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Abstract: Tracking gliomas dynamics on MRI has became more and more important for therapeutic management. 

Powerful computational tools have been recently developed in this context enabling in silico growth on a virtual brain that 

can be matched with real 3D segmented evolution through registration between atlases and patient brain MRI data. In this 

paper, we provide an extensive review of existing algorithms for the three computational tasks involved in patient-specific 

tumor modeling: image segmentation, image registration, and in silico growth modelling (with special emphasis on the 

proliferation-diffusion model). Accuracy and limits of the reviewed algorithms are systematically discussed. Finally 

applications of these methods for both clinical practice and fundamental research are also discussed. 

INTRODUCTION 

 The advent of MRI scanning protocols has allowed 
accurate follow-up of tumor growth through volumetric 
measurements. Interpretation of the radiological evolution of 
the tumor appears of utmost importance for therapeutic 
management, especially for low-grade glioma. Indeed, 
patients are most of the time asymptomatic (except in the 
case of epilepsy) during the “low-grade” phase, and the 
tumoral evolution is only monitored by MRI follow-up, both 
prior and after treatment. However, such information about 
the tumor dynamics is usually not fully integrated with the 
therapeutic strategy, and the assessment of the tumor 
evolution is still limited to qualitative descriptions (recur-
rence, progression, regression, stability). Thus, it is expected 
that bio-mathematical models will help to quantify tumor 
dynamics, to simulate treatment effects, and finally to 
optimize therapeutic strategies. 

 Computational models of gliomas dynamics have been 
initiated more than ten years ago [1, 2]. The first studies 
aimed at modeling the effect of chemotherapy and surgical 
resection on the evolution of high-grade gliomas. If the 
mathematical framework introduced at that time is still in 
use, there have been considerable advances in its numerical 
resolution. In particular, digital brain templates, provided by 
MRI, enable to implement the biophysics equations onto 
accurate virtual anatomy. This in turn allows to refine the 
model, by introducing for example different cell motility in 
white and gray matter [3], and inside white matter, along and 
orthogonally to axonal fasciculus [4]. However, published 
studies have never seriously matched observed radiological  
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evolution with virtual in silico dynamics. Such a comparison 
would require three different steps (as illustrated in Fig. 1): 
segmentation of actual growth, registration on a virtual brain 
atlas, and identification of model parameters corresponding 
to optimal matching between actual and simulated evolution.  

 We thus propose in this paper to review existing algo-
rithms for segmentation, registration and in silico growth, 
with special attention to the accuracy and reliability of the 
methods. 

SEGMENTATION 

 An accurate determination of the actual tumor evolution 
requires full 3D segmentation on digital images. Manual 
segmentation by an expert is still considered as the reference 
method, but is a time consuming task with high inter and 
intra-observer variability.  

 Many automated or semi-automated approaches were 
developed over the past ten years showing great variability in 
results and performance in terms of reproducibility. 
Challenges in the segmentation of gliomas from MRI data 
are related to i) the infiltration of cells into the tissue, 
inducing unsharp borders with irregularities and disconti-
nuities (a tumor is not necessary a single connected object), 
ii) the great variability in their contrast uptake (depending on 
their vascularisation) and iii) their appearance on standard 
MRI protocols.  

 MRI protocols used for brain imaging typically include 
Proton density (PD), T1-weighted (e.g. SPGR), T1-weighted 
enhanced (T1E) with contrast agent (usually Gadolinium), 
and T2-weighted (e.g. FLAIR) data. T1 data provides detai-
led anatomical views of the brain along with high signals on 
haemorrhages. T1E data shows strong signal on all vascula-
rized structures (including tumors and haemorrhages), 
whereas usual FLAIR images (with a slice thickness around 
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5 mm) show less anatomical details, but high signal on 
tumors, infiltrations and edema.  

Methods 

 Given an image, the segmentation task can be seen as the 
partition of the image into homogeneous objects, which 
correspond to a region-based segmentation approach, or as 
the detection of object contours within the image, 
corresponding to an edge-based segmentation approach. The 
majority of the MRI-based glioma segmentation methods 
that have been proposed in the literature are region-based. 
More recent methods, based on deformable models, also 
included edge-based information. In the case of MRI 
segmentation, several factors introduce a large amount of 
uncertainty in the segmentation process, including partial 
volume effects, integration of multi-protocol image data and 
observer variability. In this context, a large set of segmen-
tation methods was designed in a statistical framework, 
providing a classification of the image data into different 
tissue types, while only few were designed with a deter-
ministic approach.  

Deterministic Approaches 

 In 1996, Gibbs et al. [5] introduced a morphological edge 
detection technique combined with simple region growing to 
segment enhancing tumors on T1 MRI data. Based on an 
initial sample of the enhanced tumor signal and the surroun-
ding tissues, provided manually, an initial segmentation was 
performed combining pixel thresholding, fitting to an edge 
map of the image data and morphological opening and 
closing, inspired by the work proposed by Kennedy et al. [6]. 
The tumor area was defined based on pixel values in the 
range of 4 standard deviations around the mean value, 
constrained by the edge map.  

 In 2004 Letteboer et al. [7], proposed an interactive 
segmentation method for three types of tumors: full-
enhancing, ring-enhancing and non-enhancing. After manual 
tracing of an initial slice, a series of morphological filtering 
operations (based on the watershed algorithm) was applied to 
partition the MRI volume data into homogeneous areas. A 
multiscale framework (i.e. analysis of the image data at 
different spatial resolutions) was employed to correlate 
segmented regions across different scales. The overall 
segmentation process was guided via an interactive user 
interface. 

 In 2005, Droske et al. [8], proposed to use a deformable 
model, implemented with a level set formulation, to partition 
the MRI data into regions with similar image properties, 
based on prior intensity-based pixel likelihoods for tumoral 
tissues. The deformable model optimization was performed 
on a spatially-adaptive grid, only refined in inhomogeneous 
regions. Homogeneity measures included gray value inter-
vals, defined from a user input, and image gradient values. 
Some manual supervision of the deformable model was 
required, so that incremental segmented areas were proposed 
to the user who controlled the final segmentation results. 
More specifically, heterogeneous tumors, involving necrosis 
for example, required successive segmentations by addition 
or removal of intermediate results.  

Statistical Approaches 

 In 1995, Vaiddynathan et al. [9], compared two super-
vised multispectral classification methods: k nearest 
neighbour (kNN) and spectral fuzzy C-means (FCM). For 
these two classification approaches, nine tissue classes were 
considered (background, CSF, WM, GM, fat, muscle, tumor, 
edema, necrosis). The authors also tested an interactive seed-
growing segmentation approach on T1E MRI data. The seed-

 

 

 

 

 

 

 

 

 

Fig. (1). Illustration of glioma growth evolution observed on temporal MRI studies. 
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growing algorithm only segmented tumor tissue based on a 
sample pixel population manually selected by the user. 

 In 1998, Clark et al. [10] introduced a knowledge-based 
(KB) automated segmentation method for glioblastomas on 
multispectral data combining T1E, PD and T2 weighted data. 
A training phase was performed on 17 slices from seven 
patients, extracting tumor size and enhancement level 
characteristics. Slices were first characterized as normal or 
abnormal via a fuzzy C-means (FCM) classification and the 
analysis of the clustering result through an expert system. 
Two examples of knowledge used in the predecessor system 
were: 1) in a normal slice, CSF belongs to the cluster center 
with the highest value in the intracranial region; 2) in image 
space, all normal tissues are roughly symmetrical along the 
vertical axis.  

 After a brain mask was computed, initial tumor segmen-
tation, generated from vectorial histogram thresholding in 
the T1, PD and T2 images, was post-processed with a KB 
approach to eliminate non-tumor pixels. 

 Tumor heuristics used in the KB system were the 
following: “1) Gadolinium-enhanced tumor pixels occupy 
the higher-end of the T1 spectrum; 2) Gadolinium-enhanced 
tumor pixels occupy the higher-end of the PD spectrum, 
though not with the degree of separation found in T1 space; 
3) Gadolinium-enhanced tumor pixels are generally found in 
the “middle” of the T2 spectrum, making segmentation based 
on T2 values difficult; 4) Slices with greater enhancement 
have better separation between tumor and non-tumor pixels, 
while less enhancement results in more overlap between 
tissue types”. It is important to note that their notion of 
tumor pixel included edema and necrosis. A final processing 
stage was performed, based on histogram analysis of the 
tumor pixels and heuristics on the “density” of intensity 
features of non-tumor tissues. Indeed, based on the obser-
vation that tumors can show different levels of enhancement 
and very complex shapes, the final KB approach was 
focused on characterizing non-tumoral tissues.  

 In 2001, Kaus et al. [11] presented a complete validation 
of an automated segmentation method on T1E data from 
twenty patients with meningiomas and low-grade gliomas. 
The segmentation method, called an adaptive template-
moderated classification, and described in [12, 13] was based 
on an iterative process. It alternated between a kNN 
classification of voxels into five hierarchical tissue types 
(background, skin-fat-bone, brain, ventricles, tumor) and a 
nonlinear registration of the data with an anatomical atlas 
(manually segmented MRI data of a single subject) to align 
the data with the template. The kNN classification used 
features from data intensity values and anatomical priors on 
the tissue location from the atlas. This method performed 
extraction of the five tissues in a pre-determined hierarchical 
order. Tissue mean values were learned on the patient’s data 
via manual selection of three or four points for each tissue. 
To handle the presence of the tumor in the registration 
process, voxels assigned to the tumor class were masked 
with brain labels prior to registration with the atlas. This 
method obviously relied on a strong homogeneity assump-
tion of the tumor’s appearance on MRI data, which was 
reinforced by the use of anisotropic diffusion filtering.  

 In 2001 Moonis et al. [14] proposed a segmentation 
framework based on fuzzy connectedness (FC) which 
optimally clustered voxels into classes of high connectivity 
(analogous to a similarity measure). The method was applied 
to T1, T1E and T2 data, and initialized with an MRI data 
standardisation of the gray levels based on non-linear 
transformation of the histograms [15].  

 In 2005, Liu et al. [16], from the same group, used a 
similar approach based on a volume of interest on co-
registered T1 and T2 data, to process only slices containing 
the tumor. A set of points inside the tumor were selected to 
initialize the statistics used in the FC. The threshold level 
applied to the FC maps to define the final segmentation 
result was determined empirically on five datasets and then 
fixed once for all. Segmentation was performed separately 
on the T2, T1E and subtracted (T1-T1E) data sets in 3D. 
Manual corrections of the segmentation results were perfor-
med by experts.  

 In 2001, Fletcher-Heath et al. [17], proposed a combi-
nation of unsupervised classification with FCM and 
knowledge-based (KB) image processing for segmentation 
of non-enhancing tumors. The FCM was run on spectral data 
(T1, T2, PD). As the authors pointed out, FCM tended to 
define clusters with similar sizes, which required an initial 
classification in ten classes. A KB system was then designed 
to re-cluster the segmentation results into seven classes 
based on a training phase. Difficulties principally arose in 
the separation of CSF and tumor signals.  

 In 2004, Mazzara et al. [18], compared the kNN appro-
ach from [9] and the KG-based approach from [10] for 
growth tumor volume (GTV) measurements on eleven 
patients with high and low-grade gliomas. As used in 
oncology radiation therapy, GTV corresponded to the area 
enclosing several contiguous clusters of enhancing pixels 
(i.e. including non-enhancing pixels within the area). The 
study showed severe limitations of the KG-system (which 
was not trained with the dataset to segment) in handling 
particular cases such as non-enhancing tumor margins or the 
presence of non-enhancing cystic necrotic tissues at the 
center of the tumor. On the other hand, the kNN segmen-
tation method, trained with sample data from MRI slices to 
segment, lead to robust segmentation results on all patients. 
In 2006, Beyer et al. [19], from the same group, presented a 
similar and more recent comparative study, extracting GTV 
with the same two segmentation methods and evaluating the 
results in terms of predictive dose measurement for therapy 
planning.  

 In 2004, Zou et al. [20], proposed a continuous proba-
bilistic segmentation framework, based on mixture modeling 
for two classes: tumor and non-tumor tissues. After 
initialization of the segmentation with the semi-automated 
method from Kaus et al. [11], the segmentation process 
involved estimation of the distribution parameters and 
probability values thresholding. Three metrics were proposed 
and evaluated to optimize the threshold selection: Receiver 
operating curve (ROC), which weights the sensitivity versus 
the specificity of the segmentation result, a Dice similarity 
coefficient, which is also a function of sensitivity and 
specificity and mutual information that directly compares the 
segmentation result to a ground truth.  
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 In 2004, Prastawa et al. [21] proposed a segmentation 
framework based on outlier detection on T2 data. The 
abnormal tumor region was detected via registration on a 
normal brain atlas. Statistical clustering of the abnormal 
voxels, followed by a deformable model, were then used to 
isolate the tumor and the edema.  

 A summary of the reviewed papers and the specificities 
of the clinical aspects of the evaluation setup are provided in 
Table 1.  

Gold Standard Definition 

 Evaluation of tumor segmentation accuracy typically 

requires the definition of a ground truth segmentation. In this 

section we call  the image data domain (i.e. the entire set 

of pixels to segment), V the tumor volume (i.e. set of pixels 

identified as belonging to the tumor) provided by the 

evaluated segmentation method, by tV  the tumor volume 

identified by the ground truth method and by  the 

cardinality (i.e. number of voxels included) of a volume. The 

complementary set of V  (i.e. set of pixels identified as not 

belonging to the tumor) is written as V .  

 Static as well as statistical ground truth volumes have 
been defined and used in the reviewed literature to compare 
tumor segmentations. We review their definitions and 
constructions in this section.  

Deterministic Ground Truth 

 The most widely used approach to define a ground-truth 
tumor object, is via manual tracing of the contours by one or 
several experts in neuroradiology. There are obvious 
limitations to such approach: 

 - Enhancement appearance of tumor on T1E data is very 
variable and depends on the degree of vascularization as well 
as permeability of the vessels to Gadolinium.  

 - Manual tracing bears some variability, which has been 
evaluated in several studies as detailed below in this section. 

 In the majority of papers, a standard manual segmen-
tation of the tumor (and eventually of the brain) was defined 
from the segmentations of one or more independent human 
observers.  

 For example, in Kaus et al. [11], pixels were assigned to 
the ground truth, if at least three of four observers agreed 
with this assignment.  

 

 

 

 

 

 

 

 In Fletcher-Heath et al. [17], in Vaiddynathan et al. [9] in 
Droske et al. [8] and in Prastawa et al. [21], ground truth was 
defined from manual tracing from one expert.  

 To evaluate manual tracing variability, in Kaus et al. 
[11], one observer manually segmented four times the same 
2D MRI slice, over one week.  

 In Liu et al. [16], two sets of manual tracings were used, 
based on 2 operators (a neuroradiologist and a trained expert 
in medical imaging assisted by a semi-automated method), 
and to evaluate segmentation precision, the two operators 
repeated the segmentation three times on ten T2, ten T1E and 
five T1E subtracted studies. To evaluate segmentation 
accuracy, five T2 cases were manually traced three times.  

 In Stadlbauer et al. [22], the authors compared manual 
delineation of hyperintense signal on T2 data to high ratio of 
Cho/NAA on MR spectroscopy imaging (MRSI). The 
ground truth for this study consisted of biopsy samples of 

Table 1. Summary of Reviewed Papers and Clinical Setup 

 Data LGG Glioma HG Year 

Gibbs T1E  10  1996 

Letteboer   20 2004 

Droske T1E  ? 2005 

Liu FLAIR, T1, T1E  10 2005 

Vaidyanathan T1, PD, T2  4  1995 

Fletcher-Heath T1, PD, T2  6  2001 

Clark T1, PD, T2 (all with Gd)  7  1998 

Kaus SPGR-Enh 14  2001 

Moonis FLAIR  19  2001 

Mazzara T1E, FLAIR (CT) 3 8  2004 

Zou T1E (SPGR) 3 3 2004 

Prastawa T2 1 1 2004 

Vt

V 

TP 

FN

FP 

tV TP FP

V TP FN  
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brain tissues in the tumor region detected on MRSI but not 
on T2 data.  

 In their early work, Gibbs et al. [5] evaluated their 
segmentation method on a simple phantom made of a water-
filled glass head containing a balloon of known volume 
(varying from 10 to 16 cm

3
 with 2cm

3
 increment) of CuSO4, 

which was screened with the same T1E protocol as used for 
patients. They also compared their method to a thresholding-
based segmentation method provided by a commercial soft-
ware (ISG Technologies Inc), requiring 2D manual initiali-
zations. Efficiency of the commercial method and the pro-
posed method was evaluated by repeating the initialization 
three times, from a single user.  

Statistical Ground Truth 

 In Mazzara et al. [18], a statistical ground truth was 
defined from a set of manual tracings as the probability that a 
pixel is properly considered as part of the tumor. These 
probabilities were used as weights in the accuracy measure-
ment, so that the true-positive accuracy measurement corres-
ponded to the ratio of the total sum of weights contained in 
the segmented area versus the total sum of weights generated 
from nine manual tracings. A similar approach was used to 
measure false-positive values. 

 In Zou et al. [20], the authors used the “simultaneous 
truth and performance level estimation” (STAPLE) method 
introduced by the same group in [23], to compute a proba-
bilistic estimate of the true segmentation, given multiple 
manual tracings, and provided a measure of the performance 
level represented by each segmentation.  

 In Letteboer et al. [7], the authors considered that manual 
tracing did not provide ground truth per se and compared 
their segmentation results to such tracings via a Bland and 
Altman statistical analysis. Considering that differences in 
volume measurements depend on the tumor size, which is 
correlated with the fact that the majority of the segmentation 
errors occur on the surface of the tumor, they proposed a 
normalization of the volume difference values D  evaluated 
in the test:  

 

  

D =
V V

t( )
V

D
V

t( ) + V
t

V
E( )( ) 2

, (1) 

where DV  is the segmented volume dilated by one pixel and 

EV  is the segmented volume eroded by one pixel. This 

normalized difference value directly correlates the D  value 

with the number of different voxels.  

Clinical Validation Methods  

 Given a ground truth representation of the tumor, several 
error measurements can be used to evaluate the accuracy of 
the segmentation method, including the notions of speci-
ficity, sensitivity, repeatability and efficiency, which are 
discussed in this section. 

 

 

Error Measurements for a Given Segmentation 

 In Kaus et al. [11], validation was performed with 
measurements of segmentation accuracy (SA) defined as: 

 

SA =
TP+TN( )

 (2) 

using the true positive (TP) volume overlap measured as: 

 
TP = V V

t
 (3) 

and the true negative (TN) volume overlap measured as : 

 
TN = V V

t
 (4) 

 It is important to note that this measure is very favorable 
to small objects such as circumscribed tumors. 

 In Clark et al. [10] and in Fletcher-Heath et al. [17], the 
authors used two measurements: 

percent match (PM) ratio defined as:  

 

PM =
TP

V
t

  (5) 

 This measure corresponds to a TP volume fraction 
(TPVF).  

correspondence ratio (CR) defined as: 

2

t

FPTP
CR

V
=  (6) 

 An additional comparison was performed, evaluating the 
segmentation method for accuracy and precision of longi-
tudinal tumor evolution. In this study they evaluated four 
patients with at least two scans and failed in measuring a 
growing tumor in one case, where a significant amount of 
fluid at the initial time lead to an overestimation of the initial 
tumor size.  

 Analogous measures were used by Letteboer et al. [7] as:  

  

PM =
TP

V
t
+ V( ) 2( )

 , (7) 

and  

  

CR =
V V

t

V
t
+ V( ) 2( )

 (8) 

 In Liu et al. [16] ,ten segmentations of patients with 
glioblastomas were evaluated with the following. Measur-
ments: 

1. Precision: reproducibility of the segmentation varying all 
parameters for the scanning protocol (i.e. using repetitive 
scans of individual patients) and for the segmentation 
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algorithm. This measure is analogous to the concept of 
reproducibility or repeatability. 

2. Accuracy: comparison of segmented regions with 
respect to manual tracing. Two volume fraction (VF) 
measures were used: 

`FPVF: 

 

V V
t

V
t

 (9) 

and FNVF:  

 

V
t

V

V
t

 (10) 

 Efficiency: computation and manual intervention time.  

 Similar measurements were also evaluated in Letteboer 
et al. [7] on twenty patients. 

 In Gibbs et al. [5], efficiency of the commercial method 
and the proposed method was evaluated by repeating the 
initialization three times, from a single user.  

 In Zou et al. [20], the three metrics evaluated to optimize 
the segmentation method were also used to evaluate the 
segmentation results: area under the receiver operating curve 
(AUC) which weights the sensitivity versus the specificity of 
the segmentation result, a Dice similarity coefficient (DSC), 
which is also a function of sensitivity and specificity and 
mutual information (MI) that directly compares the segmen-
tation result to a ground truth.  

 In Prastawa et al. [21], the authors used three error 
metrics, including surface comparison of the tumor’s outline. 
Theses metrics were the PM overlap measure, the Hausdorff 
distance and average surface distance.  

Inter and Intra-Observer Variability 

 Inter and intra-observer variability is typically measured 
with the coefficient of variation (CV) of volume measure-
ment defined as: 

 

  

CV % =
V

t

μ
V

t

100  (11) 

where 
tV

μ is the mean value and 
tV

 is the standard 

deviation of volume measurement made on tV . 

 In Moonis et al. [14] the authors used the CV measure to 
evaluate variability of the user tracings and inputs to the 
segmentation method. In Vaiddynathan et al. [9], the authors 
also used the CV measures to evaluate reproduci-bility of 
tumor segmentation with respect to parameter setting of the 
different segmentation methods. 

 In Mazzara et al. [18], intra-observer variability of 
manual tracing was assessed with three tracings from one 
expert, and measured via the ratio of average disagreement:  

 

  

V
t

i V
t

i

i=1

N

V
t

i / N
i=1

N
 (12) 

 Based on this disagreement ratio, inter-observer 
variability was evaluated among three experts, comparing 
one expert to the two other ones.  

 In Letteboer et al. [7], three operators segmented the 
tumors twice. Observer variability was assessed through a 
Bland and Altman statistical analysis, measuring deviations 
from an average volume value. From this analysis, 
variability can be measured as the Bias ± 1.96 SD, where SD 
is the standard deviation of the volume measurements.  

 In Prastawa et al. [21], area overlap and surface distances 
were used to evaluate inter-observer variability.  

Results 

 In Gibbs et al. [5], correlation of volume measurements 
based on phantom data was perfect, with less then 5% errors. 
Patient data segmentation required 2-3 minutes of user 
intervention and around 10 minutes of computational time. 
Segmentation with the commercial software required about 
30 minutes of user time. Both methods provided between 9% 
and 13% precision in volume measurements (for tumor 
volumes in the range of 2 cm

3
-80 cm

3
), with a mean diffe-

rence in observations of 0.1± 4.5 cm
3
. Mean difference bet-

ween two observers is 0.8± 1.8 cm
3
. In conclusion, despite 

its simplicity and limitation to well enhanced tumor, not 
close to the skull, this early method provided fast and 
accurate global tumor volume measures.  

 In Letteboer et al. [7], average intra and inter-observer 
volume differences were 3.2% and 9.7%, while average 
manual PM values were 93.5% and 90%. Variability with 
Bland and Altman analysis was 0.04 ± 1.79 for manual 
tracing and -0.01 ± 0.76 for the segmentation method. They 
concluded that the watershed method was more reproducible 
than manual tracing. A negative bias showed under-
segmentation from the watershed and they obtained best PM 
similarity measures for enhancing tumors and worst for non-
enhancing ones.  

 In Droske et al. [8], computation time, including manual 
initialization required 3 minutes. They concluded that accu-
racy was high for homogeneous enhanced tumors and lower 
for heterogeneous tumors, without quantitative numbers.  

 In Vaidyanathan et al. [9], precision of manual tracing 
and three segmentation methods was evaluated in terms of 
user input and showed very large variability. Manual tracing 
average variability (inter-intra) was 6%-17%. Segmentation 
methods average variability was around 5%-8% for trained 
classification methods and 17%-6% for a seed growing 
method. These results demonstrated the better precision of 
trained-based segmentation approaches but also the 
weakness of these methods in terms of sensitivity to user 
inputs. They concluded that reproducibility was a major fac-
tor affecting tumor volume measurements (with differences 
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above 20 ml in their study), with a critical need for less-
supervised methods.  

 In Fletcher-Heath et al. [17], they obtained a PM bet-
ween 53% and 90% and a CR between 0.37 and 0.87 over 
six cases. For the two cases used for training the KB system, 
average PM was 72% and average CR was 0.67. For the four 
tested cases, average PM was 75% and average CR was 0.56. 

 In Clark et al. [10], overall results showed an overesti-
mation of the tumor volume with automated segmentation. 
Regarding longitudinal studies, the methods also showed one 
case where tumor shrinkage was falsely measured, 
potentially due to high haemorrhage signal in the baseline 
MRI scan. They also reported 5% inter-observer variability 
in tumor volume manual measurement. For the proposed KB 
segmentation method, repeatability was fully guaranteed. 
PM was typically above 0.9 (range=0.69:1, average= 0.93), 
and CR was more variable (range=0.43:0.85, average=0.66). 
They also showed that less than 15% of the FP were really 
FP, not spatially connected to any ground-truth tumor pixel. 
Regarding a kNN- based method, they reported poorer PM 
measures (range=0.22:0.99, average= 0.71) and CR 
measures (range=-2.21:0.64, average =0.19). 

 In Kaus et al. [11], evaluation of the proposed segmen-
tation method reported extremely high SA  (over 99%), with 
very low segmentation variability. Intra and inter -observer 
variability (CV) for manual and automated segmentation was 
below 5%-15% and 4%-7%. This again suggested the gain in 
precision when using an automated (classification-based) 
segmentation method. Computation time for a three-
dimensional data set was 75 minutes. 

 In Moonis et al. [14], on a set of ten patients, average CV 
for two different users was 0.27-0.21 on FLAIR data and 
0.37-0.27 on T1E data. Inter-observer CV values were 0.38 
and 0.29 for FLAIR and T1E data, with non-significant 
differences. The study reported that manual editing of the 
segmentation results lead to smaller tumor volumes, with a 
median change of volume of -17%. No significant difference 
was found in CV values with or without manual editing. 

 In Liu et al. [16] ,ten patients with glioblastomas were 
evaluated. Manual correction by experts was performed on 
all segmentation outputs evaluated. Results showed: 

- Precision: for repeated segmentations by two experts, the 
average CV measure for each expert and inter-observer 
CV were: (0.33-0.26, 0.43) on FLAIR data. (0.33-0.3, 
0.36) on T1E data and (0.37-0.33, 0.41) on subtracted 
T1E. Regarding these three experiments, intra- and inter-
observer percentage overlap was above 98%. Mean 
volume variation was 1.2% over two repeated FLAIR 
scans on five patients.  

- Accuracy: On five FLAIR cases, average FPVF was 
4.45% and average FNVF 4.28%. Volume estimation 
accuracy was above 95%.  

- Efficiency: computational time was 16 minutes (7 
minutes for registration, and 8 minutes for operator 
supervision).  

 Manual tracing average inter and intra variability was 
measured below 2% on the three protocols. 

 In Mazzara et al. [18], average intra-observer variability 
was very large (20%±16%). Average inter-observer 
variability was also high (28%±12%). They observed that 
they obtained better average reproducibility in preoperative 
cases (15% - 24%) than in postoperative cases (27%-32%). 
In terms of accuracy measurements based on a statistical 
ground truth, manual tracing provided 85%±7%, KNN 
provided 56%±6% and KG method provided 52%±7%, 
while FP values were 8%±11% for the KNN method, 
8%±8% for the KG method and 17%±11%, showing a 
tendency of the segmentation method to underestimate tumor 
volume. The authors concluded that the segmentation 
accuracy was within the manual tracing variability range. It 
is important to note that the accuracy of the automated 
methods could not have exceeded the one of the manual 
tracing with the proposed accuracy measurements with a 
statistical ground truth. Average computational time for the 
KNN approach was 30 minutes, including training time. For 
the KG approach, preparing MRI scans for segmentation 
required 90 minutes of operator time, and segmentation time 
required 30 minutes. In Beyer et al. [19], the same group 
showed that expert physician reference volumes were 
irradiated within the same level of conformity when using 
radiation plans generating from automated segmented 
contours.  

 In Zou et al. [20], high AUC and DSC measures were 
obtained on 2D slices, from nine cases, but they observed 
that the recommended optimal threshold for the probability 
values seemed to be case- and task metric-dependent, largely 
depending on the clinical goal of the segmentation task. For 
example, AUC was suited for overall accuracy while MI was 
better suited for longitudinal studies of the tumor’s evo-
lution.  

 In Prastawa et al. [21], inter-observer variability was very 
variable, between 59% and 89% of area overlap. Average 
surface distances remained below 2mm while the Hausdorff 
distance reached 13mm for one case. Surface overlaps with 
the automated segmentation method were comparable, 
between 68% and 80%, the Hausdorff distance reached 
18mm and the average distance 4mm. Computa-tional time 
was around 90 minutes per volume.  

Summary  

 Based on the literature review of tumor segmentation 
from MRI data it is extremely difficult to conclude on a best 
available method. Obviously, automation and minimal user 
supervision as in [9], are desirable. Obviously, atlas-based 
methods are limited to tumors without any mass effect. To 
cover the range of sophistication in segmentation methods, 
simple seed growing showed very poor reproducibility, 
while integration of multispectral MRI data, from several 
protocols, seems critical to mimic visual interpretation of the 
tumor borders from neurologists.  

 Recent methods have included a great amount of 
interactive manual supervision of the segmentation process, 
reflecting multiple observations of high variability from 
manual or automated tracing of tumors. Moreover, MRI data 
provides images with varying tumor appearance due to the 
heterogeneity of the tumor physiology as well as important 
variations in MRI scanners in terms of image quality. 
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Related to this factor, a recent paper from Angelini et al. [24] 
proposed a longitudinal method for quantification of low-
grade glioma evolution based on non-linear image normali-
zation and direct difference comparison, avoiding the need 
for specific tumor segmentation. As an alternative, notions of 
fuzzy segmentation decisions are used in recent works from 
Khotanlou et al. and Dou et al. [25, 26]. 

Future Improvements 

- Performing multispectral image segmentation: we can 
believe that classification or deformable models incor-
porating multispectral data will show superior perfor-
mance within the next few years.  

- Role of MRI spectroscopy imaging (MRSI): in a recent 
study, Stadlbauer et al. [22] showed on ten patients with 
low-grade (I&II) gliomas that abnormal tumor areas on 
1
H-MRSI exceeded by an average of 24% that area 

delineated via supervised seed-growing segmentation of 
T2 hyperintense signal. The study also showed that 
computation of metabolic ratios on MRSI enabled 
automated segmentation of tumoral areas. On the other 
hand, spatial resolution of spectroscopic data is still 
limited, with a voxel volume close to 1 mL (compared to 
0.005 mL in MRI).  

- Different evaluation setups: It is essential to evaluate 
brain tumor segmentation methods in a clinical setting. In 
a study from Pallud et al. [27] biopsy samples isolated 
tumoral cells beyond imaging abnormalities observed on 
T2 and FLAIR MRI data in 17 patients with low-grade 
gliomas. In the context of radiation therapy, Beyer et al. 
[19] have recently shown the superiority of knowledge-
based segmentation methods in automatically deter-
mining brain gross tumor volume (GTV), with higher 
reproducibility than manual tracing.  

REGISTRATION 

Introduction 

 Since numerical simulations are usually computed in a 
different space from the one encompassing the patient’s 
anatomy, modeling results have to be warped back to match 
the specific patient geometry. This deformation of the refe-
rence space to the patient space is achieved through a Regi-

tration algorithm. Registration is a primordial step to com-
pare the actual segmented evolution with virtual simulated 
growth. 

 Image registration can be defined as the process of 
aligning a target image to a source image. It consists in 
determining the geometrical transformation that maps 
corresponding structures in the target and the source image. 
Explicitly the registration algorithm aims at deforming the 
source images so that similar structures appear at the same 
location in the images.  

 Historically, the primary interest of clinicians was the 
fusion of multimodal images of the same subject. This 
registration -usually based on rigid transformations- allows 
the comparison of different images from a single subject and 
the visualization of multiple modalities at the same spatial 
location (see Fig. 2 for an example with MR T1 and MR T2). 
It could also be used to finely analyze the progression over 
time of an evolving process (such as lesion growing) [28]. 

 Once mono-subject rigid registration algorithms were 
considered mature, computer scientists started developing 
non rigid registration methods for multi-subjects registration. 
Those algorithms aim at finding the deformation that maps 
different subjects in the same space. Such methods are 
usually used in combination with atlases. An atlas is an 
anatomical image of a subject coupled with a second image. 
This associated image represents segmented structures of 
interest, local diffusion properties or label probabilities. The 
registration algorithm is used to compute the deformation 
field from the anatomical image of the atlas to the image of 
the subject. This deformation field is then applied to the 
property image, so that this information can be mapped to 
the patient’s anatomy. 

Methods  

Registration Algorithm for Healthy Subject 

 The majority of registration algorithms share the same 

three components. First the type of transformation, which 

controls the geometric flexibility of the algorithm, needs to 

be defined. The transformation T() defines the mathematical 

formulation that relates a point X in the first (floating) image 

and a point X’ in the second (fixed) image: )(' XTX = . 

 

 

 

 

 

Fig. (2). Rigid registration of MR T1 (left) and T2 (middle) images of the same patient. The registered T2 image (right) now have 

homologous structures displayed at the same location in the image. 
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Usually, the transformation is assumed to be rigid between 

images of the same subject. This transformation is 

parameterized by 6 degrees of freedom: X ' = RX + D , 3 

for translation (vector D) and 3 for rotation (matrix R). 

Different subjects are registered using a non-rigid 

transformation. Various transformation models have been 

proposed in the literature. These models were chosen for 

their mathematical simplicity, and none of them relies on a 

priori brain variability. However, they allow for multi-

resolution registration, meaning that the user could define the 

level of complexity of the transformation through a specified 

number of degrees of freedom. Most common transformation 

models are splines [29], cosine basis [30], tetrahedral mesh 

[31, 32], multi-affine [33-35] and free (one vector per voxel) 

[36-38]. 

 The second component of a registration algorithm is a 

similarity metric between the two images I and I’. This 

metric will depend on the assumptions made on image 

intensities distribution for similar structures in the two 

images [39, 40]. For instance, if similar structures are 

considered to have homologous intensities (as for mono-

modal registration), the appropriate metric will be the sum of 

squared intensities: I(X) I(X ')( )
2

. If the relationship 

between the two intensities is supposed linear (as for mono 

modal registration, but from different MR scanners), the 

correlation coefficient should be used: 

(I(X) I )(I '(X ') I ')

I(X)I '(X) I 'I
, where I  defines the average 

intensity of image I. For more complex and probabilistic 

relationship, mutual information is the natural choice [41, 

42]. Because of its adaptability to multi-modal images, 

mutual information is now the default similarity measure 

used in most registration algorithms. 

 Usually, the transformation model does not explicitly 
impose the smoothness of the deformation. This smoothness 
is then ensured through a regularization component in the 
global registration formulation. Popular smoothing energies 
rely on second order derivative of the displacement field like 
thin plates splines [29] or Laplacian [37] and continuum 
mechanics based energy [31]. It has recently been proposed 
to take into account inter-subject variability to constrain the 
regularization energy [35, 43]. 

 These components are integrated into the registration 
algorithm through an optimization process based on an 
energy formulation. The algorithm tries to estimate the 
parameters of the transformation that minimizes an energy 
composed of the similarity criteria and the regularization 
energy. 

Registration Algorithm in the Presence of Tumor 

 The presence of a tumor in images represents a challenge 
for registration algorithms: the assumption of an intensity 
relationship between homologous structures does not hold, 
as the presence of a tumor in the image changes the MR 
signal in invaded areas. The initial approach to tackle this 
problem consisted in discarding the tumor region from the 

similarity criteria [31, 44]. The displacement of the tumor 
region is then guided on its boundary by the surrounding 
healthy structures, and the regularization criterion ensures 
the continuity of the displacement inside the tumoral region. 
The registration algorithm could be considered as passive in 
the tumor region, in the sense that it follows the motion of its 
environment. 

 An alternative approach consists in defining a model of 
the tumor-induced displacement. Initially, a statistical 
method was proposed, trained on a dataset of possible 
displacements [45]. These methods make the assumption that 
similar tumors have similar deformation patterns; so that the 
deformation induced by a new tumor can be deduced with a 
linear combination of other displacement induced by tumors 
at the same location. However, these statistical methods need 
a large number of patient images and the corresponding true 
displacements. To overcome this problem, it was proposed to 
train the statistical model on tumor growth simulations [46, 
47]. Numerical simulation could then be used to train the 
model for any tumor and at any location in the brain. In this 
case, the registration algorithm could be considered as 
active, in the sense that it tries to find an appropriate model 
to fit to observed growth in the image. Nevertheless, using 
such registration methods for tumor growth simulation in an 
atlas image is highly controversial. 

Clinical Validation Methods 

 Validation of non-rigid registration algorithms is a 
research topic on its own. Because it is a relatively recent 
research domain, emphasize has mostly been put on the 
development of new algorithms. In addition, validation 
methods highly depend on the application of the registration 
algorithm.  

When the displacement observed between the two images to 

be registered is due to a mechanical deformation (for 

example: a tumor induced mass effect), comparison of 

manually identified landmarks seems to be the standard 

method of evaluation. Points on similar structures are 

manually identified in the moving image (Pm) and the 

reference image (Pr). The computed displacement of the 

moving point T(Pm) is then compared to the manually 

evaluated displacement D=(Pm-Pr) and the error is defined as 

the sum of the squared differences: 
2))(( DPT m . This 

method is usually considered as the standard method for 

mono-subject registration validation. It is however subject to 

inter-expert variability and human error in identifying 

corresponding points. 

 In the context of multi-subject registration, the objective 
is different: the deformation now represents the variability 
between the two individuals and is more difficult to evaluate. 
In addition, distinguishing between variability-induced 
deformation and tumor-induced deformation is challenging 
for pathological cases. However, the registration algorithm is 
usually used in combination with an atlas to import the 
associated property image in the patient space. It then makes 
more sense to validate the quality of this final matching. For 
example, the registration of a segmented atlas will be 
evaluated on the quality of the segmentation on the new 
image [48].  
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 Recently, new methods for validation based on atlas 
building have been proposed [49, 50]. In [50], multiple 
registration algorithms are used to build an average diffusion 
tensor image. The quality of the registration is then evaluated 
on the variability (variance) around the mean image: the 
better the registration, the closer every deformed diffusion 
tensor images should be to the mean. In [49], an atlas of 
resection probability is build. The performance of the 
registration algorithm is then evaluated using the predictive 
power of the atlas on new cases. 

Results 

 In [31], the registration error is evaluated using manually 
identified landmarks. Results are obtained on mono-subject 
registration of patients in the course of tumor resection. 
Images are acquired with an open MR system. The average 
registration error measured on 6 cases and 54 landmarks is 
bellow 1mm, and the maximum error bellow 3mm. It is 
mentioned that an accuracy decrease is observed in the 
regions very close to the tumor. The algorithm is not 
distributed. 

 In [46], the impact of the active tumor model is evaluated 
on atlas-to-subject image registration of real and simulated 
tumors. The benefit of the active model over the usual 
passive registration algorithm is evaluated using landmark 
errors: the average accuracy improvement is 58% for real 
tumors, and 39% for simulated tumors. The average error is 
bellow 4mm in both cases. Part of the algorithm is 
distributed [51], but it does not include the active tumor 
model. 

 A first step towards the validation of registration 
algorithms for healthy subject has been proposed in [50]. 
The quantitative study of Sanchez et al. shows that best 
registration algorithms available for DTI mapping (where 
splines and demons are compared) do not have statistical 
difference in their respective measured errors. 

 In [49], the software LesionMask [52] (available for 
download) is used to build a tumor resection probability 
atlas. Retrospective evaluation of the predictive power of the 
atlas for the preoperative classification of subtotal versus 
partial tumor resection shows a correct prediction in 82% of 
cases. Such method could be used in the very near future to 
assess the relative performance of registration algorithms in 
the presence of tumors. 

Summary  

 To summarize, different registration methods have been 
proposed in the literature to tackle the problem raised by the 
presence of tumors in the images. There is however today no 
consensus on a satisfactory registration method able to map a 
patient image with a tumor on an (healthy) atlas. Indeed, 
validation of registration algorithm seems to be very 
application dependant. Most promising validation methods 
seem to be based on atlas building [49, 50].  

 The mathematical formulation of the problem seems to 
be now better understood. It is then expected that recent 
efforts in the open source community [53], implementing 
most popular algorithms and making them available, will 
improve the research efforts in comparing and validating 

these algorithms. To the best of our knowledge, LesionMask 
[52] is the only non-rigid registration algorithm available 
that could be used in the presence of tumors. More recent 
tools based on ITK have been proposed for the registration 
of healthy subjects [54, 55]. It is probable that those 
algorithms will soon be adapted to account for the tumor 
deformation in the images. 

IN SILICO GLIOMA GROWTH 

 The mathematical description of tumor growth can be 
formulated at different spatial scales: either one tries to 
simulate the growth at the cellular level (cellular automata), 
or one defines on a macroscopic scale how the tumor density 
will evolve (with partial differential equations). In both 
cases, the models attempt to predict the mathematical law of 
the tumor growth. 

 The cellular automata approach has been proposed for 
different tumors, including high grade gliomas.[56-58]. The 
rules of division and invasion are the key elements of this 
approach. Since these models describe the tumor growth at 
the microscopic scale, their prediction could be also 
validated in clinical practice by microscopic histological 
analysis of tumor samples (spatial correlation in graph cells 
[59]) or in vitro, with dynamic study of glial cells migrations 
[60]. On the contrary, the partial differential equations 
approach does not tell anything about the spatial ordering of 
the tumor cells: it simulates a coarse-grained cell density. 

 There is of course a link between these two spatial scales 
of description: partial differential equations can be solved by 
stochastic methods, mimicking the cellular phenomena 
(Gaussian random walk for example). Fractals models [61-
63] also propose to make a link between these two scales. By 
determining the fractal dimension of the tumor boundaries, a 
scaling analysis gives critical exponents from which 
dynamics law can be inferred. This approach seems to be in 
good agreement with both in vivo and in vitro data of bulky 
tumors, but its relevance for infiltrative tumors like glioma is 
not established. 

 We will now focus on the macroscopic model of tumor 
growth, which seems to be the most appropriate for compa-
rison with clinical MRI data, and is the most widely used. Of 
interest is a phenomenological approach very recently 
proposed [64]: in this case, machine learning algorithms are 
used to determine, based on observed growth patterns, a 3D 
probabilistic classification of diffusion patterns. This 
promising approach, yet preliminary, will help in the future 
to refine the deterministic model of proliferation-diffusion 
that we will now present. 

Methods  

Proliferation-Diffusion Model for Tumor Cell Density 

 This modeling framework is based on an equation 
governing (coarse-grained) tumor cell density (denoted c, 
expressed in cells/mm

3
) increase by time unit [4]. The 

generic form of the equation is the following: 

 .( )
c

c D c
t
= + , (13) 

stating that, at a given spatial location, new tumor cells 
appear either by division (proliferation), or by moving from 
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a close location (diffusion). The term diffusion is used here 
as « passive diffusion » (random walk of cells, also called 
brownian or fickian process). It does not model cell 
migration (i.e. active motion of cells), nor invasion (i.e. 
destruction of the extra-cellular matrix). The two parameters 
introduced in the equation are the proliferation coefficient 
( ), and the diffusion coefficient (D). Several mathematical 
variants have been proposed for spatial variations of  and 
D. 

 Exponential proliferation (with  constant), stating that 
cellular division obeys a cycle, of doubling time (ln(2)/ ), is 
the most widely used. This basic model can be refined, by 
decreasing the proliferation parameter  in areas of high 
cellular density (e.g. logistic growth, Gompertz growth) [4]. 

 Initially, diffusion was considered as homogeneous in the 
whole brain. A first improvement consisted in introducing a 
diffusion parameter higher in white matter than in gray 
matter [3]. Indeed, standard virtual MRI atlases of the brain 
are available from averaging of healthy volunteers. In such 
segmented atlases, each voxel is labelled in reference to its 
category (gray matter, white matter, or subarachnoidal space 
i.e. brain boundaries). This allows to match the numerical 
implementation of the equations to the specific geometry of 
the brain, with distinct diffusion coefficient values in each 
compartment.  

 Moreover, it is a well known fact that glioma cells 
migrate more easily along the direction of white matter tracts 
[65-67]. This observation has been included in the model by 
assuming an anisotropic cell diffusion tensor, deduced from 
water diffusion tensor [4]. The virtual brain used for 
numerical simulations now takes into account the 3D 
architecture of white matter : it is a segmented anatomical 
image, co-registered with its diffusion tensor image (DTI). 
Unfortunately, there is no standard atlas for DTI, since the 
average of diffusion tensor images from a population of 
healthy volunteers is still an area of medical imaging 
research. 

 Finally, biomechanical properties of the brain should also 
be modeled. This has been already done for high-grade 
gliomas [68]. Even if it is more frequently present for high 
grade gliomas, some grade II glioma exhibit mass effect, 
with deformation of surrounding brain parenchyma, and the 
method should also be extended to low-grade gliomas. 

Clinical Validation Methods 

 The modeling equations can be numerically solved, on 
virtual brain atlases. Results are typically represented by 
serial color maps, where the color reflects the tumor cell 
density.  

 The clinical validation of these simulations – an issue of 
utmost importance – raises two separate problems: (1) which 
variable of the model can be experimentally measured ? (2) 
are the values of the parameters D and  in good agreement 
with their biological estimations ? 

 Three-dimensional maps of tumor cell density have never 
been built from histological specimens, except in vitro [69]. 
Thus, it is not possible to compare directly the results of 
some simulations with experimental data. The only way is to 

estimate cell density from MRI. Unfortunately, the link 
between cell density and MRI signal abnormalities remains 
largely unknown. The common hypothesis considers a 
threshold of visibility, estimated only for CT data [70], 
around 8000 cells/cm

3
. For MRI, T2 (FLAIR) sequences are 

probably more sensitive, but this issue has never been 
investigated. Both experimental and theoretical studies are 
thus needed to determine tumor cell density within an 
heterogeneous tumor [69] and to correlate these results with 
MRI signal. 

 The model also gives an estimation of cell density 
outside the tumor region visible on MRI (with a cell density 
bellow the threshold value). The possibility to visualize the 
immerged part of the iceberg is called virtual imaging [71]. 
In the model, the extent of this non-visible tumor is linked to 
the ratio D/ . At the present time, only very few studies have 
tried to quantify the concentration of isolated tumor cells in 
these microscopically infiltrative areas. A recent study has 
shown, using a histo-radiological correlation from serial 
stereotactic biopsies of untreated grade II glioma, that 
isolated tumor cells are present far beyond the margins of 
MRI signal abnormalities [27, 72]. A spatial quantification 
of the tumor cell density distribution would be more 
informative for the purpose of model validation, even if it 
would still be restricted to a limited number of biopsy 
samplings. More global methods are currently under 
investigation, like optical imaging at the end of the surgical 
resection [73-75], or spectroscopy by magnetic resonance 
(sMR) during pre-operative surgical planning [76]. 

 Thus, it is necessary to assume that the tumor is visible 

on MRI only if the cell density reaches a threshold value 

(usually 8000 cells/mm
3
). This allows to outline the visible 

spatial extent of the tumor on the simulations, and to 

compare with observed tumoral tissues on MRI data. A first 

simplified approach consists in the measurement of the linear 

dimensions of the tumor. It can indeed be shown that, under 

some basic assumptions, an approximate solution of the 

equation is given by a constant velocity of tumor diameter 

expansion. The visible tumor front edge is therefore seen as a 

wave, propagating at a constant speed [77]. Since the 

velocity is equal to 4 D , determining the slope of the 

diametric growth curve thus gives an estimation of the 

product D . In a next step, serial maps provided by 

numerical simulations can be visually compared with 

observed tumoral tissues on MRI data. Several simulations 

can be launched with different sets of parameters (D, , 

anisotropic ratio, starting point) and the one leading to the 

best fit is selected. Actually, accepted values of D and  for 

gliomas of different grades have been estimated by this 

rough method. A more rigorous validation, solving the 

inverse problem as explained later, is a complex task, still 

under development.  

 The second problem has never been seriously 
investigated. Once parameter values of the couple (D, ) 
have been determined by fitting with simulations, one would 
indeed test if the values are in good agreement with their 
experimental measures. Unfortunately, the experimental 
estimation of  seems impossible. Even if counting the 
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density of cycling cells with biomarkers (MIB-1, Ki67, 
MCM2) is conceivable, the cell cycle period remains 
unknown, and consequently, the exact value of  cannot be 
measured. On the contrary, new cellular imaging techniques 
(using SPIO [78] or quantum dots [79]) could be a mean to 
track the diffusion of single glioma cells. In vitro dynamic 
study of microscopic slices is an alternative way to measure 
diffusion properties of glioma cells [60]. These methods 
would allow a direct estimation of D and are promising tools 
in the understanding of the tumor spreading behavior. 

Results 

 In silico growth of glioma was initially developed for 
HGG [1, 2, 70]. These first attempts were essentially 
conceptual, since simulations were performed in 2D, with 
boundaries including the ventricles, but without white/gray 
matter differentiation. Nevertheless, this allowed to propose 
values for D and , for high-grade gliomas as well as low-
grade gliomas [2]. With the advent of MRI, Swanson et al. 
have paved the way to simulate tumor growth in a 3D virtual 
brain, modeling anatomical structures [3]. They introduced 
3D segmentation of ventricles, sub-arachnoid spaces, white 
and gray matter. This allowed to achieve simulations closer 
to reality, with the additional possibility to visualize the 
invasive part of the tumor, unseen on MRI data. However, as 
already stated before, there is no validation of this virtual 
imaging setup. Clinical validation of simulations for HGG 
has been achieved only statistically with survival curves of 
actual and virtual cases after different extents of resections 
quite similar [77].  

 Actually, HGG are highly heterogeneous tumors: they 
eventually include necrosis, contrast enhancement areas, 
edema, infiltration, and significant mass effect. These 
diverse biological phenomena increase the complexity 
related to modeling HGG. The case of LGG could be more 
favourable for modeling purpose. Indeed, during the “low-
grade” phase, biological behaviour seems to be relatively 
constant. Moreover, since therapeutic abstention was the 
rule, patients were clinically and radiologically monitored 
over several years, and serial MRI data sets before any 
treatment were available for comparison with model 
predictions. 

 In a first study, it has been shown, on a series of 27 
patients, that LGG exhibited, as predicted by the model, a 
constant velocity of their diametric expansion, with an 
average of 4 mm/year [80]. This result confirmed the values 
of D and  initially proposed [2]: typical values are D = 7.5 x 
10

-3
 mm

2
 day

-1
 and  = 0.0012 day

-1
.  

 In a second step, the shapes of simulated tumors were 
compared, for the first time, with the ones clinically 
observed on serial MRI data. Anisotropic growth along white 
matter fibers was introduced to obtain a better fit [4] : a new 
parameter was introduced to quantify this anisotropic 
diffusion of glioma cells. This parameter could be very 
useful to identify, from micro-arrays analysis, new proteins 
involved in the migration along axons.  

 Finally, an indirect way to validate a model is to test if 
the dynamic parameters are of prognosis value. This has 
been recently proved on a series of 143 patients: patients 

with diametric expansion velocity greater than 8 mm/year 
had a prognosis similar to those harbouring a HGG, and this 
despite an histological diagnosis of LGG [81].  

Future Improvements 

 The inverse problem of finding the optimal model 
parameters from observations is the key ingredient in 
adapting the general tumor growth models to specific patient 
cases. This adaptation is necessary to utilize theoretical 
models in clinical practice. One can think of two different 
and coupled inverse problems in the case of tumor growth: 
solving for reaction-diffusion parameters and solving for the 
deformation field caused by the tumor. Naturally, both 
problems are based on clinically available observations. 
Considering the scale of the growth models explained 
previously, medical images form the most important class of 
observations. 

 In the case of identifying the mass effect of the tumor, 
estimating the induced deformation field, using medical 
images, has received some attention from the medical image 
analysis community [45]. This inverse problem becomes 
especially important in the application of atlas-based seg-
mentation. In using the comparison between healthy 
anatomy and the pathology-bearing brain, these approaches 
face the problem of distinguishing deformation caused by the 
tumor from inter-subject variability.  

 On the other hand, the inverse problem on the reaction-
diffusion model explained in the previous section has 
received almost no attention yet. This problem consists of 
identifying several parameters from time sequences of 
medical images. One can list these parameters as: 

• Dw, Dg : Diffusion tensors in the white and in the gray 
matter. These tensors can consist of different numbers 
of parameters based on their construction. The state of 
the art for this construction uses two different 
parameters: one for the diffusion along the fibers, and 
one for the diffusion across the fibers and in the gray 
matter.  

• : The proliferation rate. Although this parameter is 
microscopic and cannot be determined experimentally, 
one can find an average value that would force the 
model to fit the observation. 

• X0: The initial point. One can retrieve the point where 
the tumor has started by finding the other parameters 
and running the model backwards.  

• t0: The initial time. Assuming the tumor growth is 
homogeneous in time, one can find the onset time of 
the tumor.  

 Although we can list these parameters, it does not mean 
that we can identify them for any specific case. Number of 
observations strictly limits the number of parameters we can 
extract confidently. In other words, more parameters can be 
identified if one has a larger time sequence of images with 
regular follow-ups. As a first attempt to solve this inverse 
problem, Konukoglu et al. proposed a method to solve for 
speed of tumor invasion in white and in gray matter 
separately using two images taken at different time instances 
[82]. Their method was based on the asymptotic properties 
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of the reaction-diffusion model formulating the evolution of 
the enhanced signal regions in MR images. 

Perspectives  

 The dream of the physicians would be to click a point 
and run a software tool allowing to determine the individual 
dynamics parameters of the tumor for each patient from two 
(or more) successive MRI data sets. To pass from dream to 
reality, the process must include the three steps previously 
described: determination of real tumor growth by (semi-) 
automated segmentation, registration with the virtual brain, 
and resolution of the inverse problem.  

 This formidable achievement would open the door to 
tailor therapies to individual tumor dynamics [83]: 

- The product of parameter values D  will lead to a 
dynamical classification of gliomas. For example, given 
the worst prognosis associated with a LGG growing 
faster than 8 mm/year [81], it should be recommended to 
treat the patient as if his tumor were of higher grade. 

- The value of the parameters ratio D/ , which controls the 
extent of non-visible tumor has also important therapeu-
tic consequences. For example, it is expected that the 
benefit of gross total resection for tumors with high 
values of D/  is limited. In this case, a lot of isolated 
tumor cells are left even after a radiologically complete 
resection. On the contrary, these tumors would greatly 
benefit of a supra-radical resection. 

- For radiotherapy, the tumor margins are at present time 
defined 2 cm beyond the MRI signal abnormalities 
borders. The simulations could propose a more precise 
contour for isodose regions, adapted to each patient [82]. 

- Chemotherapy responses could be evaluated by quanti-
fying how much  is decreased by the cytotoxic drug. 
Each patient can serve as its own control, and the 
therapeutic response can be defined by the difference of 
dynamic parameters (after treatment – before treatment). 
For example, a patient with a stable lesion under 
chemotherapy should be considered as a responder if his 
initial growth rate was about 4 mm/year [84]. By the 
way, the model could explain why chemotherapy could 
be efficient even if the visible tumor remains unchanged, 
corroborating the well known feeling that some responses 
are only clinical and not radiological. 

 Finally, such dynamic parameters would also be of 
utmost interest for fundamental research. There is growing 
evidence that such tumors are complex systems, implying 
their analyze at nanoscopic, microscopic and macroscopic 
scales. The dynamic parameters previously described charac-
terize the tumor at the macroscopic scale and they will allow 
correlations with pathological examinations at the micro-
scopic scale and molecular profiles at the nanoscopic scale, 
as a first step toward a multi-scale approach of grade II 
gliomas. 

 At the present stage, the clinical and mathematical 
analysis of glioma dynamics is still in its infancy; but given 
the advances in both clinical imaging and computer 
modelling, it should play a prominent role in the future 
neuro-oncological practice. 

ABBREVIATIONS 

AUC = Area under the receiver operating curve  

CR = Correspondence ratio 

CSF = Cerebrospinal fluid 

CV = Coefficient of variation 

DSC = Dice similarity coefficient 

DTI = Diffusion tensor imaging 

FC = Fuzzy connectedness 

FN = False negative 

FNVF = False negative volume fraction 

FP = False positive 

FPVF = False positive volume fraction 

FCM = Fuzzy C-means 

GM = Gray matter 

HGG = High grade glioma (i.e. WHO grade III & 
IV glioma) 

KB = Knowledge-based 

kNN = k Nearest-neighbour 

LGG = Low grade glioma (i.e. WHO grade II 
glioma) 

MI = Mutual information 

MRI = Magnetic resonance imaging  

PD = Proton density MRI data 

MRSI = MRI spectroscopy imaging 

PM = Percent match 

SA = Segmentation accuracy 

SD = Standard deviation 

T1 = T1 MRI data 

T1E = T1 MRI data enhanced (with the use of a 
contrast agent) 

T2 = T2 MRI data 

TP = True positive 

WM = White matter 

GTV = Growth tumor volume 
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