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Abstract. In this article we study the problem of estimating the pa-
rameters of a 2-D electrophysiological model of the heart from a set of
temporal recordings of extracellular potentials. The chosen model is the
reaction-diffusion model on the action potential proposed by Aliev and
Panfilov. The strategy consists in building an error criterion based upon
a comparison of depolarization times between the model and the mea-
sures. This error criterion is minimized in two steps : first a global and
then a local adjustment of the model parameters. The feasibility of the
approach is demonstrated on real measures on canine hearts, showing
also the necessity to introduce anisotropy and probably a third spatial
dimension in the model.

1 Introduction

Direct models of the electrical activity of the heart are numerous ([12,3,8]). Since
in vivo measures are available([10,4,14]), a new challenge is to solve the inverse
problem, that is to find the parameters of a model that best fit the measures
obtained from a specific patient. Fitting a model on real measures is necessary for
building a patient specific model suitable for diagnosis of electrical pathologies
as well as for intervention planning.

When inspecting electrophysiological data, cardiologists often base their analy-
sis on the depolarization and repolarization maps of the epicardium or endo-
cardium ([14]). From those maps, expert eyes can detect different electrophysio-
logical pathologies ranging from the presence of low conduction zones caused by
infarcted tissue, to the occurrence of fibrillation caused by scrolling waves.

The aim of the research effort presented in this paper is to provide cardiol-
ogists with additional information for a better diagnosis and a better planning
of therapies by finding the parameters of a cardiac electrophysiology model that
can best explain electrophysiological observations (isochrones).

By inverting such a model, we can expect two important outcomes. First, we
aim at estimating “hidden” physical parameters which help to better understand
and quantify the heart physiology (conductivity for instance) from an original
set of physical measurements (depolarization times). Second, with this set of



parameters, we can use the direct model to study pathologies, to plan and even
simulate some therapeutic protocols.

In vivo electric measures on the endocardium or epicardium ([10,4]) consist
in measuring of the extracellular potential, from which the depolarization times
are computed. Very accurate models such as bidomain models ([6]) or Luo-
Rudy models ([9]) provide excellent insight into the physiological phenomena
provoking the electrical activity of the heart but are probably too sophisticated
for our inverse problem. Indeed, these models are designed to capture very subtle
modifications in the shape of the action potential whereas we only measure here
the depolarization times. For this type of measures, a phenomenological model
describing the action potential propagation is probably sufficient, such as the
FitzHugh-Nagumo [5] model. Aliev and Panfilov developed a modified version
suited to the cardiac action potential [1]:

ε2∂tu = εdiv (D∇(u)) + ku(1− u)(u− a)− uz (1.a)
∂tz = −(ku(u− a− 1) + z)) (1.b) (1)

where u is a normalized action potential (between 0 and 1), z is a dynamic
variable modeling the repolarization, k controls the repolarization, ε controls
the coupling between the action potential and the repolarization variable z,
and a controls the reaction phenomenon. The depolarization time of a point
is computed as the first time such that u(t) = 0.5. A 3D anisotropic model
based on the Aliev-Panfilov system was developed in the context of the ICEMA
collaborative research action [2,15].

The electrophysiological measures are usually available on the endocardium
or the epicardium, so as a first methodical and essential stage before going on
to the 3D problem, we treat a simplified and tractable problem by considering
a surface model. In this manner, we simulate the Aliev and Panfilov model on a
surface triangulation S with N vertices and L triangles. We name V the set of
vertices and T the set of the triangles. Hence, the tridimensional propagation is
simplified to a propagation on the 2D surface of the epicardium. Furthermore, the
fiber directions are not relevant in the 2D model since they are not tangential
to the epicardial surface, and we consider an isotropic propagation i.e. D =
d diag(1, 1, 1) in system (1), where the diffusion coefficient d is proportional
to a conductivity. System (1) is normalized, the model is only 2D and the 3
parameters a, k and d all influence the depolarization times. Hence it is not
possible to estimate an electrical conductivity from the depolarization times and
we will call d the apparent conductivity in the sequal. The temporal integration
of the system (1) is done with an explicit Euler scheme. The spatial integration
is performed with the finite elements method with linear triangular elements.
The numerical issues and the implementation are described in [11].

In this article we present results on the inversion of the Aliev-Panfilov electro-
physiological model leading to a regional estimation of apparent conductivities.
In Section 2, we first achieve a coarse global estimation of the parameter k that
properly scales the electrical propagation. In Section 3, we perform the regional
estimation of the apparent conductivity by minimizing an error function between



the measured and simulated depolarization times. In Section 4, a case study
on dog hearts shows the efficiency of the presented approach for inverting the
Aliev-Panfilov electrophysiological model. Finally in Section 5, we sum up this
work and present its perspectives.

2 Global estimation of the parameter k

The parameter ε is chosen according to the grid size, and the parameters of the
model a, k, or d can vary between different individuals or species. We choose to
estimate the parameter k from the depolarization times while standard values
are assigned to the other parameters.

As stated in [7], the velocity of the depolarization wave on a 1D domain can
be expressed as follows

c =
√

2kd(0.5− a) (2)

In 2D, this velocity is not constant in space. At each point in the mesh, it
is equal to the velocity in 1D (Equation (2)) minus a term proportional to the
curvature of the front [7]. Since we only need a global estimate of the propagation
velocity on a surface, we neglect, as a first approximation, the front curvature and
simply approximate the velocity c of the depolarization wave by its expression
in Equation (2).

Luckily, the depolarization velocity can also be computed from the gradi-
ent of the measured depolarization times on the surface, ∇xt : 1/c = ‖∇xt‖ .
Then, we can estimate a median value of the parameter k over the whole mesh:
median (‖∇xt‖)−1 =

√
2kd(0.5− a).

A direct inversion of this equation would be a comparison between a theo-
retical 1D velocity and an apparent velocity computed on a 2D surface. As a
consequence, we use a velocity estimated from a first guess simulation, that we
computed on the same mesh as the one used for the measures. As the veloc-
ity c is proportional to 1/

√
k, a ratio between measured cm and simulated cs

propagation velocity can be computed as follows.

median ‖∇xtm‖
median ‖∇xts‖

=
cs

cm
≈

√
ks

√
km

. (3)

The measured and the simulated depolarization times are denoted by tm and ts

respectively. ks is the value for the parameter k used to compute the first guess
simulation and km is the value computed to adjust the measures. km can be
computed as follows.

km = ks

(
median ‖∇xts‖
median ‖∇xtm‖

)2

(4)

3 Local estimation of the electrical apparent conductivity

With a simulation globally fitting the measures, a local adjustment of the model
is possible. We choose the apparent conductivity d as the spatially varying pa-
rameter. Indeed, we can give a clinical interpretation of its variation: a region



with a low apparent conductivity (AC) value is a region where the electrical
wave does not propagate as fast as in the other regions and consequently may
be pathological. The AC that we estimate cannot be compared to the electrical
conductivity because we used normalized Aliev Panfilov equations. Moreover, we
only estimate one parameter of the equation whereas the depolarization times
also depend on a and k. Consequently, we detect variations of parameter d which
are influenced by the other parameters.

Estimating the AC from patient specific data can be addressed as a data
assimilation problem. None of the classical methods of data assimilation, like
Kalman filtering and variational methods are truly suited for the model and the
measures of our problem. Indeed, classical methods generally require an explicit
functional relationship between the results of the model and the measures. Such
a relationship is not available between action potentials and depolarization times
since the depolarization time is an implicit function of the action potential.

In the discretized model ([11]), an AC value is assigned to each triangle.
Consequently, we look for an AC map (d) = (dj)0≤j≤L−1, where L is the num-
ber of triangles in the triangulation. This AC map should minimize C(d) =∑

v∈V(tmv − tv(d0, . . . , dL−1))2 where V is the set of the vertices in the triangu-
lation, tmv is the measured depolarization time at vertex v and tv(d0, . . . , dL−1)
the depolarization time at vertex v resulting from a simulation with the conduc-
tivities (d0, . . . , dL−1).

In order to have a robust estimation of the AC, we split the heart surface
into different connected regions and estimate one AC value for each region. Let
(Rk)0≤k≤K−1 be a partition of the surface in K regions. For each region Rk,
dj = dRk

for all j such that the jth triangle of the surface belongs to Rk. Then,
the new minimization problem is to find (d) = (dRk

)0≤k≤K−1 that minimizes
C(d) =

∑
v∈V(tmv − tv(dR0 , . . . , dRK−1))

2

We look for the minimum of C(d) with respect to K variables: dR0 , . . . dRK−1 .
Instead of using a generic method to solve for this multidimensional minimiza-
tion, we consider the causality of the electrical wave propagation: the depolar-
ization times in one region mostly depend on the apparent conductivities of the
regions that were depolarized before. Hence, we estimate the AC for one region
after the other, following the order of depolarization. During the estimation of
dR, the conductivities of the other regions remain constant.

We transform a K-dimensional minimization problem to K successive one-
dimensional minimization problems:

C(dR) =
∑
v∈V

(tmv − tv(dR))2 (5)

We simplify the criterion C(d) by taking into account only the vertices of
the region R because there are enough vertices in a region to provide a robust
estimate. Equation (5) then yields C(d) =

∑
v∈R(tmv − tv(dR))2

The values of the function t(dR) can only be computed after simulating the
propagation. Therefore the derivative is computationally expensive to estimate.
We favoured a minimization method that does not involve any derivative, an



(a) (b)

Fig. 1. Measured depolarization times. (a) Normal heart. (b) Case of an infarct
on the anterior wall.

iterative inverse parabolic interpolation derived from the Brent method [13].
This very consistent method replaces the function to be minimized by a well-
chosen parabola. The minimum of the function C is approximated by the easily
and efficiently computed minimum of the parabola. Given three points on the
curve (da, C(da)), (db, C(db)) and (dc, C(dc)) , there is a unique parabola f(x) =
αx2 + βx + γ described by these points. It reaches its extremum at point x such
that

x = db −
1
2

(db − da)2(C(db)− C(dc))− (db − dc)2(C(db)− C(da))
(db − da)(C(db)− C(dc))− (db − dc)(C(db)− C(da))

. (6)

From these remarks, we construct an iterative process which is a simplified
version of Brent’s method [13], to find the minimum from an initial bracketing of
this minimum. We call a bracketing of the minimum of function C three points
da, db and dc such that da < db < dc, C(db) < C(da) and C(db) < C(dc).
We repeat the parabolic estimation until we are satisfied with the computed
value: if (dk) is the sequence of successively estimated minima, we consider that
convergence is reached when the difference between two successive estimations
is smaller than a given precision value p i.e. |dk+1 − dk| < p.

4 Results on in vivo measures

The in vivo measures used in this section were acquired on adult male mongrel
dogs using a multi-electrode epicardial sock during an artificial pacing on the
right ventricle. The surgery, experimental layout and the data acquisition are
described in [11,15]. In this paper, we present two cases. The first case which
is a normal heart, will be used to describe the procedure (Figure 1.a). The
depolarization times were computed from a recording of electrical potentials on
128 electrodes and interpolated on a 192 vertices surface mesh. The second case
is that of a heart with an anterior wall infarct (Figure 1.b). The depolarization
times were computed from a recording of electrical potentials on 247 electrodes.



(a) (b) (c)

Fig. 2. Absolute error on the depolarization times between measures and sim-
ulations before (a) and after (b) the global automatic estimation and after the
local estimation (c).

(a) (b) (c) (d)

Fig. 3. The regions chosen on the epicardium, according to the propagation of
the depolarization wave. The large red region contains the pacing site.

The first step toward a parameter estimation is a good initialization since the
propagation is very sensitive to the localization of the pacing regions. We thus
selected from the measures (Figure 1) the points with the smallest depolarization
times to initialize the propagation.

4.1 Global estimation of the parameter k

Applying the method presented in Section 2 to the data of the normal heart, we
obtained a global value of km = 25.2 starting from a crude initialization ks = 8.

The absolute error between the simulated depolarization and the measured
depolarization times before the automatic estimation of k is presented on Fig-
ure 2.a. After this estimation, the error is significantly lower as shown on Fig-
ure 2.b. Before the estimation , the mean error was 20.6 ms. After the automatic
estimation, the mean error was 10 ms compared to the total duration of the
depolarization wave which lasts around 120 ms.

4.2 Local estimation of the apparent conductivity

We now apply the presented method to perform the local estimation of the ap-
parent conductivity (AC). We first need to partition the epicardium into different



Fig. 4. Apparent conductivity map estimated from the first set of data.

(a) (b) (c)

Fig. 5. Depolarization times before (a) and after (b) the local estimation com-
pared with the measures (c). The absolute error on the depolarization times after
the local estimation of the parameters is displayed Figure 2.c.

regions. We create a partition of the epicardium according to the electrical prop-
agation. In this way, this partition is adapted to the particular artificial pacing of
this experiment. In practice, we split the epicardium in successive regions follow-
ing the isochrones of the depolarization times map as closely as allowed by the
mesh resolution, and we then split these regions orthogonally to the isochrones.
Figure 3 show a partition in 14 regions. We sort out the regions of Figure 3 in
the order of their depolarization.

We then estimate one AC value for each region successively. The convergence
on each region is quick and stable. Figure 4 presents the AC map that we obtain
for the case of the normal heart.



(a) (b)

Fig. 6. AC estimated for the case of the anterior infarct (a). The points marked
with a bright circle design the localization of the infarct. The points marked with
a dark star design the pacing region. Depolarization times computed with these
AC values (b).

4.3 Discussion

Although the variations of the computed AC for the normal heart do not have
a physiological meaning, they closely reflect the asymmetry of the measures.
These variations are probably due to the modeling of the epicardium as an
homogeneous medium, without distinguishing the left and right ventricles nor
taking into account the fibers direction.

Figure 5 displays the depolarization times simulated by the model before
(5.a) and after (5.b) the local estimation of the AC, and compare them to the
measures (Figure 5.c). The depolarization times computed with a constant AC
are in the proper range of values, but from Figure 5, when comparing these
results with the measures (5.c), we notice that the shape of the depolarization
front is much closer to the measures with the local adjustment.

The quality of this estimation is also assessed by the visualization of the
absolute error (Figure 2.c) on the depolarization times in the epicardial surface.
We can see on Figure 2 that the absolute error decreased significantly after both
the global and the local estimation.

We also applied the AC estimation method on the case of an infarct on
the anterior wall. The AC values are displayed on Figure 6.a, the purple circles
correpond to the infarcted region. The depolarization times computed from a
simulation taking into account these values are displayed on Figure 6.b. In the
infarcted region, the shape of this depolarization front reproduces the shape of
the measured depolarization front (Figure 1.b).

A large portion of the infarct is detected in the two regions with the lowest
conductivity values, but we see that a part of the infarct is not detected as a
low conductivity region. The heterogeneous infarct geometry in the heart wall
can explain this observation: the infarct can be transmural (i.e. extending from



the inner surface to the outer surface) or non-transmural (i.e. extending from
the inner surface to somewhere in the wall), and when considering vertices in
the mesh, where the infarct is non-transmural, electrical conductivity can be
almost normal. In addition, a low conductivity is estimated in normal regions.
As seen in the first case, this may be due to the modeling of the epicardium as
an homogeneous medium. We are currently working on the inclusion of the fiber
directions in this model.

5 Conclusions and perspectives

We addressed the problem of estimating a set of parameters for the action poten-
tial propagation modeled by Aliev and Panfilov from measured depolarization
times. In order to evaluate the quality of our results, we used a criterion based
on the difference in depolarization times between the model and the measures.
We first presented a procedure to globally estimate a set of parameters so that
the electrical propagation in the model occurs in the same time and space scale
as the measures. We then presented a method to locally estimate the electrical
apparent conductivity (AC) region by region. We successfully estimated global
and local parameters of the model from in vivo measures of a canine heart.
The simulation of the model with these new values showed that the error on
the depolarization times was significantly decreased. Moreover, the variations of
the AC values that we computed are consistent with the measures. When this
method was applied to an infarcted heart, a large part of the infarcted region
was assigned a low AC value.

In order to have a fully automatic process, we still need to build automatically
the epicardium’s partition. The next step will be to estimate the parameters of
a 3D model of the heart by establishing a correspondence between 2D measures
and a 3D mesh. A proper physiological validation would require the application
of our method to a benchmark of pathological and normal measures analyzed by
experts. At that time, only the AC is estimated, but other measures, as the action
potential duration, would allow us to estimate more parameters. An advantage
of the proposed local estimation is that it is not dependent on the model since
it only uses simulations of the direct model. Thus, it can easily be adapted to
more complex models that can reproduce specific pathologies.
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