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Abstract

Purpose: Radiotherapy planning requires accurate delineations of the tumor and
of the critical structures. Atlas-based segmentation has been shown to be very ef-
�cient to automatically delineate brain critical structures. We therefore propose to
construct an anatomical atlas of the head and neck region.

Methods and Materials: Due to the high anatomical variability of this region,
an atlas built from a single image as for the brain is not adequate. We address this
issue by building a symmetric atlas from a database of manually segmented images.
First, we develop an atlas construction method and apply it to a database of 45
Computed Tomography (CT) images from patients with node-negative pharyngo-
laryngeal squamous cell carcinoma manually delineated for radiotherapy. Then, we
qualitatively and quantitatively evaluate the results generated by the built atlas
based on Leave-One-Out framework on the database.

Results: We present qualitative and quantitative results using this atlas construc-
tion method. The evaluation was performed on a subset of 12 patients among the
original CT database of 45 patients. Qualitative results depict visually well delin-
eated structures. The quantitative results are also good, with an error with respect
to the best achievable results ranging from 0.196 to 0.404 with a mean of 0.253.

Conclusions: These results show the feasibility of using such an atlas for radio-
therapy planning. Many perspectives are raised from this work ranging from exten-
sive validation to the construction of several atlases representing sub-populations,
to account for large inter-patient variabilities, and populations with node-positive
tumors.

1 Introduction

The treatment of tumors may involve chemotherapy, surgery or radiotherapy.
Owing to recent technological advances, conformal radiotherapy precisely tar-
gets the tumor while keeping an acceptable level of irradiation even on nearby
critical structures. However, it is necessary to locate accurately the tumor and
the organs at risk in order to determine the best characteristics for the irradi-
ation beams. However, a manual delineation process is typically tedious, very
long and not always reproducible.

The use of an anatomical atlas, i.e. an image of a mean anatomy and its seg-
mentation, has been extensively studied to automatically delineate the brain
for many di�erent applications [1�4]. These methods di�er most often by the
registration method used to map the atlas image onto the patient. Recently, [5�
7] proposed the use of an atlas for the segmentation of brain critical structures
for radiotherapy. In this context, many methods have also been introduced to
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take into account the presence of the tumor in the brain [8�10] to reduce the
tumor induced registration discrepancies.

Tumors in the head and neck region are more frequent than in the brain
and represent around 7% of all the cancers. The treatment of these tumors
often involves radiotherapy. It would then be of great interest to develop an
anatomical atlas to help the physician to segment automatically structures of
interest in this region. Recently, consensus guidelines have been presented for
the delineation of neck lymph node levels for radiotherapy planning [11,12].
These are based on precise and clearly identi�able anatomical landmarks to
determine the limits between the lymph node levels in the patient image. Using
an atlas whose anatomy is delineated following these guidelines is therefore
of great interest as it would provide the physician with an automatic and
reproducible delineation.

Some desirable properties for the atlas have been outlined by Bondiau et al.
[7] in the case of a brain atlas. They evaluated three atlases for the automatic
delineation of the brain.

• An initial atlas was built from an image of a single healthy subject, which
was delineated manually by an expert. However, the anatomical variability
between patients introduced a systematic error on all segmentations per-
formed.

• To overcome this problem, a second atlas, based on a simulated MRI of an
average brain anatomy (coming from the BrainWEB 1 [13�16]), was con-
structed. Due to the asymmetry of the atlas, however, certain errors re-
mained.

• Finally, a symmetric atlas, derived from an image of a symmetric anatomy
(based on the preceding atlas), e�ectively resolved these errors. Experiments
showed this last atlas was the most adapted to the di�erent anatomies.

The observations noted above apply equally, and in some cases more so, to
the head and neck region, where various neck positions and degrees of fat may
create large di�erences. Using an atlas built from one manually segmented
image may therefore lead to discrepancies when registering one patient on the
atlas. We have then chosen to build a symmetric mean atlas from a database
of patients manually delineated following the rules given in [11].

This paper is organized as follows: we �rst describe our image database and
methods for atlas construction ; we then present the method we used to build
an atlas from a database of images which have been manually delineated.
We will then show how this atlas can be used to automatically delineate a
patient. In a second part, a Leave-One-Out framework will be associated to our
construction method to evaluate quantitatively our atlas-based segmentation
1 http://www.bic.mni.mcgill.ca/brainweb/
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method. Finally, we will present results of the head and neck atlas construction
and evaluation on our CT image database.

2 Methods and Materials

2.1 Head and Neck Image Database

In this paper, we have used a database of patients with node-negative pharyngo-
laryngeal squamous cell carcinoma. For that purpose, manually segmented
images were provided by the Radiation Oncology Department of the Catholic
University of Louvain (UCL). This database consists of 45 CT images with
a voxel size of 1.5 × 1.5 × 2 mm3 acquired in routine clinical practice. For
each of these images, structures of interest have been delineated following
the guidelines given in [11] for purposes of radiotherapy planning. The avail-
able structures for our atlas were the lymph nodes (levels II, III and IV), the
parotids, the brainstem, the spinal cord, the mandible and the sub-mandibular
glands.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Illustration of the image database from UCL. Examples of sagittal
(upper line) and coronal slices (bottom line) and their manual segmentations for 4
patients showing an important variability of position and anatomy.

Some examples illustrating the variability of positions and anatomy between
the patients are shown in Fig. 1. Some contours are missing in these patients.
Some lymph node levels have indeed been removed because they also included
the adjacent primary tumor volume.
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2.2 Atlas Construction

2.2.1 State of the Art

The construction of an atlas from a database of images relies basically on
the registration of all the images on a reference image. However, choosing a
speci�c image as the reference introduces a bias due to its speci�c anatomy.
Several methods were therefore introduced to select the atlas as the least
biased reference image. Marsland et al. [17] selected the reference image as
the one that minimizes the sum of the distances with respect to the other
images. Park et al. [18] proceeded in a similar manner, but used all pairwise
registrations between the images to compute the distances.

Other methods were also introduced to build an unbiased atlas [19�21]. They
iterate on two steps: the registration of the images on the reference and the
application of the inverse mean transformation to the mean image. Guimond et
al. [19] have shown that this approach, extended by [20,21] to transformations
containing large deformations, is not dependent on the choice of the reference
image. Recently, based on this principle, a method has been investigated to
generate directly a mean symmetric atlas from a database of images [22].

Other methods use higher dimension registration to register simultaneously
the images in a common space [23,24]. They optimize a criterion maximizing
a similarity measure between the images while minimizing the displacements
with respect to the mean image.

Finally, de Craene et al. [25] proposed recently a method to build the mean im-
age and compute the mean segmentations together. This is achieved using an
EM algorithm which alternates two steps. First, the mean image is estimated
by registering the manual segmentations. Then, the mean segmentations are
computed using a method similar to Staple [26].

2.2.2 Construction Method Overview

To create our mean symmetric atlas of the head and neck region, we will use the
database of CT images described in section 2.1. In this context, we have chosen
not to use the method proposed in [25] because it relies on the registration of
manual segmentations without taking into account the CT images. However, in
our context, the structures of interest do not cover all of the CT images; hence,
the computed transformations outside of these regions will be indeterminate,
leading to errors when building the mean CT image. Moreover, the high intra-
and inter-patient variability may also introduce errors in the atlas.

For these reasons, we have opted for a more classical, separated approach in
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constructing our atlas , as illustrated in Fig. 2. We present in the remainder
of this section the main steps of the atlas construction, which can be summed
up as follows:

• construction of an asymmetric mean image (section 2.2.3),
• computation of the mean segmentations from the individual manual seg-

mentations (section 2.2.4),
• symmetrization of the atlas generated (section 2.2.5).

Fig. 2. Schematic view of the symmetric atlas construction method. This
scheme illustrates the major steps (mean image construction, mean segmentations
computation and symmetrization) used to build an atlas from a dataset of images.

2.2.3 Mean Image Construction

This �rst step is performed using the method developed by Guimond et al.
[19]. It has the advantage of being faster and simpler than the one proposed by
Lorenzen et al. [21] and is su�cient for our images. This method is based on an
iterative scheme to build an unbiased mean image from the image database.

At each iteration i, all the images Ik are non linearly registered (details are
given in section 2.3.2) on a reference image Ri, deriving transformations Tk.
Next, a mean image Mi is built by averaging the intensities of the registered
images. At the same time, the non linear transformations Tk are averaged to
produce a transformation T . The reference image for the next iteration is then
computed by applying its inverse to Mi: Ri+1 = Mi ◦ T

−1.

Once convergence is reached, a mean image M̃ is obtained as well as trans-
formations T̃k deforming each image Ik on M̃ . At the outset this algorithm
requires an initial reference image R0. As the built atlas is unbiased, any image
of the database can be selected as R0. More details can be found in [19].
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2.2.4 Mean Segmentations Computation

Each image Ik is now associated to one transformation T̃k bringing it on the
mean image M̃ . By applying these T̃k transformations to the manual segmen-
tations, we can then obtain all the manual segmentations on M̃ .

The classical approach to obtaining the mean segmentations consists in taking
the average of the manual segmentations independently for each structure.
However, a high variability exists among the patients in the database, which
can result in registration discrepancies. This may have an important impact
on the average segmentations when using a simple mean. Moreover, using
a simple mean may produce overlapping mean segmentations for structures
that are in close proximity. This is not satisfactory as they are assumed to be
separated.

To overcome these drawbacks, we have chosen to use Staple [26]. This method
uses a set of segmentations to produce a robust multi-category �ground truth�.
This is done using an Expectation Maximization algorithm iterating the fol-
lowing steps:

• the probability of each voxel to belong to each structure is computed in the
Expectation step, knowing the current estimates of the expert parameters,

• quality parameters for each input segmentation are computed in the Maxi-
mization step knowing the current estimate of the ground truth.

All the manual segmentations coming from image Ik, and transformed onto
the mean image M̃ , are used as the input segmentations in Staple. Next, the
mean segmentations are computed by using a classi�cation of the obtained
probabilities (i.e. each voxel is assigned the class that has the highest proba-
bility). This therefore ensures separated mean segmentations. Moreover, the
EM algorithm ensures a better robustness with respect to variations among
the manual segmentations due to misregistrations, intra- or inter-expert vari-
ability.

2.2.5 Atlas Symmetrization

The preceding steps aimed at building an asymmetric mean image and its
associated mean segmentation. As previously indicated, using a symmetric
atlas will help avoiding discrepancies when registering it on the patients. We
are thus interested in this section in symmetrizing the atlas obtained above.

To this end, we have chosen to use a method which estimates the transfor-
mation bringing the image on its symmetry plane. This method is illustrated
in the literature on the computation of the mid-sagittal plane of the brain
[27]. Brie�y, this method looks iteratively for a transformation R between the
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image I and its symmetric I ◦ SK , where SK is a mirroring transformation.
Additional details regarding this algorithm are presented in [27].

The mean symmetric image M̃S is then computed by averaging the mean
image centered on its symmetry plane M̃ ◦R and its symmetric M̃ ◦R ◦ SK .
The binary symmetric segmentations are then obtained in two steps:

• the symmetrization is applied to the image of probabilities from Staple,
• then, the symmetric probabilities are classi�ed to get the mean symmetric

binary segmentations.

2.3 Atlas Adaptation

In the previous sections, we have presented a method for building an anatom-
ical atlas, composed of a mean CT image and of mean segmentations, from
a database of images. The next step in the proposed atlas-based segmenta-
tion method is to adapt this atlas onto the patient to produce its automatic
segmentation.

2.3.1 Adaptation Process

Given the atlas M̃S and a patient P , atlas-based segmentation relies on a
two-step inter-patient registration process:

• a global a�ne transformation is computed between P and M̃S, based on a
robust Block-Matching registration algorithm [28],

• then, the remaining local deformations due to inter-patient variability are
recovered using a non linear registration method.

These transformations are then applied to the atlas structures to produce the
automatic delineations. The non linear registration method is crucial to get
an accurate segmentation of the patient. There is indeed a tradeo� between
its robustness and its ability to recover the deformations due to inter-patient
variability.

2.3.2 Non Linear Registration Method

To get the best trade-o� between robustness and precision, we have presented
in [29] a framework to evaluate both the method used to build the atlas and
the one to register it on the patient. This study, performed on three di�er-
ent methods, has shown better results when using a two steps hierarchical
approach for both the atlas construction and the atlas registration.
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• First, locally a�ne registration [30] is used to recover the large displacements

in a robust manner.
• Then, the remaining local deformations are recovered using a dense trans-

formation (one displacement vector per voxel).

Locally a�ne registration [30] allows prede�ned regions to be registered on a
reference image by associating to each region a local a�ne transformation. The
global transformation is then interpolated between the regions using weight
functions for each region. The transformation is optimized by alternating be-
tween the optimization and a visco-elastic regularization of the a�ne trans-
formations. More details can be found in [30]. In our context, regions were
de�ned on the structures that were available to build the atlas.

The second step is then to optimize a dense transformation to recover the
remaining local deformations. To be able to recover large anatomical di�er-
ences while being robust to registration discrepancies, we have chosen to use
a method integrating an a priori outlier rejection. Moreover, this method is
fast and able to produce smooth deformation �elds.

This method, also presented in [29], is an extension to dense transformation of
Block-Matching based rigid registration [28]. At each iteration i, pairings are
computed between the images using Block-Matching. A correction displace-
ment �eld δT is then interpolated from the sparse pairings Ui using the simi-
larity values of the pairings as con�dence parameters. This ensures a smooth
transformation close to the pairings associated to a good con�dence value, and
more interpolated anywhere else.

An outlier rejection is then performed by comparing δT and Ui. If the norm
of their di�erence is greater than an automatically de�ned threshold, then the
pairing is considered as an outlier and removed. A correction δT̃ is then com-
puted from the remaining pairings and composed with the current estimate of
the transformation.

2.4 Atlas Evaluation

We have presented so far a method for constructing an atlas from a database
of manually segmented images. We now present a framework to evaluate the
quality of the automatic delineation on our database. This process consists of
the following steps:

• one of the database images and its segmentation is set aside
• the atlas is built from the N − 1 other images (see section 2.2)
• the atlas is adapted on the left-out patient (see section 2.3.1)
• comparison of the automatic and manual segmentations
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Two common overlap-based measures were used to compare the automatic and
manual segmentations: sensitivity and speci�city. We also compute the error
between this couple of measures and the best achievable result (Sensitivity =
1, Speci�city = 1), de�ned as the norm ‖(1 − Sens., 1 − Spec.)‖. This error
has no unit and gives a simpli�ed idea of the quality of the result. The overall
quality of the automatic segmentation indeed increases as the error decreases.

3 Results

In this section, we present the segmentation results produced by the atlas
built from our database of images. We will then �rst present the atlas which
is obtained from our construction process. Then, we will present qualitative
and quantitative results on the database of images presented in section 2.1.

3.1 Obtained Atlas

We have used our symmetric atlas construction method to build an atlas from
the database of 45 CT images described in section 2.1. Fig. 3 illustrates this
atlas, showing the mean delineations superimposed on the mean image.

(a) (b) (c)

Fig. 3. Resulting atlas using our symmetric construction method. Contours
of mean structures superimposed on the mean image of the atlas: (a): axial slice, (b):
coronal slice, (c): sagittal slice. Structures represented in the atlas: (1) : mandible ;
(2) : right parotid ; (3) : right sub-mandibular gland ; (4) : right level II ; (5) : left
sub-mandibular gland ; (6) : left parotid ; (7) : left level II ; (8) : spinal cord ; (9) :
right level III ; (10) : left level III ; (11) : right level IV ; (12) : left level IV ; (13) :
brainstem.

First, this �gure shows that the registration method used in the atlas con-
struction process performs well. Indeed, we were able to produce images with
sharp vertebral boundaries (image (c)), even though this region was particu-
larly variable among the patients of the database (see Fig. 1). Our technique
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of hierarchical non linear registration seems then well adapted for the atlas
construction.

Images (a) and (b) also reveal certain structures, such as parotids and lymph
node levels II, that are slightly over-segmented, which is primarily due to
the variability in the manual segmentations among the various patients in
the database. Even after non linear registration on the mean image, when
the structures have been visually well deformed to correspond to those of
the atlas, these structures are still di�erent. This intra-expert inter-patient
variability therefore results in an overestimation when computing the mean
segmentations. The structures, however, are still very close qualitatively to
the segmentations which we would expect.

3.2 Qualitative Evaluation

In Fig. 4, we show the qualitative results obtained on a patient left-out of the
database using our Leave-One-Out evaluation method, the results of which
were compared to the manual segmentations available for this left-out patient.

First, on structures such as the brainstem, spinal cord or mandible, we see
that the delineations are qualitatively good when compared to the manual
segmentations. However, we also note a slight over-segmentation of the lymph
node levels (particularly level II) and of the parotids. There are indeed some
of the surrounding tissues that are included in node level II (see arrows on
coronal slices (b) and (e)). These oversegmentations are linked to the ones we
have noticed in the atlas. They may also be linked to registration discrepancies
that arise when deforming the atlas on the patient. These errors can be due to
too large di�erences in the amount of neck fat as well as position di�erences
between the patient and the atlas.

3.3 Quantitative Evaluation

The quantitative evaluation of the atlas-based segmentation was performed
using the method proposed in section 2.4 on 12 patients in the database.
This subset was chosen so that most of the atlas structures were manually
delineated on each patient. The evaluation on this subset will then allow to
get a better view of the results obtained by the atlas-based segmentation.

In Table 1, we present the sensitivity and speci�city results obtained for these
patients. For clarity, we show only the mean results over all structures of
each patient. For each couple of sensitivity/speci�city results, we also whow
the error between this pair and the best achievable result (Sensitivity = 1,
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Qualitative comparison of the atlas-based and manual segmen-
tations. Delineations obtained on a patient removed from the atlas construction
process using the Leave-One-Out method. (a), (b), (c): manual segmentations ; (d),
(e), (f): delineations obtained using the atlas. Structures represented: (1) : mandible
; (2) : right parotid ; (3) : right sub-mandibular gland ; (4) : right level II ; (5) : left
sub-mandibular gland ; (6) : left parotid ; (7) : left level II ; (8) : spinal cord ; (9) :
right level III ; (10) : left level III ; (11) : right level IV ; (12) : left level IV ; (13) :
brainstem.

Speci�city = 1), (see section 2.4). Finally, the overall mean of these results
over the 12 patients is shown (bold line in the table).

This table indicates that the results are good for almost all patients. We indeed
obtain errors ranging from 0.196 to 0.404, and the overall mean error is of
0.253, which suggests our atlas performs well on our database. One patient
(patient 9), however, was not as well delineated as the others. This is due to
the speci�c anatomy of this patient, who was particularly large. His anatomy
is indeed very di�erent from the one of the atlas as it can be seen in Fig. 5.

This �gure is a clear illustration that large di�erences can exist between some
patients and the mean atlas. This, in turn, can lead to registration discrepan-
cies, giving therefore less good quantitative results. This observation suggests
the presence of sub-populations within the database. One possible solution
to this problem would then be to build several atlases representing these sub-
populations from the image database. Then, by selecting the most similar atlas
to a given patient, the anatomical di�erences would be less important and the
results closer to the manual segmentations.
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Sens. Spec. Error

Mean 0.820 0.860 0.253

Patient 1 0.852 0.870 0.216

Patient 2 0.853 0.855 0.228

Patient 3 0.793 0.849 0.277

Patient 4 0.911 0.829 0.211

Patient 5 0.740 0.876 0.307

Patient 6 0.890 0.860 0.196

Sens. Spec. Error

Patient 7 0.872 0.838 0.223

Patient 8 0.888 0.842 0.203

Patient 9 0.636 0.865 0.404
Patient 10 0.738 0.901 0.291

Patient 11 0.892 0.814 0.234

Patient 12 0.776 0.924 0.240

Table 1. Quantitative results of atlas-based segmentation. Mean sensitiv-
ity (Sens.), speci�city (Spec.) and error with respect to the best result achievable
(Sens. = 1, Spec. = 1) on twelve patients (between 10 and 13 structures delineated
manually for each patient). The mean row corresponds to the average of the results
over the twelve patients. Bold �gures show the averall average results as well as the
lowest and highest errors obtained on the 12 patients.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison between the atlas and a corpulent patient. Illustration
of the anatomy di�erences between the atlas (bottom line) and patient 9 (upper
line) after a global a�ne registration.

4 Discussion

In this article, we have presented a method for creating an anatomical at-
las of the head and neck region from a database of 45 manually delineated
CT images. This method was associated with a Leave-One-Out framework
to quantitatively evaluate the results of the atlas-based segmentation. The
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evaluation of the built atlas has shown good results both qualitatively and
quantitatively. This demonstrates the feasibility of using an anatomical at-
las for radiotherapy planning in this region, producing fully automatic and
reproducible segmentations of the structures of interest.

The atlas built in this article already includes many useful structures for ra-
diotherapy planning. However, there are still structures that are not present
in the database of images. A �rst additional work to this article will then be
to get more structures delineated in the database to get an atlas comprising
all the structures needed for radiotherapy, as described in [11].

Then, more validation is also to be added to this work and particularly in
clinical conditions. It would indeed be of great interest to compare the results
of the atlas on patients from di�erent centers. Moreover, a cross validation
from several experts would be very important. E�orts to reach this validation
actually have begun within the MAESTRO European project [31], where the
automatic segmentations of several patients were compared to several manual
segmentations from di�erent experts. This study, that needs to be extended
to more patients and more experts, con�rmed our results showing an over-
segmentation of some structures and quantifying an inter- and intra-expert
variability of the manual segmentations. However, the obtained structures are
still very well located and could be used in the future as initialization for
post-processing algorithms, for example constrained deformable models.

Other issues concern the atlas construction method itself. For example, we
have seen in our experiments that the structures were overly-segmented in-
side the atlas itself. This is likely owing to the intra-expert variability in the
manual delineations. Such variability can result in too large average segmen-
tations. Hence, the process chosen for building the mean segmentations from
the individual ones may not be optimal. It would therefore be interesting to
evaluate quantitatively this intra-expert variability. The evaluation of di�er-
ent methodologies to build the mean delineations, that can take into account
probabilistic manual segmentations instead of binary ones, will also be inter-
esting. These could be for example a combination of [32] with the Log-Odd
maps [33].

As previously mentioned, an other source of errors explaining the over segmen-
tations are the large di�erences existing between the patients in the database.
Indeed, variable amounts of fat in the neck region as well as the position of
the neck relative to the atlas can also result in registration discrepancies. One
solution to this problem could be the construction of several atlases tailored to
the sub-populations in the image database, as proposed in [34]. A challenging
point will then be the selection for a given patient of the most similar atlas to
get the best segmentation results.
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The built atlas described in this paper has been aimed at patients with tumors
staged N0, i.e. tumors that do not deform the anatomy. Consequently, this
atlas may fail to segment patients with node-positive tumors, that may induce
a large deformation of the nearby structures. The construction of atlases for
patients with tumors of higher stages will then be of great importance. This
also implies to take into account for the deformations caused by the tumor in
the images when building the atlas and when registering it.
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