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HYPER: A New Approach for the Recognition and
Positioning of Two-Dimensional Objects

NICHOLAS AYACHE AND OLIVIER D. FAUGERAS, MEMBER, IEEE

Abstract-A new method has been designed to identify and locate
objects lying on a flat surface. The merit of the approach is to provide
strong robustness to partial occlusions (due for instance to uneven light-
ing conditions, shadows, highlights, touching and overlapping objects)
thanks to a local and compact description of the objects boundaries and
to a new fast recognition method involving generation and recursive
evaluation of hypotheses named HYPER (HYpotheses Predicted and
Evaluated Recursively). The method has been integrated within a vision
system coupled to an indutrial robot arm, to provide automatk picking
and repositioning of partially overlapping industrial parts.

Index Terms-Computer vision, occlusions, robotics, scene analysis,
shape recognition.

I. INTRODUCTION

COMPUTER VISION is an important field where
_roughly two somewhat conflicting tendencies can be

identified. On the one hand, a very strong demand for ap-
plications implies that performant solutions to concrete
problems have to be quickly developed. On the other hand,
there is a very natural desire to understand human vision
as a problem in itself, hoping that this will result in the
development of a general methodology for solving com-
puter vision related tasks.
One may argue that many applications are either not

sufficiently representative of the whole set of vision prob-
lems or that the people who solved them did not bother
identifying the general methods that could be used else-
where. On the other side of the road, vision theoreticians
can often be reproached not to always be enough con-
cerned with the implementation of their findings on "rea-
sonable" hardware executing "reasonable" code.
Three main problems can be identified in computer vi-

sion. The first is the construction from sensor output of a
symbolic description where information necessary to solve
the problem at hand is explicitely represented. The second
is that of the representation of a priori knowledge. This
"world model" is generally very complex and few things
are known about ways of representing and organizing the
corresponding database. The third problem is that of using
these two structures to achieve the task.
Of course, there are many relationships between these

three problems. Nonetheless, separating them allows us to
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Fig. 1. Isolated objects and excellent contrast are the constraints required
by most of the currently available vision systems.

identify a number of potential bottlenecks. Problem I is
mostly a signal processing problem, problem II mostly a
knowledge representation problem, and problem III mostly
a control strategy problem. Their complexity can be de-
fined in terms of a number of parameters such as signal
quality of the sensor output, how many and how different
are the objects or phenomena that can be observed, and
what type of a priori information is available.
We hope that if we fix one or several of these parameters

and make the others vary in a controlled manner, we shall
be able to outline a methodology for solving the corre-
sponding problems in a large variety of situations. This
has been our approach.
We present in this paper the methods we have developed

in order to solve a very specific problem, that of analyzing
scenes with randomly oriented and partially occulted in-
dustrial parts. These parts are assumed to be "flat," i.e.,
one of their dimensions is small compared to the other
two. If we attempt to characterize this task in terms of the
above parameters, it is clear that depending on signal
quality, problem I may or may not be simple. On the other
hand, the a priori information about the objects is of a
quantitative geometric nature and can be made as accurate
as needed; as a direct consequence problems II and III
should be simpler.

This task has been tackled by several authors and is
solved in a limited way by some commercially available
systems. Such systems typically deal with isolated objects
with excellent lighting conditions (see Fig. 1) making
problem I very simple. Silhouettes of objects are usually
extracted by a simple luminance thresholding followed by
a connectivity analysis. Silhouettes are then represented
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Fig. 2. Metallic and plastic objects often produce unpredictable highlights.

Fig. 3. Before their final process, foundary castings often have sprues and
dead-heads (-) whose number and size are quite variable.

Fig. 4. Touching and overlapping objects.

by a few global numerical features making problem II also
very simple, and the recognition and positioning problem
is solved by nearest-neighbor techniques in feature space

(for a good overview of existing industrial Vision Sys-
tems, the interested reader is referred to [1]).
A strong limitation of such systems is that they cannot

handle partial alterations of the observed silhouettes which
can be due, for instance,

1) to uneven lighting conditions including variations of
contrast, shadows, or highlights (see Fig. 2),

2) to the occurence on the objects of sprues or dead-
heads, whose sizes and shapes can vary much (see
Fig. 3),

3) to the occurence of touching and overlapping objects
(see Fig. 4).
More sophisticated systems can so far be found only in

the laboratory. They can usually deal with objects under
poor lighting conditions, thanks to sophisticated edge de-
tection techniques, and tolerate partial occlusions by using
structural representation of objects and more elaborate
symbolic matching techniques. The systems developed by
Perkins [2] and Dessimoz [3] are based upon cross-cor-

relating the tangent angle or the curvature as functions of

the curve length between the scene description and the
database of models. They have produced good results on
complex industrial scenes, but the preprocessing (segmen-
tation) is expensive and both methods are not well suited
to scale variations. Another approach is that of Rummel
[4] and Hattich et al. [5] who have developed systems
based on a representation of objects with line segments,
corners, and circular holes. Model primitives are then
matched with scene primitives with an A* tree-search al-
gorithm. Basic limitations of these systems are the com-
binatorial explosion when the number of primitives in-
creases and the unability to deal with scale variations. A
third approach is that of finding maximal cliques in rep-
resentation graphs as pioneered by Ambler et al. [61 and
further improved by Bolles and Cain [7]. A basic limita-
tion here is the very large complexity of the clique finding
problem. A last approach developed by Davis [8], Bhanu
and Faugeras [9], and Ayache and Faugeras [10] is based
on the use of relaxation techniques. Objects and scenes
represented by relational graphs and subgraph isomor-
phisms are searched for. A basic limitation is the very large
complexity of the relaxation algorithm. A fourth approach
is that of the PVV system of Lux and Souvignier [11]
which uses two modules implemented as coroutines: a de-
scription module extracts features in the image in a top-
down or bottom-up mode and a prediction and verification
module that interprets features produced by the other
module in terms of a data base of models. More recently,
Segen [121, Turney [13], and Grimson and Lozano-Perez
[14] proposed new approaches to the problem.
The approach described in this paper is based upon

matching simple descriptions of the scene and the models
by a technique called HYPER (HYpotheses Predicted and
Evaluated Recursively) of hypotheses generation and ver-
ification coupled with a recursive estimation of the model
to scene transformation [15]-[17]. It is fast, accurate, ro-
bust to noise, and can deal with scale changes. It is also
general in the sense that it is basically independent of the
kinds of primitives used to represent the 2-D shapes and
in the sense that it can be extended without too much dif-
ficulty to the corresponding 3-D problem [18].

In the next section we describe how models and scene
descriptions are built, i.e., what kind of primitives are
used in our representation and how we compute them from
the input image. We then describe the matching process
that identifies models in the scene description and esti-
mates the corresponding geometric transformation. An
analysis of the complexity of the corresponding algorithms
is then presented, and we conclude with results obtained
from a number of difficult scenes.

II. BUILDING MODELS AND SCENE DESCRIPTIONS
Our system is designed to handle objects with one di-

mension much smaller than the other two, that is flat or
almost flat objects. Partial occultation is allowed, and no
special care is taken of the illumination, i.e., the system
is capable of working under poor lighting conditions. The
acquisition device is a cheap standard Vidicon camera
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connected to an image memory. The video signal is typi-
cally quantized using 256 grey levels and the image size
is either 256*256 or 512*512.
One key feature of the system is that models and scenes

are represented the same way. This makes life a lot easier
for the matching procedures we describe later.

In order to build a model or a scene description, the
following sequence of operations is applied to the picture
of the isolated object or of the scene:

1) if the contrast is high enough (i.e., if the lighting
conditions are perfectly controlled), threshold the image,
smooth the resulting binary picture using erosions and di-
lations [19].

2) if the contrast is not high enough (general lighting
conditions), find the edges by combining gradient and sec-
ond order derivative information [20], [211. A Sobel op-
erator is first applied to the image and the result is thresh-
olded yielding the major intensity discontinuities with the
standard problems of contours which are not connected
and of width larger than one pixel. Second, the picture is
low-pass filtered with two filters of different sizes (in the
current implementation we use 7*7 and 3*3 arithmetic av-
erages). The results are subtracted and zero crossings de-
tected. This produces a very accurate detection of all in-
tensity discontinuities. Edges are connected and of width
one pixel. By following edges in parallel in the two im-
ages, we can eliminate those corresponding to low con-
trast variations while keeping the connectivity high.

3) find the list of connected border points [22].
4) approximate the connected components with poly-

gons [23].
Shapes of 2-D objects are therefore represented by po-

lygonal approximations of their borders. This description
has several advantages which are as follows.

1) It is local, meaning that different parts of the objects
are described independently of each other, allowing for
independent identification.

2) It is compact, meaning that most objects can be ac-
curately described using a small number of line segments
(typically less than 100).

3) It is general, meaning that it can be applied to any
planar shape.

4) It is sensitive to variations in the position and ori-
entation of the objects and allows to recover those param-
eters accurately.

5) It is simple, meaning that the operations used to go
from the image to the description are straightforward and
fast; most of them can be executed in fractions of a second
on commercially available equipment.

Fig. 5 shows the silhouettes of two mechanical parts
used in the French car industry. These parts are foundry
castings. Fig. 6 shows the model description associated
with these silhouettes and with their symmetric homo-
logues. The number of segments involved in these descrip-
tion ranges between 39 and 50. The contrast conditions
are very good and allow for the use of the first method.

Fig. 2 shows some of the parts of an electromechanical
device made by TELEMECANIQUE; Fig. 7 shows the

Fig. 5. Reference parts.

CC~0

©~
Fig. 6. Models associated with the parts in Figs.

metric homologues.
5 and with their sym-

LTh.1.

A I 1 \

4

0 70

t I-S-" - ,

. ,X
1( i'. i .1

Iiii .!
,, '_ I,j

__ 11-;10 1. .

Fig. 7. Models associated with the parts in Fig. 2.

model descriptions associated with these silhouettes.
(Symmetric homologues are not shown because their con-
tours are too similar to the original ones).
The number of segments of these descriptions ranges

between 22 and 129. The contrast conditions are poor and
vary from one part to another, and the unpredictable pres-
ence of reflects (some parts are metallic, others are made
of plastic) imposed the use of the second extraction
method.

In the following, we assume that both the model and the
scene descriptions are given by a set of linear segments,
respectively, (M,) and (Sj) of the form: Mi = (xi, yi, li, a1)
and Sj = (xj, yj, lI', aj) where x and y are the coordinates
of the segment midpoint, I is the segment length, and a is
the segment orientation measured relatively to the hori-
zontal axis.

In addition, the model description will include a certain
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number of privileged segments: in the current implemen-
tation, the privileged segments are the ten longest seg-
ments of the model description. (For justification, see Sec-
tion IV-A.)

III. MATCHING MODELS AND SCENE DESCRIPTIONS

A. Overview
The problem is to match in a scene one or several models

while allowing for distorsion by partial occlusions and by
a similarity transformation (the product of a translation, a
rotation, and a scaling). The basic idea is, for each pos-
sible model, to generate (predict) and evaluate a number
of hypotheses.
To generate a hypothesis is to predict the position of the

model in the scene: this prediction is made by matching a
privileged segment in the model description (M.D.) with
a segment in the scene description (S.D.) by comparing
local intrinsic features. Typically, a few hundred hy-
potheses are generated and ranked on the basis of a local
criterion of merit.
To evaluate a hypothesis is to take advantage of the pre-

dicted position of the model to identify additional seg-
ments between the two descriptions, and also refine the
predicted position of the model (by a Kalman filter). Only
the best first hypotheses are evaluated (typically a few
tens), and the result of each evaluation is a final position
estimate and a quality measure which accounts for the rel-
ative length of the identified segments.
The matching ends when a sufficient number of hy-

potheses has been evaluated or when a very high quality
measure is reached. The hypothesis with the highest qual-
ity score is then reexamined before being validated or re-
jected.
We shall now describe these different stages in detail.

B. Generating Hypotheses
The model position is defined by a transformation T, the

product of a rotation, a scaling, and a translation. The
transformation T is described by a parameter vector v -

(k - cos 0, k - sin 0, tx, ty), such that the image (x*, y*)
of an arbitrary point (x, y) of the M.D. is given by the set
of equations

x* = tx + x * k - cos 0 - y k * sin 0
y* = ty + x - k - sin 0 + y - k - cos 0.

(1)

(2)
Given an M.D. and S.D., a hypothesis (i.e., a prediction
of the position of the model in the scene) is generated by
matching a privileged segment of the M.D. to a compat-
ible segment of the S.D. Compatibility is locally defined
as follows:

Let Mo be a privileged segment of the M.D. A segment
S,0 of the S.D. is defined as compatible with Mo iff:

1) the angle A between Mo and its preceding neighbor
is close to the angle A' between Si0 and its preceding
neighbor. (Close means that abs (A - A') is lower than a
threshold, typically 30 degrees).

2) the ratio r between the lengths of So and Mo is close

to the a priori estimate ko of the scale factor, when this
estimate is available (close means that abs (r - ko) is be-
low a threshold, typically 0.3 * ko).
When a privileged segment Mo is matched to a compat-

ible scene segment Sio, and if no a priori estimate ko of
the scale factor is available, the parameter vector v0 = (ko
cos 00, ko sin 00, to, tv,0)T of To is computed by resolving
(1) and (2) for the two pairs of corresponding endpoints
of MO and Sjo [see (3)-(6)]. In practice, one sometimes
has a good a priori estimate ko of the scale factor k. In
this case, the three remaining parameters 00, txo, and tyo
of To are computed by (4)-(6) only.

ko= I (Sjo)Il (Mo)
00- a(S0) - a(M0)

txo = x -ko - (xo - cos 00 - yo sin 00)

tYo = y -ko - (x0 - sin 00 + yo * cos 00)

(3)

(4)

(5)

(6)
where 1 (Sjo), 1(Mo), a (Sj0), and a (M0) denote, respec-
tively, [he lengths and orientations relative to the horizon-
tal axis of Sio and Mo, and where (x0, y4) are the coordi-
nates of the midpoints of the segments S10 and MO,
respectively.

Since the initial estimate To of T is very likely in error,
we introduce a measure of this error: So is an error co-
variance matrix defined by

So = E((v0 - v) - (v - v)t) (7)

where v and v0 are, respectively, the parameter vectors of
the unknown transformation T and its estimate To. In
practice, So is initialized for each hypothesis with respect
to the error variances Sk,2 s2,52 and S2 attached, respec-
tively, to the initial estimates ko, 00, txo, and tyo. In the
current implementation, these variances are heuristically
estimated. Assuming that sk and s2 are small compared to
1, the elements of S0 are approximated by

So(1, 1) = k20 sin2 (00) * S2 + cos2 (00) _ Sk

So(2, 2) = k0 cos2 (00) * S2 + sin2 (00) 2Sk

(8)

(9)

SO(1, 2) = So(2, 1) = sin (00) cos (00) . (S k- . S2)
(10)

So(3, 3) = s-

So(4, 4) = s'
(1 1)

(12)
the other terms of Sjo being equal to zero.
When a given number of hypotheses has been generated

(typically a few hundred), the hypotheses are ranked by
measuring the compatibility between the pairs of matched
segments (see above). Then the best hypotheses (usually
a few tens) are evaluated.

C. Evaluating Hypotheses
After computing an initial estimate To of the transfor-

mation, we match additional segments of the M.D. with
segments of the S.D., while updating the estimate of the
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M3

Fig. 8. Order of selection of the model segments.

position of the model in the scene and computing a quality
measure of the resulting match. We now proceed to de-
scribe in more details those three points.

1) Matching Additional Segments: After having iden-
tified Mo with Sjo, the program matches the other seg-
ments of the model by an iterative algorithm: at iteration
i, the program selects among the non yet examined seg-
ments of the M.D., the segment Mi which is closest to Mo
(see Fig. 8). The choice of segments Mi close to Mo is
because if the initial estimate To of T is inaccurate, then
the error in position between the estimated image TO(MW)
of T(M1) increases with the distance 11MoMil|. This seg-
ment Mi is transformed into a segment MA* by the current
estimate T, - I of the transformation T Then a dissimilarity
measure dij is computed between the image segment MF
and every segment Sj of the S.D. This dissimilarity mea-
sure is a weighted sum of three positive quantities which,
respectively, account for

1) ai, = the absolute value of the difference between
orientations of M,* and Sj,

2) Di = the Euclidean distance between the midpoints
of Mt and SJ,

3) ,j = the absolute value of the relative difference be-
tween lengths of MF and Sj: lij = (Pl- - lj)Iij.
Each of these quantities is upper bounded by amax, Dmax,

and lmax' respectively. dij is then computed as follows:
* if aij or Dij or lij is above its corresponding upper

bound, then di = 1.
* otherwise, di, is given by

d,j = p * aii/amax + q * Dij/Dmax + r * 'ij/lmax (13)
where p, q, and r are associated positive weights which
add up to one. In the current implementation, we chose p
= 0.6, q = 0.3, and r = 0.1, values emphasizing the role
of the segments orientation.

dij takes a minimum value of zero when MF and Sj are
just superimposed, and increases when the discrepancy
between Mi* and Sj increases: the maximum value of dij is
1, and this value is reached if and only if one of the quan-
tities aij/amax, Dij/Dmax, or lij/lmax is greater than or equal
to one. In the current implementation we have amax = 20
degrees, Dmax - 12 pixels, and lmax = 70 percent.
M1 is matched with the segment Sj of the S.D. such that

dij is minimum and lower than one. Otherwise, Mi is
matched with NIL, which means that Mi has no homo-
logue in the S.D. with respect to the current hypothesis.

2) Updating the Model Position: When a segment Mi
is matched with a segment Sii, a recursive least square

M. _ _
m.(x.y)
(j y j )

/ 1 1

Tj l(M1 )

m (xi,y
e

- S. YJ)3

Fig. 9. Notations for matching.

technique (Kalman filter) is used to update the estimate
Ti of T The new value of the parameter vector vi is
computed as follows.
Basic Method: Given a set of matches {(M,, Sj,)}, we

look for the transformation T which minimizes the crite-
rion

R = E-A2K(T(m1), sj,) (14)

where mi and sj, are the midpoints of segments Mi and Sj,
respectively, A is the usual Euclidean distance, and 1i is
the length of segment Mi. The term 1l/K is here to em-
phasize the role of long segments which are less sensitive
to noise. K is a constant whose value depends on the qual-
ity of the observed images (in our implementation, we
simply computes K = Dmax 1 where 1 is the av-
erage segment length and Dmax is the quantity defined in
Section III-C-1).

If we represent, as in Section III-B, the transformation
T by the vector v = (k cos 0, k sin 0, tx, ty)t, and the point
sj, of coordinates x,!, y/ by the vector Yi = (x', y/)t, we can
rewrite (14) as

R = E (Y - C, V)t W1(Y - C, v).

Matrix Ci is given by

C bi -Yi I 08
Yi xi 0 1/

where xi and yi are the coordinate of point mi.
Matrix Wi is given by

( - O

(15)

with wi = K/li.

We would also like to control the variation of some of
the parameters of the transformation T This can be
achieved by adding to R an extra term of the form (v -
v0)T S) I(V - v0) where v0 corresponds to the initial hy-
pothesis and So is the matrix described in Section III-B.
Finally, the criterion R is written as

R = (YI- C v)t W' l(YI- C v)t

+ (v - vo)t So 1(v - vo). (16)
R is a quadratic criterion and can be minimized recur-

sively by the standard following equations (cf. [24] for in-
stance):

vi = vi_I + Ki * [Yi-Ci * vi- (17)
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Ki = S cc[[ i +Cwi* Si_l C[] (18)

Si= [-Ki Ci] Si-1 (19)

These equations are initialized for a new hypothesis by
So and vo computed in Section III-B, and are recursively
updated after each new match (Mi, Sj).

Refined Method: In the previous approach, the updat-
ing of the transformation T was done by trying to super-
impose the centers of the matched segments. More accu-
rate results were obtained by superimposing the center of
each identified model segment on the straight line sup-
porting its homologous scene segment. In this case, the
determination of T is much less sensitive to the variations
of the segment lengths, as it does not modify the position
of the supporting straight lines.

In that case we simply minimize the criterion

R' =Z-K A2(T(mi), Sji) (14')

where A(T(Mi), Sji) is the distance of the point T(mi) to
the infinite line containing SYi. If its orientation is a' and
if the coordinates of sj, are (x', y!), the criterion can be
rewritten as

R= Z ([-sin (a!') cos (a[)] Civ + 3 ')2 (15')
i KI I

where 6/ = xl sin (a') - y cos (a'). The minimization is
performed exactly in the same way as before.

3) Computing a Quality Measure: The use of the qual-
ity measure is to discriminate between correct and wrong
hypotheses. After each iteration i, Q(i) measures the
length of the identified model segments as a percentage of
the total model length. Q = Q(N) (N is the number of
model segments) is upper bounded by 1; this maximum
value is obtained whenever the model is perfectly and en-
tirely identified in the scene. Q decreases in the presence
of occlusions and nonrigid distorsions (noise, tilted ob-
jects, errors of segmentation, * * *).

D. Ending the Matching Process

The matching ends when the number of hypotheses
which have been evaluated is large enough (typically a few
tens), or when a very high quality measure is reached by
an hypothesis. In each case the hypothesis with the highest
quality measure is reexamined before being validated or
rejected: the reexamination consists in evaluating a last
hypothesis, whose a priori parameters are the a posteriori
estimate and covariance matrix of the best hypothesis.
This reexamination is to check whether some additional
model segments could be matched with a more accurate
initial estimate of T When this is the case, the process is
repeated until it converges. The reexamined hypothesis is
then definitely validated if its quality measure is above a
prespecified threshold, and rejected otherwise.

IV. COMPLEXITY ANALYSIS
A. Computing Time
The average computing time required to match a model

description with a scene description is equal to the number
of generated hypotheses multiplied by the average evalu-
ation time of a hypothesis.
The number of generated hypotheses is reduced by hav-

ing a small number of discriminant model segments se-
lected to be used as privileged segments Mo. The choice
of the long segments is for two reasons. First, long seg-
ments are usually less numerous and therefore more dis-
criminant. Second, the initial estimate of the transfor-
mation T is more accurate with long segments. Of course
at least one of the privileged segments has to be visible
(e.g., occluded length < 30 percent of segment length) in
the scene for the model to be identified. It appeared that
the choice of the 10 longest model segments as privileged
segments never prevented the recognition of reasonably
occulted objects (e.g., total occluded length <60 percent
of model length) in our experiments. This is probably due
to the fact that, in this case, the probability of having all
the priviliged segments occluded simultaneously is very
small.

In addition, each privileged segment Mo of the M.D. is
identified only with compatible segment Sjo of the S.D.
(compatibility is defined in Section V-B). Typically, the
number of scene segments compatible with a privileged
model segment is about 10 percent of the total number of
scene segments (allowing a scale variation of about 30
percent). Therefore, if there are 10 privileged model seg-
ments, the number of generated hypotheses is usually close
to the number of scene segments.
The evaluation time is reduced mainly by three tech-

niques. First, a branch-and-bound technique is used: dur-
ing the evaluation of a hypothesis and at each iteration i,
the program computes an upper bound Qmax on the final
quality measure Q(N): this upper bound is computed by
adding to the current partial quality measure Q(i) the nor-
malized length of the model contours which have not been
examined yet (therefore assuming this remaining part will
be perfectly matched). As Q(i) is a decreasing function of
i, the evaluation of the current hypothesis is aborted early
(and the hypothesis rejected) as soon as Qmax happens to
be lower than the quality measure attached to a previously
evaluated hypothesis.

Second, the evaluation process is significantly acceler-
ated by having the scene segment orientations aj initially
sorted: in this case, when searching for the best match Si
of an image segment Ml (cf. Section III-C-1), the scene
segments Sj whose orientation aj is compatible with the
orientation of M* (i.e., such that abs (a* - aj < amax) are
selected by a binary search in logarithmic time. One could
also compute square buckets on the S.D. to have fast ac-
cess to the scene segments close to a predicted location.

Third, all segments whose length is below a fixed limit
(typically 8 pixels for images of size 256 * 256) are re-
moved from both the M.D. and the S.D. before process-
ing.
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To conclude, one could notice the possibility of gener-
ating and evaluating all hypotheses independently of each
other. This property allows for an execution of the pro-
gram on parallel hardware to still reduce the global com-
puting time. If several models must be located in the same
scene, they can also be processed in parallel.

(1)

MODEL

(a)

,. -

SCENE

(b)

L.
. --

POSITION ESTIMATION

(c)

B. Storage Requirements
The storage requirements are small and are a linear

function of the data size: one has to store essentially the
M.D. and the S.D., i.e., the vertices coordinates of two
polygonal approximations (usually a few hundred points).
Also, and in order to speed up the evaluation process (cf.
above), one can store the orientations of the segments of
both descriptions.

V. RESULTS
The recognition method described in this article has

been integrated within a vision system and tested on a
large number of different scenes. The vision system has
also been coupled to an industrial robot arm to achieve
picking and repositioning of unoriented partially overlap-
ping industrial parts [25]. We present here some typical
results which illustrate the capacities of the vision system.

Except for Example 6, programs are written in Fortran
and run on a minicomputer Perkin Elmer 3240. Also,
computing times refer to the matching process only ex-
cluding the image segmentation process; in effect, the
segmentation process is totally independent of the match-
ing process and should be performed in a fraction of a
second on dedicated hardware.

A. Example 1: Illustrative Example
We first present a simple didactic example to illustrate

the major steps of the recognition procedure. Fig. 10 il-
lustrates the generation and evaluation of a correct hy-
pothesis, while Fig. 11 illustrates the discrimination be-
tween correct and wrong hypotheses.

Let us consider the two left-most drawings of the first
row of Fig. 10; they show, respectively, the model descrip-
tion associated to a car shock absorber and the scene de-
scription associated to the image of a similar part rotated,
translated, and partially occluded by another part. Both
descriptions have been obtained by the method described
in Section I (good lighting conditions).
The task of the recognition program is to match and

locate the model within the scene. Among all the hy-
potheses generated by the program, a correct hypothesis
is obtained when the privileged model segment repre-
sented by a solid line in the M.D. is matched to the com-
patible scene segment represented by a solid line in the
S.D. (first row of Fig. 10). In this situation, the program
determines an a priori estimate of the model position which
is shown in the third column of this first row.
Rows 2, 3, and 4 of Fig. 10 correspond to some steps

of the evaluation process. Columns 1 and 2 show, respec-
tively, in solid lines the segments which are identified be-
tween the M.D. and the S.D. Column 3 shows the current
estimate of the model position. Successive estimates are
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Fig. 10. Generation and evaluation of a correct hypothesis (see text).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 11. Discrimination between wrong and correct hypotheses (see text).
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(a) (D)

(c) (d)

Fig. 12. Models 3 and 4 of Fig. 6 are identified and located (in white) in
four scenes. Notice the presence of sprues and dead-heads on the cast-
ings, and the presence of scaling between model and scene descriptions
of 0.68 in scenes (a), (b), and (c), and 1.06 in scene (d).

superimposed to better exhibit the convergence result, and
one can visualize the recursive update of the model posi-
tion. Numerically speaking, the parameters (0, k, tx, ty)
of the transformation T vary from an a priori estimate
(-81.7°, 1.13, -49 pixels, 281 pixels) to a final estimate
(-73.86°, 1.015, -15.67 pixels, 237.52 pixels).
The last row of Fig. 10 shows the final result obtained

after the reexamination of this hypothesis: one can notice
the correction of some matching errors which were ini-
tially due to the inacurrate a priori estimate of the model
position. The parameters of the final estimate of T after
reexamination are (-74.07°, 1.00, -9.55 pixels, 236.34
pixels).
Among all the hypotheses generated by the program,

we see in Fig. 11 nine hypotheses generated when the same
privileged segment is identified with nine different com-
patible scene segments. All these hypotheses (except for
the last one) have a quality measure lower than 0.25 and
are rejected; the last hypothesis has a quality measure
greater than 0.60, and is validated.

B. Example 2: Castings with Dead-Heads, Variable
Scale Factor

Fig. 12 shows the result of the identification and posi-
tioning of models 3 and 4 of Fig. 6 in four different scenes
containing similar parts in arbitrary planar positions. The

parts are observed just after the casting process and they
have sprues and dead-heads attached to them. In addition,
there is a scaling between models and scenes of 0.68 in
Fig. 12(a), (b), and (c), and of 1.06 between models and
(d). This scaling is taken into account by using (3) to es-
timate ko.
The pictures are segmented as described in Section II

(good lighting conditions). The models are correctly de-
tected and located, and the computed positions are super-
imposed in the pictures. The quality scores vary between
65 and 85 percent, and the computing time is of the order
of one second per model.

C. Example 3: Partially Overlapping Castings
Fig. 13 shows the identification and positioning of

models 1, 2, 3, and 4 of Fig. 6 in a scene containing sim-
ilar parts in arbitrary positions [Fig. 13(a)]. In addition,
some of the parts have large sprues and dead-heads at-
tached to them, and the parts are partially occluding each
other. The picture is segmented as described in Section I
(good lighting conditions) and the resulting scene descrip-
tion is shown in Fig. 13(b) (280 segments). The result of
the matching is shown in Fig. 13(c), where the models
have been superimposed in white on the scene at the lo-
cation determined by the program. We show in Table I the
main parameters of the solution.
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(b)
(a) (b)

(c)
Fig. 13. (a) Original scene containing four partially overlapping castings

with sprucs and dead-heads. (b) Segmented scene description (280 linear
segments). (c) Models of Fig. 6 are identified and located (in white) by
the program in the scene.

TABLE I
RECOGNITION OF MODELS 1, 2, 3, AND 4

Model Number of Segments Quality Measure Computing Time

1 39 54 percent 0.7 s
2 41 55 percent 1.25 s
3 50 45 percent 1.25 s
4 50 40 percent 2 s

D. Example 4: Partially Overlapping
Electromechanical Parts

Fig. 14(a) shows a scene with several overlapping parts
of an electromechanical device observed under bad light-
ing conditions (this image corresponds to the scene shown
in Fig. 3). The scene is segmented by the second method
described in Section I and the resulting scene description
(759 segments) is shown in Fig. 14(b). Models 5, 6, 7, 8,
and 9 of Fig. 7 are successfully identified and located in
the scene; the result of the matching is shown in Fig. 14(c)
where the models have been superimposed in white on the
scene at the location determined by the program. Note
that when there are several occurences of a model in a

scene, the program simply selects the hypothesis with the
highest quality measure, which usually corresponds to the
most visible occurence. A minor modification in the pro-

gam would allow for the recognition of all the occurences

of a model corresponding to hypotheses whose quality
measure is above a determined threshold. Table II shows
the main parameters of the result.

E. Example 5: Coupling with a Robot Arm
The vision system has been coupled to a robot arm to

achieve automatic picking and placing of overlapping
workpieces. In this system, the modeling of objects in-

(c)

Fig. 14. (a) Original scene containing parts of an electromechanical device
(this is the observed image of the scene in Fig. 4). (b) Segmented scene

description (759 linear segments). (c) Models of Fig. 7 are identified and
located (in white) by the program in the scene.

TABLE 11
RECOGNITION OF MODELS 5, 6, 7, 8, AND 9

Model Number of Segments Quality Measure Computing Time

5 73 39 percent 7 s
6 22 36 percent 4 s
7 48 40 percent 2 s
8 129 66 percent I s
9 89 38 percent 3.5 s

cludes a list of potential grasping locations, and the rec-

ognition procedure includes, when a model is identified,
the selection of an accessible grasping location among the
potential grasping locations.

This robot system is described within details in another
article [25] and we shall only present results in the sequel.
Fig. 15 shows the potential grasping locations attached to
models 8 and 9 of Fig. 7. Fig. 16 shows the accessible
grasping locations selected after the recognition of these
models, and Fig. 17 shows the actual picking and reposi-
tioning of the corresponding objects.
The result of this coupling has been to provide a more

realistic testbed for the vision system, and also to dem-
onstrate the feasability of the automatic picking and re-

positioning of partially overlapping workpieces lying on a

flat surface using our vision system.

F. Example 6: Precision Test
It is difficult to compute the accuracy of the determi-

nation of the transformation T in general because it de-
pends on many factors such as the nature of the model,
the quality of the viewing conditions, and the degree of

(a)
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Fig. 15. Grasping locations attached to models 8 and 9 of Fig. 7. The sym-

metric rectangles are the vertical projections of the gripper fingers.

rig. Ii. iaraspilg anu repositoning ot tne oujects sciecieu in rig. Io.

(a) (b)

Fig. 16. Determination of accessible grasping locations for two of the
models identified in Fig. 14; the rectangles are the vertical projections of
the gripper fingers.

occultation of the observed objects. At the least, a quali-
tative estimate was derived by having the robot arm safely
picking and repositioning several different objects in many
different situations.

However, a quantitative estimate of the accuracy of the
determined rotation angle 6 was made on images of me-
chanical gears. The polygonal segmentations extracted
from two different images of a gear are shown in Fig. 18.
One can notice some local alterations of the contours
which are mainly due to unpredictable metallic reflections.
The precision experiment consisted in extracting the de-

scription of a gear in a reference position. This description
was taken as a model description. Then, the same gear
was rotated by a precisely measured angle, and the cor-
responding extracted description was taken as a scene de-
scription. For 300 successive measures, the maximum de-
viation between the estimate and the actual angle was 0.15

(c)
Fig. 18. Descriptions associated with the gears used in the precision test.

(a) Reference gear. (b) Gear rotated by an angle of 7°. (c) Superimpo-
sition of (a) and (b) by the program.

degrees. The measured standard deviation was 0.07 de-
grees.

For this industrial application, the program was trans-
ported to a Motorola-68000 based microcomputer, and
partially translated to machine code. The number of gen-
erated hypotheses was 50, and only the 8 best hypotheses
were evaluated. The maximum length of non identified
segments was upper-bounded by 30 percent of the total
model length, while the average length of nonidentified
segments was 20 percent (due to the lighting conditions
and the lack of stability of the segmentation algorithm).
The computing time is lower than one second, including
the segmentation process which is done on dedicated
hardware.
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VI. CONCLUSION

We have described a new method for the recognition and
positioning of 2-D objects. This method uses segmented
descriptions of the object contours to generate and recur-
sively evaluate a number of selected hypotheses. The main
features of this method are its robustness to lighting con-
ditions, partial occlusions (up to 60 percent typically) and
scale variations (20-40 percent typically), its accuracy in
locating objects, its high degree of parallelism (hy-
potheses can be generated in parallel), and its small stor-
age requirements (essentially the storage of the segments
endpoints). The method has been experimented on a large
number of different scenes, and some typical examples
have been presented, including the coupling of the vision
system to a robot arm.

Returning to problemsI,II, and III of the Introduction,
we can say that the existing work in computer vision al-
lows us to generate quickly and accurately the outlines of
flat objects even under difficult viewing conditions.
Boundary representations can then easily be built by func-
tional approximation techniques. First degree polyno-
mials were used in this paper but nothing (except the com-
puting time) would have prevented us from using other
functions. Problem I is therefore solved by algorithms
which can be implemented by very fast programs or hard-
ware.
We have only scratched the surface of problemII. We

represent our models the same way as our scenes, i.e.,
with polygonal approximations. The corresponding data-
base is simply a sequence of such models and no ways are
provided for smarter model indexing than a simple linear
scan of that database. A lot remains to be done in this
area.

ProblemIII, that of matching models with scene de-
scriptions, has been solved in a simple way by exploiting
the very important constraint of rigidity. This allows us to
work with the well-known group of similarity transfor-
mations and to drastically prune our search tree. By cou-
pling the search algorithm with a recursive estimation of
the transformation, we have achieved a high positional ac-
curacy. We believe that these two features (exploiting ri-
gidity and recursive parameters estimation) are basic in
many related applications. In that sense we think our work
is also a contribution to establishing the lacking method-
ology we were referring to in the Introduction.
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