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Abstract

This paper deals with the problem of building three-dirmert
sionad descriptions fwe call them visual maps) of (e enviren-
wient of ¢ mohile robot wsing passive vision, These maps 4r¢
local fLe., gtiached 10 specific frames of reference). Since
anive is present, they incorporale informutiot Ghout the ge-
omotry of the enviromment and shoul the upceriainty af the
pUrAmeIers defining the geomery. This seometric GHOPHAIREY
is direcily related (0 is SOUCE {i.e., sensor unierraintyl We

show how visual maps corresponding 10 different positions b

the rohot can be registered 10 copapute g better estimate of 118
displacement hetween the various viewpobi positions, 45
sgming an otherwise static environment. e use these esti-
smaies to fuse the different visual maps and reduce locally the
unceriainty of the grometric primiiives which have found
correspondents in other maps. We propose 10 perform these
thyee tasks {(bdlding, registrating and Fusirig ¥i sued maps)
within the general framework of extended Kulman filtering,
which allows gfficient combination of measurements in the
presence af noise.

1. Introduction

The probiem of dealing with noise in three-dimen-
sional viston and mobile robots is o8¢ of the frst to be
tackled in order 10 make both things aseful. We bo-
fieve that it cannot be engineered away and that its so-
fution has to be found, first, by representing explicitly
the uncertainty in the world model used by the robol
and, second, by combining a large mmber of mes-
qurements and/or sensors.

1n this article, we propose a partial solution along

e Internations Journal of Robotics fresearch,
fob, L oL B,y Pecomber 1988,
g Massachusetis tnstivute of “Technology.

those lines in the case where passive stereo is used

o collect three-dimensional information. This work
continues the one presented in Ayache et al (1985) and
Fauperaget al, (1986) and is connected 1o it of Brooks
(1985), Bolie and Cooper (1985), {aumond and Cha-
tila (1983), Crowley (1986), Smith and Cheeseman
{1986), and Durrant-Whyte {1986). :

The goals to be reached are the establishment of a
thmﬁwéimmgiaﬁai description of the environment in
which the vehicle mOVEs, which includes both geomets
sic information and information about the uncertainty
attached to the corresponding geometric primitives.
This description can then be used for variows tasks,
such as the definition of 2 sensing strategy — where 10
Took next inorder 10 increase the accaracy of the model
. and anavigation strategy — how to go from here 0
there given our present state of knowledge: it can also
be used to detect changes in the environment of TeCOE-
nize places, These applications are dot incorporated in
this paper. :

The key points of our approach are the use of 2
powerful ioo! for dealing with Targe numbers of noisy
measures, the extended Kaiman fler { Darmon 1982,
Tazwinsky 1970), which we found extremely useful in
some ofour previous wark {Avache and Faugeras
10847 Faugeras and Hebert 1986), and the way we oD~
pesent three-dimensional rotations 1o relate frames of
veference.

The tatest developments of this work and new resulis
are presented in Avache and Faugeras (1988) and
Avache {1988}

3. Linearizing the Problem

ty nil the Coses Wo discuss, we deal with an ohservation
«in B that depends on @ parameter & @mRYina
aonlinear fashion that can be expressed as a relation
fix, oy == B, where £ maps B X B inlo R®P, We assume

Ayache a ned Faugeras 45




that the observation X is corrupted with noise, which
we model as an addifive zero mean Cyaussian noise:

=% +e with E(€&)= § and Fled) = A.

The problem is, given a pumber of ohservations %;. 10
find the parameter vector a that hest satishies the rela-
tions f{x, 2= 0. “Rest” is 10 be made more precise

in a moment. , ;
1ot us drop the { indices for a while. Supposing that

we know a “good” estimate 2* of a, we can use the

idea of inearization and expand { in the vicinity (x', 8}

fix', a) = 0 =1, a¥)y -+ il {x, a5 %)
ax

af
2 20 ek g™ e a®
{,}&{}Wz}{a %%

and 8ffdaisapXn

As usual, ofjoxisap X m atrix
as (dropping

matrix, This expression can b rewritien
the = sign})

gt af af
-wf 5 ”’%’"-&»m—m ”k’!“ ':w,.m/"s % i, i e 3}
(x,8%) ﬁa(%am 3@;{*&)3 gx(x ) €,

whicly is & lingar measurement equation:
y = Ma -+ u,

where
e af
y = —f(x, a%) -+ = (% 3%} %,
oa

I , af
A w= e (Y L < s en et $ 5 8 &
" (x,2%) and u 5 (x, 8% &

Notice that y and M are known because we know fx
and a*; since we also know A, we know u's second-
order statistics:

F(u) =0,

SO d ,
W= Eaw) = ”é*i (x. 8% A gi (s, 8%

“ et us now come hack to our nehservations X, for

each of them, knowing the function f; and the covar
jance A, of x,, onccan form a lingar measurgment

equation
‘}?é s }%i i% ”% ﬁ}'

and compute the noise covariance matrix W, attached
1o it. If we start with an initial estimate 8, 0f 8 and its
associated covariance matrix 8, = £((B a(fi — &),
we can use the Kalman filtering approach 1o deduce
recursively an estimate a, of a and it covariance ma-
trix S, (@, — 8@, ~ a)) after taking into account 1
observations. The corresponding recursive equations
are the standard Kalman gquations and are given in
Appendix A, We can now give @ precise meaning 10
the word “best.” &, is the parameter vector that mini-
mizes the criterion

#
(a—8g)Ss ' — )+ 2 (Vi Ma) Wiy, — Mja).
R

This equation 18 important, because it shows how the
Kalman Gltering explicitly takes into account noise in
the measurements and weighs them accordingly. The
more noise we have on the fhomeasurement, the
“emaller” the inverse covariance matrix Wil is, and
sherefore the less the fth term in the above criterion
contribuies to the final estimate. ‘

Let ug now study in detail the application of this
technigue 10 30MeE previously mentioned problems.

3. Stereo Reconstruction

pwo-camera, stereo syster, such as the
one depicted n Fig. b wecan relate the (x, ¥, 2) COOF
dinate space to the {1y, vy) and {y; v2) relinga spaces
linearly in projective spaces:

1o o standard;

X

5 W ¥V , ,

. 5 ?5 I 5 i i? 29
5 W Z
55 1
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Fig I Geomelry of a sian
durd, 1Wo-caImera, SITE0
sysient.

where matrices ¥, are ohtained by calibration {(Faw
geras and Toscani 1986). When we match a point of
coordinates (i, vy i ceting 1 toa pointof coordinates
{1ty ¥y} 10 cetina 2, we can compute by friangulation
the coordinates (X, 1, 7y of the corresponding point in
three-dimensional space. “To cast this i the previous
formalisim, let us wiite {(dropping the indeses for the
moment}

;== i, vl a =[x, 5 2= {(3MA.

Rewriting the 3 X 4 matrix ¥ as

o he
P iz Zz«i s
i.% ‘;34

where 1y, b, Lare 3 w1 row vectors, and sliminatng
5, we have the following relationships:

(LOM + L — LOM = 1= 0,

{%3@2%3 SN e LOM by =0,
Therefore,

LAY ) - .2
i, ) i (OM + v = BOM = bl

From the above formalisen we an deduce an gstimate
4, of a alier two meansurements (Lo, of the position in
three-dimensional space of the point A} as well as the
covariance mattix of this estimate, which is an indica-
fion of the uncertainty of our knowledge. This isa
function of our uncertainty on the pixel coordinates

(147, vy) and (i, vy) and of our initial estimate 8, of the
position of M and its covarance mialrix By, The equa-
tions are i Appendix 8. In practice, B¢ i8 diagonal
with-very large diagonal terias, 50 the first torm in Hq
{1} is very saall,

This shows how the uncertainty on points ohtatned
by stergo-can he computed. In practice, we consider
points, lines, and planes. The uncertainty on these
privitives depends first on how they have been €x-
tracted and, second; on how they are represented. Let
us jook at representations first.

A possible way 10 represent lines s vse a vector
parallel to the line and a point on the livie, A line D8
represented by 1wo vectors (1, o) defined as follows,
Criven two points M, and M, on L, we have

= M, — OM,, m == (OM, + OMY2
Planes are represented by their normal nand their
distance to the origin /. See Faugeras and Hebert
{19gh o an application of this representation 1o the
recognition and tocalization of three-dimensional
obects. '

The description built by he stefeo system consists
of tweo parts. 1t produces, first, the parameters of the
geomelric elements r@pfézsemmi and second, the aneer
tainty on these parameters. This unceriainty 18 repie-
sented by a setof covariance matrices.

We have treated 1he case of points in this section,
The case of lines can be deduced very simply from the
above representation, as shown inthe next section.
The interested reader can fnd an analysis for the case
of planes in Faugeras and Lustman (1986}

Theresuliing description of the environment, -
cluding the geometric and uncertainty aspects 1s called
a realistic unceriain description of the i rorEEHL

4. Registrating Sterco Pairs

The problem is the following: Suppose that the analysis
of a first stereo pam viclds partial shree-dimensional
description ot the enviromment irierms of poinds,
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lines, and planes, each with some uncertainty attached
{0 it. The problem of obtaining this uncertainty has
heen treated in the previous section for points,

Now suppose that the vehicle on which the cameras
are mounted moves {(let us say in three-dimensions)
by an imperfectly known displacement B. We then ac-
quire a second stereo pair, analyze it, and obtain an-
other three-dimensional description of another part of
the environment. If the displacement D is not too
large, it is likely that some of the geometric primitives
identified in position 1 will also be identified in posi-
tion 2. By matching such primitives we should be able
1o recover a better estimate of the displacement D and
{this is done in Section 6} 1o consiruct g betler esti
mate of the position and orientation of these primitives
which have been identified in the two positions; 1.e.,
we shounld be able 1o improve the description of the
environment,

Wemust alsosay something about the way we rep-
resent threg-dimensional displacements. Every such
displacernent can be decomposed in an infinite num-
ber of ways as the product of a translation character-
ized by a vector t and a rotation R characterized by its
angle 8§, its origin, and its axis o (a unit vector). Fixing
the origin of the rotation makes the decomposition
UL, : :

For our nest purpose we can therefore consider the
group of three-dimensional displacements as the prod-
uet of the group SO, of rotations and the groupof
translations R How we parameterize SOy s also im-
portant, For an excellent review of the different pa-
ameterizations of SO, see Stuelpnagel (1964). In our
previous work {Faugeras and Hebert 1986) we used
guaternions. This has the disadvantage of mnposing the
constraint that the guateriions dealt with are-of unit
norm. In this article we propose 10 use the exponential
form of a rotation matrix B, Indeed, for every ortho-
gonal matrix R, there exists a unique antisymmetric
matrix H such that R = ¢, where matrix exponentials
are defined as usual as e e 1+ F/ILHF204 - - -
The matrix F can be written as

0 —c b
3 e ¢ O g
e fy ¢ {s

‘The three-dimensional vector v = [g, b, ¢]' has some

4

aseful properties. Its direction is that of the axis of
rotation, and its squared norpiis equal o the rotmaon
angle squared. Proofs of that and other properties of
this representation are presented in Appendix C.
Mareover, matrix H represents the cross product with
vecior v, which we denote by ¢{r). By this we mean

Hy=crm=r A%

We can now deal with the problem of estimating
the displacement Ik and its uncertainty by maiching
geometric primitives detected in positions 1 and 2 of
the vehicle. Let us start with points brst. I the same
physical point is represented in the coordinate system
associated with the first position by OM and in the
coordinate system associated with the second position
by /M then

O'M —~ ROM — t= 1. 3

This equation is of the form f{(x, a), if we let x =
[O/M’, OMT and a = [r', €] with r defined as above.
Therelore, the previous formalism can again be used
and an estimate of both r and t can be built by match-
ing a number of points in positions t and 2. The un-
certainty on r and ¢ can also be computed if we have a
model of the uncertainty on OM and O’M/, which we
have after Section 3. The eguations are presented in
Appendix 1

The problem of matching straight lines is very simi-
far. Let the two lines be defined by two points (M 4,)
and (M A43) defining representations (1, m) and
(V, ov). When a line is submitted to a rotation Rand a
translation ¢, it is fairly easy to show that its represen-
tation becomes (R, Rm -+ £). We can then wrile that

VP RI={ {4}
and
B Gm ~— Bm =0
oy, using (3,
¥ X{m’ Ry 1 == 8. {5}

The geometric interpretation of Eq. (3) is that the
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Fig. 2. & iz a line recon-
sirucred by stevev in the co-
ordinate system {Uxyz), D s the transtation - We can
a fine reconstructed by stereo  write that Dy thesame as
in the coordinate system ¥,

placed by the rotation R ned

W

¥

R e D

sransformed line is parallel to the second line. The
geometric interpretation of Eq. (4) is that the fine joins
ing the midpoints.of the transformed segment and the
second segment is parallel to the second ling (seeFig 2).
Letting % = (I, m", 1, m') and a a8 before, thisis:
again of the form f(x, a) =0, where flx,a)isa vector.

But in fact the measurement equations produced by a -

cross product are not independent: the knowledge of
two of them is sufficient to derive the third one. ?
Therefore one must keep only four measurements out
of six, the first two coming from the first cross prod-
uct, the last two coming from the second €ross prod-
uet. Then f(x, a) becomes a 4-vector: The equations
are presented in Appendix E. : S

The case of planes ¢an be treated similarly. Letting
the same physical plane be represented by (o, d}and
(n, d) in coordinate systems 1 and 2, we can write

o~ Rau=0 . (3]

(O yand D*is D dis=

and
A d+ t*Rxswf}
or

d' —d—ta =0 o

Letting x = (0", o, &', dy and a as before, we can
again put this equation in the form f(x, ay= 0. Equa-
tions are presénted in Appendix F. :

5. Registrating Stereo Pairs and Ifﬁgges

In order to 4void solving the stereo matching problem
too often, it may be useful, once a three-dimensional
estimation of the scene has been constructed, to track
the projections in on¢ image of the geometric features
used to compute the three-dimensional displacement.
This is similar in spirit to the work of Lowe, who does
a0t use our formalism (Lowe 1985), Let us first derive
the case of points. We assume that we know the image
coordinates u', v’ of point M* such that O'M' =
ROM -+ t. Therefore, letting x = [OM?, 1/, v/} and

a = [r, '], we can use a combination of Egs. (2) and {3y

(L{ROM + ) + )0’ = L{ROM + ) — s, ®

Hx, 8} = { ‘ , :
. } i;i}{K{}M »~§~ z} + Loy = LBORM A+ 1) = AN

The equations for 8{/0x and af/da are presented in
Appendix G. T
Let us now derive the case of lines. Let Dbea three-
dimensional line defined by two points M and My,
After rotation and translation, the transformed line D*
is defined by M, and Mj such that O'M] = ROM, +
t and O’Mj = ROM, + t. The projection dof DVin
the retina of one of the cameras is defined by the two
points m} and mj, projections of M| and My Hwe
denote by (U}, V4, Tiland [U75, V5, T3] the projective
coordinates of the points s} and m}, the projective
equation of the line d' is given by the determinant

v Uy
vV
T T T
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Fig. 3. After the rotation R
and tronstation 1, the line D
in voordinate system {0x¥7)
becomes tine 1Y in coordi-
nate system (X y'2). w
projects as d in reting ] and
is matehed o d”.

f”“m
b
|
]
v
&
Jo

or

LT — VT + V(T — TaUY)
+ Ty - Us) =0,

1¢ we match o to a line &7 in the focal plane defined
hy two points p and p, (see Fig. 3) with projective
coordinates (1, vy, 1] and {1, V2, 11, the necessary
and sufficient condition for the two lines to be the
same is by X by, = 6, where by = V75~ 1370 1 Ly -
T, Uiy~ UsVi and hy = [y vy, T

i, 7, = V] Now, with x = [OMY, OM, 1, % Wy
v,]' and a as before, the measurement equation is

f(x, a)= b X hy= 8,

where the components of b, can be easily computed as
functions of x and a. Here again. f(x, a) is a J-vector,
byt the measurements & correlated and only two
wieasurements can be kept. The details are presented
in Appendiz G

Fig 4. Fhe physical pointom
is represented by M,

M, o oMy, Fn the vorious
cosrdinare Sy,

6. Fusing Visual Maps or U pdating the
Mode! of the Environment

What we have dong so far is, first, 10 build, associated
with each position of the mobile robot, a three-dimen-
sional description of the environment in terms of its
geometry {(the positions and srientations of points,
lines, and planes) and the dnceriainty of the parame-
ters describing these primitives. Each such description
is attached 1o a local coordingte frame. Seeond, when
there exist physical primitives whichare common o
two frames of reference, and we do not know exactly
{(perhaps even not at all) the relative position and ori-
entation of the two frames, We have shown that, by
maiching primitives across frames, we were capable of
building estimates of the threc-dimensional transfor-
mation between the frames and a measure of the un-
certainty of this transformation.

The last step is to close the loop and use this infor-
mation to update, in cach focal frame, the description
of the geometry and uncertainty of the primitives
corresponding o parts of physical objects vigible in
another frame. This situation corresponds to that de-
picted in Fig. 4, where m is a physical point repre-
sented by the vector O)M, and the covariance matrix
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cov M, in frame K, (i=1, ... n}, and by the vector
M and the covariance matrix cov M in a frame Fin
which we want to update the position and gncertainty
of .

Frame F is related to frame i by rigid displacements
5 JORDRUP b each represented by a vector [rt, 631
and its covariance matrix A, in frame . We therefore
fave the following 1 measurement equations:

which are of the form f(x, a} = 8 with a =10,M,]
and x,; = [, t), OMilL We can apply the artillery
developed in Section 2 and obtain a new estimate of
OM and cov M. Therefore, using the notations of
Appendix C, we gt

&f{féx o {M" g{gp f}l?\’l,} "'“”3 o R;}
a 3 X 9 matrix

and

3t /8a = 1 a 3% 3 matrix.

Similarly, inthe case of lines, we could try to use Eas.
(4) and (5) to update the estimate of the representation
of a given line and its associated uncertainty:

PXRE =0 and 1 (m ~— Ry, 1) = 4,
which are of the form £,{x, a)= @ (witha = {r, m'l
and x = [rt, ¢4, 1, mi), keeping only four independent
measurements out of six. But it is better to use minl-
mal representations of primitives updated by the Kal-
man filter (i.e., four-parameter representations of
tines). This s discussed and experimented with in
Avache and Faugeras (1987,1988).

7. Tmplementation and Results

We have implemented the theoretical results devel-
oped in the previous sections and run the programs on
s number of veal sequences of stereo patrs.

Fig. 5. Edges extracted from
a sterep view of the grid
pastern.
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7.1, Cirid Brample

7 i1 Stereo Reconstruction

We show in Fig. 5 the lines detected in an image of
vertical and horizontal lines painted on the wall of the
taboratory at INRIA. We took four stereo triplets of
this pattern with the cameras saounted on the mobile
robot at distances of 3, 3.5, 4, and 4.5 m. The stereo
program described in Ayache and Faverjon (1987 was
then used to compute the positions in three-dimen-
sional space of the points of intersection of the hori-
sontal and vertical lines of the pattern using only cam-
eras 2 and 3.

The results are shown in Fig. 6A projected in a ver-
tical plane and in Fig. 6B projected in a horizonial
plane. The sets of points give an indication of the
spread of the reconstruction results, Figure 7 35 avep-
resentation of the covariance matrices computed fromn
the measurement Eq. (1) in a vertical plane (7a), amd
in a horizontal plane (7b). The value of the corre-
sponding quadratic form is equal to 1, and the pixel
noise was taken 1o be of variance 1 pixel. There is an
excellent qualitative agreement between Fig. 6and 7,
indicating that the extended Kalman filtering approach
is compatible with experimental evidence.

sy

7.1.2. Matching

Figure § shows the result of the estimation of the dis-
placement between views 1 and 2 using the previous
points and measurement equation, Eq. (3). Figure 8A
shows the points corresponding to view 1 a8 €rosses
and the points corresponding 1o view 2 as plus sigos.
The displacement between the two views ismostly a
translation perpendicular fo the plane of the ¥ rall {see
Table 1) Figure 8B shows the result of applying the
estimated displacement to the points in view 2 and su-
perimposing them to the points in view 1. The dis-
placement is estimated by the method described in
Section 5: Le., we are here combining a stereo pair and
an image. The correspondence is seen 1o he quite good.
A more quantitative description of what is happen-
ing can be found in Table 1. The firsy row shows the
initial estimates of the rotation and wranslation, the
second row the corresponding covariance matrices,
and the third and fourth rows the sstimates found by

A2

Fig. 8. Horizonial and verti-
cal projection of the recon-
structed intersections of the
grid patters abserved in four
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PR F 2 T S S 1
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Y
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W h oY xvgeaaxloeo £
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=
I 14
B e T

Sajemsigrrersil Al iEE g wig 4% CEOERS 3R

(b

running the extended Kalman filter twice over a set of
113 points. The fifth row shows the actual displace-
ment hetween the first and fourth positions. The final
covariance matrices are very small and are not show,

Figure 9 shows a similar example where a retation
has been added 1o the translation. Figure 94 shows
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Fig. 7. Covariance maiyices
attached to the points shovn
in Fig. 6.
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the points in views | and 2, and Fig. 9B shows the
points afler the estimated displacement has been ap-
plied to the points in view 2. In both cases, similar
results for the estimated displacement are obtained
when stereo pairs are combined. Table 2 details the re-
sults in the same format as Table 1

Fig. 8. Images of the grid
puitern observed i two
different positions before and
afier application of the esti-
mated displacerent.

£5
()
s — TPETITEET
. " H A i, s .

S 5k S 5 ¥ R ko

(b

7.1.3. Fusion

Figures 10 and 11 show the resulis of the integration
of two different kinds of information. First, the poinis
are reconstructed in each plane using the third camera
{this is just adding one more measurement equation of
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Fig. 9. Images of the grid
pattern observed in two
different positions before and
after application of ancther
estimated displacement.

(1) (b

Table 1. Motion between Two Grid Patterns

Angle

ry ¥y v, i ¢ 1,
{rad} {(rad) {rad) {em} {om) {cm) %}
Motion tnitial estimate 0 th 0 i o { &
Foitial covarianee 1.0 1.0 16 100 100 160
Motion Heration 0.00% -~ Q.002 — (000 4.41 1.94 - 154,01 1,40
wotion deration 2 .002 (3001 3002 {1L.88 103 -~ 150,39 021
Real motion manvally computed ] O 4] O & - 150.00 0
Table 2. Motion between Two Grid Patterns
v reo Y, i t, L Angle
{radd) {rad} {rad} {om) {crm) {cm)} )
Wotion initlal estimate it 0 & G & i8] 4]
Initial covanance 1.3 1.0 1.0 160 100 160
Motion iteration 1 .32 (.55 {326 - 663,70 3590 20.38 3982
Motion teration 7 0,29 .31 -~(,30 -~ 50.90 49.62 4916 30.27
, Ré};ﬁ% ‘moetion manually computed (.3 .3 43,3 ~ &3 00 50.00 36,00 29,77

e
ey
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Fig, 16, Fusion of the recon-
sivucted intersections of the
grid puitern.
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the type (2)) Second, the method of Section 6 has
been applied to the points in each of the four coordi-
nate systems associated with views 1 to 4, The results
are presented in the same format as the one in Figs. 6
and 7.

Two facts can be inferred from Figs. W and 11.

Fig, 11 Covarignce Arices
attached o the points shown
in Fig. 10
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First, the uncertainty has been greatly decreased, and,
second, the new computed uncertainty sull seens to
be in excellent agreement with the spread of the up-
dated data, thus vielding more credibility 1o the whole
scheme. In all these figures, the positions of the three
cameras are represented by triplets of crosses.
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Fig. 12. Polygonal approxt- Fig. 13, Polygonal gpproxi-

mation of the edge points of mation of the edge points of
@ steven pair of an office a sterec pair of the office
roomn ohserved in position L room in Fig. 12 observed in

position 2,

< - W‘%Wéi‘*‘s“@wwmww “” P e e
B (b}

7.2, Office BExample an office scene taken from different viewpoints, and

‘ Figs. 14 and 15 show the segments which have been
7.2.1. Stereo Reconstruction matched by the stereo program deseribed in Ayache

and Faverjon (1985},

We have applied the same programs to a different set Figures 16.and 17 have the same format as Fig. 61
of images. Figures 12 and 13 show the polygonal ap- i.e., we show the projection of the reconstructed three-

nroximations of the adge points in two stereo pairs of  dimensional segments in 3 vertical plane (Figs. 16A

o
sl
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Fig. 14, Edye segmonts
mctched in stereo paiy of
Fig 12
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and 17A) and in a horizontal plane (Figs. 168 and
178). The posttion of the cameras mounted on the
robot are shown by a triangle. Figures 18 and 19 have
the same format as Fig. 71 be., weshow g representie
tion of the covariance matrices of the endpoints of the
reconstructed line segments computed from Eq. {2) in

Fig 15, Edpe segments
matched in stereo pair of
Fig 13,

TEEERELTISY

[

| i

T

g vertical plane {18A and 15A), and in » horizontal
plane {18Band 198y

722 z%«:fﬁfé“;ﬁﬁg

Figure 20 shows the results of the estimation of the
displacement of the robot from view 1 to view 2 by
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Fig. 16. Horizontal and
vertival projection of the re-
consirucied segments of the
office roorm observed in
pasition 1.

Fig. 17, Hovizonal and
sertical projection of the re-
consirucied segmenis of the
office room oliserved in
position 2.
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matching three-dimensional lines using Egs. (4yand
(5). Figure 20A shows a view from ahove-of the seg-
ments in view | which are matched in view 2, Fig.
208 shows the corresponding segments in view 2, and
Fig. 21A shows the result of applying the estimated
displacement 1o the segrments in view 1. The result

58

T

(b

looks much like Fig. 20B {as it should). The position

_ of the cameras is shown as a triangle,
- Figure 218 is vet another way of displaying the re-
sults: After applying to them the estimated displace-
ment, the matched segments in view | are projected {as
continuous lines) in one of the images corresponding

The Tnternational Jowrnal of Robotics Research




Fig. 18 Cevariance FRALFICE
attached to the endpoinis of
the reconstructed sogments
of the pifive room ohserved in
position 1.
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10 view 2 where the segraents are displayed as dotted
fines. Again, the agreement is seen to be quite good.
A more guantitative description of what is happen-

ing can be found in Tahle 3. The first row shows the
initial estimates of the rotation and translation, the

Fig. 19, Covarlance mgtrices
attached to the endpoinis of
the reconstrictod segnents
of the office room ohserved in
position 2.
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second row the corresponding cavariance matrices.
These covariance matrices contain the knowledes that
e motion s close to a worizontal plane. The third
cow shows the estimate of the displacement obtained

by matching manually two lines in views 1 and 2, thus
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Fig, 20. Reconstrucied seg-
ments matched between
positions 1 and 2.
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Fig. 21. A. Application of the
estivated motion i¢ the
segments of position 1. the
triangles show the estimated
motion of the robot.

B Application of the esti-
mated motion 1o the seg-
snents of position I jollowed
by a perspective projection
(s0lid linesy on one of the
images aciually observed in
position 2 {dotted lines).
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Table 3. Mation Computed between Two Steres Views of an Office
£, 7 r. 1, i
{rad} {rad} {rah {em) {omd
Motion initial estimate {} g {3 & { ¢ 0
Initial covarianes 0.3 20 001 00 1 500
Waotion: 2 lines man. yoatohed 003 0.17 (.032 42.03 .32 ~ 3449 1017
Motion ieration 004 0,137 — {301 47,84 —~2.58 35401 7.89
Motion Heration 2 a0 {.138 G008 47.56 w354 3356 8,06
8. Conclusions and Discussion characterization of the uncertainty of these displace-
ments.

The third idea is to use the pre ious characterization
of their relationships to updaie the various representa-
We have propused some ideas related to the comsiyue yons, Indeed, i a given geonietnic primitive in some
tion, by a mobile robot using stereo, of a threesdimen-  coordinate frame has been identified as corresponding
sional model of its environment. 1ri this effort we have 1o 1he same part of a ghiysical object than another
heen following two guiding Hghts. The first one isthat  geometric prim itive in another coordinate frame, then
of linearizing the measurement equations of our pro- we can use our knowledge of the relation between the

cesses in ordeér to apply the powerful Kalman hiter rwo frames to update the geometric and wnoertainty
{extended Kalman filtering). The second one is that of  descriptions of these primitives in their respective
using a represeniation of three-dimensional rigid dis- convdinate frames. ,

placements which 18 adapted to such a Hnearization, Qeveral questions Temain Open. The first one is re-
and we have come up with the exponential represenia- tated to the representation of uncertainty of the geo-
tion of orthogonal matrices. Frow there, our reflec metric primitives such as lines-and planes. We have

tions have pursued three ideas. considered that lines were defined by fwo points. In
The first idea is that the rodel of the environment practice, this is not 0 sinee three-dimensional lines are
st contain not only a geomettic sharacterization of reconstructed by inter scting plancs defined by the

the geometric primives it uses (here points, 1nes, and  focal center of the cameras and two-dimensional line
planes), but also a characterization of the ynoestanty sepraents ahtained by mean sguaTT approximalion o
on the parameters of these privits

o uneertamty points, Therelore the uncertainty on threedi

5. We have useda \onal lines is more complex than the uncertainty
iy by Covanance on s of three-dimensional pointe Sepond the fact
bhe traced all the way  thal we areas jan distributions on the

sk

xel noise). We esentations of Hnes, planes

ciarn Tor Twores
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Appendix A: Kalman Filter Equations

The equation
}F:‘ g X‘i{a “}“ ﬁg

of Section 2 is, in the terminology of the Kalman filter
{Fazwinsky 1970), a measurement equation on the
process a constant with respect to £ 8, 2, Using
the equations of the Kalman filter, we write the new
estimate and estimation covariance matrix as

.
3

iy Ry M),
K, =8, MW, + M8, MY~ s
5 (1

K M)S s
or, equivalently,
§rie=8rh 4+ MEW;”&&;?
where
W Flau).
When all measurements have been processed, parame-

ter  is known by its a posteriori estimate 8, and the
corresponding covariance matrix 8,

Appendix B: Stereo Reconstruction

Remembering that x = [, v} and a = OM, we can
easily derive from Eq. (2) that

aft Tkl . .
GRS a2 X 3 malinx
da Lig 4y ’

and

ax {} ;;ﬁﬁ‘% E 234 ’

Appendix C: Exponential Representation of
Rotation Matrices

A simple justification of the fact that every matrix 2%,
with H an antisymmetric matrix, is orthogonal, is the
following:

{ SHE e o p o e (o HYE
{gPY == ¢ g {0,

This follows from the formula o™ =1+ H/1 -+
2204 -, Wealso know (Gantmacher 1977) that
the eigenvalues g and » of R and H are related by

o = eb. Since it is well known that the eigenvalues of
Roare |, 2 and-e7¥ where 8 is the rotation angle, the
eigenvalues of Hare easily found to be 0, i{a® + b7 +
B2 and — i(a? + b+ ¢)YA Therefore

P (@ B YA
Let us now consider an eigenvector of Fi associated
with eigenvalue 0. Since H represents the vector prod-
uet with vector v==lg, b, ¢l', v is such a vector:

Hy = i,

v is also an eigenvector of matrix R associated with
eigenvatue 1, as can be easily verified by the formula

B oMo [ b H/ LR HE2UAE
Thevelore

Ry ==y,

and v gives the direction of the axis of rotdtion. H 15
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thus a very compact representation of the rotation
serms of its axis and angle: Another property of this
representation can he deduced from a theorem in
CGantmacher (1977, p. 158), which states that if we
compute the Lagrange-Sylvester polynomial p of the
exponential function for the eigenvalues of H P
the polynomial such that

pOy=¢® =1, plil)= e pl—il) = ¢,

- then we have the nice relationship
e p(H}
It can be casily verified that
#l ﬁ} = § + ((sin GYOH + ({1 —cos OO,

which is precisely the well-known Rodrigues formula
(Rodrigues 1840). ~

We finish with a property of this representation that
is heavily used in the rest of the paper and related t©
the derivative of e™ with respect 1o 1. The correspond-
ing computation 154 fittle painful but'is cerfainly
worth doing. We refer the interested reader to the
(NRIA internal report corresponding to this paper ot
to Avache (1988). We give only the result, We want 1o
compute the 3 X3 matriy

HROM
K(R, OM) = fl%ﬁ;%wi

or. more simply, the 3-vector K(R, OM)v, where v i
an arbitrary 3-vector. :

Letting f(0) = (sin )70 and g gy = {1 — cos O)/ P,
one obiaing

K(R. OM)v = (00 - ir X OM
+ (@0 - VE X (£ X OM)
+ i)y X OM)
+ g Oy X (r X OM)
4 X (v X OM),

«.n

where /7(8) and g7(0) are the derivatives of f(#) and
e(0) with respect 10 6. (A shightly simpler version of
this equation will be found in Avache 1988} A special
case ocours when v is collinear to v (Lo, when v = 73,

In this case one has

K(R, OM)v = ar X ROM.

Appendix D Matching Three-Dimensional
Points :

Using Eg. (3), remembering that x. = [/ M7, OMY,
and a = [r', '], and taking into account Eq. (C.1), we
wave, with the notations of Section 1,

affax = {1

-1} a3 ¥ 6 matrix

and

afjoa=[~K(R OM) ~ i a 3 X 6 matrix.

Appendix Matching Three-Dimensional
Lines

We use Egs. (4) and (5). Erom these equations, we can
take x = [I', ', 1, m'] and, as in the case of points,
a = [r', €1 From these, we can deduce

ot [ —am
v | et — Rm — 1)}

af [ o
Ritel

dm’

af _JeiR
FIE T

an [ 0
am | —dRY

which completes the computation of 8f/0x = (388w,
GE8Y, ot/ dm, af/oiL a6 X 12 matein, We also have

of [ KR D
gr |~ g{%’}%@gﬁ ) .

ot |0
ot =)
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@ff fd{}c, a f; X é matrix. §§m., as we mm} ’i%%ﬁ?&/ mﬁy
four measurement equations can be kept instead of
six: therefore, one must keep for 86/3x (and 8{/9a)
only the 4 X 12 (resp. 4 X 6) matrix obtained by keep-
ing the four rows corresponding to the four indepen-
dent measurements.

Appendix F: Matching Planes

We use Fgs. (6) and (7). Remembering that x = [n”,
w., o/, 1 and a = [¢', t'] and taking into account Eq.
(C.1), we have, with the notations of Section 2,

fﬁ o I -R 00 a4 ¥ 8 mabrix
8% - g —1 1 DR

and

ot

- [ﬂng(g’ m 0 } a 4 X 6 matrix,
aa

i gyt

where B isa 32 1 vector of zeros,

Appendix G: Matching Three-Dimensional
and Two-Dimensional Points and Lines

We treat the case of points first. From Eq. (8), and
remembering that x = [OMY, v/, v''and a = [, €],
we have

{;f _ % b - LIRER, OM) . il §1»§ 57 % 6 matrix

€1¢§

(9L, KR, OM) v 1)
Tl = 1R LROM 0+ by 0 }
dx (v~ LR 0 LROM + 14 &y

a2 5 matris.

{ et us now tackle the case of lines, Remembering that
%= JOM, OMY, vy, vy, 1, v and a={r', £, we
can compute the components of by

64

By = (L(ROM, + 1) + L) (L(ROM, + ) + L)
— (L(ROM, + ) + LI(L(ROM, + ) + L),

By = (LROML, + 1) + L ) L(ROM, + 0 + i%,g
~(L,(ROM, + 1) + [, )((ROM, + 6 + [5,),

By = (L{ROM, + 1) + L L(ROM, + ©) + L)
— (L, (ROM, + ) + L )(L(ROM, + 6 + L),

Uising standard rules of differential caleolus, we can
write

a_ -
%

which is 2 3 % 10 matnx, and

(b, )oh,
SOM,

- of B},
SON,

(h,)oh,
dlug, vyl

ol )ok, b
My, vo1 1

da or at ’

which is a 3 X6 matrix. The various partial derivatives
can be easily computed by using the expressions for by
and h, and Fg. (C.1). Of course, as in the case of line
matching, one eventually keeps for 0f/dx (resp. 81/9a)
the 7 % 10 matrix {resp. 2 X 6) obtained by keeping
the two rows corresponding 1o the two independent
measurements.
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