol effects.

C. Initial Potential Field

The texture filter successfully manages to sharpen the transi-
tion boundaries between the target structure and the surrounding
tissues. Therefore, we can then assume a step edge model and,
thus, choose the Canny–Deriche approach to compute the gra-
dient magnitude of the input image, as it achieves a good ap-
proximation of the optimal product of signal-to-noise ratio and
localization [44].

As mentioned in Section III-D, we still have to choose the
scale of the Gaussian smoothing. We use a two-pass scanline
algorithm (one pass/axis) to set the scale to the mean distance
between any two nonadjacent local gradient maxima. We obtain
a potential field with the notable property that two edges at dis-
tance from each other induce a potential value close to zero
in their middle.

V. STATISTICAL SHAPE MODEL AND HYBRID

EVOLUTIONARY HEURISTIC

Even though a given brain structure can present a wide variety
of forms, it seems that the notion of biological shape is reason-
ably well explained by a statistical description over a large pop-
ulation. Consequently, model-based approaches have attracted
considerable attention [10], [14], [45], [46] as they can achieve
robust segmentation. A deformable template is then not only
constrained by the number of degrees of freedom imposed by
its geometric representation, but also in that it must be a valid
instance of the shape model.

Once we have reduced the segmentation problem to a min-
imization task, however, we face a multimodal, nonlinear, and
possibly discontinuous function of many variables. Given the
size of the solution space, most minimization techniques would

only lead to weak suboptimal solutions if the search space were
not drastically reduced by assuming that a good approximation
of the solution is available. This could be either in the form of a
set of pose parameters (position, orientation, scale) or of shape
descriptors (possibly those of the mean shape model). Never-
theless, given that medical images are often tessellated (that is,
similar pictorial elements are present repeatedly in the image, at
different positions scales or orientation), the energy functional
landscape is highly nonconvex and the minimization algorithm
highly likely to run into local minima.

In contrast with approaches which restrict the template de-
formation space by implementing a coarse to fine strategy, we
chose an evolutionary heuristic owing to its ability to solve hard
optimization problems in a timely fashion where little is known
about the structure of the search space.

A. Building the Shape Model

Aligning the Training Set:Given a learning set of parameter-
ized instances of the target structure, we wish to compute a mean
curve and the associated variation modes. To obtain an average
curve which actually represents the mean shape of the target
structure, we need to apply a transformationto each curve in
the learning set to bring them in a comparable configuration with
respect to a set of axes.

Specifically, if is the group of allowed transformations and
the learning set of curves with vec-

tors of , then the mean shapeis given by

In [47], Pennec shows that corresponds to the arithmetical
mean of the once they have been transformed to an op-
timal position. That is, once we have found
such that

then

We restrict to the group of similarities (rotations, transla-
tions, changes of scale) and used the technique described in [48]
to find the corresponding set of transformations .
This consists of an iterative procedure where the various in-
stances at iterationsare registered to their mean at iteration

. The process starts by selecting one of those instances
as a target for the first round of registrations and at the end of
each such round. We eventually obtain a mean structure with
the desired property that there does not exist any transformation
that could further decrease the distances between the learning
instances and that mean. Note that such an approach is only
an attempt to establish a good correspondence field across the
learning set and does not guarantee that a point associated to a
given index is homologous to the points with same indexes in
the other instances. We are currently investigating other tech-
niques, using partial differential equations, that could establish
better correspondence fields.
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Capturing the Statistics:We use the approach described in
[48] and [49]. Given the set of aligned instances and
the mean shape, we compute the centered covariance matrix

. The eigenvectors of , obtained by principal component
analysis, describe the modes of variation and the vectors corre-
sponding to the largest eigenvalues describe the most significant
ones. Any shape in the transformed learning set can then be
approximated

where is the matrix of the first eigen-
vectors (we take ) and is
the shape vector.

By varying , we can generate new instances of the shape
model.

B. Hybrid Evolutionary Algorithm

The shape model we have just described is used within an
evolutionary heuristic to constrain the dynamics of a population
of templates.

Our evolutionary approach is similar to the guided evolu-
tionary simulated annealing (GESA) method detailed in [50].
We have, however, modified it to incorporate our local defor-
mation scheme from Section III, thus turning it into a hybrid
evolutionary heuristic which explores the solution space by in-
terspersing periods of local optimization with phases of interac-
tion and diversification.

Initialization: We consider a population of individuals
, each of which consists of a pose and shape parameter:

with scale, rotation and
translation.

The population is made up of families. Each family
consists of a parent and children . The pose parameter
of each of the parents is selected at random to cover the entire
input image. Their shape is that of the mean surface. Note that
when an anatomical atlas (a collection of delineated structures)
is available, we can alternatively register the atlas to the input
image and use the position of the deformed atlas structures to
initialize the parents closer to the target structure. The children
in each family are generated by randomly modifying the pose
parameters of the parents and choosing valid instances of the
shape model

with , , , and drawn at
random from a uniform distribution whose range decreases with
each generation; and ( ) are the ordered eigenvalues
of the covariance matrix .

The hybrid evolutionary algorithm is given in Fig. 6.
1)Projection onto the Shape Space: Letbe the deforma-

tion induced by the local template matching scheme. We want
to adjust the pose and shape parameters of the template to the
required deformation while insuring that the deformed template
be a valid instance of the shape model.

Fig. 6. Hybrid evolutionary algorithm.

Following the analysis of [22] and [48], we first register the
template to the shape model. We then restrict the projection of

onto the shape space so that the distance between the de-
formed template and the corresponding instance of the shape
model is lower than three times the empirical standard devia-
tion for each mode. We get

2) To favor the children whose shapes are closer to the first
eigenmodes, we vary the temperature of the Boltzman distribu-
tion that controls the acceptance number of each family as fol-
lows:

where is the SA temperature, is an array of decreasing
weights, and

3) As in [50], the approach implements two levels of com-
petition. At a local level, the children of the same family com-
pete with each other to generate the parent for the next genera-
tion. At a second level, there is a competition between the fam-
ilies themselves in that the number of children allocated to each
family depends on the combined fitness of all the children, and
is biased toward the first eigenmodes to favor the most likely
shapes.

The number of children actually reflects the interest in a given
area of the search space: the more good candidate solutions in
a given area, the more attention we devote to it. The entire al-
gorithm can be viewed as parallel SA with competition: each
family is a multiple-trial-parallel SA machine with the children
contributing the trials in parallel: it is, therefore, a very efficient
global search technique as argued in [50].
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Fig. 7. Shape space versus local deformation matching scheme. The black
mesh represents valid instances of the shape model.

Note that by projecting the new parents into the shape space,
we bias the search for a solution toward the set of valid in-
stances of the shape model. Yet, incorporating an independent
local search allows a better traversal of the search space. As il-
lustrated in Fig. 7, the considered individual could not leave its
current location to reach the target minimum if it were restricted
to move only in the lower dimensional shape space (as it would
have to go “up-hill”) whereas the local deformable matching
scheme can find a path (in white) in the solution space.

VI. RESULTS

In this section, we present and discuss quantitative results
showing the performance of our approach and the solutions it
provides to the issues we identified in Section I.

A. Initial Position and Capture Range

Figs. 2 and 4 demonstrate the ability of the local matching
scheme to evolve a template when initially placed in the neigh-
borhood of the target structure. By texture-filtering the input
MRI, we considerably enhance the contrast of the target struc-
ture with respect to the surrounding tissues and help decrease the
influence of the nearby anatomical structures, thereby allowing
the templates to be initialized further away.

Additionally, as our evolutionary heuristic can efficiently ex-
plore highly nonconvex spaces and discover the many attraction
basins in the MRI potential, it further decreases the issue of ini-
tial placement. Fig. 8 compares the dynamics of a population
of templates (four families; five children/family, initially) when
controlled by our heuristic [Fig. 8(b)] with that of a single tem-
plate subjected to the only local search method [Fig. 8(a)]. The
shape model was enabled but we did not texture-filter the image.
The target structure was thecaudate nucleus. As expected, the
single template quickly reaches a local minimum, whereas the
population eventually manages to segment thecaudate nucleus
(both the left and rightcaudatecould be segmented here as the
shapes of 2-D coronal slices of left and right caudate nuclei are
very similar: this would probably not occur in three dimensions).
Note how the families that are too far from the target structure
quickly disappear as their children cannot achieve a good match.

B. Tradeoff Flexibility/Robustness to Noise

Flexibility: Xu and Prince describe in [31] two key
difficulties, related to the target structure geometry and
its capture range, that arise with parametric active contour
algorithms: first, how close to the target structure the initial
template must be for the deformation process to be likely to
evolve it toward the right boundaries?; second the difficulties
the parametric model encounters while progressing into
boundary concavities.

The combination of an adaptive potential field and a dy-
namic number of control points enables a very flexible adap-
tation to the target shape. Fig. 2 shows how the template can
stretch to achieve a good match. Fig. 9(a)–(c) shows three
sequences depicting the iterative progression of three proto-
type templates when facing concave boundaries. The tem-
porally adaptive potential field and the dynamic number of
control points enable our approach to achieve good results
[Fig. 9(a) and (b)], where standard methods, or a distance
potential field [29], or pressure forces [51] may fail. Note
that in Fig. 9(b), pressure methods would perform well but
for the two openings at the top and bottom, which cause the
template to bulge outside of the “natural” contours. However,
our model fails to achieve a good match when the concavity
is too high [Fig. 9(c)]. We are currently studying the use of
a progressive gradient vector flow [31], as well as covariant
deformable template approaches which bias the template dy-
namics in concave regions using covariant diffusion operators
and an auxiliary tensor field [52].

Sensitivity to Noise:A series of experiments was conducted
to evaluate the influence of noise on the ability of the texture
classifier to sufficiently contrast the target structure to allow
a correct adaptation of the template. We selected a series of
five 2-D images from the same brain MRI and manually seg-
mented thehippocampusto train the texture filter. We chose
yet another image to conduct the test: we corrupted it by a
zero-mean Gaussian noise with variable varianceand inten-
sity ; we used the only local search, with no shape model guid-
ance; the template was manually initialized on top of the target.
Fig. 10(a) displays the root-mean-square error (RMSE) (using
closest point distance) between the retrieved boundary and the
manually segmentedhippocampus. Note how the final match
seems relatively independent from the noise as long as its level
stays below ( , ). We repeated the same exper-
iment with various noise distributions and structure instances,
and observed similar behaviors.

We then re-evaluated the performance of our texture classi-
fier when the training images were also corrupted by a Gaussian
noise ( , ). The same test image was selected.
Fig. 10(b) demonstrates how the linear discriminant analysis
was capable of selecting a better combination of the texture
filters to deal with the noise-corrupted MRI. To a certain ex-
tent, the texture filter can “learn” the noise characteristics of the
training images and, as a result, performs optimally on a test
image with similar characteristics. Here again, further experi-
ments would be necessary to assess how performance depends
on the acquisition protocols and scanners.
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Fig. 8. (a) Dynamics of a single template subjected to the local search. (b) Dynamics of a population of templates under the supervision of the evolutionary
heuristic.

Fig. 9. Convergence of our deformable model for three target objects with
highly concave boundaries.

C. Accuracy

Methodology: The accuracy with which our approach de-
tects the contours of a target structure was determined following
the method presented in [53]. For each experiment, we selected
a number of 2-D MR images and manually segmented the target
structure. We then let the templates evolve. The continuous con-
tour given by the final -spline template was eventually con-
verted into a number of equidistant points where was at
least twice the number of points in the corresponding manually
segmented anatomical structure. As in [54], we used the four
following error measures:

— unsigned mean ( norm): ;
— signed mean: ;

RMSE ( norm): ;
— maximum error ( norm): .

with the signed Euclidean distance between theth point on
the detected border and the closest point on the manual contour.
As pointed out in [54], the signed mean is an indicator of consis-
tent bias. All errors are reported as meanstandard deviation.

Robustness to Decoys:Fig. 5(b) shows how the texture filter
efficiently isolates thefornix from thecorpus callosum. A new
series of experiments was carried out to assess the influence of

the model guided heuristic on the final match in presence of
a tessellated MRI. 94 manually segmentedhippocampussec-
tions from four different brains with their associated MR im-
ages were selected. Table I reports the various error measures.
We used four families with five children each, spread all over
the image. The texture filter was disabled to maximize the tes-
sellation. To assess the sensitivity of the performance to the de-
sign of the shape learning set, we conducted the experiment
with a variable number of training samples (the training set was
disjoint from the test set). Comparison between rows one and
two clearly demonstrates the improvement induced by the shape
model. Note how the number of training samples influences
the performance: when too few samples are used, the shape
model does not reliably encompass the possible modes of vari-
ation; conversely, once a sufficient number of samples has been
used, adding more samples only marginally increases the per-
formance.

A Few Brain Structures:The following three brain structures
were selected to test the performance of our segmentation ap-
proach.

— Corpus Callosum: The test set consisted of 80 sections
from ten different brains ( -weighted MRI, 1-mm reso-
lution). An additional five images were used to train the
texture filter, and 30 to train the shape model.

— Caudate Nucleus: 70 sections from five different brains
were selected ( -weighted MRI, 1-mm resolution). We
used four images to train the texture filter and 25 for the
shape model.

— Hippocampus: We used 94 sections from four different
brains ( -weighted MRI, 1-mm resolution). Five images
were used to train the texture filter and 40 to train the
shape model.

For each structure, we initialized four families of five children
all over the image and ran the method for 500 iterations.
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Fig. 10. RMSE of the segmentation of thehippocampuswith (a) original training MRIs and (b) noisy training MRIs.

TABLE I
SEGMENTATION ERRORS FOR THEHIPPOCAMPUS(WITHOUT TEXTURE FILTER)

TABLE II
SEGMENTATION ERROR FORVARIOUS ANATOMICAL STRUCTURES

Table II reports the measured errors between the manually
segmented structures and the outcomes of our algorithm. It also
gives the RMSE and maximum error of the manual segmenta-
tion: as it is, a human operator may not always segment a struc-
ture in the same consistent manner from one MR image to an-
other, and the amount of variability may change with respect to
the target structure.

As expected, our approach had no difficulties segmenting the
corpus callosumgiven its regular shape and clear contrast. The
two other segmentations were also very good. Note that for
thecaudate nucleus,the method retrieved bothnuclei (left and
right) in every trial.

For all three structures, the automated segmentation com-
pares favorably to the manual one in terms of rms error, even
though the maximum error was occasionally substantially
larger: the influence of the shape model was sometimes not
strong enough to overcome the mistakes our local template
matching algorithm made when a strong decoy edge prevented
a correct deformation: the use of a better matching functional
might alleviate that problem. Note that the delineation inconsis-
tencies of human operators also affect the quality of the learning
sets as both the shape descriptors and the texture classifier are
dependent on the accuracy of the manually extracted structures.

We are currently investigating statistical measures that could
better take into account these “intrinsic” errors.

Running Time:We give a few computational time measure-
ments. On a SGI O2 graphics workstation (MIPS R4400 200
MHz), texture-filtering a 300 300 pixel image takes approx-
imately 40 s. Each of the above segmentation runs (45 chil-
dren initially) took about 6 min/image. Note that our implemen-
tations were not optimized for speed: the values we give here are
simply indicationsof the running time.

D. Extension to Three Dimensions

We discuss here how our approach could be extended to three
dimensions.

Elastic Deformation Model:The -spline curves we use in
the 2-D case can readily be replaced by 3-D tensor product-
spline surfaces. Accordingly, the deformation template becomes

where are the -spline blending functions and
are the control points.
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Following the analysis of [55], the objective function is
written

where and represent the first and second fundamental sur-
face forms; and and are weighted matrix norms.

Under the thin-plate model [24], we simplify

where represents the partial derivative with respect to the
th parameter.

Strictly speaking, the approximation is accurate only near
the actual minima, but it is nonetheless still well-behaved away
from it. For a tensor product -spline, we get a quadratic ob-
jective function that could still be locally minimized with our
adaptive gradient descent algorithm.

Dynamic variation of the number of control points, however,
is not easily extendable to the 3-D case, as the adaptive refine-
ment of a 3-D tensor product -spline surface is not a trivial
issue.

Preprocessing Phase:Our texture filter could also be ex-
tended to three dimensions as most of the texture descriptors we
chose have a 3-D formulation. Great care should nevertheless be
taken in the implementation of the formulae or else processing
an entire 3-D MRI may require too much time.

Working out a 3-D potential field should not cause any
problem either as the Canny extractor also has a 3-D counter-
part. However, given the often anisotropic nature of MRI data,
one might favor the anisotropic detector of Brejlet al. [56] for
it would then outperform the Canny detector.

Shape Model and Evolutionary Heuristic:Finally, the
methodology we developed in Section V still holds in three
dimensions. Note that the ability of our hybrid evolutionary
algorithm to foster attraction basins in complex spaces would
be especially interesting in a highly nonconvex 3-D extension.

VII. CONCLUSION

We have presented a general fully automated segmentation
method, capable of dealing with a variety of anatomical struc-
tures. The use of a hybrid scheme combining aglobal evolu-
tionary heuristic and alocal deformable template matching al-
gorithm proved very promising: while the evolutionary heuristic
can effectively explore the solution space, the local matching
scheme is capable of thoroughly exploiting each attraction basin
the heuristic finds. Furthermore, the hybrid nature of our ap-
proach makes it easy to integrate a statistical shape model. As it
is, we could easily replace the statistical term by another, or add
other context-dependent constraints without having to modify
the deformable template scheme.

We used such a framework to develop and study several op-
timization schemes and demonstrate the multivariate relations
between the parameters of our deformation model, and how
they affect the accuracy of the match. We believe that adap-
tive approaches which modify the control parameters of de-

formable templates in response to contextual information and/or
using time-dependent criteria may present advantages in the
progressive refinement and understanding of template matching
methods.
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