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Abstract. In this paper, we propose a new framework to perform nonrigid surface registration. It is based on
various extensions of an iterative algorithm recently presented by several researchers (Besl and McKay, 1992;
Champleboux et al., 1992; Chen and Medioni, 1992; Mengq and Lai, 1992; Zhang, 1994) to rigidly register surfaces
represented by a set of 3D points, when a prior estimate of the displacement is available. Our framework consists

of three stages:

e First, we search for the best rigid displacement to superpose the two surfaces. We show how to efficiently use
curvatures to superpose principal frames at possible corresponding points in order to find a prior rough estimate

of the displacement and initialize the iterative algorithm.

e Second, we search for the best affine transformation. We introduce differential information in points coordinates:
this allows us to match locally similar points. Then, we show how principal frames and curvatures are transformed
by an affine transformation. Finally, we introduce this differential information in a global criterion minimized
by extended Kalman filtering in order to ensure the convergence of the algorithm.

o Third, we locally deform the surface. Instead of computing a global affine transformation, we attach to each
point a local affine transformation varying smoothly along the surface. We call this deformation a locally affine

deformation.

All these stages are illustrated with experiments on various real biomedical surfaces (teeth, faces, skulls, brains and

hearts), which demonstrate the validity of the approach.

1. Introduction

Recently, many studies in computer vision have been
devoted to the analysis of curved objects. This is an
extremely important task simply because a lot of ob-
jects are curved in our environment. These objects are
often described by their surfaces. They are acquired
using different techniques: extraction of contours or
iso-surfaces in 3D medical images, range imaging sen-
sors or stereo algorithms.

In this paper, we are concentrating on the surface
matching problem. When two surfaces represent the
same object, it is often useful to superpose them. For
instance, this is important for the medical diagnosis to

compare images acquired at different times or coming
from different modalities. Another example is when we
have different surfaces describing overlapping parts of
the same object: fusing the different acquisitions yields
a complete description of the surface. One can refer to
the article by Brown (1992) for a review of the existing
techniques.

Our work is an extension of an iterative algorithm
described by Besl and McKay (1992), Zhang (1994),
Mengq and Lai (1992), Chen and Medioni (1992), and
Champleboux et al. (1992) to rigidly register surfaces.
It is detailed in Section 2.1 and is called “the itera-
tive algorithm” in this article. A more rigorous mathe-
matical formulation is proposed by Cohen (1994). The
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potential based method using principles of mechanics
presented in Malandain and Rocchisani (1992} is also
relatively close to this “iterative algorithm”.

Of course, classical techniques to register polyhedral
objects have influenced our work. The book of Grimson
(1990) provides a very good review of these techniques.
Our method to find the initial estimate of the rigid dis-
placement is a kind of hypothesis-verification scheme.
The work of Guéziec and Ayache (1994) to match crest
lines has also influenced this part of our work. Indeed,
Guéziec uses the curvature and the Frénet frame of
points on curves. But it is a geometric hashing scheme
and the goal is to match space curves.

When the two surfaces do not come from the same
object, but from objects of the same class (for example
two faces or two brains) it is also highly desirable to es-
tablish point to point correspondences. An example of
such an application is to match a brain with an anatomi-
cal atlas in order to automatically find abnormalities or
to label the brain with anatomical names. Another ex-
ample is to track the deformation over time of a beating
heart, or to register images of a deformable region of
a patient (e.g., abdomen) taken at different times. But
this nonrigid matching task is much harder. One can
again refer to Brown (1992) for a review of the existing
(but not numerous) techniques.

Our approach to perform the nonrigid matching is
quite related to the surface deformation methods be-
cause we deform the surfaces in order to bring the
corresponding points nearer. For example, the de-
formation techniques presented in Bajcsy and Kovacic
(1989), Metaxas and Terzopoulos (1991), Pentland and
Sclaroff (1991), MclInerney and Terzopoulos (1993) or
Nastar and Ayache (1993) are very interesting. These
authors deform the surfaces using a physical model
involving internal and external forces.. Our defor-
mations are quite different: they are the result of a
geometric transformation, and the constraints used are
based on geometric differential informations. Hence,
unlike elastic surface models, the curvature of the
surface tends to be preserved during the deformation
process.

Our work is closer to the techniques which compute a
global transformation of the 3D images to deform the
surface. Indeed, we compute affine or locally affine
transformations. See for example the 3D-spline de-
formations presented in Szeliski and Lavallée (1994)
or Bardinet et al. (1994) which are very interesting.
But these authors do not explicitly try to match points
with similarity of shape which seems to be important

to perform matching. Moreover, unlike locally affine
deformations, the CPU time must be increased to ob-
tain more local deformations with 3D-spline transfor-
mations. Indeed, the number of control points must
then be increased and the size of the linear system to
solve can become large. On the contrary, even if the
locally affine deformation requires a very large number
of coefficients, when the deformation has to be more
local, the calculus become simpler, and the algorithm
run faster.

The use of curvature to track points on deformable
objects described by Cohen et al. (1992) (and first in-
troduced by Duncan et al. (1991)) has also connections
with our work. Cohen uses the curvature to constraint
the possible corresponding points on the two contours.
Buthis definition of the closest pointis different. More-
over, he is interested in matching plane curves and does
not deform them. Finally, our approach is slightly close
to the work of Delingette (1994). Evenif the techniques
are very different (the goal of Delingette is not to match
surfaces), they share two common objectives: the de-
formation of the surface without any prior knowledge
on its topology and the notion of preservation of the
local shape during the deformation process.

In this paper, we propose several extensions to the it-
erative algorithm in order to develop acomplete scheme
to match surfaces. In Section 2, we describe our contri-
bution to find the best rigid displacement between two
surfaces. We first present the original iterative algo-
rithm (2.1). Then we present our method to efficiently
find the requisite initial estimate, using curvatures and
principal frames (2.2). Finally, we rapidly explain how
we deal with partially occluded surfaces to find a very
accurate rigid displacement (2.3).

In Section 3, we explain how we have extended
the iterative algorithm in order to find a good affine
transformation. We first introduce differential infor-
mation in point coordinates and we show how they are
transformed by an affine transformation (3.2). Then we
modify the definition of best affine transformation in-
troducing curvatures in the criterion in order to ensure
convergence and we use extended Kalman filters to find
it (3.3). Finally, we present results on real data to il-
lustrate that the found affine transformation brings the
two surfaces much nearer than the rigid one (3.4).

In Section 4, we present a very simple and promising
surface deformation technique to obtain the final match
of the two surfaces. First we explain how we associate
an affine transformation to each point on the surface
(4.1). Then we present results on real data to show
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that the seheme described in this paper works quile
well and allows us to match surfaces (4.2). Finally, we
conclude in Section 5, summarizing the contributions
of this paper and presenting our {uture work,

2. Cumputing the Rigid Displacement

As explained in the introduction, finding the
displacement e superpose two en

described in two different frames i3 a very important
task. For example, superposing brain surfaces enables
10 tollow the evolution of a pathology {(brain tumors,
multiple sclerosis, etc.. . ). Another application is o
fuse together incomplete range data. For example, a
faser techuique is used 1o acquire teeth surfaces (g 1

Because of occlusion for each point of view, itis neces-
sary o register together the common part of each view

to obtain a complete surface.

2.4 The Herative Algorithm

We now rapidly describe the iterative algorithm refer
to the original papers tor &maé}i«:l The gonl is to find
the rigid displacement (R, 1Y 10 superpose Lwo sur
faces, § on S, given a very rough estimation (1
of this rigid displacement, Each surface is described by
a set of 3D-points. The algorithm consists of two iter
ated steps, each iteration { compuling a new estimation
(B, 1,y of the rigid displacement.

1. The first step builds a set Mateh; of pairs of points.
The construction is very simple: for cach pomnt M

on Si. a patr (M, N} is added to Match;, where A

Form Surfaces 183

is the closest painton § o the point B, M+ 4
To compute the closest point, different methods e
proposed but one can use for example the distance
map method (Dandelsson, 19801

2. The second step is simple oo, This is just the
least square evaluation of the best rigid displace-
ment (R, £ 1o superpose the pairs of Maich, (see
for example Faugeras and Hébert (19863 for the
qualernion methods,

>4

The termination criterion depends on the authorst the
atgorithm stops either when a) the distance between
the two surfaces is below a fixed threshold, b) the varl
anon of the distance between the two surfaces atl two
srecessive Herations is below a fixed threshold or ¢ @

maximum number of lterations i reached.
The convergence of the algorithm is vlearly demon-
sivaded in Coben ot al, {1992). Lotdeline

M+t~ Match{ M1

FOR. 1 Match) = };,,

A,

v&%xgw Match is a function from the 3D space 10 52,

The iterative algorithm stnply ;w;imim the minumtza-
tion of this energy £, Al step 1, the variables (R, £}
are fixed and £ 13 minmmized with respect to Maich.
fndeed. the function which minimizes &7 in this case
i5 C'Z:’;*;mzf-’vi;", At step 2, the variable Mutch 1s fixed
and £ is minimized with respect o (R, §). Hence, &
gach step, £ dz:z'z'ms);:s. Because £ 1s positive, tus
demonstrates the convergence.

We call this algonthm “the ierative algorithm™. It
ix summarized i Fug 20 fi is very efficient and finds
the right solution when the initial estimate {Ro, to3 of
the rigid displacement 18 “not too bad” and when cach

arnk three simall spheres

e 7 The teeth surfaces 1o supepose. They have been scquired by

o three feolh

Bioconoept using o laserechoigue. One onn o
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repeat

step 2

step 1: Match; :== {{M,N)/M € Sy, N = Closest Point(R;-1 M + ti-1)},
where ClosestPoint(P) = N € Sof|[PN|| = minges, (IPLI)
: compute (Ri, t:)/ 30 (p, NyeMatehs IR;M +t; — N||* =

mingr,e) (3 (M, NyeMaten; IRM +t— Ni?)
until the termination criterion is reached

Figure 2. 'The “jterative algorithm”.

point on S; has a correspondent on S,. But, in prac-
tice, this is often not the case. For example, we would
like to be able to superpose the teeth of Fig. 1, but we
have no initial estimate of the rigid displacement and
because of occlusions, surfaces are only partially de-
scribed. The algorithm has to be improved. The two
next subsections describe what we propose to avoid
these two problems.

2.2.  Finding the Initial Rigid Displacement

In this section, we explain how we find the initial esti-
mate we need to run the iterative algorithm of Fig. 2.
As explained in the various papers describing this algo-
rithm, the estimate does not have to be very accurate:
we just want a rough estimate. We use differential in-
formations to get it. The surfaces we have to superpose
come from techniques described in Thirion (1992),
Gueziéc (1993). So, for each point M ona surface, we
know the principal curvatures, and the principal frame.

In the ideal case, because principal curvatures are in-
variant under rigid displacement, given a point M on S1
with principal curvatures (ky, k2), apoint N on S; must
have the same curvatures to be a possible correspon-
dent. Moreover, if the pair (M, N) is a good match,
then the rigid displacement which superposes Sy on S,
is also the one which superposes the principal frames
attached to M and N respectively on S; and S,. Hence,
in the ideal case, the following algorithm would be very
efficient: (1) choose a point M on S; which is not an
umbilic point, (2) compute the set SameCurvature(M)
of points on S, which have the same curvatures as M,
(3) for each point N in SameCurvature(M ), compute
the rigid displacement corresponding to the superpo-
sition of the two principal frames and stop when this
rigid displacement exactly superposes S; on Sy.

But in practice, the two surfaces cannot be exactly
superposed, and there is an ambiguity in the orientation

of the principal frame. To deal with imprecision on cur-
vatures, weregister the points of Sy in a hash table or ina
kd-tree (see (Preparata and Shamos, 1985)) indexed by
the two principal curvatures. This way, given a point M
on Sy, with curvatures (k1, k2), we can quickly find the
set of points CloseCurvature(M) on S, whose curva-
tures are close to (ky, k2). Then, we apply the following
algorithm:

1. we randomly choose a point M on the surface S
which is not an umbilic point

2. we compute the set CloseCurvature(M)

3. for each point N in CloseCurvature(M), we com-
pute the rigid displacements corresponding to the
superposition of the two principal frames. R =
(M, &1, e, 1y) is the principal frame at point M
and Ry = (N, 12, éx2, i) the principal frame at
point N, we compute two rigid displacements D
and D’. D corresponds to the superposition of Ry
on R,. T’ corresponds to the superposition of YL
on R, where RY, = (N, —€12, —€n2, fi2). We have
to compute these two rigid displacements because
R, and R}, are both direct, and there is no way to
choose between them?. The computation of D an
D' is easy. If A is the 3 x 3 matrix whose columns
are (211, Ezl,ﬁl), if B is (212,222,52) and B’ is
(=12, —&x, i), we simply have’ D = (BA', N —
BA‘M) and D' = (B'A', N — B'A'M)

4. we now estimate the number of points on the trans-
formed surface RS; + t which have their closest
point on S, below a given distance § to check
whether D or D' reaches our termination criterion.
First, we randomly choose a subset S} of points on
S1. Then, for each point P in S, we compute the
closest point @ to RP +t on S, Let m be the
number of points P such that

IPM|

RP +t—Q §———,
I + 2l < Diameter
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where Diameter is the diameter of S;. If the ratio
m/|S;1 is larger than p (0 < p < 1), we decide that
(R, t) is a good estimate of the rigid displacement
which superposes S; on Sy and we stop the algo-
rithm. If neither D nor D’ reaches the termination
criterion, then we return to point 1.

The parameter § is the estimation of the maximal
distance between one point on the surface Sy and its
closest point on $; for a good estimate of the best rigid
registration (it depends on the noise level). p is the
estimation of the ratio of the number of points on S
which have a correspondent on S, divided by the num-
ber of points on Sy (which depends on the occlusion).
Assume that (R, t) is arigid displacement which corre-
sponds to the superposition of the two principal frames
for a bad point matching hypothesis. If the points are
randomly distributed within a volume and if for a point
M € RS| + t the probability to have a point N € S,

such that uﬁ?\’z Il < éis p, then the probability to stop
the algorithm with this bad rigid displacement 1s

i=n

> (2)ra-pr

i=k

where n =[S and k = p *n.

For instance, if p = 0.4, p = 0.7 and n = 500 this
probability is approximatively 107%. Of course, it is
not possible to set a value for p and the points are not
randomly distributed (they belong to a smooth surface)
but this can help to understand why, in practice, for our
problems, itis notdifficult to choose the two parameters
& and p and why a good solution is found after a very
small number of iterations (two or three). Moreover,
note that if after a given small number of iterations no
solution is found, we can just stop the algorithm and
rerun it choosing a lower p or a larger 5.

Typical surfaces we work with have around 10000
points. CloseCurvature(M) is the set of points N on
S, whose principal curvatures (ki, k3) are such that
((k; — k1) + (k) — k)*)1/* < Dim/20 where Dim =
max(Dim_k;, Dim_k;), assuming that Dim_k; (respec-
tively Dim_k, ) is the difference between the maximum
and the minimum value of k; (respectively k;) in 5.
For §7, we randomly choose 5% of points of S;. For
example, Fig. 3 shows the initial estimate found for the
teeth data. We have chosen p = 0.8 and § = D/30
where D is the largest surface diameter. The rigid
displacement is found after two iterations in less than
twenty seconds on a DEC 5000 workstation. It is not

Figure 3. The rough estimate of the rigid displacement. 80% of
points of the transformed surface have their closest point on the other
surface at adistance smaller than 3.3% of the largest surface diameter.

very accurate, but good enough to find the good solu-
tion, as described in the next section.

2.3.  Working with Incomplete Surfaces

At step 1 of the iterative algorithm (Fig. 2), a point
on S, is associated to each point on S;. But when the
two surfaces are not complete because of occlusion for
example, some points on S; do not have any correspon-
dent on S,. Thus, given a point M on Sy, (R;_1, t;_1),
and ClosestPoint(R;_.1M + t;_;), we have to decide
whether (M, ClosestPoint(R;.1 M + t;_1)) is a plausi-
ble match. This is very important because, if we accept
incorrect matches, the found rigid displacement will
not be accurate, and if we reject correct matches, the
algorithm will not converge towards the good solution.

As proposed in Ayache (1991), we make use of the
extended Kalman filter. This allows us to associate
to the six parameters of (R;, t;) a covariance matrix
S; and to use a generalized Mahalanobis distance to
check if a match of two points is plausible or not. This
implies a change in the second step of the iterative
algorithm. Given Match;, instead of computing the
rigid displacement (R, t) which minimizes the least
square criterion

IR;M +t; — NI,
(M ,N) € Match;

we recursively estimate the six parameters of (R, t),
and the covariance matrix associated which minimizes
the criterion

IR:M +t; — N>
(M,N) € Match; and (M,N) is plausible
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The difficulty i just 1o choose the covarance ma-
15 8y associated with the mmitial estimate (R, &)
ni” the rigid éi;*«‘pi;kcm&“&i and 1o choose the covan-
ance mairix W, associated with each polnt M. o
praciice, we choose W; corresponding 1o the os-

thnation of the error after the correct registiation
and Sg as the diagonal matrix corresponding o the
largest possible erver on the mitial rigid displacement
parameters,

We applied this techuigque 1o superpose i%z'”‘ teeth data
of Fig. | using the initial estimate of Fig. 3. The three
sphores present in the ima are arti iiw}:f markers

inttially used to compute the ngd displacement. Of

courss, we do not use this information in owr algorithm
but we can use them to check the acouracy of the match-
ing. Hence, we computed the set of points on Sy which
have a plausible correspondent on the surface $ in
the sense described sbove. This represents 80% of the
pomsts on 5. Then, we computed the average distance
between the points of this set and their closest point on
5. after rigid registration, using respectively the ngid
displacement found by our algerithin and the one ob-

tained superposing the center of the three sphe The
rigid displacement found by our algorithun yiclds an
average distance of (L0070, where o is the Targest sup
face diameter. The average distance is 0.0074u alte
superposition of the three spheres.  In fact, because
of the sphere center measurerment error, our algorithm

finds a beter global registration than the method using
the spheres and taking o account the [act that the sur-
faces are described by points, this values show that itis

ndes {i very accurate even if the surfaces are parially

3. Nonrigid Matehing of Two Different Surfaces

Given two surfaces representing the siune objectintwo
ditferent frames, the algorithm of Section 2.1 with the
fwo improvements deseribed in Sections 2.2 and 2.3 al-
tows us to find the best nigld displacement between the
two surfaces. This rigid displacement is found even if
we have no prior estimate and f the dat@are incomplete.

Because this algorithm is robust, we have extended
it o lackle a harder probleny ponrigid matching of two
difforent surfaces which present similarities, Forexame
ple, the faces of two different persons are not identical
up o 2 rigid displacement (Fig. 4). But there exists a
best rigid displacement which briags the two surfaces
close o each other and the method descnbed in Sec-
tion 2 allows us to find . Figure 5, top, shows this best
rigid displacement for the faces of Fig. 4

The nose, the evebrows (md the thﬁ are globally
not very far. But we would like, in order 1o bring
them nearer, to relax the rxf*zdm constraint of the rigid
displacement and extend the method 1o unconstrained
alfine transformations in a way which tends to match
this similar regions.

Because points of high curvature seem o have a
strong anatomical meaning (Avache, 1993), we wish
ton to enhance their role as landmarks for matching.
The three next subsections describe our work 1o find
such affine ransformations.

The two faces 1o superpose.  Fhey have been scquired using a Cyberware mmshine at the Hurward Medical Schoof and at NTY
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3.1.  Finding an Affine Transformation

A natural extension from rigid transformations to non-
rigid ones is the search for an unconstrained affine
transformation (A, b)*. We could use the rigid dis-
placement found in the previous section as an initial
estimate (Ag, bg) and just modify the second step of
the iterative algorithm of Fig. 2 to search for an affine
transformation. It would just be the least square evalu-
ation of the best affine transformation (A;, b;) to super-
pose the pairs of Match;. This evaluation is a classical
least square problem.

But in practice, this very simple algorithm does not
find a good solution: the similarities on the two surfaces
do not tend to be brought nearer. Moreover, another
major problem occurs with it: it often does nottend toa
stable solution. Indeed, when the transformed surface
AS; + b becomes very small or very flat, the crite-
rion is minimized and nothing in the algorithm tends
to avoid it. Especially, when A is the null matrix and
b corresponds to a point on Sy, the criterion vanishes.
Figure 5, middle, illustrates this problem. It shows the
shrinking of the transformed surface when we do not
stop the algorithm using a termination criterion.

To avoid these two problems, we describe in
Sections 3.2 and 3.3 the modifications we bring to the
original iterative algorithm (Fig. 2), respectively to step
1 and step 2. Figure 5, bottom, shows the affine trans-
formation found using this modifications for the faces
of Fig. 4.

3.2.  Matching Locally Similar Points

Because points belong to surfaces, we wish to match
together points belonging to a local neighborhood of

“similar shape” at step 1 of the iterative algorithm
(Fig. 2). In fact, a point on a surface can be locally
described by the osculating quadric (order of contact 2)
(Hosaka, 1992). When surfaces are quite smooth, this
quadric approximate the shape of the surface “around”
the point. Because the principal frame and the two cur-
vatures define this quadric, this differential information
can be added to the three spatial coordinates of each
point to better account for the notion of “closest point
of similar local shape”. Hence, in our formulation, sur-
face points are no longer 3D points: they become 8D
points. Coordinates of a point M on the surface S
are (x, y, 2, Hx, Ny, Bz, k1, k2) where (ny, ny, n;) is the
normal on S at M, and ky, ky are the principal cur-
vatures. For two points M(x, y, z, ftx, Ny, Bz, ki, ky)
and N(x',y', 2, n, n, n,, ki, kj) we now define the
distance:

dM, N) = (a1 (x — XV + a2y = ¥)*
+as(z — 2%+ aa(ng — n})?
+as(ny, — n’y)z + og(n, — n'z)z

Fonlky — kD +aglke — kDHY> (1)

where «; is the inverse of the difference between the
maximal and minimal value of the ith coordinate of
points in S,. Using this new definition of the distance,
the closest point to P on S, is a compromise between
the 3D distance, the difference of normal orientation®
and the difference of curvatures (Fig. 6).

But this new definition of points coordinates in-
troduces an interesting problem. At step 1 of the
iterative algorithm (Fig. 2), we have to compute
ClosestPoint(A;M + b;) where M is a point on ;.
Hence, we have to compute the new coordinates 'y,

Figure 6. The illustration on two curves Sy and Sy of the new definition of the closest point. Left: The closest point on S to M is N using the
* 3D definition of the closest point. Right: Adding in points coordinates the informations on the normal and the principal curvatuses, the points
with local similarity of form tend to be matched. Hence, the closest pointon Sz to M is O.
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Z/,nl, n), n,, ki, ky) of A;M +b;, where 'y, ) =
Ai(x,y,2)" (ny,n, n}) is the normal on the trans-
formed surface A;S; + b; at point (x', y/, 2'), and k]
and k) are the principal curvatures. In fact, because we
need this result in Section 3.3 we show in Appendix B
that:

Proposition 1. When a surface S is transformed into
a surface AS + b by an affine transformation (A, b),
the principal frame and the curvatures at point AM +b
on AS + b depend only on the principal frame and the
curvatures at point M on S.

More precisely, there exists a parameterization of
ASy + b such that, denoting E’, F', G’ the coefficients
of the first fundamental form at point AM 4 b on
AS;+b, ¢, f, g’ the coefficients of the second funda-
mental form and (M, &1, é,, A1) the principal frame at
point M on S;, we have:

E/ = Aé'l M AE]

F' = Aé; - A&,
G' = Aé, - A%,

o = det(A)kl )
= A A AL )
f=0
det(A)ks

&= 1Ag; A AS

Because we know the coefficients of the fundamen-
tal forms of the transformed surface AS; 4+ b at
point AM + b, we can compute the coordinates
&,y 2 ny,n, n,, ki, k3) (see Appendix A).

Just a problem remains to introduce this new
definition of points coordinates: computing Closest-
Point(A;M + b;). In 8D, we cannot use the technique
described in Danielsson (1980) as in the 3D case. The
distance map would be much too big. We use the kd-
tree technique as proposed in Zhang (1994) for the 3D
case. This takes much more time than before: the cal-
culus time of the closest point has to be improved. But
the use of kd-trees allows us to perform step 1 of Fig. 2
in areasonable time. Each iteration now takes 45 sec-
onds (CPU time) instead of 9 seconds (for surfaces of
7000 points). To improve the performances, it is possi-
ble to work on a subset of points of surfaces. For exam-
ple, it is possible to extract crest lines points (Thirion
and Gourdon, 1992) or extremal points (Thirion, 1994).
Or simply, we can select a given percentage of points,
choosing points which have the highest mean curva-
ture. What is important is that most of the selected

points on S7 have a correspondent on §; and that the
selected points describe relatively well the surfaces.

With this new definition of point coordinates, points
with local similarity effectively tend to be matched. Of
course, we could have done the extension also includ-
ing in point coordinates the two principal direction é;
and ;. We have not done it for two reasons. First, the
higher the dimension of the space, the less efficient the
kd-tree technique. Second, as explained in Section 2.2,
itis very difficult to orient principal frames unambigu-
ously.

3.3, Constraints on the Affine Transformation

We have now to focus on a major drawback in the
previous search for the affine transformation which best
superposes S; on S,. If the distance used to compute the
closest point at step one is not the same as the distance
used to define the best affine transformation criterion,
it is not possible to demonstrate the convergence of the
algorithm. Then, we have to redefine this criterion to
ensure CONvergence.

Let (x,y,z,ki, ko, €1,€) be the 3D coordi-
nates, principal curvatures and principal directions
of points My on 1. Let (x', y', 2/, nl, n,, n, ki, k3
be the 3D coordinates, the normal coordinates
and the principal curvatures of points AM; + b
on the transformed surface. We call g the func-
tion which associates (x’, y', 2/, n},, n’y, n.,, ki, k) to
((x, v, 2, ki, k2, €1, €2)x, A, b). The existence of this
function is a consequence of the Proposition 1 and we
use the Egs. (2) to compute it. The new criterion we
propose to minimize at step 2 of the algorithm is:

pkd(g((xv yy 2, kl 1 k2v gl) 22))(;
(My, Ni) € Match;
A,b), N?* ()

where the coordinates of N, are
" " " " " 14 7 1" .
@y 2y ny kL kg e

the 3D coordinates, the normal coordinates and the two
principal curvatures. This new criterion measures the
3D distance, the difference of normal orientation and
the difference of curvature between S; and the trans-
formed surface AS; +b. Note that the shrinking prob-
lem mentioned in Section 3.1 cannot happen with this
new criterion. Moreover, the coefficients py allow use
to increase the importance in the criterion of the match
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for high curvature points. They can be, for example,
the mean curvature or max(Jk;], |k2|).

We use the extended Kalman filter formalism (EKF)
to minimize this new criterion (3). The details are
given in Appendix C. This allows us to deal with oc-
clusion as explained in Section 2.3, initializing the co-
variance matrices in the same way. The only difficulty
is to derivate g with respect to (x, y, z, o, 8, v, k1, k2)
where a, B, v are the three Euler angles corresponding
to the principal frame (€;, €,) and with respect to each
coefficient of A and b. Of course, the developed ex-
pressions are quite formidable. But, using the “Maple”
software, they are computed without problem®. Even if
the minimized criterion is nonlinear, the minimization
works very well: we have made numerous experiments
on synthetic data, and the global minimum was always
found even with rather large datanoise, and rather crude
initial estimates.

Using the new definition of the closest point (Sec-
tion 3.2) at step 1 and this new criterion at step 2, the
modified iterative algorithm find good and stable solu-
tions. Figure 5, bottom, shows the affine transforma-
tion found for the faces of Fig. 4. The solution is found
after ten iterations in about 7.5 minutes (CPU time) on
a DEC 5000 workstation’. It has to be compared with
the rigid displacement of Fig. 5, top. The chin, the
mouth, the nose and the eyebrows of the two faces are
now much closer.

To quantitatively evaluate the error, we have com-
puted the average distance between a point of the trans-
formed surface AS; + b and its closest point on S,
using the 3D norm to compute both the distance and
the closest point. Setting the largest surface diame-
ter to u, the rigid displacement (Fig. 5, top) yields
an average 3D distance of 0.0193u whereas the affine
transformation (Fig. 5, bottom) yields an average 3D
distance of 0.0152u, i.e., a 22% improvement. This
shows that computing an affine transformation using
our improvements brings the two surfaces much closer
to each other, while preserving in a certain extent the
local curvature information.

3.4. Results and Discussion

In this section, we present results on brain data (Fig. 7)
and on skull data (Fig. 8). In each Figure, the two top
images separately show the two surfaces to superpose.
Of course, the two surfaces come from two different
" patients. We recall that the initial relative positions of
the two surfaces do not matter for the search of the

affine transformation: the process is initialized using
the rigid displacement found as described in Section 2
and this does not depend on the initial positions.

The two middle images of Figs. 7 and 8 show the
rigid displacement found between the two surfaces
whereas the bottom images show the affine transfor-
mation. Quantitatively, the error® in the brain example
is 0.011u for the rigid displacement and 0.0091« for the
affine transformation. This is an 18% improvement. In
the skull example, the error is 0.0120u for the rigid dis-
placement and 0.0098u for the affine transformation.
This is a 22% improvement. The affine transformation
is found after 12 iterations in about 7 minutes (CPU
time) on a DEC 5000 workstation for the brains and
after 8 iterations in about 8 minutes for the skulls.

This examples illustrate that the best affine trans-
formation is generally found using our improvements
and that this affine transformation brings the surfaces
much nearer than a rigid displacement. Of course, the
superposition is not perfect: an affine transformation
is a particular and simple type of global deformation
(it can be decomposed into successively a rotation, a
scaling in the direction of the axes and a rotation). We
need a more local deformation to obtain a perfect su-
perposition. In the next section, we present our method
to locally deform the surfaces in a way which tends to
correctly match them.

4. Locally Affine Deformation

The extensions of the iterative algorithm described
in the first two sections allow us to find the best affine
transformation (A, b) to superpose the surface S; on
the surface S,. This transformation brings the two sur-
faces quite close but is too global to perform a perfect
superposition. A natural extension is then to compute
for each point of the transformed surface a local affine
transformation. But, because our goal is to perform
matching, it is very important to ensure that the global
form of the deformed surface tends to be preserved dur-
ing the deformation process. For example, the region
corresponding to the nose on a face must not become
flat. To ensure this, the attached local affine transfor-
mations must not vary too much from one point to its
neighbor.

4.1.  The Locally Affine Deformation Algorithm

Description. We now describe the algorithm to
compute these local affine transformations with an
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iterative algorithm. Each iteration i consists of com-
puting for each point M, in S an affine transformation
(Ar.i, br;). We call the set {(Ag;, by;)} the locally
affine deformation. The corresponding transformed
surface is the set of points Ay ; M, + by ; such that M,
belongs to S;.

The algorithm is initialized with

Aro=A

and
bio=b

for all My in S;, where (A, b) is the best affine transfor-
mation to superpose Sy on S;. As a preprocessing, we
first compute and store the set of points in §; which be-
long to the sphere of center My and of radius R, where
R is the major parameter of the algorithm. We call
this set Sphere(M;) and we use the kd-tree technique
to build it (see Preparata and Shamos, 1985).

Then, in detail, each iteration i consists of two steps.

1. We first attach to each point My in S; a rigid dis-
placement (Ry;, t ;). As in the iterative algorithm
(Fig. 2), we build a set of pairs of points, associating
to each point M, in Sphere(M}) the closest point N,
on the surface S, to the point Ag ;1 My +by ;1. The
rigid displacement (Ry;, tx;) is simply the one
which minimizes the square distance between the
associated points (M;, Np).

2. We now smooth the set of the rigid displacements
(Ry.i» t,;) to compute the locally affine deformation
{(Ar.i, br,i)}. We simply let:

A= B(M;, MR, ;,
M;cSphere(M;)
by = B(M;, My) t;
M, Sphere(My)
where .
(M, My)
BM, M) = ———,
sum
M,
(M, M) = 1 — el
Diameter
and

sum = Z a(M, My)
M eSphere(My)

(Diameter js the diameter of the surface ;). Be-
cause of the linearity of the affine transforma-
tions, this simply means that the point M; will be

transformed into

ST BML MY RiiMi + ).
M, eSphere(M;)

In order to understand where this transformed point
is, imagine the set of points computed by applying
to M, all the rigid displacements attached to the
points M; belonging to Sphere(M;). The trans-
formed point is the centroid of this set of points, each
point being weighted by a value which is inversely

proportional to the distance HWcll- Hence, the
non rigid motion finally computed for M, is influ-
enced by the computed rigid displacement attached
to all its neighbors.

We stop the algorithm when the distance between the
two surfaces is below a fixed threshold or after a given
number of iterations. Of course, at step 1 of this de-
formation algorithm, the definition of the closest point
we use is the definition given in Section 3.2, i.e., the
definition which tends to preserve the local curvature
and orientation of the surface predicted by the current
affine estimate of the local transformation.

To compute the principal curvatures and the princi-
pal frame at a point Py = Ay My + by; of the de-
formed surface, we assume that the affine transforma-
tion (Ay, by) is constant in the neighborhood of Py.
Thus, we can use the Egs. (2) to compute the new dif-
ferential quantities. This is just an approximation but
it seems to be well justified because the step 2 of the
deformation algorithm tends to smooth the variation of
the affine transformations along the surface’. More-
over, it appears to yield good results in practice.

Discussion. The locally affine deformation algo-
rithm deforms the surface AS; + b in a way which
tends to bring nearer the corresponding points. In-
deed, for the same reason that the iterative algorithm
of Fig. 2 rigidly registers the surfaces, each transfor-
mation (Ry ;, t ;) tends to bring nearer the region of
the surface S; described by the points belonging to
Sphere(My) to its corresponding region on S;. The
new definition of the closest point also tends to match
the corresponding points.

Moreover, the global form of the deformed surface
tends to be preserved because the variation of the trans-
formations (A ;, b ;) is smooth along the surface and
because a global affine transformation is just a com-
position of a rotation, a scaling in the direction of
three orthogonal axes, and a rotation. The variation
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&

Figure 9. The wesult of the woet affine deformation algorihm for the faces of Fig. 5, botiom, The superposition is guash-perfect

is smooth for two reasons.  First, for two point My
and M; close on the surface, the sets Sphere{ My) and
Sphere(M) differ only from a fow points and this -
plies that the computed rigid displacements (B i)
and (R, &) cannot be very different. Sccond, the
atfine rransformation attached to Mg isa welghted aver-
age of the rigid displacements computed for the neigh-
hors of M, and this also tends o smooth the vanation,
1f we need a smoother variation, itis p ssible o add a
third step to the locally affine deformation algorithn,
It is the repetition (typically two or three tunes) of:
vk, Al =

®.d

BLAM:, MOA .
MysSpheret )

!},', B Z i f‘)’(;"/f;, My,
MyaSphered Ml
Vi, A = Al b= by

Using this third step, the variation is smoother and
the displacement of points is influenced by the
displacement of poini which does nol belong 1o
Sphere(Mg). Thisallows usto smooth over alarge scale
without increasing the radius R of Sphere(My ).

Note that the larger the radins K. the smoother the
variation of the affine transformations and that R
equal to Diameter, the locally affine deformation corre-
sponds to a rigid displacement. This suggests a “mul-
fiseale” strategy. For the first iterations, the radius K
is chosen to be quite high'?, Hence. the biggest struc-

tures of the surfaces are first registered and we choose

® smaller during the last iterations 1o have a morc o~
cal registration. Finally, we want o enphasize a major
advanfage of this algorithm: we do not need to know
either a parameterization or the topology of the surface
to deform.

Figure 9 presents the result of the locally affine de-
formation algorithm for the faces of Fig. 4, using &8
input the surface S ransformert by the affine trans-
formation of Fig. 5. This result is found after three
iterations, choosing Diameter/20 for K during the two
first iterations and Diameter/30 for the last Herafion.
We do notuse step 3 of the algorithm. The CpUthme is
2 minutes on a DEC 5000 workstation. Cuantitatively,
setting the largest surface diameter 16 4, the final er-
cor 15 0.00664. This shows that the superposition s
geometrically quasi-perfect,

But one Lmportant question remaing: does the it
erative algorithm also perforns a gualitatively correct
maiching? To illustrate it, we have qualitatively col-
ored the surface ;. In the left image of Fig. 10 the
chin, the mouth, the nose and the eyebrows are now
dark and the rest of the face is bright. This way, each
point on the transformed surface S has an attached
color. Inorder to visualize the match induced by the lo-
cally affine deformution algorithm, we have computed
for each point M on the surface S its closest point N
on ihe deformed surface $7, and we have attached 0
M the color of N. Hence, the surface $» 1s colored and
the result of this coloration is shown in the right image
s 10, Like on the surface $,. the chin, the mowth,
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Appendix B

Congmting the € ‘fzf’wffsmw and Principal Frames

of the Transformed Surface

In this appendix, we wanl 9 show that: when o sur-

Juce 51 5:;.{;;@;5};;;25'4{ into g surface AS -+ b by an affme

transtormation (A, b)Y, the principal frave and the cur-
vanwes af point AM 4 bon AS+b depend only on the
371‘;’)!?5‘{;}{3!({ffl???f; aud the curvatnres af potni M oon 5.

Givenapoint M on § with g‘);‘im‘p;‘z% curvatures ky, ko
and prinvipal frame (A, ¢:. 6y, 1) and piven an affine
transformation (A, b), we Wmi O mii;puiuim new CUE-
vatures &y, &% and the principal imm:, (M, e e 0y
at point M7= AM -+ b on AS 4 Assume that M
is not an wnhilic peint. There aéxist:s‘ & parameleriza-
Gon s(e. v) of S in a neighborhood V of M such that
the coordinales curves ¥ = consl, v == Const, are the
fines of curvature of § (see do Carmo, 1976} We use
this parametens sation and we note M == s{ig, o). We
note 160 8, As/0u and 8. = dsjdu. EF. G are
the three coeflicients of the first fundamental form and
¢, f. g the three oo sefficients of the second fundamental
form. [n this parame revization, we have {Gourdon and
Ayache, 1994
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Finally:

1"/{2&{}\ iy

in the same way, we can show that

T the three soefficients of the first fundamental
i‘osm are:

Because the pew principal {rams
1. &%, the principal curvabres anly
efficients of the two fundamental forms (see Appendix
A) 1 §* cause these ws.ifmmix mziw de gscnﬁ on A,
4

epend on the <o

curvatures only depond on AL &y, x ¢y andd £, Wo
have developed the formulac, but we do not expliclt
them here, as they are quite straightforward,

Appendix €
Minimizarion of the New Critesion nsing EKF
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