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projection) which maps a 3D object onto a 2D image of
this object, the relative positions of the 3D object and theSome medical interventions require knowing the correspon-

dence between an MRI/CT image and the actual position of 2D sensor being unknown.
the patient. Examples occur in neurosurgery and radiotherapy, This problem can be solved with artificial markers visible
but also in video surgery (laparoscopy). We present in this in both images,1 but this produces unacceptable constraints
paper three new techniques for performing this task without (e.g., preoperative images must be taken on the same day
artificial markers. To do this, we find the 3D–2D projective as the operation and stereotactic frames are very painful
transformation (composition of a rigid displacement and a per-

and can prevent a free access by the surgeon).spective projection) which maps a 3D object onto a 2D image
Recently, computer vision techniques have been pro-of this object. Depending on the object model (curve or surface),

posed to solve this registration problem without artificialand on the 2D image acquisition system (X-Ray, video), the
markers. Grimson [17] uses an intermediate laser rangetechniques are different but the framework is common:
finder, which provides a 3D description of the patient’s

• We first find an estimate of the transformation using bi- surface. This surface is then matched against the surface
tangent lines or bitangent planes. These are first order semi- of the segmented corresponding surface in the volumetric
differential invariants.

medical image. As the laser range finder is calibrated with
• Then, introducing the normal or tangent, we define a dis-

respect to the camera, the medical image can be fusedtance between the 3D object and the 2D image, and we minimize
with the video image. Colchester [9] and Kanade [29] alsoit using extensions of the Iterative Closest Point algorithm.
developed reconstruction/rigid registration frameworks.• We deal with the critical problem of outliers by computing
The approach adopted by Schweikard [28] is a 2D correla-Mahalanobis distances and performing generalized x2 tests.
tion scheme between the radiography and precomputed

Results are presented on a variety of real medical data to simulated radiographies of a MRI image. Another correla-
demonstrate the validity of our approach.  1997 Academic Press

tion technique is presented in [22] and a mutual informa-
tion maximization approach is proposed in [35]. Finally,
Lavallee [21] uses the occluding contours of the 3D object1. INTRODUCTION
in the 2D image to perform the 3D–2D registration task.

This paper is a contribution to this new and excitingMedical images are commonly used to help establish a
research field. We introduce three different techniques forcorrect diagnosis. As they contain spatial information, both
3D–2D registration, depending on the particular clinicalanatomical and functional, they can also be used to plan
problem. We first present in Section 2 an approach whichtherapy and even in some cases to control the therapy. A
makes use of passive stereo to reconstruct the surface. Therecent overview of such research can be found in [2] and
problem is in this case 3D–3D surface rigid registration.in [32], a spectacular use of planning and control of therapy
Then, in Section 3 we present a framework for finding theusing medical images and robots can be found in [7, 21,
geometric transformation between a 3D image of vessels31] for surgery and [28] for radiotherapy. Some basic tech-
and a 2D radiography of those vessels. This is the 3D–2Dniques involved in these problems are presented in [16].
curve registration problem. Finally, in Section 4, we presentOne of the most difficult tasks is to register, if possible
a technique which allows us to find the transformationin real time, a video or X-ray image of the patient (intraop-
between a 3D surface and an image of the surface, by usingerative image) with a preoperative image (MRI or CT).
the silhouette. This is the 3D–2D surface registrationBasically, one must find the 3D–2D projective transforma-
problem.tion (composition of a rigid displacement and a perspective

1 The problem is then very similar to the camera calibration problem.* E-mail: Jacques.Feldmar@sophia.inria.fr.
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For the three registration problems addressed in this
paper, we have developed a unified framework. The subsec-
tions correspond to each step of this approach:

• First, we find an initial estimate of the geometric trans-
formation. To do that, we use bitangent planes or bitangent
lines, which are semidifferential invariants2 [15] involving
only first-order derivatives. Hence, our framework does
not depend on the initial relative positions of the objects.

• Then, we find an accurate transformation by defining
a distance between the 3D and the 2D object (which is a
compromise between the spatial distance and the differ- FIG. 1. A surface and two bitangent points M1 and M2 . Let n1 and
ence in normal or tangent orientation) and by minimizing n2 be the normals at these points. M1 and M2 are bitangent if the plane

defined by (M1 , n1) and the plane defined by (M2 , n2) are the same.it using two-step minimization algorithms which are exten-
Another definition is that n1 and n2 are identical and that the line M1M2sions of the Iterative Closest Point algorithm presented in
is orthogonal to these two vectors.[4, 36]. The use of extended Kalman filters allows us to take

into account the critical problem of outliers, computing
Mahalanobis distances, and performing generalized x2

tests. on the initial relative positions of the surfaces, it must be
accurate and deal with outliers.

2. 3D–3D SURFACE RIGID REGISTRATION
2.1. Finding an Initial Estimate of the

Rigid DisplacementThe approach presented in this section, to find the corre-
spondence between a 3D image and the actual position of The basic idea is to compute independently on each
the patient, is related to [9, 17, and 29]. We also split the surface the set of pairs of points sharing the same tangent
problem into two stages: reconstruction and rigid registra- plane (see Fig. 1). We call such pairs bitangent points. As
tion. But the way we perform the surface reconstruction mentioned in Section 1, they correspond to semi-differen-
is different. We use a passive stereo system developed by tial invariants [15]. The technique for computing these
Devernay [11] within the Robotvis group at INRIA. The pairs is described in Appendix A.1. We simply note here
result is a dense description using points and normals of that the algorithm is quasi-linear in the number of points
the patient’s surface. The coordinates of these points and describing the surface, and, because it involves only deriva-
normals are expressed in the camera frame. Because the tives of order 1, the bitangent points calculation is quite
transformation which maps the reconstructed image to the stable.
camera image is known, the problem is to find the transfor- In the ideal case, because the distance between the two
mation between the MRI/CT image and the recon- bitangent points is invariant under rigid displacement, the
structed surface. following algorithm would be very efficient to rigidly super-

In order to find this transformation, we extract from pose a surface S1 on a surface S2 :
the MRI/CT image the surface of the patient’s face by
combining the techniques described in [24] and in [33]. (1) Choose a pair P1 of bitangent points on S1 . Let d(P1)
Hence, we also get a description by points and normals, be the distance between the two points.
and the rigid registration problem3 is the following: (2) Compute the set SameDistance(P1) of pairs of bi-

tangent points on S2 such that the distance between theGiven two surfaces described by points and normals, find the rigid
displacement that best superposes these two surfaces. two bitangent points is equal to d(P1).

(3) For each pair P2 in SameDistance(P1), compute theAs pointed out in [17], this algorithm must not depend
two possible rigid displacements corresponding to the su-
perposition of the two pairs P1 and P2 and of their normals.

2 The basic idea of semidifferential invariants is to use several points Stop when the rigid displacement which superposes S1 on
to define invariant quantities. The advantage of this approach is that it S2 is found.
involves lower order derivatives lower than the differential invariants
computed at a single point, which make them more stable. The disadvan- In practice, corresponding pairs of bitangent points can-
tage is that the complexity of the algorithms often highly increases with not be exactly superposed because of the point discretiza-
the number of points used to define the semidifferential invariants. Hence,

tion error and because of the error in the computation ofthe choice of the invariants must be a compromise between the order of
the normal. Moreover, only a part of the reconstructedthe involved derivatives and the complexity of the underlying algorithm.

3 Note that this problem has many other applications (see [34]). surface S1 may be superposed on the patient’s surface ex-
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tracted from the MRI image S2 . So, the actual algorithm where Match is a function from the 3D space to S2 . The
iterative algorithm minimizes this energy E. In step 1, theis slightly more complex, but is basically as stated. The

details can be found in Appendix B.1, and an analysis of variables (R, t) are fixed and E is minimized with respect
to Match. The function which minimizes E in this case isthe complexity of the search for an initial estimate can be

found in Appendix B.2. We simply note that the complexity ClosestPoint. In step 2, the variable Match is fixed and E
is minimized with respect to (R, t). Hence, at each step,of the algorithm is quasi-linear in the number of points on

the surfaces and that the risk of stopping the algorithm E decreases. Because E is positive, convergence is guar-
anteed.with a wrong initial estimate decreases extremely quickly

with the number of points (when the two surfaces actually This ICP algorithm is efficient and finds the correct solu-
tion when the initial estimate (R0 , t0) of the rigid displace-show some overlapping regions up to a rigid displacement).
ment is ‘‘not too bad’’ and when each point on S1 has a

2.2. The Iterative Closest Point Algorithm correspondent on S2 . But in practice, this is often not the
case. For example, in our application, as explained in theUsing the pairs of bitangent points as described in the
previous section, the reconstructed surface usually onlyprevious subsection, we get an estimate (R0 , t0) of the rigid
partially describes the patient’s surface and often includesdisplacement to superpose S1 on S2 . In order to find an
a description of the patient’s environment. The next twoaccurate rigid displacement we have developed an exten-
subsections explain how we deal with these two problems.sion of an algorithm called ‘‘the Iterative Closest Point

algorithm’’ which was introduced by several researchers
[4–6, 26, 36].4 We sketch the original ICP algorithm, which 2.3. Working with Incomplete Surfaces
searches for the rigid displacement (R, t) which minimizes

In step 1 of the iterative algorithm, we map each pointthe energy
of S1 to a ‘‘closest point’’ on S2 . But when the two surfaces
are partially reconstructed, some points on S1 do not haveE(R, t) 5 O

Mi[Si

iRMi 1 t 2 ClosestPoint(RMi 1 t)i2,
any homologous point on S2 . Thus, given a point M on
S1 , (Ri21 , ti21), and ClosestPoint(Ri21M 1 ti21), we have

where ClosestPoint is the function which associates to a to decide whether (M, ClosestPoint(Ri21M 1 ti21)) is a
space point its closest point on S2 . plausible match. This is very important because, if we ac-

The algorithm consists of two iterated steps, each itera- cept incorrect matches, the found rigid displacement will be
tion i computing a new estimation (Ri , ti) of the rigid dis- biased (and therefore inaccurate), and if we reject correct
placement. matches, the algorithm may not converge toward the

best solution.1. The first step builds a set Matchi of pairs of points.
As proposed in [1], we make use of the extended KalmanThe construction is the following: for each point M on S1 ,

filter (EKF). This allows us to associate to the six parame-a pair (M, N) is added to Matchi , where N is the closest
ters of (Ri , ti) a covariance matrix Si and to compute apoint on S2 to the point Ri21M 1 ti21 . To compute the
generalized Mahalanobis distance d for each pair ofclosest point, several methods have been proposed, for
matched points (M, N). This generalized Mahalanobis dis-example the distance map method [10].
tance, under some assumptions on the noise distributions

2. The second step is the least-squares evaluation of the and some first-order approximations, is a random variable
rigid displacement (Ri , ti) to superpose the pairs of Matchi with a x2 probability distribution. By consulting a table of
(see for example [12] who use a quaternion-based method). values of the x2 distribution, it is easy to determine a

confidence level « for d corresponding to, for example, aThe termination criterion depends on the approach used:
95% probability of having the distance d less than «. Inthe algorithm stops either when (a) the distance between
this case, we can consider the match (M, N) as likely orthe two surfaces is below a fixed threshold, (b) the variation
plausible when the inequality d , « is verified and considerof the distance between the two surfaces at two successive
any others as unlikely or unplausible.iterations is below a fixed threshold, or (c) a maximum

This distinction between plausible and unplausiblenumber of iterations is reached.
matches implies a change in the second step of the iterativeThe convergence of the algorithm is clearly demon-
algorithm. Given Matchi , instead of computing the rigidstrated in [8]. Let us define the energy
displacement (R, t) which minimizes the least-squares cri-
terionE(R, t, Match) 5 O

Mi[S1

iRMi 1 t 2 Match(Mi)i2,

O
(M,N)[Matchi

iRiM 1 ti 2 Ni2,4 Note that an extension of this algorithm to the nonrigid case can be
found in [13] and [30].
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we recursively estimate the six parameters of (R, t), and the where n1(M) is the normal on S1 at point M and
ClosestPoint 6D is the new 6D closest point function.associated covariance matrix which minimizes the criterion

In step one, the closest point now has to be computed
in 6D space. Because we cannot extend the techniqueO

(M,N)[Matchi and (M,N) is plausible
(RiM described in [10] (the distance map image would be much

too large), we use the kd-tree technique first proposed by
1 ti 2 N)tW21

j (RiM 1 ti 2 N), Zhang ([36]) for the 3D case. The second step must also
be modified: the criterion which defines the best rigid dis-
placement must use the new 6D distance. Otherwise, it iswhere Wj is a covariance matrix associated with each pair
not possible to prove the convergence of our new ICP(M, N) which allows us, for example, to increase the impor-
algorithm as in Subsection 2.2. Hence, the rigid displace-tance of high curvature points.
ment (Ri , ti) is now defined as the minimum of the functionMore details about the meaning of ‘‘plausible or not’’

and about the EKF can be found in Appendix C.
f (R, t) 5 O

(M,N)[Matchi

d(RM 1 t, N)2,
2.4. Using the Normal Information to Find the

Global Minimum
where, the coordinates of the point RM 1 t are (RM 1

As is commonly encountered with any minimization al- t, Rn1(M)).
gorithm, the ICP algorithm may become trapped in a local In practice, we use extended Kalman filters to minimize
minimum. To reduce this problem, we propose in this sub- this new criterion at step 2. Even though it is in nonlinear,
section to make use of the normal information and to the minimization works very well. We have carried out
define a new criterion to minimize. In our formulation, numerous experiments on synthetic data, and the global
surface points are no longer 3D points: they become 6D minimum was always found even with rather large data
points. Coordinates of a point M on the surface S are (x, noise and rather crude initial estimates. Note that this use
y, z, nx , ny , nz), where (nx, ny , nz) is the normal to S at M. of extended Kalman filters allows us to compute Mahala-
For two points M(x, y, z, nx , ny , nz) and N(x9, y9, z9, n9x , nobis distances and to determine if a match is plausible or
n9y , n9z) we define the distance not as explained in the previous subsection.

In order to try to demonstrate that the ICP algorithm,
using the 6D distance, converges more often to the globald(M, N) 5 (a1(x 2 x9)2 1 a2(y 2 y9)2

minimum than the standard ICP algorithm, we conducted
1 a3(z 2 z9)2 1 a4(nx 2 n9x)2 the following experiment. We chose S1 and S2 to be the

same surface. Hence, the resulting transformation should
1 a5(ny 2 n9y)2 1 a6(nz 2 n9z)2)1/2, be the identity. We run both the original and the modified

algorithm choosing different initial rigid displacements
(R0 , t0), at an increasing distance from the identity. Thewhere ai is the inverse of the difference between the maxi-
results are reported in Table 1. This shows that our modi-mal and minimal value of the ith coordinate of points in
fied algorithm is in practice much less sensitive to the initialS2 . Using this definition of distance, the closest point to P
estimate (R0 , t0), and more robust to local minima.on S2 is a compromise between the 3D distance and the

difference in normal orientation.5
2.5. ResultsThis new definition of the distance between points natu-

rally implies modifications to steps one and two of the ICP We now present an example application of the frame-
algorithm in order to minimize the new energy work presented in this section.

First we compute on both the stereo reconstructed sur-
face, and on the MRI surface (Fig. 2), the pairs of bitangentE(R, t) 5 O

M[S1

d((RM 1 t, Rn1(M)),
points. We find 598 pairs on the stereo surface and 5000
pairs on the MRI surface (obviously, the desired density

ClosestPoint 6D((RM 1 t, Rn1(M)))2,
of the bitangent pairs is a parameter of the bitangent ex-
traction algorithm). Hence, there are more pairs on the
MRI surface than on the stereo surface which makes the5 Of course, only two parameters are necessary to describe the orienta-
algorithm more efficient. The extraction requires abouttion of the normal (for example the two Euler angles). But we use (nx ,

ny , nz) because the Euclidean distance better reflects the difference of 30 s.6
orientation between the normals (that is not the case with the Euler
angles because of the modulo problem) and we can use kd-trees to find
the closest point as explained later. 6 CPU times are given for a DEC–ALPHA workstation.
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TABLE 1
Superiority of the Algorithm Using the Surface Normal Information: Quantitative Experiments

sr(radians)–st(mm) 0.1–0 0.25–0 0.5–0 0.75–0 1.0–0 1.5–0
points 1000 963 598 293 157 61

points 1 normals 1000 999 881 596 370 170

sr(radians)–st(mm) 0.1–10 0.25–10 0.5–10 0.75–10 1.0–10 1.5–10
points 1000 964 582 286 154 68

points 1 normals 1000 997 858 567 360 168

sr(radian)–st(mm) 0.1–100 0.25–100 0.5–100 0.75–100 1.0–100 1.5–100
points 997 921 512 247 139 52

points 1 normals 1000 995 834 549 348 152

sr(radian)–st(mm) 0.1–500 0.25–500 0.5–500 0.75–500 1.0–500 1.5–500
points 640 576 312 158 85 33

points 1 normals 906 870 695 456 295 147

Note. We chosen for S1 and S2 the same surface: 100 random points chosen on a mannequin head surface. Then we randomly chose rigid
displacements, ran both the original and the modified algorithm, and verified if the result was the identity or not. The laws for choosing the rigid
displacement are Gaussian laws centered on the identity. For each covariance matrix, we made 1000 trials and we report in the table the number
of successes. For example, for a standard deviation of 0.1 radians for the rotation and 500 mm for the translation, the standard ICP algorithm found
the correct solution 640 times out of 1000 trials, whereas the result was 906 using the normal information. Another example is for a standard
deviation of 1.0 radians for the rotation and 10 mm for the translation: the number of successes are respectively 151 and 360. For more information
on Gaussian laws for choosing rotations, see [27]. We note that the standard deviation for rotations is a number between 0 and f.

Using these pairs of bitangent points, we estimate the have their closest point at a distance lower than 3 mm.
The average distance between matched points is 1.6 mm.rigid displacement in about 30 s. Applying this estimate,

80% of the points on the stereo surface have their closest The result is presented in Fig. 3, left.
Because we know the point-to-point correspondencespoint at a distance lower than 8 mm. This error must be

compared with the size of the voxel in the MRI image: between the MRI head surface and the stereo face surface
(this is the result of the registration), and because of each4 mm 3 4 mm 3 2 mm. Moreover, recall that there are

points on the stereo surface which do not a homologous point of the stereo surface we know the gray level from
the video image, we can map the video image onto thepoint on the MRI surface.

Using this estimate of the rigid displacement, we run MRI surface (Fig. 3, right). The fact that the points on
the MRI surface have the right gray levels qualitativelythe modified iterative closest point algorithm. The MRI

head surface is described by 15000 points and the stereo demonstrates that the MRI/stereo matching is correct.
Once the MRI head surface has been colorized, we cansurface by 10000 points. It takes 20 s. Applying this new

rigid displacement, 85% of the points on the stereo surface apply the projective transformation computed as explained

FIG. 2. The bitangent lines computed on the MRI (left) and stereo (right) face surfaces. Note that we selected the lines whose length varies
between 2 cm and 10 cm.
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FIG. 3. (left) The result of the rigid registration. The MRI surface is clearer and the stereo surface is darker. The alternation dark/clear shows
that the registration is quite accurate. (right) The colorized MRI head surface obtained by attaching to each matched point the gray level of its
corresponding point on the stereo surface. Thanks to the transparency effect, one can observe the brain.

in this paper and get a gray-level 2D image. This image is (for example in the brain or kidney) and a 2D angiography
of those vessels (Fig. 8). Two techniques are used to getvery similar to the video image and this demonstrates that
the 3D images of the vessels. It can either be a MRI imagewe actually recover the right projective transformation
where all the vessels are visible, or it can be a CT image.(Fig. 4).
In the latter case, opaque liquid is injected in a vessel andFinally, we projected the brain onto the video image
only those vessels linked to the one injected are visible in(see Fig. 5) using the computed projective transformation.
the 3D image. The 2D image is a standard radiographyIn fact, we now have enough geometric and textural param-
and some opaque liquid is also injected in order to makeeters to produce a stereo pair of realistic images from a
the vessels visible.continuous range of viewpoints and provide the surgeon

An interesting application of the 3D–2D vessel registra-the feeling of seeing inside the patient’s head and guide
tion is in interventional radiography. A common operationhim/her during the operation as explained in [17].
for the radiologist is to introduce a catheter into an artery
and guide it toward a lesion within a vessel. The radiologist3. 3D–2D PROJECTIVE CURVE REGISTRATION
injects opaque fluid and takes radiographies throughout
the operation (which can be quite long) in order to seeIn this section, we consider the problem of finding the

projective transformation between a 3D image of vessels the vessels and the catheter. The opaque liquid can be

FIG. 4. The left image shows one of the video images. The right image is the gray-level image obtained by applying to the colorized MRI surface
the recovered projective transformation. Let us call this image the ‘‘simulated image.’’ Note that the white areas come from unmatched points. In
order to demonstrate that the video and the simulated images are very similar, we computed the contours C in the video image: C is visible in the
left picture. Then we superimposed C int the simulated image. One can observe that C fits very well with the simulated image. This demonstrates
that the recovered projective transformation is correct.
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FIG. 5. The projection of the brain in the two video images using the projective transformation computed as explained in this paper. A stereoscopic
display could provide the surgeon with the feeling of seeing inside the patient’s head. The two presented images cannot be visually fused in this
position, because the baseline between the two optical centers of the video cameras was vertical in this experiment: one can notice that the camera
of left image was bellow the camera of the right one. This will be corrected in further experiments.

dangerous for the patient, and the X-radiations are noxious FocalPlane having equation z 5 1. This means that a
3D point M 5 (X, Y, Z) is transformed to the pointfor both the radiologist and the patient. Also, understand-

ing the 3D shape of the vessels from two radiographies is m 5
(X/Z, Y/Z, 1) which is the intersection between the linea very hard task.
OM and the plane FocalPlane (see Fig. 6). For clarity,Knowledge of the projective transformation which maps
we make this assumption in the sequel of this article.the 3D vessels onto the 2D ones enables us to determine
We consider that a point m 5 (x, y, 1) belonging tothe position of the catheter (which is visible in the radiogra-
the FocalPlane is a 2D point with coordinates (x, y).phy) with respect to the 3D image. Hence, the radiologist
We call the perspective transformation which transformscould visualize his catheter in the 3D image during the
the 3D point M to the 2D point m, the transformationoperation. This is a significant step toward finding the right
Proj, and we denote this by m 5 Proj(M). The problempath within the vessels. Since this reduces the risk of an
now is to find the rigid displacement (R, t) such that,incorrect interpretation, the operation becomes safer.
for all points Mi on the 3D curve corresponding to theMoreover, by reducing the interpretation time, the quan-
point mi on the 2D curve, mi 5 Proj(Rmi 1 t). Thetity of injected liquid and radiations can be lowered.
projective transformation search for is Proj o (R, t).Some recent work ([25]) enables us to represent the

vessels as curves described by points in both the 3D and
the 2D images. Moreover, spline approximation yields the
tangents to these curves [18]. Hence, from a computer
vision point of view, the problem is to find the best projec-
tive transformation which maps a given 3D curve onto a
given 2D curve, the two curves being described by points
and their associated tangents. This problem has already
been addressed for special curves such as circles or ellipses
but not for free-form curves to our knowledge (a hint can
be found in [19] for nonplanar parameterized curves).

Note that we know the camera calibration matrix T
corresponding to the 2D image processing.7 So, it is possi-
ble to assume without loss of generality (see Appendix E)
that the camera image formation corresponds to perspec-
tive projection with center O 5 (0, 0, 0) and a focal plane

FIG. 6. Each point Mi on the 3D curve is first transformed into
RMi 1 t and then transformed into Proj(RMi 1 t). Finally, an affine7 We make the pinhole camera assumption in this paper. This is well

justified for our applications. transformation of FocalPlane provides the image coordinates.
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C which lie in the plane defined by (O, m1 , m2). This
proves that T1 and T2 are coplanar.

SECOND BITANGENT LINE PROPERTY. Let t be the com-
mon tangent line on c at m1 and m2 . Let m3 be an intersection
point between t and c. m3 is the projection of a point M3

which is an intersection point between the plane defined by
(M1 , M2 , T1 , T2) and the curve C.

Proof. O, m1 , m2 , m3 , M1 , M2 , T1 , T2 all lie in the
same plane P. Because M3 is on the line Om3 , M3 also lies
in P.

We use these two properties to find an initial estimate
of the projective transformation which maps a given 3D
curve C onto a given 2D curve c as follows:

1. Choose a triplet (m1 , m2 , m3) of points on the 2D
curve c such that (a) the tangent lines at point m1 and m2

are the same line l; and (b) m2 is an intersection point
between c and l.

2. For each triplet (M1 , M2 , M3) of points on the 3D
curve C such that (a) the tangent lines at point M1 and M2

lie in the same plane P; and (b) M3 is an intersection point
FIG. 7. Illustration of the two properties of curves projection used between C and P,8 compute the projective transformations

in this paper. Two points m and n which share the same tangent lines l
which maps (M1 , M2 , M3) on (m1 , m2 , m3). Stop if aare projections of two 3D points M and N such that the tangent lines at
computed projective transformation is a correct initial es-these points lie in the same plane Plane. Moreover, if p is an intersection

point between l and the 2D curve, then it is the projection of a 3D point timate.
P which is an intersection point between the 3D curve and Plane.

3. If no solution was found, return to point 1.

More details on this algorithm can be found in Appendix
D.1. We note that the complexity is quasi-linear in the

3.1. Finding an Initial Estimate of the
number of points describing the curve. It allows us to find

Projective Transformation
an estimate of the projective transformation which maps

A well-known result is that knowledge of three points the 3D curve onto the 2D curve. But, because we need
M1 , M2 , M3 on the 3D object and of the three correspond- a more accurate transformation, we use this estimate to
ing 2D points m1 , m2 , m3 in the 2D image yields four rigid initialize a two-step minimization algorithm.
displacements (R, t) which satisfy mi 5 Proj(RMi 1 t)

3.2. Extension of the ICP Algorithm to 3D–2D(see for example [23]). Note that there are six equations
Curve Registrationand six unknowns. Of course, it is not possible to select

all the 3D and 2D triplets and to explore the possible 3.2.1. First Extension. The transformation of a 3D point
combinations in order to find an estimate of the transfor- M by the estimate of the projective transformation found
mation. We must select from the 3D and 2D curves two by the method explained in the previous subsection corre-
subsets of triplets which can match each other. In order sponds to: (i) the application of a rigid displacement (R0 ,
to reduce the number of potential matches, we use two t0) to M and, (ii) the application of the projection Proj. In
projective properties of curves (see Fig. 7): order to get a more accurate projective transformation, we

propose to minimize the energyFIRST BITANGENT LINES PROPERTY. Let c be a 2D curve
which is the perspective projection of a 3D curve C (c 5

E(a, b, c, tx , ty , tz) 5 O
Mi[C

iProj(RMi 1 t)Proj(C)). Two points on c which share the same tangent
lines are projections of two points on C such that the tangent
lines are coplanar. 2 ClosetPoint(Proj(RMi 1 t))i2,

Proof. Let M1 and M2 be two points on C. Let T1 and T2
where (R, t) is the rigid displacement corresponding to thebe the attached tangents. Let m1 and m2 be the projection of

M1 and M2. If m1 and m2 share the same tangent line, these
tangent lines are projections of two 3D tangent lines on 8 The algorithms to compute the set of triplets are given in Appendix A.
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three Euler angles a, b, c, t is the translaction vector (tx , ty , where Ti is the normalized tangent vector to C at point
Mi and Proj tangent is the function which associates withtz), and where ClosestPoint is the function which associates

with each point m in FocalPlane its closest point on c. the normalized tangent vector RTi at point RMi 1 t, the
normalized tangent vector to the projected curve at pointAs in the previous section, the algorithm consists of two

iterated steps, each iteration j computing a new estimation Proj(RMi 1 t). The modifications to the previous extended
ICP algorithm to minimize this new criterion are straight-(Rj , tj) of the rigid displacement:
forward and similar to the modifications in the 3D–3D

1. Build a set of pair of points Matchj by attaching to rigid case. In step 1, the closest points are computed in 4D
each point Mi in C the closest point mi on c to the point space using the kd-tree technique, and in step 2 the 4D
Proj(Rj21Mi 1 tj21). criterion corresponding to the new 4D distance is

2. Compute the best rigid displacement which minimizes

O
(Mi,mi)[Matchj

d(Proj(RMi 1 t), mi)2.O
Mi[C

iProj(RMi 1 t) 2 mii2.

As in the 3D–3D case, experiments demonstrate that theUsing the same kind of demonstration as the conver-
use of tangent information makes the minimization algo-gence demonstration of the ICP algorithm presented in
rithm less sensitive to its initialization.Subsection 2.2, it is straightforward to prove that the algo-

rithm converges and minimizes the energy E. Moreover,
3.3. Resultsbecause we also use extended Kalman filters to perform

the minimization at step 2 of the algorithm, we get the 3.3.1. 3D Morphometer Data. We present an applica-
covariance matrix associated to the rigid displacement tion of this framework to the data shown in Fig. 8. The
(Rj21 , tj21). Hence, as in the 3D–3D rigid case, we can 3D data have been acquired by the ‘‘3D morphometer’’.
compute for each pair in Matchj a Mahalanobis distance Figure 9 (left) shows the initial estimate. One can ob-
and decide whether a pair in Matchj is a plausible match serve that it is quite different from the one shown in Fig.
or not. This allows us to deal efficiently with the outliers 8 (left). Indeed, different projections of the same 3D curve
problem. Note that this problem is for example crucial for can produce very different images. This demonstrates that
the 3D–2D brain vessel registration problem because all the search for the initial transformation (Subsection 3.1)
the vessels are visible in the MRI image, whereas only the is crucial. Figure 9 (right) shows the result of the minimiza-
injected ones are visible in the radiography. tion process presented in Subsection 3.2 from this initial

estimate. The computation time is 20 s on a DEC alpha3.2.2. Extension Using the Tangent Information. As for
workstation. For matched points, the average distance isthe 3D–3D rigid registration problem, the exploitation of
6.8 pixels for the initial estimate and 0.83 pixel for thetangent information enhances the convergence of the
final registration.3D–2D ICP algorithm. In this case, the points on the 2D

It is difficult to estimate the accuracy of the registrationcurves are no longer 2D points. They are 4D points (x, y,
with this measure of the error. An improved quantitativetan x, tan y), where (x, y) are the classical spatial coordi-
measure would require two radiographies taken with a 908nates and (tan x, tan y) are the coordinates of the normal-
angle. This would allow us to measure the z error. Weized tangent vector to the curve. Hence, given two points
plan to conduct such experiments in the near future.m1 and m2 with coordinates (x1 , y1 , tan x1 , tan y1) and (x2 ,

y2 , tan x2 , tan y2), we can define the distance 3.3.2. 3D MR Aniography Data. We also conducted
some experiments to match 3D MR angiographies onto

d(m1 , m2) 5 (a1(x1 2 x2)2 1 a2(y1 2 y2)2 2D X-ray angiographies. This scheme has a large potential
use in practice because the acquisition of MR angiography1 a3(tan x1 2 tan x2)2 1 a4(tan y1 2 tan y2)2)1/2,
is noninvasive. This is the reason why we treat the vessels
as 3D curves. Indeed, the vessels generally appear thinner

where ai is the inverse of the difference between the maxi- in MR images than in 2D X-rays. Even if the skeleton is
mal and minimal value of the ith coordinate of points in c. not invariant under projective transformation, this approx-

In this case, the criterion corresponding to this new dis- imation works well in practice because the vessels are
tance is thin enough.

A stereotactic frame was attached to the head of the
E(a, b, c, tx , ty , tz) 5 oMi[C d(RMi 1 t), Proj tangent(RTi)), patient during the acquisition of the images. This allowed

us to compare quantitatively the projective transformation
ClosestPoint 4D((Proj(RMi 1 t), Proj tangent(RTi))))2, Tframe found using the stereotactic frame and the transfor-
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FIG. 8. (left) The 3D model of the vessels. It was extracted from a 3D image acquired by the ‘‘3D morphometer’’ of General Electric Medical
System Europe. (right) A radiography of the vessels (an angiogram). Our goal is to find the point to point correspondence between the left and
right objects.

mation Tframeless found without the frame as described in frame technique is probably more robust. We believe that
using two 2D angiographies, a frontal one and a lateralthis section, using only the vessels visible in the images.

In order to compare Tframe and Tframeless , we define an one, the frameless technique could be robust enough for
clinical use. Note that when several radiographies are avail-error measure as follows. For each point M in the 3D

volume of interest, we apply Tframe to M. We get a 2D able, and assuming that the relative acquisition positions
are known, it is then straightforward to define a new crite-point m. The inverse of m for the transformation Tframeless

is a set of points M9 forming a line L. We define the error rion being the sum of the individual criterions define above
for each image and therefore to take into account bothassociated with the point M as the distance between M

and the line L. radiographies.
Typically, we get an average error of 0.82 mm, a maximal

error of 2.04 mm and a minimal error of .0001 mm. This 4. 3D–2D PROJECTIVE SURFACE REGISTRATION
error is close to the uncertainty attached to the estimation
of Tframe . Hence, from an accuracy point of view the Even if a vessel is not visible both in the 3D image and

in the 2D radiography, it can be useful to find the projective‘‘frame’’ and ‘‘frameless’’ techniques are similar. The enor-
mous advantage of the frameless technique is that it is transformation which maps the 3D image onto the 2D

radiography. This is for example the case in radiotherapynoninvasive and permits comparison between images
taken with a long time interval. On the other hand, the (as explained in [28]), where one problem is to link the

FIG. 9. (left) The initial estimate of the transformation. (right) The result of the minimization process. One can observe that the radiography
vessels are no longer visible which shows that the 3D model is quasi-perfectly projected on them. This demonstrates the accuracy of the found
projective transformation.
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FIG. 10. The illustration of the fundamental property of occluding controur formation. The projection of the point M is m. m lies on the occluding
contour and the tangent to this contour is t. The normal vector to S at point M is equal to the normal to the plane defined by (O, m, t).

MRI image to the actual position of the patient in order We call Normal2D the function which associates the nor-
mal n to the point m and we note n 5 Normal2D(m).to guide the radiation sources. We recall that the usual

practice to complete this task is to screw a stereotactic
4.2. Finding an Initial Estimate of theframe in the skull of the patient!

Projective TransformationThe approach described in this section resembles the
approach introduced by Lavallee in [21]. We find the posi- As in the previous section, we use two properties of
tion of the 3D object so that its projection corresponds surface projection in order to select independently on the
to the occluding contours detected in the 2D image. But 3D surface, and on the occluding contour, triplets of points
Lavallée’s approach assumes that it is possible to determine which can correspond. By exploring possible associations
globally the interior and the exterior of the occluding con- of 2D and 3D triplets and verifying them, we will find an
tour. This is often a hard task in practice. The use of the estimate of the required projective transformation. These
vector normals allows us to avoid this problem. Moreover, properties are:
we do not make any assumption about the initial position

PROPERTY 1.9 Two 2D points m1 and m2 on the occlud-of the 3D object. Ponce also used the occluding contour
ing contour which share the same tangent line are projectionsin [20] to find the pose of 3D objects, but his scheme
of two points M1 and M2 on the surface which share therequires second-order derivatives, which can significantly
same tangent plane.reduce the robustness of the approach.

Proof. All tangent lines to the surface at points M1 and4.1. Fundamental Property of Occluding Contour
M2 lie in the plane (O, m1 , m2).

The basic idea of our approach is to use a
PROPERTY 2.10 Let m1 and m2 be two 2D points on the

FUNDAMENTAL PROPERTY OF OCCLUDING CONTOUR (see occluding contour and let M1 and M2 be two points on the
Fig. 10). If a point M on a 3D surface S is so that projection 3D surface such that m1 5 Proj(M1) and m2 5 Proj(M2).
point m 5 Proj(M) lies on the occluding contour c, then The angle between Normal2D(m1) and Normal2D(m2) is
the normal vector Normal3D(M) to S at point M is equal
to the normal vector n of the plane P defined by (m, O, t), 9 Note that this property has already been used by Zisserman [15] to
where t is the tangent vector to the occluding contour at find the pose of symmetric objects.

10 Note that property 1 is a consequence of property 2.point m.
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equal to the angle between the normals Normal3D(M1) and x- and y-coordinates of points on c. The energy correspond-
ing to this new distance isNormal3D(M2) on the surface at points M1 and M2 .

Proof. The two planes defined respectively by (mi , E(a, b, c, tx , ty , tz , Match) 5 O
mi[c

d(mi , RMatch(mi) 1 t)2,
Normal2D(mi)) and (Mi , Normal3D(Mi)) are identical.

Hence, to find the initial estimate (R0 , t0) of the rigid
where Match is a function which associates a point on Sdisplacement so that Proj o (R0 , t0) is the projective trans-
with each point on c. This energy measures how well theformation which transforms S with the 2D occluding con-
‘‘fundamental property of occluding contour’’ (Subsectiontour c, we proceed as follows:
4.1) is verified.

1. Choose (m1 , m2 , m3) on the 2D curve c such that: As in the two previous sections, we use a two-step algo-
(a) m1 and m2 share the same tangent line; and (b) the rithm to minimize this energy. This algorithm can be under-
angle a between Normal2D(m1) and Normal2D(m3) is as stood as an extension of the ICP algorithm. The first step
close as possible to f. is the minimization of E with respect to Match, assuming

that a, b, c, tx , ty , tz are fixed. The second step is the2. For each triplet (M1 , M2 , M3) on the 3D surface S
minimization of E with respect to a, b, c, tx , ty , tz assumingsuch that (a) M1 and M2 share the same tangent plane; and
that Match is fixed. We now describe the algorithm which(b) the angle between Normal3D(M1) and Normal3D(M3) is
consists of two iterated steps, each iteration j computinga, compute the projective transformations which maps
a new rigid displacement (Rj , tj):(M1 , M2 , M3) onto (m1 , m2 , m3). Stop if a computed projec-

tive transformation is a correct initial estimate.11

1. We associate with each point mi on c a point Mi . To
3. If no solution was found, return to point 1. do so, we first compute the set

More detail about this algorithm (in particular about the
CloseNormal(mi)way in which we deal with discretization error) can be

found in Appendix D.2. We note that the complexity is 5 hM [ S/Angle(Rt
j21Normal2D(mi), Normal3D(M)) , «j,

quasi-linear in the number of points describing the surface.
As in the previous section, this algorithm yields an estimate where « is a given threshold.12 Next we compute the point
of the searched projective transformation and we use it N which minimizes d(mi , Rj21M 1 tj21) for all M in
to initialize an energy minimization algorithm and get an CloseNormal. In order to ensure that E decreases at this
accurate transformation. step 1 (this is the condition required to prove the conver-

gence of the algorithm), we compare d(mi , Rj21N 1 tj21)
4.3. Extension of the ICP Algorithm to 3D–2D and d(mi , Rj21Mi Prev 1 tj21), where Mi Prev is the

Surface Registration point associated with mi in the previous iteration.13 If
d(mi , Rj21N 1 tj21) is smaller than d(mi , Rj21Mi Prev 1The previous estimate of the projective transformation
tj21), the matched point Mi becomes N, otherwise it remainscorresponds to, first, the application of a rigid displacement
as Mi Prev.(R0 , t0) and, then, the application of the projection Proj.

2. Compute the rigid displacement (Rj , tj) which mini-In order to get a more accurate projective transformation,
mizeswe propose a distance between the points on the surface

and the points on the occluding contour and minimize an O
mi[c

d(mi , RMi 1 t)2.appropriate energy function.
Let m 5 (x, y) be a point on c and let M 5 (X, Y, Z)

be a point on S. We define the 5D distance
The demonstration of the convergence of this algorithm

is straightforward, since at each step E decreases. More-d(m, M) 5 (a1(x 2 X/Z)2 1 a2(y 2 Y/Z)2

over, because we use extended Kalman filters to perform
1 (Normal2D(m) 2 Normal3D(M))2)1/2, the minimization of step 2, we get the covariance matrix

corresponding to the six parameters of (Rj , tj). Hence, as in
the two previous sections, we can compute a Mahalanobiswhere a1 and a2 are the inverse of the difference between
distance and deal with points on c which have no corre-the maximum and the minimum values of respectively the
spondent on S by performing x2 tests (see Appendix C for

11 A technique for verifying the hypothesis is proposed in [3], using
the surface curvature, and making the affine camera assumption. We 12 Note that the computation of this set is fast because we compute,

as a preprocessing, a 3D kd-tree on the normals to the surface S.note that we use only the surface normals and that our camera model is
the pinhole one (see Appendix D.2). 13 The convention is that d(mi , R0Mi Prev 1 t0) is infinity.
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FIG. 11. (left) The 3D model of the mannequin head. It was extracted from a 3D CT-scan image. Thanks are due to Cannes Hospital. (right)
A video picture of the mannequin head. Our goal is to find the point-to-point correspondence between the left and the right objects.

more details). This allows us to find an accurate projective cause they are considered as outliers (they will be consid-
ered later during the iterative process), this shows thattransformation which transforms the surface S with occlud-
the initial estimate is already quite good. For the finaling contour c, discarding outliers.
transformation the average error is 0.76 pixels and 0.17

4.4. Results degrees which demonstrates that it is accurate. We plan
to attach a stereotactic frame to the mannequin head andWe now present an application of the framework pre-
perform the experiment again in order to have a referencesented in this section for surface registration using occlud-
measure of the error and then try to better demonstrateing contours.
the accuracy of the recovered transformation. Note that

Figure 11 presents the data to register: a 3D model of when the relative positions of the cameras are known, it
a mannequin head extracted from a 3D CT-scan image is possible to integrate into our framework several camera
(left), and a 2D video image of this mannequin head (right). views. The criterion is, in this case, the sum for each image
Figure 12 (left) shows the initial estimate, and Fig. 12 of the criterion defined in the previous subsection.
(right) shows the result of the minimization stage. The
CPU time is 10 s on a DEC alpha workstation. 5. THE NONCALIBRATED CASE

For the initial estimate, the average error is 2.1 pixels
for spatial distance and 2 degrees for the difference in In the two previous sections, we assumed that we knew

the calibration matrix attached to the camera. Even if thisnormal orientation. Even if some points are rejected be-

FIG. 12. (left) The initial estimate of the transformation: we projected the 3D model using the initial transformation. The contour superimposed
in this image is the contour extracted in the video image. (right) The final transformation: we projected the 3D model using the transformation
found after minimization. You can observe that the contour which comes from the video image exactly corresponds to the contours of the 3D
model. This demonstrates that we recovered the correct projective transformation.
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seems to be a reasonable assumption because in practice surface and the X-ray image. This yields the estimate of
the projective transformation (Fig. 14, left). The averageit is possible to calibrate a camera (see for example [1]),

or because it is quite often possible to know the calibration error is 1.5 pixels for spatial distance and 1.9 degrees for
the difference in normal orientation. Then we run theparameters for a radiology system, we now explain how

to proceed when we do not know the calibration matrix.14 It minimization algorithm to recover accurately the 11 pa-
rameters of the projective transformation. The averageis obvious that the problem is harder. Since five calibration

parameters are unknown, the problem is to find all the error for the resulting transformation is 0.79 pixels and 0.7
degrees which demonstrates that it is accurate.eleven parameters of the projective transformation.

6. CONCLUSION5.1. Finding an Initial Estimate of the
Projective Transformation

We presented a unified framework to perform 3D–2D
We do not (yet) have a satisfactory automatic solution projective registration. We first showed how to use the

for this problem. In practice, we find the estimate manually. bitangent lines or the bitangent planes to find an estimate
Using an appropriate interface, it is possible to select inter- of the transformation. Then we proposed definitions of the
actively pairs of corresponding points on the 3D object and distance between the 3D object and the 2D image and we
the 2D object. Selecting at least six pairs of corresponding presented extensions of the iterative closest point algo-
points, it is possible, with a least-squares minimization, to rithm to minimize this distance dealing with occlusion in
determine an initial estimate. an rigorous way.

5.2. Finding an Accurate Projective Transformation 6.1. Validation

In practice, there are two cases where we are provided Although we presented results on real data, a lot of work
with an estimate of the best projective transformation, and still needs to be done. Because the techniques described in
we want to find the best one with respect to the eleven this article are related to medical operations, it is especially
parameters. This is the case when the estimate has been important to perform a rigorous validation. Two properties
found manually as explained in the previous subsection. must be established precisely: robustness and accuracy. In
But this problem also arises when the camera calibration the presented framework, we first segment the data, then
is not very accurate, a common occurrence in practice. find an initial estimate of the projective transformation

In such cases, we minimize the same criteria as the ones and finally we perform an energy minimization.
described in the two previous sections. But instead of min- The segmentation stage is obviously very important.
imizing them with respect to six parameters, we minimize Both robustness and accuracy depend on it. We did not
them with respect to the eleven parameters of the projec- detail this stage in this paper, more details can be found
tive transformation. The minimization algorithms are al- in [24, 25]. In practice, it works well and the registration
most the same. We observe that these 11D minimizations remains robust thanks to our treatment of the outliers.
are more sensitive to the initialization conditions than the Our search for an initial estimate only involves first-
6D case. But, because our initial estimates are not too order derivatives and has reasonable algorithmic complex-
crude, it works well in practice. This allows us to find ity. We could have chosen to compute higher order deriva-
an accurate projective transformation even if the camera tives to achieve a lower computational complexity or to
calibration is not perfect, or when the initial estimate has compute lower order derivatives to achieve a better ro-
been found interactively. bustness. We made the choice presented in this article

because it seems to us, after experiments, that it is a good
5.3. Results trade-off between robustness and complexity (see [15] for

an interesting discussion on these issues). In practice, theWe have a 3D CT-scan image of a skull and a 2D X-Ray
different thresholds have been easily chosen and theimage of it (Fig. 13, right). We do not know the calibration
method is not sensitive to their precise values. But we willparameters of the radiography system. We first extract the
not discuss this point here. In practice, an appropriateskull surface in the 3D image (Fig. 13, left). Then, we
user interface allows the user to design interactively somedesign six pairs of corresponding points on the 3D skull
corresponding points on the objects to register. Hence,
even if an initial estimate is proposed automatically as

14 We do note here about the 3D–3D registration problem addressed described in this paper, it can be corrected interactively if
in Section 2. But note that it is possible to perform the stereo with it is wrong. Note that the initial estimate does not need
noncalibrated cameras. In this case, the reconstructed surface is known

to be accurate because it is just an initialization of theup to a 3D–3D projective transformation. Then the corresponding regis-
minimization stage.tration problem would be to find the 3D–3D projective transformation

(15 parameters) to superpose the two surfaces. The robustness of the minimization stage is not easy to
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FIG. 13. (left) The skull surface extracted from the 3D CT-scan image. (right) The skull X-ray image. The goal is to recover the 3D–2D projective
transformation (11 parameters) mapping the 3D surface (left) onto the 2D image (right), without any calibration information.

check. It is possible to perform statistics. One can add apy, it would be useful to combine the techniques described
in Sections 2 and 4. Indeed, the first one is well adaptedsome noise to the objects to register, perturb the correct

solution, run the algorithm, and check if it converges to- for frontal views and the second one for lateral views. Note
that it is not difficult to combine different viewpoints withward the correct solution. Such experiments were pre-

sented in Table 1. The next stage is to perform the experi- the different techniques described in this paper since the
defined criterions can easily be added together, as notedments on a larger data set and it will take a long time.

Checking the accuracy is difficult but important too. The in Subsection 3.3.2.
best way to do it is probably to compare the automatic

6.2. Future Work
registration with the one obtained with a stereotactic
frame. Such an experiment was presented in Subsection We believe that the techniques described in this paper

offer different possible and interesting extensions.3.3.2.
Even if the experiments presented in this paper seem First, we would like to compare from a practical point

of view the techniques described in this paper with respectto demonstrate the robustness and accuracy of the tech-
niques (at least in the calibrated case), we believe that for to the techniques presented by others [9, 17, 21, 22, 28, 29,

35]. For example, we plan to develop new procedures tomaximal security, it is better to use more than one sensor
when possible. For neuradiology, it would be better to use validate and compare rigorously the accuracy of these tech-

niques.two X-ray views as noted in Subsection 3.3.2. For radiother-

FIG. 14. (left) The transformation found designing six pairs of corresponding points on the 3D surface and the 2D image. (right) The result of
the minimization. You can observe that the contour which comes from the X-ray image exactly corresponds to the contours of the 3D model (except
small areas where the contour extraction is not perfect and which are considered as outliers). This demonstrates that we recovered the right
projective transformation.
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Then, we wish to validate our approach on a larger scale. angle must depend on the local curvature of the surface
and on the local density of the discretization. In practice,At least for the vessel registration problem, we plan a

clinical validation in collaboration with General Electric we choose «M as the average angle between the normal at
point M and the normal at the four closest points in S toMedical Systems Europe and a hospital. We will use a

frontal and a lateral view for these experiments. M. In order to control the final density of the set Bi-
tangent(S), we introduce a parameter d: we add in Bi-We believe that it should be possible to perform real-

time tracking of the patient and enable the surgeon to move tangent(S) a new bitangent pair (M, M9) only if there is
no pair (Q, Q9) in Bitangent(S) so that (d(M, Q) , d)either the patient or the 2D sensor. Indeed, for tracking we

need only to correct a projective transformation which is and d(M9, Q9) , d) or (d(M, Q9) , d) and d(M9, Q) ,
d). We use a hash table for performing this test.quite close to the right solution as explained in Subsection

5.2. Hence, because the initialization would be good, it The complexity of the technique is O(p 3 n), where p
is the maximum number of points in CloseNormal(M) andshould be possible to use the extensions of the iterative

closest point algorithm presented in this paper with just a n is the number of points describing the surface. In practice,
because of the way we compute «M , the more the discretiza-few points without local minimum problem and to get fast

convergence for the eleven parameters of the projective tion of S is dense, the more «M is small. Hence, in practice,
p depends only on the ‘‘complexity’’ of the surface15 andtransformation.

Finally, we would like to develop a new 3D–2D registra- the technique is quasi-linear. Of course, we do not pretend
that this analysis is rigorous: we just try to explain why thetion scheme, for example extending some ideas presented

by Fua in [14] and try to better understand the 3D–2D algorithm is efficient in practice.
registration problem when the 3D object is deformable.

A.2. Computing the Coplanar Tangents on a 3D CurveThis problem arises, for example, in the processing of X-ray
mammographies. The problem is here to compute, given a 3D curve de-

scribed by points and attached tangents, the pairs of points
APPENDIX A such that the tangent lines are coplanar. The technique is

very simple. A set of m planes is associated with each
Computing Special Triplets of Point tangent line. It is just a uniform sampling of the set of

planes containing the tangent line.
A.1. Computing the Bitangent Planes on a Hence, the problem is the same as in Appendix A.1:

Surface and the Bitangent Line on a 2D Curve computing the bitangent planes on a surface. Because m
is a constant number (typically 20), the complexity is alsoWe present in this appendix our technique for comput-
quasi-linear.ing, given a surface S described by points and attached

normals, the pairs of points sharing the same tangent plane.
A.3. Computing the Intersections between a Set of 2DWe do not present the details of the technique for comput-

Lines and a 2D Curve and between a Set ofing the bitangent lines on a 2D curve because it is the same
Planes and a 3D Curveproblem in 2D space.

As a preprocessing, we first compute a kd-tree Tree The problem is, given a set of 2D lines and a 2D curve
based on the Euclidean coordinates of the normal vectors. described by points, to compute the intersection points
Then for each point M, we compute the set between the lines and the curve. We first tessellate the

plane using squares of edge size d. Hence, each point of
the curve belong to a square. For each nonempty squareCloseNormal(M) 5 hN [ S/Angel(Normal 3D(M),
Square, we compute the set CloseLine of lines which are

Normal 3D(N)) , «Mj, at a distance below d 3 Ï2 1 d from the square center.
Then, exploring all the curve points in Square and all the
lines in CloseLine, we simply retain the set of pairs (M, l)where Normal 3D(M) is the normal to S at point M, angle
such that M is a point in Square and l is a line in CloseLineis the function which returns the angle between two nor-
and the distance between M and l is smaller then d. Wemalized vectors, and «M is a threshold automatically com-
choose d as the average distance between two consecutiveputed as explained later. For each point M9 in CloseNor-
points on the curve.mal(M), let P (resp. P9) be the tangent plane at point M

The complexity of the technique is in the worse case(resp. M9) and let m (resp. m9) be the orthogonal projection
O(p 3 n), where p is the number of lines and n the numberof M on P (resp. P9). We decide that M and M9 are bi-

tangent points if the (M
`

M9, Mm9) and (M9
`

M, M9m) are
both smaller than «M . 15 Clearly, we assume that the surface is not flat but smooth. This is a

reasonable assumption for anatomical surfaces.The key parameter of the algorithm is «M . This threshold
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of points describing the curve. So, in the worst case the The parameter d is the estimation of the maximal dis-
tance between one point on the surface S1 and its closestplane tessellation is unuseful. But in practice, it makes the

computation much faster and the calculation time is ac- point on S2 for a good estimate of the best rigid registration
(d depend on the noise level). r is the estimation of theceptable.

We do not present the details for computing the intersec- ratio of the number of points on S1 which have a correspon-
dent on S2 , divided by the number of points on S1 (rtions between a set of planes and a 3D curve. Indeed, it

is the same problem as the previous one in 3D space. depends on the occlusion level).

B.2. Complexity AnalysisAPPENDIX B

The goal of this subsection is not to provide a veryFinding the Initial Estimate of the 3D–3D
rigorous analysis of the algorithm complexity but just toRigid Registration
try to explain ‘‘why it works.’’

First, if the surface does not present too many flat areas,B.1. The Algorithm
the complexity of the bitangent calculation and the number

In practice, two corresponding pairs of bitangent points of bitangents is quasi-linear in the number of points on
cannot be exactly superposed because of the point discreti- the surface (see Appendix A.1).
zation error and because of the error in the normal compu- Moreover, the number of iterations of the algorithm is
tation. Moreover, only a part of the reconstructed surface relatively small because we just have to try a few pairs P1
S1 may be superposed on the patient’s surface extracted in the set Bitangent(S1) (step 1 of the algorithm). Indeed,
from the MRI image S2 . Indeed, in S1 the patient’s surface assume that the probability for a pair P1 in Bitangent(S1)
is not complete, and there can be a part with corresponds to have no corresponding pair in Bitangent(S2) is q. After
to the reconstruction of the patient’s environment. So, in n iterations the probability that we didn’t verify a right
practice, we first compute on S1 and S2 the two sets of hypothesis is qn. Then, if the verification stage is correct,
pairs of bitangent points Bitangent(S1) and Bitangent(S2). the number of iterations will be very small.
Then, we sort the set Bitangent(S2) on the distance between We now focus on the complexity of each iteration. It
the two bitangent points. This way, given a pair P1 in is simply uCloseDistance(P1)u 3 Verification Complexity,
Bitangent(S1), we can very quickly compute the set where Verification Complexity is the complexity of the veri-

fication stage. The number of pairs in CloseDistance(P1)CloseDistance(P1) depends on D. But even if D can be relatively small in
practice, uCloseDistance(P1)u is porportional to uBitangen-5 hP2 [ Bitangent(S2)/ud(P1) 2 d(P2)u , Dj,
t(S2)u, that is quasi-proportional to the number of points

where D is a given threshold. on S2 . Finally, Verification Complexity is constant. Indeed,
Then we apply the following algorithm: we can a priori fix the number n9 of points in S91 which are

used to verify. Moreover, we can choose n9 relatively small:1. We randomly choose a pair P1 in Bitangent(S1) the risk to accept a bad hypothesis is still very small. In-
2. We compute the set CloseDistance(P1) deed, assume that (R, t) is a rigid displacement which
3. For each pair P2 in CloseDistance(P1), we compute corresponds to a wrong hypothesis. If the points are ran-

the two rigid displacements D and D9 which correspond domly distributed within a volume and if for a point M [
to the superposition of P1 on P2 . For each of these two RS1 1 t the probability that there exists a
rigid displacements, we now estimate the number of points point N [ S2 such that iMN

UUR

i , d is p, then the probability
on the transformed surface RS1 1 t16 which have their to step the algorithm with this bad rigid displacement is
closest point on S2 below a given distance d to check
whether D or D9 reaches our termination criterion. First, Oi5n

i5k
(i

n)pi(1 2 p)n2i,we randomly choose a subset S91 of points on S1 . Then, for
each point P in S91 , we compute the closest point Q to
RP 1 t on S2 . Let m be the number of points P such that

where n 5 uS91u and k 5 r 3 n. For instance, if p 5 0.4,iPQi , d. If the ratio m/uS91u is larger than r (0 , r , 1),
r 5 0.7 and n 5 500 this probability is approximativelywe decide that (R, t) is a good estimate of the rigid displace-
10241.ments which superposes S1 on S2 and we stop the algorithm.

We tried to explain why the complexity of each iteration
4. If no solution has been found, we return to point 1. is quasi-linear in the number of points on the surfaces and

why only a few iterations are necessary in practice. We do
not pretend that this analysis is rigorous. It is not possible16 A rigid displacement (R, t) maps each point M to RM 1 t where R

is a 3 3 3 rotation matrix and t a translation vector. to set a value for p and q, and the points on the surfaces
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are not randomly distributed (they belong to a smooth we choose Wk corresponding to the covariance of the esti-
mated error after the correct registration, and S0 as thesurface). But this can help to understand why, in practice,

for our problems, the choice of the three parameters d, D, diagonal matrix corresponding to the covariance of the
error on the initial estimation of the rigid displacement pa-and r is not difficult and why a good solution is found after

a very small number of iterations (two or three). rameters.
The problem of outliers is to distinguish between likely

matches and unlikely matches in Matchj . For each pairAPPENDIX C
(Mk , Mk), we consider that we have an estimate âk21 of a

Using the Generalized Mahalanobis Distance and x2 with associated covariance matrix Sk21 and a noisy mea-
Tests to Deal with Outliers surement (x̂k , Lk) of xi , and we would like to then test

the validity of the Eq. (1). If we consider the truncatedAssume that Matchj is perfect and that the computed
expansion of fk(xk , a)geometric transformation perfectly superposes the two sets

of points. For each pair (Mk , Nk) in Matchj , we can write
the equation fk(xk , a) 5 0 P fk(x̂k , âk21) 1

­fk

­x
(xk 2 x̂k) 1

­fk

­a
(ak 2 âk),

(4)

` `

fk(xk , a) 5 0, (1)

and assuming that wk and vk are zero-mean independentwhere xk is the vector obtained by concatenation of the
Gaussian noise, it is clear that fk(x̂k , âk21) is also—to withinMk and Nk coordinates and a is the vector of the parameters
a first-order approximation—a Gaussian process whoseof the geometric transformation.17

mean and covariance are given byIn reality, we cannot write Eq. (1) for all pairs (Mk , Nk)
in Matchj . But we can assume that this is because each

A(fk(x̂k , âk21)) 5 0pair corresponds to a measurement x̂k of xk corrupted with
a random error vk :

Qi 5 A(fk(x̂k, âk21)fk(x̂k , âk21)t) 5
­fk

­x
Lk

­fk
t

­a
Sk21

­fk
t

­a
.

x̂k 5 xk 1 vk , A(vk) 5 0, A(vkvt
k)

(2)

` ` `

As a result, if the rank of Qi is q, the generalized Mahala-5 Lk $ 0, A(vivt
j) 5 0 ;i ? j.

nobis distance

Given the measurements x̂k , the EKF allows us to recur-
d(x̂k , âk21) 5 [fk(x̂k , âk21)]tQ21

i [fk(x̂k , âk21)] (5)sively compute an estimate âk of a and the associated covar-
iance matrix Sk (âk 5 a 1 wk , where wk is a random error:

is a random variable with a x 2 probability distribution withA(wk) 5 0 and A(wkwt
k) 5 Sk $ 0). Only an initial estimate

q degrees of freedom.18(â0 , S0) is required and the minimized criterion is closely
By consulting a table of values of the x 2 distribution, it isrelated (up to a first order approximation) to

easy to determine a confidence level « for the Mahalanobis
distance corresponding to, for example a 95% probabilityC 5 (â0 2 a)tS21

0 (â0 2 a)
of having the distance (5) less than «. In this case, we can

1 O
(M,N)[Matchi

fk(x̂k , a)tW21
k fk(x̂k , a), (3) consider as likely or plausible the measurements x̂k for

which the inequality d(x̂k , âk21) , « is verified, and consider
any others as unlikely or unplausible.

where Wk 5
`

­fk/­x Lk

`

­fk
t/­x. Taking S21

0 P 0, C is the
criterion we want to minimize. See Ayache [1] for more de- APPENDIX D
tails.

Hence, in practice, the difficulty is just to choose the Finding the Initial Estimate of the 3D–2D Curve
covariance matrix S0 associated with the initial estimate Registration and of the 3D–2D Curve Registration
(R0 , t0) of the rigid displacement and to choose the covari-
ance matrix Wk associated with each point Mk . In practice, D.1. The Algorithm for 3D–2D Curve Registration

Let c be the 2D curve and C be the 3D curve. We first
compute on c the set Bitangent(c) of pair of points on c17 For example, for the 3D–3D rigid registration problem (Section 2.2),

if Mk 5 (x1 , y1 , z1) and Nk 5 (x2 , y2 , z2) and if (a, b, c, tx , ty , tz) are
the three Euler angles and translation parameters of the searched rigid
displacement, we can have xk 5 (x1 , y1 , z1 , x2 , y2 , z2) and a 5 (a, b, c, 18 If q , p 5 the size of the measurement vector fk , Q21

k is the pseudo-
inverse of Qk .tx , ty , tz).
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which share the same tangent lines. For each pair pair2D 1. We choose a pair (m1 , m2) in Bitangent2D(c) and a
point m3 on c.in Bitangent(c) which corresponds to a tangent line t, we

compute the set of points Inter2D(pair2D) which are inter- 2. For each pair (M1 , M2) in Bitangent3D(S), we con-
sections points between t and c. Then, we compute the struct the set
set CoplanarTangent(C) of pairs of points on C sharing
coplanar tangent lines. For each Pair3D in CoplanarTan- Triplet3D(M1 , M2) 5 h(M1 , M2 , M3)/u
gent(C) with attached plane P, we compute the set of points

Angle(Normal2D(m1), Normal2D(m3))–Inter3D(Pair3D) which are intersection points between the
plane P and the curve C. The algorithms for computing Angle(Normal3D(M1), Normal3D(M3))u , «j,
all these sets are given in Appendix A.

Let us define the two sets
where Angle is the function which returns the angle be-
tween two normalized vectors and « is a given threshold.

Triplet2D 5 h(pair2D , i)/pair2D [ Bitangent(c) We use the kd-tree Tree to compute efficiently this set.
and i [ Inter2D(pair2D)j

3. For each triplet (M1 , M2 , M3) in Triplet3D(M1 , M2),
we compute the set Hypotheses of the four rigid displace-

and ment (R, t) such that mi 5 Proj(RMi 1 t).

4. For each rigid displacement (R, t) in Hypotheses, we
Triplet3D 5 h(Pair3D , I)/Pair3D [ CoplanarTangent(C) and check that the transformed surface verify the ‘‘fundamental

I [ Inter3D(Pair3D)j. property of occluding contour’’ (Subsection 4.1). To do
this, we compute the ratio MatchedPoint of the number

We can now describe the algorithm: of points on c which have a correspondent on RS 1 t, on
the number of points on c. To determine if a point m has

1. We choose a triplet (m1 , m2 , m3) in Triplet2D a correspondent on S, we proceed as follows. We first
2. For each triplet (M1 , M2 , M3) in Triplet3D , we com- compute the set

pute the set Hypotheses of the four projective transforma-
tions which map the 3D and the 2D triplets. CloseAngle(m) 5 hM [ S/Angle(RtNormal2D(m),

3. For each projective transformation in Hypotheses, we Normal3D(M)) , «j.
first verify that the projection of the tangent line attached
to M3 is the tangent line attached to m3 . If the test is Again, to compute efficiently the set CloseAngle, we use
positive, we apply the same verification scheme as de- the kd-tree Tree. If there exists a point M in CloseAngle(m)
scribed in Appendix B.1 for the rigid 3D–3D case: we such that the 2D distance between m and Proj(RM 1 t)
compute the ratio MatchedPoints of the number of points is bellow a given threshold d, we consider that m has a
M on C such that the distance between the projection of correspondent. Otherwise, we consider that m has no cor-
M and its closest point on c is bellow a given distance d, respondent for the rigid displacement (R, t). If the ratio
on the number of points on C. If MatchedPoint is larger MatchedPoint is larger than a given threshold r (0 , r ,
than r(0 , r ,1) then we stop the algorithm and the result 1), we stop the algorithm and the initial estimate is the
is the current projective transformation. projective transformation Proj o (R, t).

4. If no solution was found, we return to point 1. 5. If no solution was found, we return to point 1.

D.3. Complexity Analysis of the Initial Estimate SearchD.2. The Algorithm for 3D–2D Surface Registration
for the 3D–2D Curve Registration Problem and for the

To find the initial estimate (R0 , t0) of the rigid displace-
3D–2D Surface Registration Problem

ment such that Proj o (R0 , t0) is the projective transforma-
tion which transforms a surface S with the 2D occluding Basically, the complexity analysis for these two prob-

lems is not different from the analysis presented in Appen-contour c, we first compute the set Bitangent2D(c) of pair
of points which share the same tangent line on c and the dix B.2. Indeed the algorithms are very similar: instead of

two set of pairs of points, we have two sets of triplets ofset Bitangent3D(S) of pair of points which share the same
tangent plane on S. We also compute a kd-tree Tree based points. The discussion for explaining why the number of

global iterations is small, why the risk to stop the algorithmon the Euclidean coordinates of the normal vectors on the
surface S which will allow us, given a normalized vector with a bad hypothesis is small, and why the verification

stage can be performed in constant time would be verym, to find quickly the set of normals n on S such that the
angle between m and n is bellow a given threshold. Then similar to the previous one. In fact, the complexity of the

algorithms depends on the number of hypotheses to verifywe apply the following algorithm:
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at each iteration. This is the number N of 3D triplets which The result of the calibration process is a 3 3 4 matrix T.
This is the matrix of the 3D–2D projective transformationcan correspond to a given 2D triplet.

For the 3D–2D curve registration, we have which maps a reference object of known shape (the calibra-
tion grid) onto an image of this object. This matrix T can
be decomposed into T 5 AD. D is the 3 3 4 matrix ofN 5 uTriplet3Du , uCoplanarTangent(C)u
the extrinsic parameters and it is a matrix of change of

3 max
Pair3D[CoplanarTangent(C)

uInter3D(Pair3D)u. frame from the calibration grid frame to the camera frame.
A is a 3 3 3 matrix such that

We explained in Appendix A.2 that uCoplanarTan-
gent(C)u is quasi-linear in the number of points in C. If C
is not linear but smooth,

A 5 1
au c u0

0 av v0

0 1
2 (6)

p 5 max
Pair3D[CoplanarTangent(C)

uInter3D(Pair3D)u

It is called the matrix of the intrinsic parameters and de-
is small.19 Finally, the complexity of the algorithm is scribe the camera image formation process. Basically, it is
O(p 3 n), where p is a small integer and n is the number an affine transformation of FocalPlane.
of points describing C. Let us recall why this decomposition is possible (the

For the 3D–2D surface registration, we have proof is constructive). We note T 5 [Hut] (H is a 3 3 3
matrix and t a 3 3 1 matrix). For any matrix H, HHT is

N 5 uBitangent3D(S)u 3 max
(M1 ,M2)[Bitangent3D(S)

uAngle«(M1)u, clearly a symmetric matrix. If, moreover, H is a square
nonsingular matrix, then HHT is also positive definite. In-
deed, for each vector v, different from 0,where

vTHHTv 5 iHTvi2 . 0,Angle«(M1) 5 hM3 [ S/u

Angle(Normal3D(M1), Normal3D(M3))– since the kernel of HT reduced to 0 because of the nonsin-
gularity of H. Consequently, a nonsingular upper triangularAngle(Normal2D(m1), Normal2D(m3))u # «j
matrix U exists such that

(« is a given threshold).
HHT 5 UUT

We explained in Appendix A.1 that uBitangent3D(S)u is
quasi-linear in the number of points in S. p 5

(it is one form of the Cholesky decomposition). If wemax(M1 ,M2)[Bitangent3D(S) uAngle«(M1)u is more difficult to esti-
denote by O the matrix U21H, we see thatmate. In practice, assuming that the normals on the surface

S are approximately uniformly distributed on the unit
OOT 5 U21HHTU21T 5 Isphere, we try to choose m3 such that b 5 f.20 Hence, p

is small. Finally, the complexity is roughly O(p 3 n), where
n is the number of points on S. Because p is small, the which shows that O is an orthogonal matrix. Hence, we
algorithm is efficient in practice. have the following decomposition of H: H 5 UO, where

U is a nonsingular upper triangular matrix and O, an or-
thogonal matrix. Finally, A is the result of the divisionAPPENDIX E
U/u33 which is possible because these matrices are defined

Decomposition of the Calibration Matrix T up to a multiplication factor. D is simply D 5 [OuA21t].
In practice, before starting the registration process, weWe explain in this appendix why it is possible to assume

first decompose T as explained upper. Then, we replacethat the camera image formation corresponds to a perspec-
each point (x, y) on the 2D curve by (x9, y9), such thattive projection of center O 5 (0, 0, 0) on a focal plane

FocalPlane of equation z 5 1 without loss of generality.
(x9, y9, 1)t 5 A21(x, y, 1)t.

19 This is the same kind of assumption as in Appendix A.1.
Working with the new set of 2D points, because A is an20 Most often in our applications, the contours are closed and the
affine transformation of FocalPlane, everything happensdistance from the object to the camera is large with respect to the size

of the object, therefore it is possible to choose such a point. as if the camera image formation process was a perspective
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