Real-Time Large Displacement Elasticity for

Surgery Simulation: Non-Linear Tensor-Mass
Model

G. Picinbono, H. Delingette, and N. Ayache

INRIA Sophia - Epidaure Project
2004 Route des Lucioles BP 93
06902 Sophia Antipolis Cedex, France
{Guillaume.Picinbono, Herve.Delingette, Nicholas.Ayachel}@sophia.inria.fr
http://wuw-sop.inria.fr/epidaure/Epidaure-eng.html

Abstract. In this paper, we describe the latest developments of the min-
imally invasive hepatic surgery simulator prototype developed at INRIA.
A key problem with such a simulator is the physical modeling of soft tis-
sues. We propose a new deformable model based on non-linear elasticity
and the finite element method. This model is valid for large displace-
ments, which means in particular that it is invariant with respect to
rotations. This property improves the realism of the deformations and
solves the problems related to the shortcomings of linear elasticity, which
is only valid for small displacements. We also address the problem of
volume variations by adding to our model incompressibility constraints.
Finally, we demonstrate the relevance of this approach for the real-time
simulation of laparoscopic surgical gestures on the liver.

1 Introduction

A major and recent evolution in abdominal surgery has been the development
of laparoscopic surgery. In this type of surgery, abdominal operations such as
hepatic resection are performed through small incisions. A video camera and
special surgical tools are introduced into the abdomen, allowing the surgeon to
perform a procedure less invasive. A drawback of this technique lies essentially
in the need for more complex gestures and in the loss of direct visual and tactile
information. Therefore the surgeon needs to learn and adapt himself to this new
type of surgery and in particular to a new type of hand-eye coordination. In
this context, surgical simulation systems could be of great help in the training
process of surgeons.

Among the several key problems in the development of a surgical simula-
tor [1,13], the geometrical and physical representation of human organs remain
the most important. The deformable model must be at the same time very re-
alistic (both visually and physically) and very efficient to allow real-time defor-
mations. Several methods have been proposed: spring-mass models [8,12], free
form deformations [2], linear elasticity with finite volume method [9] or various
finite element methods [6, 10, 15, 4].



In this article we propose a new real-time deformable model based on non-
linear elasticity and a finite element method. We first introduce the linear elas-
ticity theory and its implementation through the finite element method, and we
then highlight its shortcomings when the "small displacement" hypothesis does
not hold. Then we focus on our implementation of St Venant-Kirchhoff elasticity
and incompressibility constraints.

2 Shortcomings of the linear elasticity

Linear elasticity is often used for the modeling of deformable materials, mainly
because the equations remain quite simple and the computation time can be
optimized.

The physical behavior of soft tissue may be considered as linear elastic if its
displacement and deformation remain small [11,14] (typically less than 10% of
the mesh size). We represent the deformation of a volumetric model from its rest
shape Minitial With a displacement vector U(x,y, z) for (z,y,2) € Minitial and
we write Mdeformed = Minitial + U(az Y, Z)

From this displacement vector, we define the linearized Green-St Venant strain
tensor (3 x 3 symmetric matrix) E; and its principal invariants [; and ls:

1
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The linear elastic energy Wgiqstic, for homogeneous isotropic materials, is defined
by the following formula (see [5]):
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where A and p are the Lamé coefficients characterizing the material stiffness.

Equation 2, known as Hooke’s law, shows that the elastic energy of a de-
formable object is a quadratic function of the displacement vector.

2.1 Finite element method

Finite element method is a classical way to solve linear elasticity problems. Its
most interesting property is to provide a continuous description of physical equa-
tions. We chose to use P, finite elements where the elementary volume is a
tetrahedron with a node defined at each vertex. At each point M(x,y, z) inside
tetrahedron T;, the displacement vector is expressed as a function of the dis-
placements Uy, of vertices Py. For P; finite elements, interpolation functions Ay
are linear ({Ax;k =0,...,3} are the barycentric coordinates of M in the tetra-
hedron):
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Fig. 1. P, finite

element

Using this equation for the displacement vector U leads to the finite element
formulation of linear elastic energy in the tetrahedron T; [10]:

3
Wetastic(Ti) = > USBU,
7,k=0

B;-I;Ci :)\(aj®ak)+,u[(ozk®aj)+(ozj.ak)Id3], (3)

where [B};] is the tetrahedron contribution to the stiffness tensor of the edge
(P;,Py) (or of the vertex P, if j = k), {a;,k =0,..,3} are the shape vectors of
the tetrahedron and ® stands for the tensor product of two vectors.

Finally, to obtain the force F;ff applied by the tetrahedron T; on the vertex
P,, we derive the elastic energy with respect to the vertex displacement U,:

3
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We have been using this linear elasticity formulation for several years through
two deformable models, the pre-computed model [6] and the tensor-mass
model [10, 7]. Furthermore, it can be extended to anisotropic linear elasticity
[15], which allows to model fiber-reinforced materials, very common within bio-
logical tissues (blood vessels, tendons, muscles, ...).

2.2 The problem of rotational invariance

The main limitation of the linear model is that it is not invariant with respect
to rotations. When the object undergoes a rotation, the elastic energy increases,
leading to a variation of the volume (see figure 2). In the case of a global rotation
of the object, we could solve the problem with a specific change of the reference
frame.

But this solution proves itself to be ineffective when only one part of the
object undergoes a rotation (which is the case in general). This case is presented
by the cylinder of figure 3: the bottom face is fixed and a force is applied to
the central top vertex. Arrows show the trajectory of some vertices, which are
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Fig. 3. Successive deformations of a linear elastic cylinder. (a) and (b): side view. (c)
and (d): top view

constrained by the linear model to move along straight lines. This results in the
distortion of the mesh. Furthermore, this abnormal deformation is anisotropic
since the object only deforms itself in the rotation plane (figure 3(c) and 3(d)).

This unrealistic behaviour of the linear elastic model for large displacements
leads us to consider different models of elasticity.

3 St Venant-Kirchhoff elasticity

A model of elasticity is considered as a large displacement model if it derives
from a strain tensor which is a quadratic function of the deformation gradient.
Most common tensors are the left and right Cauchy-Green strain tensors
(respectively B = VoV ¢! and C = V@' Ve, ¢ being the deformation).

The St Venant-Kirchhoff model is a generalization of the linear model for
large displacements, and is a particular case of hyperelastic materials. The basic
energy equation is the same (equation 2), but now E stands for the complete
Green-St Venant strain tensor:
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Elastic energy, which was a quadratic function of VU in the linear case, is now
a polynomial of order four with respect to VU:
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where A:B=1tr(A'B) = Ei’j a;j b;; is the dot product of two matrices.

3.1 Finite element modeling

With the notations introduced in section 2.1, we express the St Venant-Kirchhoff
elastic model with finite element theory as:
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where:

- Brl;c' is the (3x3) symmetric matrix of the linear elastic model (equation 3),

-C kil is a vector: C]kl =3 aj (ak.ap) + & [y (aj.0) + ag (a.a0)],

— and Djum is a scalar: D;];dm = 2 (aj.ap) (q.am) + By .am)(ag.ay).

The force applied at each vertex inside a tetrahedron is derived from the elastic
energy W (T;):
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The first term of the elastic force (F}(T;)) corresponds to the linear elastic case
presented in section 2.1. The next part of the article deals with the generalization
of the tensor-mass model to large displacements.

3.2 Non-linear Tensor-Mass Model

The main idea of the tensor-mass model is to split, for each tetrahedron, the
force applied at a vertex in two parts: a force created by the vertex displacement
and forces produced by the displacements of its neighbours:

FI(T,) = [B);]U, + > _[B]U;. 9)
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This way we can define for each tetrahedron a set of local stiffness tensors
for vertices ({BY:;p =0,...,3}) and for edges ({B;}";p,j =0,...3;p# ]}) By
doing this for every tetrahedron, we can accumulate on vertices and edges of the
mesh the corresponding contributions to the global stiffness tensors:

B,, = Z BY: B,; = Z BE:.

T,EN(V,) T,eEN(E;;)

These stiffness tensors are computed when creating the mesh and are stored
for each vertex and edge of the mesh.

The same principle can be applied to the quadratic term (F5(T;) of equation
8) and the cubic term (F%(T;)). The former brings stiffness vectors for vertices,
edges, and triangles, and the latter brings stiffness scalars for vertices, edges,
triangles, and tetrahedra. The following array (table 1) summarizes the stiffness
data stored on each geometrical primitive of the mesh:

|Stiffness data distribution||Tensors| Vectors | Scalars |

Vertex V, BFP crep prerp
(PPJ (7PP | DIPPP DijiP DIiPiP

Edge E,; BrI

Ciip Cpij | pPIIP DIiPP

Ccikp Dikpp pirkp prikp

Triangle Fpjr ckip | piike pikiv phijp
crik Dkkip pkikp pikkp

DIiklp pilkp pkilp

Tetrahedron Tpjr: Dpklip plike plkip

Table 1. Storage of the stiffness data on the mesh

Given a tetrahedral mesh of a solid —in our case an anatomical structure—
we build a data structure incorporating the notion of vertices, edges, triangles,
and tetrahedra, with all the necessary neighbours. For each vertex, we store its
current position P, its rest position Pg, and its stiffness data. For each edge, we
store stiffness data. Finally for each tetrahedron, we store the Lamé coefficients
A and p, the four shape vectors ay, and the stiffness data.

During the simulation, we compute forces for each vertex, edge, triangle, and
tetrahedron, and we update the vertex positions from the differential equations
of continuum mechanics [3]:

MU + CU + F(U) = R. (10)

Following finite element theory, the mass M and damping C matrices are sparse
matrices that are related to the stored physical properties of each tetrahedron.
In our case, we consider that M and C are diagonal matrices, i.e., that mass
and damping effects are concentrated at vertices. This simplification called mass-
lumping decouples the motion of all nodes and therefore allows us to write equa-
tion 10 as the set of independent differential equations for each vertex.



Furthermore, we choose an explicit integration scheme where the elastic force
is estimated at time ¢ in order to compute the vertex position at time t + 1:

m; Vi 41 _ 2m; oy m; Vi 1
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One of the basic tasks in surgery simulation consists in cutting soft tissue.
With our deformable model, this task can be achieved efficiently. We simulate
the action of an electric scalpel on soft tissue by successively removing tetrahedra
at places where the instrument is in contact with the anatomical model.

When removing a tetrahedron, about a hundred update operations are per-
formed to suppress the tetrahedron contributions to the stiffness data of the
surrounding vertices, edges, and triangles. By locally updating stiffness data,
the tissue has exactly the same properties as if we had removed the correspond-
ing tetrahedron at its rest position. Because of the volumetric continuity of finite
element modeling, the tissue deformation remains realistic during the cutting.

4 Incompressibility constraint

Living tissue, which is essentially made of water, is nearly incompressible. This
property is difficult to model and leads in most cases to instability problems.
This is the case with the St Venant-Kirchhoff model: the material remains in-
compressible when the Lamé constant A tends towards infinity. Taking a large
value for A would force us to decrease the time step and therefore to increase
the computation time. Another reason to add an external incompressibility con-
straint to our model is related to the model itself: the main advantage of the
St Venant-Kirchhoff model is to use the strain tensor E which is invariant with
respect to rotations. But it is also invariant with respect to symmetries, which
could lead to the reversal of some tetrahedra under strong constraints.

We choose to penalize volume variation by
applying to each vertex of the tetrahedron a force
directed along the normal of the opposite face N,
(see figure on the right), the norm of the force being
the square of the relative volume variation:

V-%\’
F?ncomp = < V'O ) NP'

These forces act as an pressure increase inside
the tetrahedron. This method is closely related to

Lagrange multipliers, which are often used to solve Fig. 4. Penalization of
problem of energy minimization under constraints. the volume variation
5 Results

In the first experiment, we wish to highlight the contributions of our new de-
formable model in the case of partial rotations. Figure 5 shows the same experi-



ence as the one presented for linear elasticity (section 2.2, figure 3). On the left
we can see that the cylinder vertices can now follow trajectories different from
straight lines (figure 5(a)), leading to much more realistic deformations than in
the linear (wire-frame) case (figures 5(b) and 5(c)).

(a) (b)
Fig. 5. (a) Successive deformations of the non linear model. Side (b) and top (c) view
of the comparison between linear (wire-frame) and non linear model (solid rendering)

In the second example (figure 6), we apply a force to the right lobe of the liver
(the liver is fixed on its central back part, and Lamé constants are: A\ = 4.10*
and pu = 10%). Using the linear model, the right part of the liver undergoes a
large (and unrealistic) volume increase, whereas with non-linear elasticity, the
right lobe is able to rotate, giving a much more accurate deformation.

Fig. 6. Linear (wireframe), non-linear (solid) liver models, and rest shape (bottom)

Adding the incompressibility constraint on the same examples decreases the
volume variation even more (see table 2'), and also stabilizes the behaviour of
the deformable models in strongly constrained areas.

The last example is the simulation of a typical laparoscopic surgical gesture
on the liver. One tool is pulling the edge of the liver sideways while a bipolar
cautery device cuts it. During the cutting, the surgeon pulls away the part of

! For the cylinder: left, middle and right stand for the different deformations of figures
3 and 5(a)



| Volume variations (%) || Linear |[Non-linear|[Non-linear incomp.|

Cylinder left|middle[right |[7]28]63] 0.3]1]2 0.2[0.5]1
Liver 9 1.5 0.7

Table 2. Volume variation results

the liver he wants to remove. This piece of liver undergoes large displacements
and the deformation appears fairly realistic with this new non-linear deformable
model (figure 7).

Fig. 7. Simulation of laparoscopic liver surgery

Obviously, the computation time of this model is larger than for the linear
model because the force equation is much more complex (equation 8). With our
current implementation, simulation frequency is four times slower than with the
linear model. Nevertheless, with this non-linear model, we can reach a frequency
update of 30Hz on meshes made of about 2000 tetrahedra (on a PC Pentium
PIIT 500MHz). This is sufficient to reach visual real-time with quite complex
objects, and even to provide a realistic haptic feedback using force extrapolation
as described in [15].

6 Conclusion

We proposed in this article a new deformable model based on large displacement
elasticity, a finite element method, and a dynamic explicit integration scheme.
It solves the problem of rotational invariance and takes into account the incom-
pressibility properties of biological tissues. Including this model into our laparo-
scopic surgery simulator prototype improves its bio-mechanical realism and thus
increases its potential use for learning and training processes.



Our future work will focus on generalizing large displacement elasticity to
anisotropic materials. Also, the large displacement model requiring more com-
putation time, it will be usefull to develop a "hybrid" model: linear elasticity for
the strongly constrained parts of the organ and large displacement elasticity for
the free parts that can undergo large deformations. This will be done following
the experience we had with previous "hybrid" models of this type [7].
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