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Fig. 1. Geometric constraints of trinocular stereo vision.

1. INTRODUCTION

Stereo vision is a technique for building a three dimensional de-
scription of a scene observed from several viewpoints. It is considered
passive if no additional lighting of the scene, for instance by a laser
beam, is required. So defined, passive stereo vision happens to be
very attractive for many applications in robotics, including 3-D object
recognition and localization as well as 3-D navigation of mobile
robots.

Most of the research on passive stereo vision has been devoted to
binocular vision for which two cameras are observing the same scene
from two slightly different viewpoints. As soon as two image points
are matched, i.c., identified as corresponding to the same physical
point, it is possible to compute the three-dimensional coordinates of
this physical point.

Unfortunately the matching problem is difficult. This is mainly
because the geometric constraints of binocular stereo are not sufficient
to impose a unique solution: several heuristic constraints must be
added to compute a plausible matching solution.

Using a third camera increases the geometric constraints, and
reduces the influence of heuristics in stereo-matching. Presently,
following Yachida [1], {2], an increasing number of studies are
devoted to trinocular vision. A review of some of these techniques
can be found in [3] which includes most of the following publications
[41-[10]).

For a discussion of both geometric and heuristic constraints used
in binocular stereo vision and for a review of research on this
topic, one can refer to [11], for example. A nonexhaustive list of
publications on the subject is given by the following references
[12]-[22]. Last but not least, the work of [23] on binocular stereo
vision pioneered the work on trinocular stereo vision presented here,
and the following references were kindly suggested by one of the
reviewers [24]-[28].

The correspondence is organized as follows: first we make ex-
plicit what is needed to constrain the stereo matching problem.
This includes geometry of trinocular stereo vision, representation of
images, calibration, rectification, and spatial reconstruction. Then, we
detail the matching algorithm and the validation procedure. Finally
experimental results are presented and discussed. We conclude by a
summary and future research.

II. GEOMETRY OF TRINOCULAR STEREO VISION

Fig. 1 illustrates the geometric constraints of trinocular stereo
vision. Camera i (i = 1, 2, or 3) is represented by its optical center
C; and its image plane P;. Given a scene point P, its image /; by
camera i is given by the intersection of the line PC; with the plane
P;. This is the classical pinhole model. Points I1, I2, and /5 form a
triplet of homologous image points.

0162-8828/91/0100-0073$01.00 © 1991 IEEE
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Fig. 2. Different types of edges.

Given a pair (i, ) of cameras and a physical point P, the epipolar
plane Q;; is defined by the triplet of points (C;, P,C;). The
intersection of this epipolar plane with camera plane P; is the
epipolar line Dy, while its intersection with camera plane P; is the
epipolar line Dj;, D;; and Dj; are called conjugate epipolar lines. Any
point I; on Dy (resp. I; on Dj) has its homologous image point
on Dj; (resp. I; on Dy). Therefore, using two cameras, the search for
homologous image points is a search along conjugate epipolar lines.

As one can see in Fig. 1, a scene point P produces three pairs of
homologous epipolar lines. When the image points (I;, I;, I1.) form a
triplet of homologous image points, then I; is necessarily located at the
intersection of the epipolar lines D;; and Dy, respectively, defined by
1; and Ii. Therefore the search for homologous image points between
two images can now be reduced to a simple verification at a precise
location in the third image. For instance checking that (I, I) form
a pair of homologous image points consists in verifying the presence
of I3 at the intersection of D3y and Ds,.

III. IMAGE REPRESENTATION

The matching algorithm does not run directly on the image, but
on a symbolic representation of it.

For 2 number of reasons, we have come to use linear edge
segments:

Physical Meaning and Reliability (cf. Fig. 2): Most of the edges
come from physical phenomena such as changes in reflectance
(type 3), changes in illumination (type 4), and changes of the
surface normal (types 1 and 2). Except in the case where the
observed surface recedes away smoothly (type 1), in which case
the detected edges in the two images may not be exactly the
image of the same part of the object, the edges provide a good
and reliable source of information.

Compaciness: The information contained in the edges is not only
very significant but also much more compact in terms of storage
and computational burden for matching.

Richness of Attributes: Many useful features can be attached to
the edge segments to help solve the stereo matching process.
These features can be geometric (length, angle), intensity-based
(average contrast along the segment, average intensity of the
neighboring regions), or structure-based (edge chains, neighbor-
hoods).

Density: This representation is structured but nevertheless rather
dense over the image, therefore enabling enough information to
be kept over the whole image.

Accuracy: Our purpose in performing stereo matching is to be
able to reconstruct the 3-D environment accurately. Edges can be
reliably and accurately extracted and, as we shall see, the least-
squares approximation used during polygonal approximation
enables us to get subpixel accuracy.

Ease of Computation: There are a number of ways to easily and
reliably extract edges from an image.
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Fig. 3. Computation of buckets and neighborhoods. Neighborhoods:
V(1) = Nil; V(2) = {3,5}; V(3) = {2,4}; V(4) = {3}; V(5) = {2}; V(6) = {7};
V{8} = {7,9}; V(9) = {8}. Lists of connected neighbors: {1}; {2,3,4,5};
{6,7,8,9}.

A. Edge Extraction

Edge points are the first computed using a very efficient recursive
filler developed by Deriche [29] after Canny’s ideas [30]. The
edge pixels thus obtained are structured into edge chains using a
program developed by Giraudon [31], in turn approximated by line
segments using a program developed by Berthod. The interested
reader will find in [32] a good review of some techniques for
polygonal approximation.

Let us note that, to get better accuracy in 3-D reconstruction,
our ultimate goal, we perform a least-squares approximation to fit a
2-D linear segment between each pair of successive breakpoints. This
allows us to obtain subpixel accuracy, although the accuracy of each
original edge point was only one pixel.

B. Features

For each of the segments, a number of features are computed.
Among all possible ones, we use the following set:

* length

* angle!

* average gradient magnitude along the segment.

C. Buckets

As we show later, the stereo-matching algorithms often require
assessing segments lying in a given region of the image. We therefore
need to structure the image to optimize this operation. A very simple
and efficient way to proceed is to compute buckets, i.e., superimpose a
virtual grid composed of square windows on the image and compute,
for each window, the list of segments intersecting it. Accessing a
segment in a given region of the image is then reduced to accessing
the segments of the buckets covering this area of the image. This
structure is computed in linear time with respect to the number of
segments. Fig. 3 shows the principle of the method.

Furthermore, the buckets allow us to define a neighborhood struc-
ture. The neighborhoods are defined by the buckets: two segments are
neighbors if and only if they share a common bucket. To obtain better
neighborhoods, one can superimpose two sets of partially overlapping
buckets, as shown in Fig,. 4.

Typically, we used 16 x 16 buckets for the matching phase, and
8 x 8 buckets for the validation, because we want to get enough
neighbors.

IV. CALIBRATION

A. Image Modeling

Let us choose one of the cameras, characterized by its optical
center C and its image plane P, and let us model the image formation
process. A point P in the observed scene is projected on point 7 of the

1'We use segments oriented by the gradient, i.c., the orientation is computed
modulo 2.
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Fig. 4. Better definition of neighborhoods, using two sets of overlap-
ping buckets. Neighborhoods: V(1) = Nil; W(2) = {3,5}; V(3) = {2,4};
V(@) = {3} VI5) = {2,8% V(6) = {7.8}; V{8}={56,7,9} V() =18}
Lists of connected neighbors: {1}; {2,3,4,5,6,7,8,9}.

camera retina. The relationship between P and 7 is modeled as a linear
transformation in projective coordinates. If we denote I* = (U, V, S)*
the projective coordinates of / and (z, y, z)* the coordinates of P, the
following relation holds:

x

U
I‘:(V):T g
S

1

where T is a 3 X 4 matrix usually called the perspective matrix of
the considered camera.

If P is in the focal plane of the camera, (i.e., if the straight line
CP is parallel to the image plane P), then S = 0 and the coordinates
(u,v)" of I are no longer defined. In the general case S # 0 and the
image coordinates of I (usually expressed in pixels) are given by

1=(*)= U/s
“\v) T\V/S )
B. Determining the Perspective Matrix T

In the experiments conducted in our laboratory [33], [34], T is
obtained by analyzing a calibration pattern which is a grid painted
on a planar surface. The 3-D position of the intersection points of
the grid are well known in an absolute 3-D coordinate frame and the
grid is observed from several well defined different positions.

T is a matrix of dimension 3 x 4, but it is defined up to a scale
factor, and one needs a constraint to specify T uniquely. The simplest
constraint’ consists in assuming that 3, # 0, then enforcing

ty = 1.
Each time an image point I = (u,v)" is matched with its correspond-

ing scene point P = (x,y, z)*, this provides the following two linear
equations on the eleven unknowns remaining for determining T:

Pty +ty —u(P'ts+1) =0
Pty +ty —v(P't3 +1) =0 6]
where &1 is the element of rank (j, k) in T, and ¢ is the three-vector
obtained from the first three elements of the jth row of T:
tj = (tintiti)".

In theory, six noncoplanar points are sufficient for determining 7
uniquely [35]. In practice, several dozen points are available, allowing
for a global or recursive least squares estimation of 7.

V. CoMPUTING EPIPOLAR CONSTRAINTS

We now assume that we are dealing with at least two cameras, and
we compute the epipolar constraints between them. First, we compute
from each matrix T; the optical center of the cameras, then the inverse
image of an arbitrary image point.

20n the discussion of this constraint, see [33}, [34].

A. Determining Optical Centers

The 3-D coordinates (zc;,yc;, zc;) of the optical center C; of
camera i (modeled by the perspective matrix T;) are obtained by

solving
zc,
0 1
0 T

which is a system of three linear equations in the three unknowns
(wo;,yo;, z0;)-

B. Computing Inverse Images

We need to compute the straight line D which is the inverse image
in the scene of a given image point 1. This straight line D is composed
of 3-D scene points P having the same image I. If we look at Fig. 1
we see that D is simply the straight line defined by 7 and Ci.

To determine D analytically, let us rewrite the system of (1) which
relates point / to points P in the form

. AL . .
(t; - u,-t;,) Pt —uith =0
. N . .
(t; - v,-t;,) Pty —vithy =0
where the i index in tj refers to camera i.

These are equations of two planes whose intersection defines D.
A vector n collinear to D is the cross-product of the normals to the

planes:
n= (t; - ugtg) X (t; - U:'t:i!)

n = uith X th + vith X t} + £ X th

which yields

which can be written
n=NI - )
with
Ni = [t{,xté txti # xté].
The parametric equation of the line C;I is therefore given by
P=Ci+n
where n is given by the previous equation and where X is a real

number.

C. Parametric Equation of Epipolar Lines

It is now easy to compute the parametric equation of the epipolar
line D;; in image j corresponding to the image pint /; of coordinates
(ui,v:) in image i, because Dj; is simply the image of the line C;/;
by camera j. Therefore, Dj; is composed of points I; whose projective

coordinates satisfy
I = T(C“ J{"”)

If we denote
3

where T; is the 3 x 3 submatrix obtained from T; by suppressing
its last column, and
5+5(%)

then we get the parametric equation of the epipolar line Dj; in
projective coordinates:

F; =T;»n

@

I = E] + AF;.
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Fig. 5. Computation of an epipolar interval: image point /; can be matched
only with points ; lying on the epipolar interval F, " Ej.

Therefore, the parametric equation of Dj; in image coordinates is

Ug; + AUF,;
uj = __SE_,- T )\_Spj ®)
Ve, + AVF;
j = o2, 6
i SEj FipY SF]- (6)

From these equations, one can see that the epipolar lines form a
pencil of lines going through an epipolar center E; which is the image
of C; in camera j. Also, F; is the vanishing point corresponding to
P at an infinite distance from the cameras (A — o). One can also
notice that a vector collinear to the epipolar line Dj; is obtained by
differentiation of (5) and (6) with respect to A. This yields

(Au,—) _ (UFjSE]- —Ug,;SF;

A’Uj VF].SEj - VEjSFj ’
When Sg; = 0, this means that the epipolar center E; is rejected

to infinity. In this case, the direction of the epipolar lines becomes

independent of the coordinates (u;,v;) of I;, and one can see from
(7) that in this case all epipolar lines are parallel to the vector

Au;\ _ (Ug;
Av; - VE,- :
C. Computation of Epipolar Intervals

In practice, the homologous J; of I; is constrained to belong to an
interval of the epipolar line Dj;. This comes from the fact that the
physical point P has to belong to only the portion of D which is in
front of the optical center C;. If the vector n is properly oriented on
D, this constraint is equivalent to A > 0, and produces in general® an
interval of the form

Q)

I; € [F}, Ej]

where F; and E are, respectively, the vanishing point and the epipole
previously defined (cf. Fig. 5).

Actually, this epipolar interval can be reduced by knowledge of
the minimum and maximum possible distances of the observed points
from the camera. If we denote n' = n/||n|| and if we call A, and
Aum these minimum and maximum distances, respectively, one sees
that the epipolar interval is given by {I,.,Inr} and I,, and Iy are
respectively, the images by camera j of the physical points

P =Ci+ Amn'
and
Py = Ci + /\Mnl.

Therefore, given a point I; = (us,v;)* and to obtain the epipolar
interval [I,,, Ins], the following operations must be performed:

3When the focal plane of camera j intersects D at a point Q behind the
optical center, i.¢., such that Q@ = C; + An with X < 0; see Fig. 5.

Fig. 6. After the rectification of three images: the coordinates of the homol-
ogous points I}, 15, and I} satisfy v} = v}, u} = u} and v} = u}.

) n = NI,
2) n' = n/|In||,
3) Im = E + A7/,
4) Inr = Ef + Aun/
To be complete, this interval must then be clipped by the window
corresponding to the actually observed image.

VI. RECTIFICATION OF IMAGES

A. Principle

For three cameras, it is possible to rectify the images to get
horizontal epipolar lines between images 1 and 2, and vertical
epipolar lines between images 1 and 3. In this case, the previous
computations of epipolar segments are greatly simplified. If, in
addition, the image coordinate frames are judiciously defined it is
possible that the epipolar line attached to a point (u],v}) in image
1 be the line v; = v; in image 2 and the line u§ = u} in image 3.
Moreover, it is possible to obtain a very simple relationship between
images 2 and 3 of the form uj = vj. We are then in the situation
depicted by Fig. 6.

One can show [36]-[38] that rectification can be performed by
linear transformations of the image coordinates in projective space
by

I'=R; I}
where the three 3 x 3 rectification matrices call R;, R,, and R; are
defined by
(Cim1 x C)*
(Ci x Cin)t N;
(C} X Cy+ Cy x C3+Cs x 01)t
with the conventions i + 1 =1ifi =3andi —1=3if i = 1.

After the rectification of the images we have, as desired, the nice
relationships

R; =

vy =
uy =1 ®
vy = uh

illustrated by Fig. 6. There exists of course a number of degenerate
cases where such a rectification is not possible. They correspond to
the cases where the bottom line of matrix R; vanishes to zero.

B. Algorithmic Complexity

The rectification of / images (I = 2 or 3) requires the storage of /
3 x 3 matrices, i.c., 9 [ parameters. Then it requires 6 multiplications,
6 additions, and 2 divisions per rectified point.

As the rectification process is a linear transformation in projective
space, it preserves straight lines; therefore, it is sufficient to apply it
to the endpoints of the linear segments of a polygonal approximation
to get the endpoints of the segments of the rectified polygonal
approximation. This is very useful for our stereo vision algorithms
[23], [39], [40] which actually deal with linear segments.
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Fig. 7. Triple of lincar segments of contours before and after rectification.

C. Example

We show in Fig. 7 an example of a rectified triplet of an office
scene.

VII. BUILDING 3-D SEGMENTS
To build a 3-D map from trinocular stereo vision matches, one must
1) build a 3-D line whose 2-D projections are known in several
images.
2) determine the endpoints of a 3-D segment on the computed
3-D line.
These two problems are solved in turn in the following subsections.

A. Building 3-D Lines from Their 2-D Images

The problem is to build a 3-D line whose 2-D projections are
known in several images. More formally, given three 2-D lines d;, one
seeks the 3-D line D whose projections d’ on cameras i (i = 1,2, 3)
best approximate the 2-D lines d; (cf. Fig. 8.)

For doing this, we used minimal representation of lines. Therefore,
assuming d; is not parallel to the v axis,’ it is represented by the
parameters (o, pi) such that the equation of d; in the image plane
of camera i is

aiui +vi + pi = 0.
Assuming that D is not perpendicular to the z axis,’ it is represented

4The symmetric parametrization is used for lines parallel to the v axis.
SFor lines perpendicular to the zx or zy planes, a compl tary

Fig. 8. Building 3-D lines from their 2-D images.

by the parametets (a, b, p, ¢) such that D is defined by the equations

r=az+p
9
{y:bz+q. ()

We assume that the perspective transformation of each camera is
represented by a 3 x 4 matrix 7; computed during a preliminary
calibration stage [34]. If we denote by t}, the element (j, k) in the
perspective matrix T;, then saying that the projection of D on camera
i is d; is equivalent to saying that the following two equations hold
(see Appendix):

a(agty + th + pith) + b(‘litiz +th+ ﬂitgz)‘i'

(aitls + ths + pitss) =0 (10)
plathy + thy + pithy) + a(authy + ths + ity ) +
(uitia + tha + pitss) = 0.
(11)

This system provides two independent linear equations on the un-
knowns (a,b) and (p,q), respectively; therefore, two images are
enough to solve for (a,b,p,q) exactly. Given three images, the
system becomes overconstrained, and one must define an error
criterion.

To do so, we consider the uncertainties on the parameters of the
2-D lines, and we take them into account explicitly by computing a
recursive weighted least square solution (Kalman filter approach).
This approach provides not only a better estimate of (a,b,p,q)
(compared to a simpler least-square) but also an estimate of its
quality in the form of a 4 X 4 symmetric covariance matrix Wp.
The interested reader is referred to [37], [38], [41].

B. Computing 3-D Endpoints

Having computed the parameters of a supporting 3-D line, one must
use the endpoints of the 2-D image segments to define the endpoints
of a 3-D segment. For each endpoint I; of a 2-D segment in image
i, we compute the 3-D line D; supported by C:I;, and the 3-D point
P; of D which is closest to D;.

Therefore, given the two endpoints @; and b; of a 2-D segment,
one obtains the endpoints A; and B; of a 3-D segment supported by
D. This is illustrated by Fig. 9.

This operation is repeated for the endpoints of the corresponding
segment in images j and k. Because of segmentation errors, the
endpoints computed from different images do not match, which
means that each of the three image segments corresponds to a slightly
different part of the 3-D segment.

We decide to keep the 3-D segment on D which is the intersection
of A; Bi, A; B, and A B. Thus, we reconstruct the interval on D which
is seen simultaneously by the three cameras. This solution does not
prevent us from reconstructing the remaining parts of a 3-D segment
using another triplet of matches, as illustrated by Fig. 10(a). Another
advantage of this solution will be explained later with the validation

parametrization is used.

procedure.
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Fig. 9. Building 3-D segments from 2-D segments.

N |

Fig. 10. Multiple matches.

S3 Dy
£)
D3,
Sy 52
I T Dy

Fig. 11.  Principle of trinocular stereo vision algorithm.

Finally, to compute in image i which part of the original image
segment corresponds to the reconstructed 3-D segment, the endpoints
of the reconstructed 3-D segment are projected onto image i. and then
onto the 2-D line supporting the initial image segment.

VIII. MATCHING

We present first a simplified algorithm which gives the flavor of the
matching procedure. Then we provide a detailed presentation of the
actually implemented procedure, which takes advantage of a number
of refinements.

A. Simplified Algorithm

The matching algorithm takes as input three sets of linear segments
{51}, {8}, {53} coming from images 1, 2, and 3, respectively, and
builds as output a set of triplets of matched segments {(S1, S, S3)}.

The initial scheme of the algorithm is the following (cf. Fig, 11).

* For each segment S; of image 1, compute the intervals of

epipolar lines D;; and Ds; in images 2 and 3 attached to the
midpoint /; of S; and corresponding to a tolerated interval of
distances [A, Ap] (cf. calibration section).

* For each segment S, in image 2 intersecting Dy, in I, compute

the epipolar line D3, in image 3 attached to . Let I3 =

[ @ > Procedure STERE0-3(1,2,3)
| Por each segment S, of image 1
o determine the epipolar intervals Da; (resp. Dy;) corresponding, in image 2 (tesp.
3) to the midpoint [; of 8, for the allowed disparity interval.
o Compute the angle between S5; and the epipolar lines Dy, et Dy3 in image 1:
~ a1z = ANGLE (51, Du2);
- a3 = ANGLE (51, D)

o If [aga| > [ana|
- then {(51,52,53)} — Marcn-3 (1,2,3, 5y, Day, Dyy)
- else  {(51,5: 93)} — Marce-3(1,3.2, 1, D31, Doy}
EndFor
For each of the matched triplets (), S», 53)

o VALIDATE-3(Sy, Sz, Sa);

enforce the hb

by using

EndFor

{ EndProcedure STEREO-3 © @ @

Fig. 12. Trinocular stereo vision algorithm.

D3 (N D3z, and predict the orientation ¢3 of S3 in image 3 from
the orientations ¢; of S; and ¢ of S;.

* For each segment S3 in image 3 of orientation @3, if the distance
8(I3, 83) < €5 and if ¢ — ¢3 < &4, then form the triplet
(81, S2, S3).

B. Ideas for Refinements

The previous algorithm can be improved by adding the following

refinements.

* First, we could choose as image 2 the image for which the
orientation of the corresponding epipolar line Dj; in image 1 is
the farthest from the orientation of segment S;. Doing so, we
should avoid the search for the intersection of parallel lines in
image 2, and also optimize the localization of the intersection
point 1.

* Second, we should take into account the structure of buckets
previously computed to speed up the selection process of S, and
Ss3.

* Finally, due to potential unfortunate coincidences, a validation
procedure should be applied at the end.

A formal description of the major procedures implementing this

refinements follows.

C. Main Procedure

We give in Fig. 12 the description of the main matching procedure
called Stereo-3. This procedure takes a triplet of images (1, 2, 3) as
input, and builds a list of matches {(S1, Sz, S3)}.

To do this, it selects every segment S; of the first image and
computes the epipolar intervals Dy and D3y of the midpoints I1 of
$1 in the second and third images. These intervals correspond to the
possible positions of the points homologous to /;. It also computes the
orientations a1z and a3 of the conjugate epipolar lines in image 1.

During the matching procedure, one of the images 2 and 3 is used
to take initial hypotheses and the other to check them. As explained
before, the image used for the initial hypotheses must be such that
it is the one in which the orientation of the corresponding angle a1,
or ais is farthest from the direction of S;. The matching procedure
Marcu-3 is described in Fig. 13 and returns a list of matched segments
{(S1, S2, S3)} associated to S;.

The last part of the algorithm is the validation part, which makes
a compatibility test with the neighbors of each matched segment. It
is described in Fig. 17, and detailed in the next section.

D. Matching Procedure

The algorithm of procedure Marcu-3 is given in Fig. 13. This
procedure takes as input three images i, j, and k, a segment of S
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A Procedure MaTcu-3(i, j, k, S,, Dy, Dv,)

o Compute the list {B;} of buckets intersected, in image j, by the epipolar
interval Dji.

For each i the set of

bucket B, d
fying the three following tests :
1. |¢j — $i] <Bmaz /*Compate segnients orientations*/
2. Alpgin < lli/li| < Alpgus
3.1 =(5;n D) £90
EndFor

{8;} veri-

/*Compare segments lengths*/
/*Verify epipolar constraints*/

For each of the segments S; having passed these tests,
~ Compute, in image &, the epipolar interval Dy; associated to I;.
~ Compute, in image k, the intersection point of the two epipolar
intervals .
I = Dii N Dy; and the bucket By associated to Ii..
— Predict the orientation ¢; and the length I} of Si.
For each of the segments Sy in bucket By, select those passing
the three following tests:
1. [¢r — ;| <83, /*Check predicted orientation*/
2. Alpin < |la/l;] < Alpyas  /*Check predicted length®/
3. d(&i,5) < dmaz  /*Check predicted position*/
Endfor
Endfor

o Beturn({(S:,5;,Su)}) the list of matching triplets.

EndProcedure MATCH-3 &

Fig. 13. Matching algorithm.

Sk
Dy;
o,
S; Si S
ik
D;; / D

Fig. 14. Prediction of position.

of image i and two epipolar segments D;; and Dy, corresponding to
the midpoint J; of S;. It returns a list of matched triplets {(.S;, S;, Sk)}
associated to the input segment S;.

The first part of the algorithm is the search, in image j, for potential

matches S; to S;. Segments S; must

¢ pass the similarity tests with S;

« intersect the epipolar segment Dj;. As we have taken j such that
the orientation of Dy is as far as possible from the orientation
of §;, the intersection I; between Dj; and S; can in general be
accurately computed.

The second part of the algorithm checks the validity of each of

the potential matches (S;, S;) in image k. We use a procedure of
prediction of the position and orientation of the segment S; in image

* the prediction of the position is made by computing the intersec-
tion I, in image k, of the epipolar lines respectively associated
to the midpoint of S; and its potential homologous point J; in
image j (cf. Fig. 14 in which we show the computation of this
predicted point for two candidate segments S; and S’.

« the prediction of the orientation is done in the following manner
(see Fig. 15 for the notations):

—  Compute the epipolar lines Dj; and Dj;, respectively,
associated in images j and k, to one of the extremities
I! of S:.

—  Comopute the intersection point I}, in image j, between

v
& Dy;

Si Sj
4
” ] Dy

L Dj

Fig. 15. Prediction of orientation.

the epipolar line Dj; and the line Ds; containing S;:
I; = D} Ds;-

—  Compute, in image k, the epipolar line Dj; associated
with I}.

—  Compute the intersection I}, in image k , between the
epipolar line Dj; and Dj;:

It = D[] Di;-

* The predicted orientation of S is then given by the orientation
of I}.] ;’ct

¢k = ¢(IxIx).

E. Validation

Using a third camera is not always sufficient to get rid of all
ambiguities and false matches. Probabilities are indeed low, but not
zero, that by using an incorrect match between the first two cameras,
we find a compatible segment at the predicted location in the third
image.

How can we get rid of those wrong matches? For this we enforce
two constraints (cf. Fig. 17):

* The Uniqueness Constraint: In its simplest form, it states that

a given primitive must be part of at most one triplet. This
does not take into account the fact that there may be errors
in segmentation during the polygonal approximation phase, so
that in some cases, a segment must be allowed to match several
segments. Fig. 10(a) shows such a case. Fig. 10(b) shows, on the
contrary, an example of a wrong match violating the uniqueness
constraint.

We must therefore generalize the notion of uniqueness for
line segments. This is why we first compute, for a segment in a
matched triplet, the “matching length” involved for this precise
triplet. This is done by clipping the segment by the epipolar lines
corresponding to the endpoints of the other segments.

* The Regularity Constraint: If we assume that the objects are
smooth, then two segments belonging to the same object and
close to each other in the image will be reconstructed nearby
3-D segments. Therefore, if a match (S, S2, S3) reconstructing
a 3-D segment is correct, we should be able to find some of the
2-D neighbors of the image segments S; reconstructed into 3-D
segments close to S. We cannot impose that all 2-D neighbors
satisfy such a constraint, because there may be discontinuities at
the borders of objects, but we can impose that a given percentage
of them be such that the distance of the reconstructed neighbors
to S be under a threshold.

Following these two constraints, we compute, as a criterion, the ratio
of the 2-D neighbors reconstructing into a 3-D segment sufficiently
close to S to the total number of neighbors.

The notion of neighborhood has been previously defined, and we
will now see how to evaluate a distance between two segments. The
distance could be defined as the shortest distance between points
of the two 3-D segments. It would be rigorous but inefficient from




80 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 1, JANUARY 1991

i

/

Fig. 16. §' is e-compatible with § iff it intersects the box.

© @ © Procedure VALIDATE-3(1,2,3)

for cach triplet of segments (53, Sz, S3)
o for each neigbour triplet of segments (S}, S}, 55) i.e. such that S} is neigh-
bour of § in image 1 or S} is neighbour of S, in image 2 ot S} is neighbour
of S3 in image 3
if (8], 53, %) is e-compatible with (51, S3, S3)
then increment the number of compatible neighbots of {Sy, 53, S3).
endfor

. C ibili

0 hb

€(5,.5;.55) = Ce / Total number of neigh-

bours.
® if cs,.5,.5,) < compatibility-threshold then get rid of (51, S2, S3).
endfor
for each triplet of segments (5, 52, $3)
for each neigbour triplet of segments (S}, 5}, 55)
if (81, 83, §3) is ambiguous with (S1, Sz, 53) and ¢ 5, 5,.5,) <€ €(s,.54.54)
then get rid of (S, S», 53).
endfor
endfor

if undecidable ambiguities remain then get rid of the ambiguous triplets.

EndProcedure VALIDATE-3 O ® O

Fig. 17. Validation algorithm.

a computational point of view, as we do not really need a very
accurate numerical criterion of compatibility. We therefore define a
3-D segment §' to be e-compatible with a segment S if and only
if S’ intersects the rectangular box formed from § by building a
3-D rectangle containing S, whose edges are parallel to the axes of
coordinates, and extended by e at each endpoint, as illustrated in
Fig. 16.

Given a distance tolerance €, we are now able to compute the ratio
of the e-compatible neighbors to the total number of neighbors. The
exact value of € depends on the kind of scenes we observe, in the
sense that it must reflect the typical scale of objects, but it is not
a critical threshold. If this ratio is too low, lower than 0.25 for our
system, then we get rid of the corresponding match. If there is an
ambiguity between two matches, we keep the best with respect to
the criterion of compatibility weighted by “matching length” of the
segment, thus favoring longer matches over shorter ones.

Recently, we improved and simplified the validation procedure
by attaching a covariance matrix to each segment endpoint and
computing an appropriate Mahalanobis distance. The interested reader
should refer to [42].

IX. EXPERIMENTAL RESULTS

We have tested this algorithm on a number of industrial and office
scenes, with the following results.

Fig. 18. Triplets of images taken in the robotics room.

A. Office Scenes

Fig. 18 presents triplets of images taken in a robotics laboratory,
for different positions of the robot. Fig. 19 presents the polygonal
approximations of the image contours, extracted by a sequence of
programs written by Rachid Deriche, Gérard Giraudon, and Marc
Berthod, from INRIA.

Fig. 20 presents the triplets of segments matched by the trinocular
stereo vision program.

Using another program computing the displacement between the
different frames, we are able to build the 3-D reconstruction of
the whole robotics room: Fig. 21 shows the view from above,
with a commented sketch of this room in Fig. 22. (Details on the
construction of this global 3-D map can be found in the book by N.
Ayache [43], [44] and in previous papers [45], [41].)

Table I gives the performance features of the algorithm on these
six different scenes. The programs are written in C and run on a
SUN-3 workstation.

B. Industrial Scenes

The trinocular stereo vision algorithm described above is particu-
larly well adapted to scenes with long line segments. Nevertheless,
it works also on images with curved edges, but with more computa-
tions because the polygonal approximations contain more segments.
Figs. 23, 24 and 25 present, respectively, a triplet of images of an
industrial object, its contours, and the matched segments.

Triplets of images representing a cone, a cylinder, and a sphere
are shown on Fig. 26.

Figs. 27-30 show the original contours and the results of the
matching on a sphere, a cone, and a cylinder.

Although the polygonal approximations include a greater number
of smaller segments, matching results remain correct.

It might nevertheless seem that more matchings could be done.
This comes from the fact that some small segments are very noisy
and cannot be predicted accurately enough in the third camera. If the
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Fig. 19. Polygonal approximation of the contours.

thresholds were relaxed so that these segments were matched, errors
would be introduced elsewhere. Moreover, those segments would
reconstruct very noisy 3-D segments.

It should be noted that these results allow for quantitative analyses
on the observed objects. Pavel Grossmann {46] has developed a
program to use the reconstructed 3-D segments for detecting quadrics.
It recognizes, for example, a portion of a sphere in the first example,
and estimates its radius to be approximately 46 mm, with an accuracy
of 1 mm.

Finally, the last figure shows two projections of the reconstructed
3-D segments of the cylinder.

X. CONCLUSION

We have presented a new trinocular stereo vision technique. It can
be summarized by the following stages:

* Calibration: A preliminary procedure allows for the computation
and the storage of the parameters required to determine epipolar
geometry between cameras.

* Preprocessing: A graph-based description of a polygonal ap-
proximation of the contours is extracted from each image. Then
images are then rectified to simplify the epipolar geometry.
Hypotheses Prediction-Verification: Triplets of potential matches
are derived from the previously constructed graphs by simple
geometric verifications.

Validation: Local consistency checks are performed to remove
erroneous matches.
The main features of the method are as follows.

e Flexibility: 1t allows for arbitrary positions of three different
cameras. Calibration is obtained by a simple automatic proce-
dure.

* Rapidity: Matching times are typically a few seconds. Moreover,

“60.2

o H®@ai

Fig. 20. Matched segments.

e de desas 2 +IB00

View from above of the robotics room.

Fig. 21.

it is straightforward to implement the algorithms in parallel.
Reliability: The use of a third camera reinforces the geometric
constraints, and therefore reduces the influence of heuristics in
the matching process. This significantly improves the robustness
of the method.

Accuracy: The use of a third camera provides an additional
measurement. This strongly improves the 3-D reconstruction
accuracy.
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Fig. 22. Commented sketch of the view from above.

TaABLE 1
PERFORMANCES OF THE TRINOCULAR STEREO
VISION ALGORITHM ON THE SIX INDOOR SCENES

Nb. Segments Nb. Matches
Image 1 Image 2 Image 3 Segments Points CPU Time
Scene 1 312 337 336 160 3300 3s
Scene 2 283 266 280 111 2832 2s
Scene 3 262 240 284 110 3021 2s
Scene 4 203 199 205 75 2522 1s
Scene 5 393 405 371 320 4906 6s
Scene 6 548 531 536 539 7200 10s

Fig. 23. ‘Triplet of images of an industrial object (ELSAG).

Current and future developments involve the parailel implemen-
tation of the algorithm on a multiprocessor machine to perform
stereo-matching and 3-D reconstruction at the rate of 5 Hz. This
is done within a European Esprit Project (Project P940 involving
ELSAG, GEC, INRIA, MATRA, NOESIS, University of Cambridge,
University of Genova) where preprocessing (edge extraction, edge
linking, polygonal approximation) is performed by dedicated hard-
ware at the rate of 24 Hz. At the time of writing (July 1990), the
production of 3-D maps of an indoor environment at the rate of 4 Hz
is almost achieved [42], and will be fully described in the near future.

APPENDIX
COMPUTING A 3-D LINE D FROM ITs 2-D PROJECTIONS d;

We assume that the perspective transformation of each camera is
represented by a 3 x 4 matrix T; computed during a preliminary
calibration stage.

Therefore, the image of a generic point P = (z,y, z)" of D by
camera i is I} = (u},v})" such that

o = Lati +btis + tig)z + pts + gty +
(athy +bts, + tiy)z + pty, + qthy + ti,

Fig. 24. Contours of a triplet of images of an industrial object.

Fig. 25. Matched segments.

o = (aths + bty + ths) z + pth + qthy + thy
CT (athy + bty + th)2 + pthy + qth, + th,

where ¢} is the element (7, k) in the perspective matrix T;.
Saying that I! belongs to d; means that

aiu; + v+ pi = 0.

If the preceding relation has to be verified for any P € D, except
Ci, then the following two equations must hold:

o (atil Foth, + tig) n (at;1 + bty + t§3) +
pi(ats, + bty + t33) =0

o (ptis + atha + tle) + (pth + ath + 13 ) +
ri(ptsy + gty + t&) =0

By reorganizing the coefficients, one can see that these equations are
the equations (10) and (11).
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Triplet of images of a cone, a cylinder, and a sphere (ELSAG).

Fig. 26.
o
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camera 2 sphere?. 6di
Fig. 27. Contours (a) and matches (b) of a triplet of images of a sphere.

ACKNOWLEDGMENT

The stereo and 3-D reconstruction programs are the end of a long
chain of programs (and hopefully the start of another longer chain).
We would therefore like to thank all the authors of this chain, and
especially M. Berthod, N.-E. Deriche, and G. Giraudon, from INRIA.

The rectification scheme has been developed and improved in
collaboration with C. Hansen, from the University of Utah. The
current hardware implementation is performed by G. Randall at
INRIA, and the software integration by S. Foret at Noesis.

cavera 2 cone2.6di

Fig. 28. Contours (a) and matches (b) of a triplet of images of a cone.

Finally, we wish to thank O. Faugeras, head of the Vision and
Robotics Laboratory at INRIA—-Sophia Antipolis, for his constant
interest and scientific support, the reviewers for their valuable sug-
gestions, P. Sander for his careful corrections, and N. Gaudechoux
for her precious help in preparing this document.

REFERENCES

[1] M. Yachida, “3-D data acquisition by multiple views,” in Robofics
Research: Third Int. Symp., O.D. Faugeras and G. Giralt, Eds. Cam-
bridge, MA: MIT Press, 1986, pp. 11-18.

[2] M. Yachida, Y. Kitamura, and M. Kimachi, “Trinocular vision: New
approach for correspondence problem,” in Proc. Int. Conf. Pattern
Recognition, 1IEEE, Paris, France, Oct. 1986, pp. 1041-1044.

[3] M. Pietikainen and D. Harwood, “Progress in trinocular stereo,” in

Proc. NATO Advanced Workshop Real-Time Object and Environment

Measurement and Classification, Maratea, Italy, Aug. 31-Sept. 3, 1987.

M. Ito and A. Ishii, “Three-view stereo analysis,” IEEE Trans. Pattern

Anal. Machine Intell., vol. PAMI-8, pp. 524-531, July 1986.

[S] ——, “Range and shape measurements using three-view stereo analy-

sis,” in Proc. Int. Conf. Computer Vision and Pattern Recognition, IEEE,

Miami Beach, FL, 1986, pp. 9-14.

A. Gerhard, H. Platzer, J. Steurer, and R. Lenz, “Depth extraction

by stereo triples and a fast correspondence estimation algorithm,” in

Proc. Int. Conf. Pattern Recognition, 1EEE, Paris, France, Oct. 1986,

pp- 512-515.

[7] E. Gurewitz, 1. Dinstein, and S. Sarusi, “More on the benefit of a

third eye for machine stereo perception,” in Proc. Int. Conf. Pattern

Recognition, IEEE, Paris, France, Oct. 1986, pp. 966—-968.

Y. Ohta, M. Watanabe, and K. Ikeda, “Improving depth map by right-

angled trinocular stereo,” in Proc. Int. Conf. Pattern Recognition, IEEE,

Paris, France, Oct. 1986, pp. 519-521.

M. Pietikainen and D. Harwood, “Depth from three-camera stereo,” in

Proc. Int. Conf. Computer Vision and Pattern Recognition, IEEE, Miami

Beach, FL, 1986, pp. 2-8.

[10] C. Stewart and C. Dyer, “The trinocular general support algorithm:

A three camera stereo algorithm for overcoming binocular matching

[4

—

[6

[8

)

[9

—



84

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 1, JANUARY 1991

—

Fig. 29. Contours (a) and matches (b) of a triplet of images of a cylinder.

camra 2 ayl2.6di

N
N
\
\ ~
o
-
_
,\"'{ Y T U
[ [ ™ I 7
Lo |
L f¢e -1 i
{ PO
| : z
[ s b
\ d

Fig. 30. View from above (a) and side view (b) of the reconstructed 3-D

segments for the cylinder.

(1]

[12]
[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]
f25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36}
[371

[38]
[39]

[40]

errors,” Univ. Wisconsin— Madison, Tech. Rep. 768, May 1988.

K. Nishihara and T. Poggio, “Stereo vision for robotics,” in Robotics
Research, First Int. Symp., R. Paul and M. Brady, Eds. Cambridge,
MA: MIT Press, 1984, pp. 489-505. .

D. Marr and T. Poggio, “A computational theory of human stereo
vision,” Proc. Roy. Soc. London, vol. B-204, pp. 301-328, 1979.

H. Baker and T.O. Binford, “Depth from edge and intensity based
stereo,” in Proc. 7th Joint Conf. Artificial Intelligence, Vancouver,
B. C,, Canada, Aug. 1981, pp. 631-636.

M. Berthod and P. Long, “Graph matching by parallel optimization
methods: An application to stereo vision,” in Proc. Int. Conf. Pattern
Recognition, Montreal, P. Q., Canada, Aug. 1984, pp. 841-843.

R. Mohr and W. Wrobel, “La correspondance en stéréovision vue
comme une recherche de chemin optimal,” in Proc. Reconnaissance
des Formes et Intelligene Artificielle, Quatriéme Congrés, France, 1984,
pp. 71-79.

W.E.L. Grimson, “Computational experiments with a feature based
stereo algorithm,” IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-7, no. 1, pp. 17-34, 1985.

G. Medioni and R. Nevatia, “Segment-based stereo matching,” Comput.
Vision, Graphics, Image Processing, vol. 31, pp. 2—18, 1985.

Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline
search,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-7, no. 2,
pp- 139-154, 1985.

S.B. Pollard, J.E.W. Mayhew, and J. P. Frisby, “PMF: A stereo corre-
spondence algorithm using a disparity gradient constraint,” Perception,
vol. 14, pp. 449-470, 1985.

A.R. Saint-Vincent, “Perception et modélisation de I’environnement
d’un robot mobile: Une approche par stéréovision,” These, Univ. Paul
Sabatier, Toulouse, France, 1986.

S.T. Barnard, “Stereo matching by hierarchical microcanonical anneal-
ing,” in Proc. 10th IJCAI Milano, Italy, Aug. 1987, pp. 832-835.

T. Skordas and B. Horaud, “Stereo correspondence through feature
grouping and maximal cliques,” IMAG, Laboratoire d’Informatique
Fondamentale et d’Intelligence Artificielle, Rapport de Recherche
RR 677-1-64 LIFIA, Sept. 1987.

N. Ayache and B. Faverjon, “Efficient registration of stereo images by
matching graph descriptions of edge segments,” Int. J. Comput. Vision,
vol. 1, no. 2, Apr. 1987.

D.J. Burr and R.T. Chien, “A system for stereo computer vision with
geometric models,” in Proc. IJCAI-5, MIT, Aug. 1977, pp. 583.

D.J. Burr, “On computer stereo vision with wire frame models,”
Coordinated Sci. Lab., Univ. Illinois, Urbana, Rep. 805, Dec. 1977.
H.H. Baker, T.O. Binford, J. Malik, and J.-F. Meller, “Progress in
stereo mapping,” in Proc. Image Understanding Workshop, Arlington,
VA, June 1983, pp. 327-335.

R. Jain, S.L. Bartlett, and N. O’Brien, “Motion stereo using ego-motion
complex logarithmic mapping,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 9, no. 3, pp. 356369, May 1987.

D.H. Marimont, “Projective duality and the analysis of image se-
quences,” in Proc. Workshop Motion: Representation and Analysis, IEEE
Comput. Soc., Kiawah Island, SC, May 1986, pp. 7—14.

R. Deriche, “Using Canny’s criteria to derive an optimal edge detector
recursively implemented,” Int. J. Comput. Vision, vol. 2, Apr. 1987.

J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-8, no. 6, pp. 679-698, 1986.
G. Giraudon, “Chainage efficace de contour,” INRIA, Rapport de
Recherche 605, Feb. 1987.

J.G. Dunham, “Optimum uniform piecewise linear approximation of
planar curves,” IEEE Trans., vol. PAMI-8, no. 1, pp. 66-75, Jan. 1986.
G. Toscani, “Systéme de calibration optique et perception du mouvement
en vision artificielle,” Ph.D. dissertation, Paris-Orsay, France, 1987.
O.D. Faugeras and G. Toscani, “The calibration problem for stereo,” in
Proc. CVPR ’86, Miami Beach, FL, IEEE, 1986, pp. 15-20.

O.D. Faugeras, “Artificial 3D vision,” to be published.

N. Ayache and C. Hansen, “Rectification of images for binocular and
trinocular stereo vision,” in Proc. Int. Conf. Pattern Recognition, Beijing,
China, Oct. 1988.

N. Ayache, “Construction et fusion de représentations visuelles tridi-
mensionnelles: Applications 2 la robotique mobile,” These d’Etat, Univ.
Paris-Sud, Orsay, France, May 1988; also INRIA Internal Rep.

F. Lustman, “Vision stéréoscopique et perception du mouvement en
vision artificielle,” Ph.D. dissertation, Paris-Orsay, France, 1987.

N. Ayache and F. Lustman, “Fast and reliable passive trinocular stereo
vision,” in Proc. First Int. Conf. Computer Vision, 1EEE, London,
England, June 1987, pp. 422-427.

N. Ayache and F. Lustman, “Trinocular stereo vision, recent results,” in



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 1, JANUARY 1991 85

Proc. Int. Joint Conf. Artificial Intelligence, Milano, Italy, Aug. 1987.
N. Ayache and O.D. Faugeras, “Maintaining representations of the
environment of a mobile robot,” in Int. Symp. Robotics Research, Santa
Cruz ,CA, Aug. 1987.

G. Randall, S. Foret, and N. Ayache, “Final steps towards real time
trinocular stereo vision,” in Proc. First European Conf. Computer Vision,
ECCV’90, Antibes, France, O.D. Faugeras, Ed. New York: Springer-
Verlag, Apr. 1990, pp. 601—603.

N. Ayache, Vision Stéréoscopique et Perception Multisensorielle; Appli-
cations a la robotique Mobile. Inter-Editions, 1989.

[44] —, “Artifical Vison for Mobile Robots: Stereo Vision and Sensor
Fusion. Cambridge, MA: MIT Press, 1990.

N. Ayache and O.D. Faugeras, “Building, registrating and fusing noisy
visual maps,” Int. J. Robotics Res. (Special Issue on Sensor Data Fusion),
vol. 7, no. 6, pp. 45-65, Dec. 1988.

P. Grossman, “Compact—A surface representation scheme,” in Proc.
4th Alvey Vision Conf. (AVC’88), Manchester, England, 1988.

[41]

[42]

[43]

[45]

[46]

Shape Representation by
Multiscale Contour Approximation

Ann Bengtsson and Jan-Olof Eklundh

Abstract—We present an approach for deriving qualitative descriptions
of contours containing structures at different (unknown) scales. The
descriptions are in terms of straight arcs, curved arcs with sign of
curvature, corners, and points delimiting the arcs: inflexion points and
transitions from straight to curved. Furthermore, the tangents at these
points are derived.

The approach is based on the construction of a hierarchic family of
polygons, having the scale-space property of causality: structure can only
disappear as scale goes from fine to coarse. Using the principle that
structures that are stable over scale represent significant properties, the
features of the descriptive representations are then derived.

Index Terms— Corners, hierarchic family of polygons, inflexion points,
multiscale polygon approximations, qualitative contour description, scale
stability, straight and curved arcs, tangent directions.

I. INTRODUCTION

The goal of computational vision is to derive descriptions of a
scene from images of it. In particular, the descriptions could be in
terms of primitives representing the geometric structure of the world.
There are several reasons why such descriptions are important.

In a world of coherent objects and at the level of surfaces and
volumes with their bounding contours, the geometric cues given by
the contours are of paramount importance. Furthermore, geometric
information about, e.g., the occluding boundaries of surfaces impose
very strong restrictions on the possible structure of the scene. In fact,
geometric features tend to be much more useful than photometric
features in the computation of what is in the scene. This seems to be
true for monocular and binocular scenes as well as for time-varying
scenes, see, €.g., [1]-{6].

Different approaches exist to deriving geometric structure. The
work presented here should be seen in the context when the structure
is reflected in image curves derived from the intensity data. The
geometric properties of such curves could be obtained by direct use
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of the intensity information, as in the work on curve tracing and
curvature by Zucker and his co-workers, see, e.g., [7], or by groupings
of edge elements, see, e.g., [8].

Here we address problems appearing in the case that edges are
extracted and traced, as in the work discussed, e.g., in Faugeras et al.
[9]. Hence, we assume that there is a set of sampled contours from
which we need to explicitly extract important shape information. Such
structure may be straight parts of the boundaries, corners, parallelism,
and symmetry. Information about curvature and direction is also
important. Furthermore, surface recovery techniques may require
parameterized boundaries. Finally, it is in many cases necessary to
segment boundary contours into meaningful primitive parts.

Characteristic to these problems is that the data to be considered
are planar curves (in the images). Moreover, these curves contain
details at various levels of scale and are also contaminated by
noise. There exists a need for making the information given by the
curves explicitly available for further processing by deriving some
abstraction of them. Such a description should be much simpler than
the given representation (which is discrete) and should not be too
much influenced by noise or irrelevant details in the data.

One systematic and mathematically well-founded way of finding
such descriptions or simplified representations of curves and contours
is to approximate them with some family of functions. We shall also
propose an approach of that sort. However, there are two issues
which in the standard literature on curve approximation are either
not addressed or not given tractable solutions. First, most numerical
techniques require that the critical points that describe the shape of
the curve are given, at least as a subset of the breakpoints. If this
is not the case, one might end up with hard numerical problems,
¢.g., in spline approximation with variable knots, which gives rise to
nonlinear problems. Secondly, the methods for approximation give
no hints on how the parameters should be set up to help us find the
critical points. Of course, the definition of what constitutes a good
description of a shape or a curve is application dependent, but certain
shape features should be reliably recoverable over large parameter
ranges. In particular, several of the computational tasks presented
above, e.g., the check for parallelism or the computation of curvature
and angles require both a smoothed and a precise description of
the data. If the smoothing depends critically upon some unknown
tolerance and scale parameters, the tasks become impossible without
operator intervention.

In this correspondence we present an algorithm for computing
shape descriptions, that addresses these issues. The method is based
on multiscale approximations with lines. A crucial first step is
the generation of a hierarchic family of polygonal approximations.
From this family the descriptive shape properties are derived by
analysis of the features that are stable over scale. The principle
used is the principle of transformational invariance, suggesting that
structures that remain invariant under a set of transformations (here:
smoothings), have significance. This is related to Lowe’s ideas about
nonaccidentalness, [8], but has no probabilistic component. As a final
postprocessing step we also show that the polygons can be converted
into a spline-representation. Although visually pleasing, the latter
representation does not add any significant information about the
abstract shape in our present framework.

II. ON EARLIER WORK AND OUR APPROACH

If one wants to derive descriptions of planar curves such that
geometric properties of the type mentioned above are explicitly
represented, one is faced with two goals of a conflicting nature. First
there is a need for finding a qualitative description of overall shape.
Hence some simplification and/or smoothing must take place. This
goal is important for recognition and for finding global structure.
Secondly, there is a need for high precision detection of certain
characteristics. Earlier we mentioned straight line segments, corners,
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