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Abstract. The emergence of new modalities such as Di�usion Tensor
Imaging (DTI) is of great interest for the characterization and the tem-
poral study of Multiple Sclerosis (MS). DTI indeed gives information on
water di�usion within tissues and could therefore reveal alterations in
white matter �bers before being visible in conventional MRI. However,
recent studies generally rely on scalar measures derived from the tensors
such as FA or MD instead of using the full tensor itself. Therefore, a
certain amount of information is left unused.
In this article, we present a framework to study the bene�ts of using
the whole di�usion tensor information to detect statistically signi�cant
di�erences between each individual MS patient and a database of control
subjects. This framework, based on the comparison of the MS patient
DTI and a mean DTI atlas built from the control subjects, allows us to
look for di�erences both in normally appearing white matter but also in
and around the lesions of each patient. We present a study on a database
of 11 MS patients, showing the ability of the DTI to detect not only
signi�cant di�erences on the lesions but also in regions around them,
enabling an early detection of an extension of the MS disease.

1 Introduction

Multiple sclerosis (MS) causes a demyelination of the white matter �bers. The
origin and evolution of this disease are still not well understood, and numer-
ous studies have been conducted to evaluate its evolution and its in�uence on
neighboring brain structures. To this end, several methods have been proposed,
mainly using conventional MR modalities like T1, FLAIR or T2 images to delin-
eate lesions as in [1]. This task is challenging and crucial, as having access to the
lesion load over time, coupled with measurements such as local brain atrophy,
can bring a lot of information on the characterization of the disease.

The emergence of new modalities, and in particular di�usion tensor imaging
(DTI) [2], is of great interest in MS. DTI gives information about water di�u-
sion within tissues, and could therefore reveal alterations in normal appearing
white matter �bers before being visible in conventional MRI. For this purpose,
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Filippi et al. [3] evaluated the di�erences in fractional anisotropy (FA) between
MS patients and controls on normal appearing white matter regions. While this
type of studies tend to show that di�usion MRI could be bene�cial to detect
more accurately MS lesions, they generally rely on scalar measures derived from
the tensor such as FA or mean di�usivity, instead of using the full tensor itself.
A certain amount of information is thus lost in the processing of this data. In
parallel, other studies have shown the interest of using the whole tensor informa-
tion. For example, [4] showed that it was possible to compare di�usion tensors of
two populations using Log-Euclidean (LE) metrics [5], and that the comparison
was more sensitive, i.e. could reveal more di�erences, than considering only a
scalar parameter such as the FA.

In this work, we propose a framework that relies on the whole di�usion ten-
sor information to detect statistically signi�cant di�erences between MS patients
and controls. Recent work proposed methods for the detection of group di�er-
ences between two tensor populations such as [4] on di�usion tensors, or [6] on
Jacobian tensors derived from deformation �elds. However, in our context, these
methods are not directly applicable as lesions are not spatially consistent. Con-
sequently, it is necessary to compare each patient individually with the group of
control subjects. This approach also raises the question of the construction of
an unbiased reference frame from the controls.

To address those problems, we propose a framework to compute an unbiased
atlas of di�usion tensors from a database of controls. Based on this atlas, we show
how to compute statistical di�erences between a patient and the atlas using a
z-score derived from the whole tensor.

This framework was evaluated on a database of 11 MS patients and 31 nor-
mal controls, showing signi�cant di�erences between each individual patient and
the controls in regions identi�ed as lesions on the T1 and FLAIR images. Inter-
estingly, our results shows that DTI can remain sensitive inside a thick ribbon
surrounding the lesions, suggesting that DTI could be more sensitive than con-
ventional MRI to detect MS lesions.

2 Materials and Methods

2.1 Construction of a Di�usion Tensor Atlas of Controls

In order to compare the DTI of normal controls with the patient DTI, we need
to bring all the DTI into the same reference frame. Using any subject as a
reference would introduce a bias due to the speci�c anatomy of this reference
image. Therefore, we chose to build a geometrically unbiased atlas from the
dataset of controls extending the work of [7], and use this atlas as the reference
for the rest of the study.

Our algorithm basically iterates over two steps until convergence (in our
application the average image was built in 6 iterations). In a �rst step, all images
Ik are non linearly registered onto an initial (randomly chosen) reference image
R, using a block-matching based non linear registration method presented in [8].
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These registrations produce the deformation �elds Tk. A mean image M is built
from all registered images by averaging them. In a second step, the deformation
�elds Tk are averaged to get a mean transformation T , which inverse is applied
to M . This new mean image is then used as the new reference image for the next
iteration, i.e. R = M ◦T−1. Notice that we used the Log-Euclidean framework for
di�eomorphisms [9] when averaging deformation �elds to ensure the invertibility
of T . Transformations are calculated based on T1 images and then applied on
DTIs, the main reason being that DTI registration is still not a mature research
topic.

When warping di�usion tensor images, special attention must be paid to the
reorientation of tensors. Indeed, tensors are supposed to remain aligned with
underlying tissues under any transform. We chose the �nite strain reorienta-
tion strategy proposed in [10] to reorient the tensors with respect to the Jaco-
bian of the deformation. Note that the principal direction of di�usion preserving
method [11] could be used as well. Tensors are resampled and averaged using
Log-Euclidean metrics as they provide a fast way to extend any interpolation
method to tensors while preserving the positive-de�nite constraint, and without
su�ering from the swelling e�ect as this is the case of the Euclidean calculus.

In summary, a set of transformations Tk is obtained for each T1 image Ik

along with a mean T1 image Ī. Each Tk is applied to its corresponding DTI.
The DTI atlas is �nally generated by averaging these images.

2.2 Evaluation of Statistical Di�erences between Atlas and Patient

In statistics, di�erences between a test data and a population are estimated
through the Mahalanobis distance, also abusively called z-score in this article by
analogy to the univariate z-test. This distance requires to know the covariance
matrix of the population (of tensors in our case). We propose to detail its com-
putation in a �rst step, and show in a second step how to extract a p-value from
it to test for signi�cance.

Covariance Matrix and z-score: The covariance matrix is computed as fol-
lows. Tensor logarithms are turned into vectors by keeping only the 6 indepen-
dent coe�cients and multiplying o�-diagonal elements by

√
2, so that the L2

norm of tensors is compatible with the L2 norm of vectors. We call this oper-
ation the V ec mapping. Then, the covariance matrix C of this 6-dimensional
vector is calculated. Finally, the Mahalanobis distance between a tested tensor
D̃ and the ensemble mean/covariance matrix of the atlas is given by:

z(D̃) =
[(

D̃Log − D̄Log

)>
C−1

(
D̃Log − D̄Log

)]1/2

where D̃Log and D̄Log are the V ec mappings of the tensor logarithms, i.e. D̃Log =

Vec
(
log(D̃)

)
.
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Computing the p-value associated to the z-score: In our case, the null
hypothesis is that the di�usion tensor being tested belongs to the normal popu-
lation. As in the scalar case, the p-value is given by P (X > Ic(z)), where Ic(z) is
de�ned as the points x where r ≡ (x−D̄Log)>C−1(x−D̄Log) = z2. In our speci�c
context, the probability density function to be integrated is a 6D multivariate
Gaussian, leading to the following formulation:

V (z) = 1− P (X < Ic(z)) = 1−
∫

r<z2
GD̄Log,C(x)dx (1)

where G is a multivariate Gaussian of mean D̄Log and covariance matrix C. It can
be shown that this integration is equivalent to the integration of a multivariate
Gaussian of mean 0 and covariance Id for values of x such as x>x < z2. Using this
simpli�cation and a change of coordinates to spherical coordinates, we obtain
the following expression for the p-value:

V (z) = e−
z2
2

(
1 +

z2

2
+

z4

8

)
(2)

Following the usual practice in voxel-based morphometry, average p-values
are computed over spatially coherent regions of interest R (for instance MS le-
sions). To this end, we have chosen to compute �rst a mean z-score over the voxels
i in region R and use it to compute the p-value, i.e. V R = V ( 1

N

∑
i∈R z(D̃i)).

3 Results

3.1 Image Databases

Data: For this study, we used a dataset of 31 controls and 11 patients diagnosed
with MS. For each control, a T1 image and a DTI were acquired. T1 images have
a resolution of 256× 256× 176 and a voxel size of 1× 1× 1 mm3. DTI images
were acquired with 12 gradients and have a resolution of 256 × 256 × 60 and a
voxel size of 1× 1× 2.5 mm3.

For each patient, a T1 image (resolution 124 × 256 × 256, voxel size 1.3 ×
1 × 1 mm3) and a DTI (12 gradients, resolution 256 × 256 × 60, voxel size
1× 1× 2.5 mm3) were also available, as well as T2 and FLAIR images.

Pre-processing: For each control and each patient, the image sequence (DTI,
FLAIR, T2) was rigidly registered onto the T1 image. For the DTI, the B0 image
was rigidly registered on the T1 image, and the obtained transform was applied
to the di�usion gradients. To correct for acquisition distortion in DTI, we applied
a non rigid registration procedure between the B0 of the DTI acquisition and the
T1 image using the B-Splines method of [12] with few control points (5× 5× 5).
B0 to T1 registration results were visually validated by a radiologist. T1 and
FLAIR images were �nally used to manually delineate the MS lesions on each
patient.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Voxel-wise z-scores for a given MS patient. Illustration of the z-score
maps obtained for a patient (images (d), (e), (f)) compared to the corresponding
anatomy (axial (a),(d), coronal (b),(e) and sagittal slices (c),(f)). The contours cor-
respond to the manual delineations of the MS lesions.

For each MS patient, non linear registration of the T1 image onto the atlas
was done. Patient to atlas registration consists in two steps. First, a global
a�ne transformation was computed between the T1 images. Then, non linear
registration was performed to locally align the anatomies of the atlas and the
patient. As intensities in voxels with lesions are di�erent from those of the atlas,
the transformation was interpolated inside a dilated mask of the patient's lesions
following a method similar to [13]. Thus, abnormalities in lesions signal did not
interfere during the registration process. The �nal transformations were then
applied to the patient DTI as presented in Sec. 2.1. Finally, voxel-wise z-score
and p-value calculation were done to obtain a map of statistical di�erences.
Results are presented in the next section.

3.2 Di�usion Tensor Di�erences in MS Lesions
The initial evaluation consisted in looking at di�erences between patients and
controls in the lesion regions. We present in Fig. 1 the maps of z-scores, with the
manual delineations of the lesions superimposed, for one patient of the database.

This �gure shows that MRI regions with visible lesions have the highest z-
scores. This indicates that the di�usion tensor is a�ected by MS and that lesions
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are highly likely to be signi�cantly di�erent with respect to an atlas of controls.
We can also see on this �gure (particularly on the sagittal slice) that, for some
lesions, the manual delineation does not correspond exactly to the high z-score
values. This is mainly caused by local errors in manual delineation, as shown
in the sagittal view of Fig. 1 (c) at the position of the axes. More interestingly,
the map of z-scores presents hyper-signals in regions not labeled as lesion by the
expert. For instance, a possible extension of a lesion can be seen on the sagittal
slice. There are indeed high z-score values around the large lesion on the right
of this view that are not seen in the T1 image.

To verify and quantify the DTI signal di�erence between the patients and
the control subjects, we computed the mean tensor-based p-value inside the
manually delineated lesions. Results are presented in Table 1.

Patient # p-value Patient # p-value Patient # p-value
1 2.1× 10−18 5 4.2× 10−7 9 8.7× 10−4

2 7.9× 10−5 6 7.5× 10−5 10 6.8× 10−4

3 0.045 7 3.4× 10−4 11 4.2× 10−7

4 4.9× 10−4 8 1.8× 10−7

Table 1. Quantitative evaluation results on the MS lesions. Mean p-values
obtained on regions corresponding to the MS lesions for each patient.

All p-values are below the critical value of 0.05, therefore rejecting for all
patients the null hypothesis: tensors in lesions are not likely to belong to the
normal variability represented by the atlas of controls. Interestingly, patient 3 is
closer to 0.05 than the other patients.

3.3 Evaluation of Tensor Di�erences around Lesions
The previous section has shown the existence of signi�cant tensor-based dif-
ferences between patients and controls inside the lesions. To go beyond this
sensitivity analysis, we looked at surrounding regions to check whether regions
around the lesions exhibit large z-score values.

These ring-like regions around the lesions were obtained by subtracting the
binary mask of the manually segmented lesions to its dilation. P-values were
then computed withing those regions surrounding the lesions. These results are
presented in Table 2.

Results show, for 7 patients out of 11, a p-value that is below the threshold
of 0.05. Remaining p-values are also very low (the maximum value being 0.101).
This may suggest that some patients exhibit an extension of the lesions that
is not visible in conventional MRI, but is detectable in DTI using higher order
statistical analysis. These results tend to prove that DTI may e�ectively be used
as a complementary diagnostic imaging modality to study and understand the
evolution of MS.
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Patient # p-value Patient # p-value Patient # p-value
1 8.1× 10−7 5 0.009 9 1.9× 10−3

2 0.059 6 1.8× 10−3 10 0.028

3 0.101 7 0.079 11 0.019

4 0.066 8 0.016

Table 2. Quantitative evaluation results on regions around the MS lesions.
Mean p-values obtained on regions around the MS lesions for each patient (see text).

4 Conclusion
We have presented in this article a new framework for the detection of signi�-
cant di�erences between DTI of patients and normal controls. This framework
was applied to the study of multiple sclerosis and highlighted the great inter-
est of DTI measurements made on the whole tensor for a better understanding
and characterization of the disease. Results indeed indicated, qualitatively and
quantitatively, that di�usion tensors were not only signi�cantly di�erent inside
the lesion regions, but also for some patients in regions around the lesions. This
suggests the existence of an extension of the disease invisible in conventional
MRI, but revealed by DTI.

This comparison framework is however dependent on the choice of the regis-
tration method to build and register the statistical atlas. This choice may indeed
bias the p-values results. The comparison of di�erent registration methods will
therefore be interesting to quantify this dependency. This evaluation will also
include the use of registration methods taking into account the speci�cities of
the DTI such as [14], allowing to register more precisely regions such as the white
matter, which has a uniform intensity in conventional MRI.

Another way to cope with this bias and possible preprocessing errors is the
study of robust analysis methods, including more information on the local neigh-
borhood of the tensors. An interesting solution could be the use of the Staple
method [15] on each of the tensors components, allowing to compute at the same
time a robust mean tensor image and error parameters of the patient tensors.

This work also opens wide and important perspectives for the understanding
of multiple sclerosis. One of them will be the temporal study of the evolution
of the lesions and the comparison of the invisible extents found through DTI
with the real evolution of the disease. This will allow us to see if these extents
e�ectively evolve into lesions or if they are more related to a local edema. This
framework will also be used for the evaluation of the in�uence of the disease on
normal appearing white matter regions such as the corticospinal tracts.

In the future, we would also like to perform a quantitative comparison of
all available imaging modalities to independently detect and quantify the lesion
volume in the brain. Finally, as an extension to the present work, it will be
interesting to propose a multi modal statistical framework to compute statistics
on multivariate data (i.e. DTI, FLAIR, T1, T2) of higher dimensions. Indeed,
this statistical study will also allow to do a sensitivity analysis of the contribution
of each modality in the �nal detection performance.
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