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ABSTRACT

We propose an algorithm for the diffeomorphic registrationof
diffusion tensor images (DTI). Previous DTI registration al-
gorithms using full tensor information suffer from difficulties
in computing the differential of the Finite Strain tensor reori-
entation strategy. We borrow results from computer vision
to derive an analytical gradient of the objective function.By
leveraging on the closed-form gradient and the one-parameter
subgroups of diffeomorphisms, the resulting registrational-
gorithm is diffeomorphic and fast. Registration of a pair of
128 × 128 × 60 diffusion tensor volumes takes 15 minutes.
We contrast the algorithm with a classic alternative that does
not take into account the reorientation in the gradient compu-
tation. We show with 40 pairwise DTI registrations that using
the exact gradient achieves significantly better registration.

Index Terms— Biomedical image processing, image reg-
istration, diffusion tensor imaging

1. INTRODUCTION

Registering scalar images requires a deformation model, an
interpolation scheme, a similarity metric and a regularization
method. For DTI however, one also needs to define a tensor
reorientation scheme in order to warp a tensor image consis-
tently with the anatomy [1]. The two commonly used reori-
entation strategies, the Finite Strain (FS) reorientationand the
Preservation of Principal Directions (PPD) reorientation, have
similar empirical performances [2].

Need for reorientation substantially complicates the com-
putation of the gradient of the registration objective function.
Many DTI registration algorithms therefore only use scalar
values or features that are invariant to image transformations [3].

Alexander and Gee [4] perform elastic registration of ten-
sor images by reorientating the tensors after each iteration us-
ing PPD reorientation. The reorientation is not taken into ac-
count in the objective function. In the more recent work, Cao

∗This research is funded by the INRIA “associated teams” programCom-
puTumor: http://www-sop.inria.fr/asclepios/projects/boston/. B.T. Thomas
Yeo is funded by the Agency for Science, Technology and Research, Singa-
pore. He did this work while at INRIA. DTI data courtesy of Denis Ducreux,
MD, PhD, Bicêtre Hospital, Paris.

et al. [5] register tensor images diffeomorphically using an
exact gradient of the PPD reorientation.

For a general transformation, the FS reorientation is de-
fined by the rotation component of the deformation field. Zhang
et al. [2] propose a novel piecewise affine registration algo-
rithm to register tensor images using FS reorientation. Be-
cause each piecewise transformation considered is affine, the
rotation component of the deformation needsnot be com-
puted. Instead, since rotation is already explicitly optimized
in affine registration, the gradient due to FS reorientationcan
be easily computed. These piecewise affine transformations
are fused together to generate a smooth warp field. However,
it is unclear how much of the optimality is lost through the
fusion of the optimal piecewise affine transformations.

In this work, by borrowing results from pose estimation [6],
we solve the open problem of computing the differential of
the FS reorientation with respect to the Jacobian. Indeed,
since the differential of the Jacobian with respect to the trans-
formation parameters is usually easy to compute, this solves
the general problem of finding the differential of the FS re-
orientation for any parametric transformation. We incorpo-
rate the exact FS gradient into a diffeomorphic DTI registra-
tion scheme, extending the recently introduced diffeomorphic
demons algorithm [7] from scalar to tensor images. The dif-
feomorphic demons algorithm is a diffeomorphic variant of
the original demons algorithm [8], using a fast exponentialof
stationary velocity fields [9]. The resulting registrationis fast,
taking about 15 minutes.

We compare our algorithm with an alternative that ignores
the reorientation during the gradient computation but reorient
tensors after each iteration. This algorithm is a diffeomorphic
version of the one proposed by Alexander and Gee [4] using
FS reorientation. We show that using the exact gradient re-
sults in significantly better registration. In particular,the Sum
of Squares Difference (SSD) is improved regardless of the
metric (Euclidean or Log-Euclidean) used for interpolation,
objective function or evaluation.

To summarize, our contributions are: (i) derivation of the
exact Finite Strain (FS) differential usable in any DTI regis-
tration scheme, (ii) incorporation of the FS differential into
a fast diffeomorphic DTI registration algorithm, (iii) exper-
iments showing that using the exact gradient leads to better



registration, (iv) an implementation that allows for both Eu-
clidean and Log-Euclidean approaches.

2. FINITE STRAIN DIFFERENTIAL

Deforming a tensor image by a transformations involves ten-
sor interpolation followed by tensor reorientation [1]. Tocom-
pute a deformed tensor at a voxeln, one first computes the in-
terpolated tensorT (n). In this work, we will use Euclidean [1]
and Log-Euclidean interpolation [10].

According to the FS reorientation strategy [1], we com-
pute the rotation component of the deformation at pixeln:

R(n) = (J(n)J(n)T )−
1

2 J(n) (1)

whereJ(n) is the Jacobian of the spatial transformations =
Id+u at pixel n, u being a dense non-parametric displace-
ment field. The presence of the matrix square root makes
any gradient computation difficult. The interpolated tensor
T (n) is then reoriented, resulting in the final tensorT ′(n) =
RT (n) · T (n) · R(n). For registration using the finite strain
strategy, we see from the chain rule that we need to compute
the differential ofR with respect toJ . DefiningS = (JJT )

1

2

and using the results of pose estimation methods [6], we get:

dR = −R
[

RT (tr(S)I − S)−1R
∑

i

(RT )i ⊗ (dJT )i

]⊕
(2)

where⊗ denotes 3D cross product,(·)i denotes thei-th col-
umn of (·) and⊕ is the operator that converts any3 × 1
vectorm = [m1 m2 m3]

T into the skew symmetric matrix
( 0 −m3 m2

m3 0 −m1

−m2 m1 0

)

. Let Jij be theij-th component ofJ . ∂R
∂Jij

is then given by dR in (2) if we set dJ to 0, except for(dJ)ij

which is set to1.

3. DIFFEOMORPHIC DEMONS FOR DTI

3.1. Algorithm overview

The diffeomorphic demons algorithm for scalar images [7]
uses a modified demons objective function, equivalent to that
of the original demons algorithm [8]. We use the same demons
objective function, but have to incorporate the reorientation
matrixR into the deformation model.

Ec(s) = ||Σ−1
[

F −RT (M ◦ c)R
]

||2

+ σ−2
x dist(s, c)2 + σ−2

T Reg(s) (3)

F is the fixed tensor image andM is the moving tensor image.
s is the spatial transformation to be optimized,c is an auxil-
iary variable and|| · || denotes the Euclidean Sum of Squares
Difference (EUC-SSD) similarity measure between the fixed
image and warped moving image [4, 2].R is the rotation
matrix computed for each voxel and is implicitly dependent

on the transformationc. Σ is a diagonal matrix that defines
the variability at a particular voxel.σx andσT provide the
tradeoffs between the terms in the objective function.

This formulation leads to a fast and simple optimization
procedure by alternately optimizing the first two terms and
the last two terms of (3) [7]. Typically, one has dist(c, s) =
||c − s|| andReg(s) = ||∇s||2. The regularizations can be
modified to handle fluid-like constraints.

F and M can be seen as a9N × 1 vector by “raster-
izing” each of theN (3 × 3) tensors into a column vector.
But F andM can also be taken as the Log-Euclidean trans-
forms of the original tensor images (done by converting each
tensorT to its logarithmlog(T ) [10]). This applies because
log(RT TR) = RT log(T )R for any rotation matrixR. This
is convenient, since we only need to perform a one-time log-
arithm transformation of the tensor images to work under the
Log-Euclidean framework [10]. The resulting similarity mea-
sure will be referred to as the Log-Euclidean SSD (LOG-
SSD).

Under certain smoothness conditions, a stationary veloc-
ity field v parameterizes a diffeomorphism via the exponen-
tial mapexp(v) [9]. Formally,exp(v) is the solution at time
1 of the stationary ODE∂c/∂t = v(x), with c(0) = Id.
Thus,c(1) = exp(v). The scaling and squaring approach [9]
allows us to compute the exponential without having to ex-
plicitly solve the ODE.

At each iteration, the diffeomorphic demons algorithm
looks for an update transformation in the space of diffeomor-
phisms parameterized by stationary velocity fields and com-
pose the update with the current transformation:

1. Choose a starting spatial transformations (represented
by a displacement field)

2. Iterate until convergence:

(i) Given s, compute a velocity field updatev by
minimizing the first two terms of (3):
Es(v) = ||Σ−1[F−RT (M ◦ s ◦ exp(v))R]||2+
σ−2

x ||dist(s, s ◦ exp(v))||2 wrt v

(ii) If a fluid like regularization is used, letv ← Kfluid⋆
v. The kernel will typically be Gaussian.

(iii) Let c← s ◦ exp(v)
(iv) If a diffusion-like regularization is used, lets ←

Id +Kdiff ⋆ (c− Id) (else lets← c).

Steps 2(ii) to 2(iv) essentially optimize the last terms of (3).

3.2. Objective Function Derivative

We now focus on the optimization of step 2(i) of the DTI dif-
feomorphic demons algorithm, which objective function can
be written in a non-linear least-squares form:

Es(v) =
∥

∥

∥

[

Σ−1[F−RT (M◦s◦ev)R]

σ−1

x ev

]∥

∥

∥

2

=
∥

∥

∥

[

ϕ1(s◦ev)

ϕ2(s◦ev)

]∥

∥

∥

2

(4)



The derivative ofϕ2 is a3N × 3N matrix: Dϕ2

s (v = 0) =

σ−1
x Id. Dϕ1

s (0) is a sparse9N × 3N matrix. It is easier to
interpretDϕ1

s (0) asN×N blocks of9×3 matrices. In partic-

ular, the(n, j)-th block[Dϕ1

s (0)]nj is equal to∂ϕ1

n(s◦ev)
∂v(j)

∣

∣

v=0
.

Using the chain rule and the fact that the derivative of the ex-
ponential at the identity is the identity, we get:

[Dϕ1

s (0)]nj =
∂ϕ1

n(s ◦ (Id +u))

∂u(j)

∣

∣

u=0
(5)

Using the product rule, (5) can be decomposed into a sum of:

• Anj = ∂RT (n)
∂u(j)

∣

∣

u=0
·M ◦ s(n) ·R(n) andAT

nj

• RT (n) · ∂M◦s◦(Id +u)(n)
∂u(j)

∣

∣

u=0
·R(n)

R(n) is a function of the JacobianJ(n) of spatial transforma-
tion at then-th pixel. In practice,J(n) is defined numerically
using finite central difference, and depends only on the dis-
placement of the 6 neighbors. Therefore,

[Dϕ1

s (0)]nn = −Σ−1(n)RT (n)∇(M ◦ s)(n)R(n) (6)

and for neighborsj of voxeln, we get

[Dϕ1

s (0)]nj = −Σ−1(n)(Anj + AT
nj) (7)

Using the differential ofR from (2), we can compute∂R(n)
∂u(j)

using the chain rule.
In summary, we have computed the full gradient of our

objective function:Dϕ
s (0) =

[

Dϕ1

s (0)

σ−2

x Id

]

whereσ−2
x Id is a

3N × 3N matrix, whileDϕ1

s (0) is a sparse9N × 3N matrix.

3.3. Optimization: Gauss-Newton Method

From the previous sections, we can now write

Es(v) ≈
∥

∥

∥

[

Σ−1(F−RT (M◦s)R)
0

]

+
[

Dϕ1

s (0)

σ−1

x Id

]

v

∥

∥

∥

2

(8)

Solving this sparse linear system of equations forv provides
an update for a single iteration of the Gauss-Newton optimiza-
tion method. At the finest multiresolution level, solving the
sparse linear system requires about 60 seconds. This is the
bottleneck of the algorithm. Due to the fast convergence of
the Gauss-Newton method, we typically only need to solve
the linear systems 10 times per multi-resolution level. The
resulting registration takes about 15 minutes.

4. EXPERIMENTS AND DISCUSSIONS

We consider pairwise registration among 10 DT images (128×
128 × 60, 25 gradient directions). To illustrate the utility of

(a) Moving Image

(b) Fixed image and
zoom

(c) Registered image
(approx. grad.)

(d) Registered image
(exact grad.)

Figure 1: Qualitative comparison between exact FS gradient and
approximated gradient for registering a pair of subjects (same pa-
rameters) using the Log-Euclidean framework (a) Moving image.
(b) Fixed image. (c) Registration using approximated moving image
gradient. (d) Registration using exact FS gradient. Volumes were
slightly cropped for better display. Exact gradient achieves better
alignment of fiber tracts with smoother displacement field. Tensors
in the highlighted regions of (b) and (d) are coherently oriented in
a north-east direction. However, in (c), the directions of the tensors
are more scattered. Furthermore, the volume of the tensors in (c) are
inflated relative to (b) and (d). Numerically, exact FS gradient has
lower SSD with a smoother deformation field (not shown).

the exact FS gradient, we adapt our algorithm to ignore the re-
orientation part of the objective function in the gradient com-
putation. Tensors are treated like vectors, but they are reori-
ented at every resampling step. This approximated-gradient
algorithm is thus a diffeomorphic variant of [4], except we
use FS reorientation. In this case, the linear system (8) canbe
decoupled into3×3 independent sub-systems. A further sim-
plification of the algorithm uses only the gradient of the fixed
image during the entire registration process, similarly tothe
most common variant of the classical demons algorithm [8].

Figure 1 shows the registration of two subjects. Visually,
the exact FS gradient results in better tract alignment with
smoother displacement field than the use of the approximated
gradient.

To quantitatively compare the performance of the exact
FS gradient and the approximated gradient, we consider pair-
wise registration of 10 DTI. Among the 90 possible registra-
tions, we randomly select 40 pairs of images. The statistics
appear to converge after about 30 pairs of registrations.
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Figure 2: Average SSD (y-axis) over an entire spectrum of harmonic
energy (x-axis). Harmonic energy is increased by decreasing the size
of the smoothing kernel.

As implied by previous literature, comparing registration
algorithms using only one fixed tradeoff between the similar-
ity measure and regularization can potentially bias the com-
parison. We therefore use smoothing kernels of sizes{0.5,
0.6, · · · , 1.9, 2.0} to span a wide range of tradeoffs between
similarity and regularization. We find that, for a given smooth-
ing kernel size, using the exact FS differential tends to con-
verge to a solution with a lower harmonic energy. Smaller
harmonic energy implies a smoother deformation, providing
some evidence that the reorientation provides additional con-
straint on the registration problem. For each pair of subjects
and each kernel size, we perform four registrations, choos-
ing from approximate or exact FS gradient, and Euclidean or
Log-Euclidean framework.

For each pair of subjects, we obtain a set of SSD with cor-
responding harmonic energies. The harmonic energies and
SSD across different pair of subjects are different. To aver-
age across trials, we linearly interpolate the SSD over a set
of harmonic energies for each pair of subjects. We can then
compute the mean as well as the standard deviation of SSD
across trials for a particular harmonic energy.

Regardless of whether we use the Euclidean framework
(Fig. 2a) or the Log-Euclidean one (Fig. 2d), the exact FS
gradient leads to an improvement over the entire range of har-
monic energies. Moreover, the improvement is statistically
significant (one-sided paired-samples t-test p-value lessthan
10−5 for the entire range of harmonic energies). The amount
of improvement increases as the harmonic energies increase.
In our experiments, a harmonic energy of0.3 corresponds to
severe distortion (pushing the limits of the numerical stability
of diffeomorphism), while a harmonic energy of0.03 corre-
sponds to very smooth warps.

We emphasize that the improvements persist in Fig. 2b
and Fig. 2c even though we evaluate a different similarity

measure from the one that is optimized (e.g. evaluating EUC-
SSD whereas Log-Euclidean registration is used).

5. CONCLUSION

In this work, we derive the exact differential of the FS reorien-
tation. We propose a fast diffeomorphic DTI registration al-
gorithm using the exact FS differential. We show that the use
of the exact differential improves the image similarity metric
by 5 to 10 percent over an entire spectrum of harmonic ener-
gies. The improvements persist even if we evaluate a different
similarity measure from the objective function we optimize.

Taking the reorientation into account therefore allows the
algorithm to match two tensor images more easily. The re-
orientation also provides an additional constraint: the regis-
tration algorithm cannot arbitrarily pull in a far-away region
for matching because this induces reorientation of tensorsin
other regions. This additional constraint acts as a furtherreg-
ularization, leading to a better solution.
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