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An Electromechanical Model of the Heart for Image
Analysis and Simulation

M. Sermesant* , H. Delingette, and N. Ayache

Abstract—This paper presents a new three-dimensional electro-
mechanical model of the two cardiac ventricles designed both
for the simulation of their electrical and mechanical activity, and
for the segmentation of time series of medical images. First, we
present the volumetric biomechanical models built. Then the
transmembrane potential propagation is simulated, based on
FitzHugh-Nagumo reaction-diffusion equations. The myocardium
contraction is modeled through a constitutive law including an
electromechanical coupling. Simulation of a cardiac cycle, with
boundary conditions representing blood pressure and volume
constraints, leads to the correct estimation of global and local
parameters of the cardiac function. This model enables the in-
troduction of pathologies and the simulation of electrophysiology
interventions. Moreover, it can be used for cardiac image analysis.
A new proactive deformable model of the heart is introduced
to segment the two ventricles in time series of cardiac images.
Preliminary results indicate that this proactive model, which
integrates a priori knowledge on the cardiac anatomy and on its
dynamical behavior, can improve the accuracy and robustness
of the extraction of functional parameters from cardiac images
even in the presence of noisy or sparse data. Such a model also
allows the simulation of cardiovascular pathologies in order to test
therapy strategies and to plan interventions.

Index Terms—Cardiac image analysis, cardiac modeling, de-
formable model, electromechanical coupling, simulation of cardiac
pathologies.

I. INTRODUCTION

N this paper, we introduce a new integrated three-dimen-
I sional (3-D) model of the left and right ventricles of the heart
which can be used for the simulation and the analysis of cardiac
pathologies. The overall principle is described in Fig. 1. Our
in silico model includes knowledge coming from various disci-
plines including anatomy, electrophysiology and biomechanics,
in a framework where it can be directly compared to in vivo mea-
surements. By coupling this model to clinical data, one could
simulate a number of pathologies or the effect of therapeutic
actions, and extract a number of indexes of the cardiac function.

The computational modeling of the human body has been of
increasing interest in the last decades [1], as it has benefited from
progresses in biology, physics and computer science. It is now
possible to combine in vivo observations, in vitro experiments
and in silico simulations.
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Fig. 1. Overview: electromechanical model of the heart, interaction with pa-
tient clinical data and applications: cardiac function analysis and simulation of
cardiac activity for pathology simulation.

There is an important literature on the functional imaging and
modeling of the heart [2], [3]. The following references provide
examples of the measurement of electrical activity, deformation,
flows, fiber orientation [4]—[8], and of the modeling of the elec-
trical and mechanical activity of the heart [9]-[12]. Many of the
functional models of the heart are direct computational models,
designed to reproduce in a realistic manner the cardiac activity,
often requiring high computational costs and the manual tuning
of a very large set of parameters. In our approach, we rather se-
lect a level of modeling compatible with reasonable computing
times and involving a limited number of parameters, thus al-
lowing the potential future identification of the model parame-
ters from clinical measurements on a specific patient (by solving
the corresponding inverse problem). The first work in this direc-
tion was recently presented [13], [14].

Also we would like this model to help the interpretation of
cardiac image sequences. Cardiac image segmentation is still
an active research area as reported in the survey by Frangi et al.
[15] and a special issue of IEEE TRANSACTIONS ON MEDICAL
IMAGING [16]. The use of deformable models [17] is mainly
limited to deformable surfaces [18], with an extension to spatial
and time constraints [19]. Whereas it ensures a better robustness
against noise and can include trajectory constraints, there is no a
priori knowledge introduced on the motion to help the segmen-
tation. This was made possible with a four-dimensional statis-
tical heart motion model computed from series of tagged MR
images in [20]. This motion model allows a better initialization
in the different images from a segmentation of the first image,
thus, a better segmentation of the sequence. Another extended
approach presented in [21] combines a point distribution model
(PDM) and two coupled triangulated surfaces to segment the left
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ventricle, using also a motion model for the initialization. De-
formable surfaces can also be coupled with prior segmentation,
for instance multiscale fuzzy-clustering [22].

Extensions of the PDMs used in segmentation methods are
based on the active shape models (ASMs) and the active ap-
pearance models (AAM). A description and comparison of these
two models can be found in [23]. These models are now devel-
oped for spatio-temporal data. In [24], the ASM is extended to
2-D+time by introducing spatio-temporal shapes (ST-shapes).
In [25], the AAM framework is extended to 2-D-+time by con-
sidering the image sequence as a single shape/intensity sample,
giving the Active Appearance Motion Model (AAMM). These
models can be theoretically extended to 3-D, but the size of the
models and the difficulty to obtain good correspondences in 3-D
images make it still a current research area.

At the same time, deformable templates evolved toward so-
phisticated approaches, for instance combined with Bayesian
classification and Markov random fields [26], or coupling
shape-space and Kalman-filter-based tracking [27]. But few
of these approaches integrate the volumetric aspect of human
organs and the dynamic nature of the heart. Due to the com-
plexity of the developed methods, it is mostly done by prop-
agating the result obtained in one image (or one slice) to the
next one [28].

Volumetric models have mostly been introduced in cardiac
function analysis for interpretation [29], [30] as they offer richer
mechanical parameters. They were also introduced in deforma-
tion analysis for physically-based interpolation [31]-[33]. We
believe that volumetric models also allow one to introduce much
more a priori knowledge on the organ directly in the segmenta-
tion process. It can be anatomical information, like fiber orienta-
tion, or mechanical behavior, to offer more reliable estimations
of heart kinematics [34]—-[38]. It can also be used to jointly esti-
mate kinematics and mechanical properties of the myocardium
[39]. Most of these approaches use hexahedral or tetrahedral
meshes, but there are also alternative mesh-free methods pro-
posed [40].

These models (geometrical and/or biomechanical) are passive
models, i.e., they do not anticipate the cardiac motion, they only
evolve under the action of 1) external image forces and 2) in-
ternal forces which constrain the regularity of the motion (geo-
metrical models) or take into account the fiber orientations and
a constitutive law (biomechanical models).

The key idea in this paper is to build a “ProActive Deformable
Model” of the heart for image analysis. It is a volumetric de-
formable model of the heart integrating a priori knowledge on
the motion in the segmentation process through the simulation
of the electrical propagation and the mechanical contraction. In
the classification proposed by Frangi et al. review [15], the pre-
sented method would fit in the “continuous volumetric model”
class. We believe that this new generation of physiology-based
deformable models opens new possibilities in cardiac function
analysis. Moreover, it allows us to introduce pathological prior
information into image analysis, compared to statistical motion
models built on volunteers described in the literature.

The proactive model we introduce here presents internal
forces which create a complete contraction of the two ventricles
synchronized with the electrocardiogram (ECG), therefore, the

external forces only have to create local corrections to adjust
the model to the boundaries observed in the cardiac images.

Using a model with physics- and physiology-based parame-
ters one can simulate some cardiovascular pathologies and inter-
ventions. For instance, this could help devise techniques to make
electrophysiology therapies shorter, less invasive and more suc-
cessful.

The electromechanical model of the heart presented is based
on mathematical systems of nonlinear partial differential equa-
tions, set on a 3-D domain, considering the ventricles as a con-
tinuum.

We present first the anatomical mesh construction, then the
electrophysiology modeling and the contraction simulation,
through an electromechanical coupling. The computed model
is compared to measures from both the literature and medical
images. Finally two applications are presented: pathology
simulation and segmentation of a cardiac image sequences.

II. ANATOMICAL MODEL CONSTRUCTION

The myocardium is represented as a tetrahedral volumetric
mesh including anatomical information. The process to build
such a model is detailed in [37]. The main anatomical informa-
tion we use is the myocardium geometry, its division into dif-
ferent anatomical parts and the local orientation of the muscle
fibers. It is difficult to obtain both realistic geometry and smooth
fiber orientations in the same coordinate frame.

Thus, two models were built, coming from two different
data sets on canine hearts. One comes from dissection data
(“UCSD”) measured in Auckland, New Zealand (P. Hunter
group) [41]! with very smooth fiber orientations (see Fig. 4),
due to the smoothing and the interpolation of the 256 original
points done in the University of California, San Diego (A.
McCulloch group).2 The other comes from diffusion tensor
MRI (“DTT”) acquired at Duke University (E. Hsu group) [42],
with a geometry closest to observed canine anatomies, for
instance the right ventricle shape and the septum thickness (see
Fig. 3), but noisier fiber orientations.

Both datasets have a resolution close to 1 x 1 x 1 mm?, which
is small enough for our application, especially compared to the
size of the mesh elements. Depending on the application, one or
the other quality is preferred, thus guiding the model choice.

‘We acknowledge that the demonstration would be better with
a whole human in vivo dataset, but diffusion tensor imaging is
not yet possible in vivo, so we did our best to integrate the avail-
able data.

A. Volumetric Mesh Creation

The geometry can be extracted from different medical
imaging modalities. From a 3-D image of the heart, the my-
ocardium is segmented, using classical image processing
methods like thresholding and mathematical morphology.
Then, a triangulated surface of the myocardium is obtained
using the marching cubes method [43], and is decimated to the
required size (typically 7 000 nodes for accurate simulation, or
1500 nodes for the segmentation of cardiac images). Finally,

Thttp://www.bioeng.auckland.ac.nz/home/home.php.
Zhttp://cmrg.ucsd.edu/



614

a volumetric tetrahedral mesh is created from the triangulated
shell, using the INRIA software GHS3D3 (Fig. 2).

B. Anatomical Labeling

To better control and analyze the model during the simula-
tion, we label the anatomical mesh into different regions. These
regions were segmented in the myocardium from the Visible
Human Project by Prof. Karl-Heinz Hohne group, Hamburg
University [44]. This labeling is done by registering the mesh
with the atlas image, and then assigning to each tetrahedron the
main class corresponding to the voxels whose centers are lying
inside this tetrahedron (these voxels are obtained by rasteriza-
tion, the whole procedure is detailed in [37]).

Fig. 3 presents the result of the anatomical regions assignment
from the atlas to the mesh.

C. Mpyocardial Fiber Orientations

We present here the fiber orientations assigned to the two
models from the two different datasets. The quantitative com-
parison of the behavior of the two models is beyond the scope of
this paper, but the multiplication of available DTI data opens up
possibilities to precisely analyze the influence and variability in
cardiac fiber orientations. As diffusion tensor imaging is noisier
near the surface of the myocardium, the fiber orientations are
smoother in the wall than pictured here.

The knowledge of the myocardial fiber orientations (Fig. 4)
plays an important role in the realistic modeling of the electrical
and mechanical activity of the heart. Indeed, the conductivity is
typically four times larger along the fibers than in the transverse
direction, the orientation of the fibers creates a strong anisotropy
in the constitutive law of the material, and also constrains the
direction of the contraction stress.

III. ELECTROPHYSIOLOGY: TRANSMEMBRANE
POTENTIAL SIMULATION

Many different models have been proposed to simulate the
cardiac electrophysiology. They are divided into two main ap-
proaches.

* Biophysical or ionic models: cellular level simulation,
using as variables the concentrations of the different types
of ions, and integrating different ion channels based on
Hodgkin-Huxley equations [45]-[48].

* Phenomenological models: more macroscopic models
using a simpler system of equations to compute the cell
potential without explicitly computing the concentrations
of ion. It can be a bi-domain model, where the variables
are the extra-cellular and intracellular potentials, or a
mono-domain model where the variable is their differ-
ence, the transmembrane potential. One such model is the
FitzHugh-Nagumo system [49]-[52].

As we model the electrophysiology mostly to control the con-
traction, we use the second approach, because the contraction is
mainly related to the transmembrane potential. Moreover, for
clinical use, only the extra-cellular potential can be measured,
not the different ions concentrations, so we cannot adjust the pa-
rameters of the ionic approach from clinical data.

3http://www-rocq.inria.fr/gamma/ghs3d/ghs.html
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A. Transmembrane Potential

The transmembrane potential wave propagation is simulated
using a system based on FitzHugh-Nagumo equations. This ap-
proach yields fast 3-D computations and allows us to capture
the principal biological phenomena:

» acell is activated only for a stimulus larger than a certain

threshold;

¢ the shape of the transmembrane potential does not depend

on the stimulus;

* there is a refractory period during which the cell cannot be

excited;

* any cell can be stimulated.

Aliev and Panfilov developed a modified version of the
FitzHugh-Nagumo equations adapted to the dynamics of the
cardiac electrical potential [51]

@ =div(DVu) + ku(l — u)(u — a) — uz
{2:—(e+:+—1;2)(ku(u—a—l)+z)) M
where w is a normalized transmembrane potential and z is a sec-
ondary variable for the repolarization. k and e control the repo-
larization, and a the stimulation threshold and the reaction phe-
nomenon. Throughout this manuscript, we use dots to represent
partial derivatives with respect to time. The u variable needs
to be normalized in the Aliev and Panfilov equation in order to
insure propagation (FitzHugh equation) and a proper coupling
with the repolarization variable z.

This model is simplified here: the p112/(u + p2) term repre-
sents the influence of pacing frequency on the transmembrane
potential duration and this property is not needed at the mo-
ment, so this term is neglected. Parameter values are derived
from [51]: e = 0.01, kK = 8, a = 0.15.

To obtain the actual transmembrane potential £ in mV', we
use the scaling £ = 100 % u — 80. Similarly, time is normal-
ized with an action potential duration (APD) of 1.0 in these
equations. When used in the model, the time in the integra-
tion of this model is scaled to obtain a more realistic value
(APD ~ 300 ms).

The orientation of the fibers is introduced through an
anisotropic 3 x 3 conductivity tensor D

1
D=dy| 0
0

o % O
3 O O

in an orthonormal basis whose first vector is along the local fiber
orientation f, with dy the conductivity in the fiber direction, and
r the conductivity anisotropy ratio in the transverse plane.

In Cartesian coordinates, it can be written: D = do((1 —
r)f ® f + r.I), where f denotes the fiber orientation, ® the
tensor product (for a column vector v, v @ v = v.vT), and I the
identity matrix.

As previously mentioned, the conductivity in the fiber direc-
tion d is typically four times larger than the conductivity in the
transverse plane, therefore, a typical value of 7 is » = 0.25. This
yields a velocity of the propagation of the transmembrane poten-
tial typically two times faster in the fiber orientation than in the
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Fig. 2. Tetrahedral mesh of the bi-ventricular myocardium (40 000 elements,
7000 nodes) from the UCSD data.

Fig. 3. Anatomical regions obtained from the visible human atlas with the DTI
geometry: basal left endocardial ventricle (A), basal septum (B), dorsobasal left
epicardial ventricle (C), basal right ventricle (D), basal left epicardial ventricle
(E), apical right ventricle (F), apical left epicardial ventricle (G).

Fig. 4. Fiber orientations assigned to the myocardium mesh and elevation angle
from the data interpolated in UCSD (left) and from the DTI (right). Blue and
red colors represent vertical fibers and green represents horizontal fibers.

Fig. 5. (left) Iso-surface of the simulated transmembrane potential value, rep-
resenting the propagation front, at one instant of the cardiac cycle on the UCSD
geometry. The red side is the depolarized one. (right) Resulting isochrones after
complete myocardium depolarization.

transverse plane (as the propagation speed of the transmembrane
potential is proportional to the square root of the conductivity).

With an initial excitation above the threshold, the simulated
transmembrane potential with this system is qualitatively sim-
ilar to the transmembrane potential measured on cardiac cells

Transmembrane
potential (mV)
5

_100 1 1 1 1 1
0 0.5 1.0 1.5 2.0 Z'STime
50—‘ Vin [MV]
—
o T T T T 1
0.5 0 15 2.0Time[s] 25
-50
-100

Fig. 6. (Top) Transmembrane potential simulated with simplified Aliev and
Panfilov model. Time is normalized to obtain an action potential duration equal
to 1 time unit. (Bottom) Measured transmembrane potential on a frog cardiac
muscle cell.

(Fig. 6). For the sake of shape comparison, we present here the
transmembrane potential of a frog cardiac muscle cell from [53]
(the digital version is from [54]).

B. Three-Dimensional Simulation of the Propagation

These equations are integrated on the 3-D volumetric mesh
defined in Section II. A normalized transmembrane potential of
1.0 is imposed at the nodes corresponding to the Purkinje net-
work terminations as an initial condition. The dynamic prop-
agation can be represented by displaying an iso-surface of the
transmembrane potential value. The complete propagation can
be shown with the isochrones, where colors represent the dif-
ferent depolarization times (Fig. 5). The implementation of the
model is described in Section V.

IV. BIOMECHANICS: ELECTROMECHANICAL CONSTITUTIVE
LAW AND BOUNDARY CONDITIONS

A. Mpyocardium Mechanical Model

The myocardium is an active nonlinear anisotropic visco-
elastic material. Its constitutive law is complex and must include
an active element for contraction, controlled by the transmem-
brane potential computed in the previous section, and a passive
element representing the mechanical elasticity. Several consti-
tutive laws have been proposed in the literature [S5]-[61]. These
laws are designed to precisely fit rheological tests made on in
vitro cardiac muscle.

Another approach is to model contraction from the nano-
motors scale and build up a macroscopic constitutive law rep-
resenting the phenomena encountered at the different scales,
which is the approach followed by Bestel-Clément-Sorine [62].
A detailed study of this complex model and one-dimensional
(1-D) simulations can be found in [63] and [64]. This model
is based on the Hill-Maxwell scheme, where muscles are repre-
sented by a combination of a contractile element, developing the
stress tensor created by contraction, a series element, allowing
isovolumetric contraction (especially in 1-D models), and a par-
allel element, mainly representing the elastic properties of the
muscle.
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Fig. 7. Scheme of the simplified rheological model with a passive elastic ele-
ment E,, and an active contractile element E..

B. Simplified Mechanical Model

The electromechanical model proposed here was motivated
by the multiscale and phenomenological approach of [62]. But
it is specifically designed for cardiac image analysis and sim-
ulation. It is built in order to be computationally efficient and
with few parameters, so we chose to simplify the constitutive
law of [62]. In our implementation, the model can be directly
compared with in vivo measures through medical images. De-
spite its simplicity compared to other constitutive laws proposed
in the literature, it reproduces quite well the global and local be-
havior of the myocardium.

The simplified mechanical model has the following compo-
nents (see Fig. 7):

* an active contractile element which creates a stress tensor

0., controlled by the normalized transmembrane potential
u;
* apassive parallel element which is anisotropic linear visco-
elastic and creates a stress tensor op,.
The construction of these stress tensors from the transmembrane
potential and the Lamé constants is detailed below.

For the electromechanical coupling, different laws have also
been proposed [55], [59]. We chose a simple ordinary differ-
ential equation to control the coupling, directly computing the
contraction intensity from the normalized transmembrane po-
tential. We believe that it is important to keep the model simple
as relatively few clinical measures are available to adjust it. The
contractile element is controlled by the normalized transmem-
brane potential through the ODE

Ge+ 0c = uoy 2

with o the time derivative of o.. As our normalized transmem-
brane potential is between 0 and 1 and the changes on depo-
larization and repolarization are abrupt, we can analytically ap-
proximate the solution of this equation by replacing » with the
value O or 1, using the current computed value thresholded at
0.5. It makes it possible to avoid time stepping the ODE and
to directly control the parameters with the following coupling
model

Ty, <t<T,:
o.(t) = oo (1 — e(’"(Td_t)) as 0. + 0. = 0p
T, <t<Ty+ HP:
oc(t) = opetr Tt

3)

aso.+o0.=0

with T; the depolarization time, 7. the repolarization time, H P
the heart period, o the contraction rate, «,. the relaxation rate,
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and o, = 0.(T,). We added the constants a, and «, to better
control the contraction stress increase and decrease. We can also
add a time constant to Ty and 7. in (3) to model the delay be-
tween the electrical and the mechanical phenomena.

The 3-D contraction stress tensor is obtained with the formula
o.f ® f, where f denotes the fiber orientation and ® the tensor
product. In the dynamics equation, when integrated over an el-
ement, it results in the force vector

F. = / div(e.f @ f)dV = !(Uc.f® findS

v

from Green-Ostrogradski formula, with n the surface normal, V'
and S the element volume and surface, respectively. Contraction
force is, thus, equivalent to a pressure applied along the fiber
orientation.

This simplified constitutive law is represented by a damping
matrix C for the internal viscosity part, a stiffness matrix K
for the transverse anisotropic elastic part (parallel element)
and a force vector F,. computed from contraction (contractile
element).

Once integrated into the dynamics equation, it writes

MU +CU + KU = F, + F. 4)

with U the displacement vector, M the diagonal mass ma-
trix (mass lumping), C' a diagonal damping matrix, K the
anisotropic linear elastic stiffness matrix, Fj the different
external loads from the boundary conditions, and F.. the force
vector from the contraction.

As we consider the material linear elastic, but anisotropic, in
small displacement formulation, K is constant. The construc-
tion of the K matrix is based on the finite element method with
linear tetrahedral elements, with the derivation of displacements
U into the linearized strain tensor e: ¢ = Vu + Vu? and the
Hookean constitutive law between Cauchy stress tensor o and
e:0 = Atr(e).J 4+ 2p.e, with [ the identity matrix, and A, p the
Lamé constants. The details of implementation and the param-
eter values are in Section V.

The behavior of such a constitutive law is demonstrated on a
cubic volume in Fig. 8. We can observe that the Lamé constants
chosen to partly represent the incompressibility make the cube
dilate vertically when it compresses horizontally.

C. Boundary Conditions: the Cardiac Phases

To simulate an entire cardiac cycle, the interaction of the my-
ocardium with the blood is very important. This is why the dif-
ferent phases of the cardiac cycle have to be introduced, which
implies different boundary conditions. The heart cycle can be
divided in four phases: filling, isovolumetric contraction, ejec-
tion, and isovolumetric relaxation.

Four different boundary conditions are used on the mechan-
ical model.

* Filling: a pressure is applied to the vertices of the endo-
cardium. Its intensity is equal to the mean pressure of the
atrium. It can be augmented during the P wave to introduce
atrial contraction.
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* [Isovolumetric contraction: a penalty constraint is applied
to the vertices of the endocardium to keep the ven-
tricle volume constant. This penalty, which is iteratively
estimated to counterbalance the contraction force, corre-
sponds to the ventricular pressure during isovolumetric
contraction.

» Ejection: a pressure is applied to the vertices of the endo-
cardium. Its intensity is equal to the mean pressure of the
aorta (for the left ventricle) and the pulmonary artery (for
the right ventricle).

* Isovolumetric relaxation: a penalty constraint is applied
to the vertices of the endocardium, keeping the volume
constant.

The penalty constraint is computed as follows: the volume Vj
at the beginning of an isovolumetric phase is computed, and at
each iteration a pressure equal to p x (Vo — V') (representing
the ventricular pressure) is applied to the endocardial vertices,
with p the penalty factor and V' the current volume. Thus, if the
volume is increasing, a negative pressure is applied, which tends
to bring back the volume to its initial value. To ensure stability
during this process despite the important stress developed, the
time step has to be reduced during these phases (typically, it
goes down from 1072 s to 1077 s).

In the current implementation, the atria pressures have two
values (baseline and atrial contraction) and the arterial pressures
(aortic and pulmonary) have a constant value.

To hold the mesh in space, we simulate the fibrous structure
around the valves with springs having one extremity attached to
a basal node and the other extremity attached to a fixed point.

To ensure mechanically smooth transitions between phases,
change is automatically controlled in the following way.

* During filling, a pressure is applied to the endocardium.
When the contraction starts, the contraction force will
tend to eject blood, so when this force is more important
than the applied pressure, the blood flow changes sign. As
the blood is considered incompressible, the conservation
of mass allows to compute blood flow directly with the
ventricular volume time derivative. This is used to close
the atrial-ventricular valves and start the isovolumetric
contraction.

e During the isovolumetric contraction, when the intensity
of this penalty constraint is more important than the arte-
rial pressure, the ventricular-arterial valves open, and the
ejection phase starts.

* During ejection, contraction force decreases after repolar-
ization. When the flow changes sign, the ventricular-ar-
terial valves close, starting the isovolumetric relaxation
phase.

* During isovolumetric relaxation, the penalty constraint
represents the pressure, so when it is less important than
atrial pressure, the atrial-ventricular valves open, starting
the filling phase.

Even with these completely independent conditions for the
left and right parts of the heart, the two ventricles stay well syn-
chronised, which shows that force development is coherent in
the model. It allows us to adjust contractility parameters og, o
and «, from the length of the different phases, and also from the
atrial and arterial pressures (see Section VI-B1).

V. ELECTROMECHANICAL MODEL IMPLEMENTATION

The implementation of this model was done in C++, with a
graphical interface in Tcl/Tk and OpenGL. It is ran on a Pentium
PC, 2 GHz, and 1 Go of RAM. Parallel computations of the
mechanical model are possible, which significantly decrease the
execution time up to five processors, then the communication
time becomes too important to achieve a real additional gain.

A. Electrophysiology Numerical Integration

The temporal integration is done with a fourth order Runge-
Kutta scheme and the spatial integration is done with the Finite
Element Method, using linear tetrahedral elements. The compu-
tation time step is 10~* and a 3-D simulation of the transmem-
brane potential during the cardiac cycle (0.85 s) takes around 5
mn on a standard PC with a 40 000 elements (7 000 nodes) tetra-
hedral mesh.

The parameters used in (1) are: k = 8, a = 0.15,dy = 1,
r = 0.25, and e = 0.01.

B. Biomechanics Numerical Integration

The mechanical model is integrated in time using the Houbolt
semi-implicit scheme, and in space using the Finite Element
Method with tetrahedral linear elements. Details of these
methods can be found in many classical books, see [65] for
instance.

We use the PETSc# library for linear algebra operations, thus
allowing distributed matrix storage, parallel preconditioning
and parallel iterative solving. Details on the mesh partitioning,
matrix assembly and parallel system solving are similar to [66].

To achieve this electromechanical simulation, we have to in-
tegrate two different phenomena: electrophysiology and biome-
chanics, and each of the models has a distinct inherent time step.
If we call dt. the electrical time step, dt,, the mechanical time
step, and ¢, (respectively ¢,,,) the current electrical (respectively
mechanical) integrated time since the beginning of the simula-
tion, at each instant ¢ of the cardiac cycle we integrate the least
advanced phenomenon.

o Ift. < t,,: we integrate the electrical phenomenon, and

then t, = t. + dt., t =t + dt..

* Ift,, < t.: we integrate the mechanical phenomenon, and

then t,,, = t, + dtp,, t =t + dt,,.

The stability constraints from the boundary conditions are
quite different during the different phases. We use an adaptive
time step, with a time step 10? times smaller during the isovol-
umetric phases.

The whole electromechanical cardiac cycle simulation with
these boundary conditions takes less than 30 min on a standard
PC (40000 elements, 7 000 nodes, tetrahedral mesh). Half of
the simulation time is devoted to the computation of the isovol-
umetric phases even if they represent only around 15% of the
heart cycle, because they require a much smaller mechanical
time step to achieve stability.

From the literature and the comparisons presented in next sec-
tion, the following parameters are used: p = 1070 kg/ m® (mass
density), ¢ = 0.5, A = 300000 Pa, ;4 = 26000Pa, o, = 20,
a, = 10, 0y = 0.002 Pa. As no damping value could be found

4http://www-unix.mcs.anl.gov/petsc/petsc-2/
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Fig. 8. Contraction (first row) and relaxation (second row) simulation on a
cube. Fibers are horizontal and an initial transmembrane potential is applied
to the left facet of the cube. Color represents the transmembrane potential value
(dark blue: polarized, light red: depolarized).

in the literature and its importance on cardiac function is still
subject to debate, C' was used to control the numerical stability
of the simulation and to obtain a reasonable visco-elastic be-
havior: C' = ¢l = (c¢o * dt,, /2m)I, with I the identity matrix
and m the mass associated with the vertex. We use also mass
lumping, the mass matrix M is diagonal, and we associate the
mass m to each vertex v corresponding to the accumulation of
1/4 of the mass of each tetrahedron containing v.

VI. COMPARISON OF THE SIMULATED HEART CYCLE
WITH MEASUREMENTS

A. Evaluation of the Transmembrane Potential Propagation

To simulate a realistic 3-D propagation of the transmembrane
potential in the myocardium we need to determine the electrical
onset for the initial conditions. The sinoatrial node is the natural
pacemaker, located within the wall of the right atrium. It gen-
erates electrical impulses that are carried by special conducting
tissue to the atrioventricular node. After reaching the atrioven-
tricular node, located between the atria and ventricles, the elec-
trical impulse goes down a conducting tissue (the bundle of His)
that branches into pathways that supply the right and left ven-
tricles. These paths are called the right bundle branch and left
bundle branch respectively. The left bundle branch further di-
vides into two subbranches (called fascicles). The extremities
of these bundles are the Purkinje network, creating the junction
between this special conducting system and the myocardium.

For our simulation, we need to locate these Purkinje network
extremities, but it is hardly visible by dissection or by medical
imaging. We used the measures from Durrer et al. [67] which
present illustrations of the isochrones in an isolated human
heart, paced from the special conducting system (the version
of these measures presented in Fig. 9 is from [54]). The first
isochrones in this article allow to visually locate the Purkinje
network extremities on the endocardia of both left and right
ventricles in the model and manually define them. Then the
depolarization is simulated.

A first evaluation of the 3-D computation consists of com-
paring the resulting transmembrane potential isochrones with
the measures from Durrer et al.. As we can see in Fig. 9, our
simulation is qualitatively very close to the reported measures.

A more thorough evaluation of this electrophysiology model
has been performed [14] on canine hearts datasets from the Lab-
oratory of Cardiac Energetics, National Heart, Lung, and Blood
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Fig. 9. Transmembrane potential isochrones (in ms) measured by Durrer et.
al (top row) compared with the simulated ones (bottom row), on the UCSD
geometry.

Fig. 10. Triangles sets used to define the endocardia of each ventricle, on the
UCSD geometry. The barycentres of the edges of these sets are used to close
the ventricles in the volume computation.

Institute, National Institutes of Health (NIH), showing that a
local adjustment of conductivities could lead to a mean error
in depolarization times of less than 5 ms (less than 5% error).
Furthermore, it showed a good correlation between zones of low
electrical conductivities and infarcted regions.

B. Evaluation of the Myocardium Contraction

We present in this section the comparison of local and global
parameters of ventricles kinematics between our model and
data extracted from medical images. The simulation results we
present are stored after two simulated cycles, in order to obtain
“natural” initial conditions from periodicity.

1) Volume of the Ventricles: We define a set of triangles rep-
resenting the endocardium of each ventricle and we then close
this surface with the barycentre of its edge to compute the inner
volume of the ventricles (red surfaces and green lines in Fig. 10).

The evolution of the ventricle volume during the simulation
of the cardiac cycle (Fig. 11) is very similar to the data available
in the literature (see [68] for instance). As we want to use this
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Fig. 11. Measured left ventricle volume from MRI compared to the simulated
cycle. The simulated volume values and the ejection fraction (60%) are similar
to the ones measured in volunteer data (63%).

Fig. 12. Basal, equatorial and apical points on the epicardium used to observe
the local rotation during the simulated cardiac cycle, on the UCSD geometry.

model for clinical applications, we also have to compare it with
in vivo observations, i.e., medical imaging.

Automatic cardiac image segmentation is still a very chal-
lenging task, and manual segmentation of a full 4-D sequence
is long and tedious. We present here a comparison with a volume
curve extracted from a 3-D MRI sequence of a volunteer heart
with the semi-automatic method detailed in [69].

The ejection fraction computed from the simulated curve is
60%, compared to 63% from the measures. The main differ-
ences in the volume curve are during phase transitions, which
are times when the intraventricular volume definition is not
trivial in the images.

The evolution of these volumes makes it possible to adjust
the contractility parameters: a. from the length of the isovolu-
metric contraction, «, from the length of the isovolumetric re-
laxation, and o( from the ejection fraction. The local motion
described in the following sections results from these contrac-
tility parameters.

2) Local Apico-Basal Rotation: From the definition of the
left ventricle endocardium, we can compute the inertia axis of
the left ventricle (blue line in Fig. 10). We use this axis to com-
pute the local apico-basal rotation of three points of the epi-
cardium (Fig. 12) around this axis, throughout the cardiac cycle.
This same rotation was measured for different points of the epi-
cardium by Philips Research France through the analysis of
tagged MRIs [70]. The values from the simulation show sim-
ilar patterns and range to the measures (Fig. 13). Especially the
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Fig. 13. (left) Twisting angle during the simulated cycle, for different points
of the epicardium: base (black), equator (dashed blue) and apex (red). (right)
Twisting angle extracted from tagged MRI by Philips Research France for dif-
ferent points of the myocardium.

Fig. 14. Basal, equatorial and apical points of the left ventricle endocardium
used to observe the local radial contraction during the simulated cardiac cycle,
on the UCSD geometry.

opposite direction of rotation between the base and the apex is
present both in the simulation and in the measures.

There are also some discrepancies between the two curves.
For instance in the rising part of the apical rotation. This twisting
motion originates from the fiber orientations but also from the
isovolumetric phase and the activation sequence. It is still a phe-
nomenon not completely understood, and as it is the result of
many different elements, it is difficult to explain precisely these
discrepancies. We will test the influence of different excitation
sequences and fiber orientations on these curves to explore this.

The simulation of the transmembrane potential propagation
and the inclusion of the different phases of the cardiac cycle
is, thus, important to recover local parameters of the cardiac
motion.

3) Local Radial Contraction: Another important local pa-
rameter of the cardiac function is the radial contraction, which
measures the variation of the distance from a point to the central
axis, throughout the cardiac cycle. The same inertia axis as for
the rotation is used to compute the radial contraction of three
points of the left ventricle endocardium (Fig. 14) during the
simulated cycle. The same radial contraction was measured for
different points of the myocardium by Philips Research France
through the analysis of tagged MRIs [70]. The simulated radial
contraction shows similar patterns with the measured one, in
terms of range of values and profile (Fig. 15), which confirms
the fact that the simulated ejection fraction is close to the real
ones and that the model has a good local behavior. This radial
contraction is responsible for the evolution of the wall thickness
during the cardiac cycle, which is also a clinical index of the car-
diac function.
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Fig. 15. (left) Radial contraction during the simulated cycle for different points
of the endocardium: base (black), equator (blue — —) and apex (red). (right)
Radial contraction extracted from tagged MRI by Philips Research France for
different points of the myocardium.

0 ms

Fig. 16. Electrophysiology pathologies simulation, presented with resulting
isochrones, on the UCSD geometry. (left) Ectopic focus (part of a Wolff-
Parkinson-White syndrome simulation). (right) Right branch block simulation.

VII. APPLICATION TO PATHOLOGY SIMULATION AND
INTERVENTION PLANNING

Such a model enables the simulation of different cardiovas-
cular pathologies, at the electrophysiological level or mechan-
ical level. The observation of the consequences of these patholo-
gies on the simulated cardiac function could help understand the
phenomena, test different therapy strategies and plan interven-
tions. A brief presentation on how this could be applied to dif-
ferent pathologies follows.

A. Ectopic Focus and Bundle Branch Block

An ectopic focus can be introduced by including an additional
excitation point to the normal Purkinje extremities, with its own
excitation sequence [Fig. 16 (left)]. A bundle branch block can
be simulated by removing the Purkinje network extremities in
one of the ventricles [Fig. 16 (right)].

B. Fibrillation

It has been shown that some cases of cardiac fibrillation are
the result of a spiral of depolarization meandering in the my-
ocardium. Such spirals can be simulated with the chosen model,
using appropriate initial conditions like the wave-break method
(Fig. 17) [71]. Studies of these spirals could help design more ef-
ficient defibrillators [72], by using a better defibrillation timing
and, thus, less energy.

C. Radio-Frequency Ablation

The presented model was coupled with a force-feedback 3-D
interface (Phantom from SensAble Technologies). It allows one
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Fig. 17. Simulation of a reentry spiral using a wave-break. (Top) Description of
the wave-break method. (Bottom) Simulation on a cube of myocardium model.
Color represents the transmembrane potential (light red: depolarized, dark blue:
re polarized).

Fig. 18. (left) Phantom 3-D interface, from SensAble Technologies. (right)
Radio-frequency ablation simulation, by modifying the conducting parameters
of the model where it has been in contact with the tool (homogeneous grey
areas), on the DTI geometry.
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Fig. 19. Basal left epicardial infarcted zone (blue, on the UCSD geometry). No
conduction and no contraction in this area. (right) Corresponding volume curves
without (dashed) and with (solid) infarct. Ejection fraction decreases from 65%
to 55%.

to point locations on the 3-D model and change the local con-
ductivity, whilst the simulation is running (Fig. 18). Although
the simulation of the electrophysiology is not in real-time, the
haptic device interface has to be, otherwise it would not be in-
tuitive to control. We, thus, achieve an interactive change of the
local conductivity: the ablated area is assigned a null conduc-
tivity in real-time, but the operator waits a few minutes for the
completion of the simulation in order to observe the effect on
the whole depolarization wave.

D. Infarcted Area

Some tissue pathologies, like infarcted areas, can be intro-
duced in the potential propagation and in the mechanical con-
traction. Different effects can be investigated through simula-
tions, for example the influence on the ejection fraction, which
decreases from 65% to 55% in the simulated case (Fig. 19).
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These are only generic simulations to present the idea of ap-
plying this modeling to pathology simulation. Validation pa-
tient data is in progress within the Cardiac MR Research Group,
King’s College London, Guy’s Hospital, London [73].5

VIII. APPLICATION TO IMAGE SEGMENTATION: A PROACTIVE
DEFORMABLE MODEL

One of the applications of this model is for cardiac image seg-
mentation. The key idea is to build a “Pro-Active Deformable
Model” of the heart for image analysis, i.e., a volumetric
deformable model of the heart integrating a priori knowledge
on the motion, through the simulation of the electromechanical
contraction. The internal forces regularising the deformation
are computed from the electromechanical model previously
presented and the external forces are computed from the image
features. We, thus, solve the new dynamics equation intro-
ducing these forces

MU + CU + KU = F, + oF, 5)

with F. the contraction forces, F; the image forces, and « the
weighting parameter for the image forces.

A. Internal Forces

The internal forces are computed from the electromechanical
rheological model, thus, introducing the simulated contraction.
We use the model presented in Section III-A to compute the
action potential propagation and the model of Section IV-B to
compute the mechanical contraction. For the time synchroniza-
tion, information on the image sequence acquisition allows us to
know the heart beat duration, the R wave position and the timing
of each image in the cycle. This is used to trigger the transmem-
brane potential propagation and adjust the transmembrane po-
tential duration, as well as to compute the external forces.

For segmentation purposes, some boundary conditions, like
pressure and isovolumetric phases, are partly included in the
image information. The added stiffness to represent the valves
is also a part of the image information. This is the reason why
no mechanical boundary conditions other than image forces
are applied when the model is used in this image segmentation
framework.

Usually, segmentation methods use one reference position of
the model per image, corresponding to the previous image final
position. We believe it is important not to reset the strain and
stress at each time frame in order to capture all the character-
istics of the deformation of the myocardium. Thus, we want to
use only one reference position of the heart for the complete
sequence.

Due to the large difference in shape between the end-diastolic
position and the end-systolic position, using a priori knowledge
on the motion through the contraction simulation helps to re-
cover this deformation, as the image forces only have to correct
the predicted deformation, not create it from the end-diastolic
shape.

Shttp://www-ipg.umds.ac.uk/m.sermesant/index.php
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Fig. 20. External forces computation. (left) Scan-line algorithm to extract the
image voxels from a vertex P along the normal 7i to the mesh surface. (right)
Region and boundary criteria on the extracted voxels to determine the boundary
point corresponding to the surface vertex P.

B. External Forces

The external forces are introduced as a load applied to the
mechanical model. For each surface node of the mesh, we look
for a corresponding boundary point in the image voxels lying
along the surface normal, a classical approach for deformable
models in computer vision, see Fig. 20. The boundary point is
selected among these voxels from intensity, gradient direction
and gradient value criteria [74]. Then a force is applied to this
node, proportional to the distance to this boundary voxel and
oriented in its direction.

These forces can be different on each of the different anatom-
ical regions of the model, depending on what is visible in the
different parts of the image and on the image intensity charac-
teristics in these regions. If some parts of the myocardium are
not visible, the external forces can be removed for the corre-
sponding regions and only the internal forces will make these
vertices move.

C. Global Adjustment to Patient Anatomy

The correspondences between the surface nodes and the
boundary voxels can be used to globally adjust the mesh to
the patient anatomy. After a rough alignment of the ventricles,
we compute iteratively the best rigid transformation between
the mesh and the image. After convergence, we compute the
best similarity and finally the best affine transform. We use a
new criterion proposed by X. Pennec, which is symmetric and
“invariant” with respect to the action of an affine transformation
to both the model and the image data. This feature helps to
avoid convergence toward a singular affine transformation (null
determinant) when the number of matchings is low, which often
happens when fitting to noisy images. Let m,; and d; be the
matched model and image data points, A the affine transforma-
tion and ¢ the translation. The criterion C' to minimize is

C(A )= (Am; +t —di)" (I + A" A) " (Am; +t — d;)

i

with I the identity matrix.

This criterion lends to an adequate initialization of the model
with a global transformation even in noisy images. Details on
the construction of this criterion and on the closed form solution
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Fig. 21. Segmentation of cardiac image sequence with the proactive model of
the heart. The model is displayed with slices of one image of the sequence, but
the external forces are computed with two images. The transmembrane potential
value is color-coded on the model surface and the red segments represent the
external forces on the surface vertices toward the corresponding images voxels.

can be found in [37]. The model can then be fitted with a better
accuracy using local deformations.

D. Sequence Segmentation: Time-continuous Image Force
Field

As we use an electromechanical model for the internal forces,
we need to integrate it according to time steps given by stability
constraints, which are independent from the image acquisition
time resolution. We create a “time-continuous image force field”
by using the two images of the sequence surrounding the cur-
rent integrated time in the cycle to interpolate the force to apply
from the two forces computed within each of these images. This
ensures a smooth evolution of the mechanical boundary condi-
tions, thus, a better stability and segmentation process.

If we have an image I; at instant ¢; and the next one I is
at instant to, and the segmentation process is at time ¢ in the
cardiac cycle, between t1 and to, then the applied image force
is

= —— (o = )Fr,(t) + (t — t1)Fr, ()] -

E. Results

As a feasibility study of introducing contraction simulation
in image analysis, we chose a modality where the definition of
the external forces would be rather straightforward, in order to
emphasise the influence of the proactive internal forces. Thus,
we use SPECT imaging where boundary definition is quite clear
to demonstrate the effect of the active internal forces, without
too much influence of the choice of external forces. In other
modalities, it is often difficult to obtain robust and consistent
external forces computation, which is one of the motivations for
introducing more prior knowledge, but also a major drawback
when one want to compare different internal forces.

We present here the left ventricle volume curves obtained
when segmenting a SPECT image sequence with a passive
biomechanical deformable model and with the proactive de-
formable model, see Fig. 21. They are compared to reference
values obtained with a deformable surface (simplex mesh)
semi-automatically adjusted to each image of the sequence,
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Fig. 22. Comparison between the passive (black-cross), electromechanical
(dashed) and proactive (grey) models. The reference values are the black
squares. The combined use of electromechanical model with image informa-
tion achieves a better segmentation of the image sequence.

Fig. 23. Comparison of the segmentation of a SPECT image sequence, in
three orthogonal slices of the end-systolic position (red: passive biomechanical
model, yellow: proactive model). The electromechanical model stays closer to
the image boundary, especially near the base (axial contraction) and we can
observe the right ventricle contraction of the model, even if the right ventricle
is not visible in the image (due to a previous region of interest extraction).

without any temporal continuity. The balance between internal
and external forces was optimized to obtain the best possible
result with each model.

The consequence of the introduction of a priori knowledge
on the motion in the segmentation is a better estimation of the
volume, especially of the end-systolic position (see Figs. 22 and
23). The ejection fraction, which is an important clinical index
of the cardiac function, is then more accurately computed. The
ejection fraction computed from the reference values is 66%.
We obtain an ejection fraction of 68% with the proactive model
(the electromechanical model alone has an ejection fraction of
62%) whereas the passive model results in only 53%.

Furthermore, the needed weight of the image forces, « in (5),
is ten times smaller with the proactive model, because it only
has to correct the predicted motion, not to create the whole de-
formation from the end-diastolic position.

The model evolution gives a continuous estimation of the my-
ocardium position throughout the cardiac cycle. It allows us
to interpolates image information to correspond best at each
time when an image is available and to continuously deform in
between.

Moreover, using this proactive model gives a priori informa-
tion on the local tangential motion (torsion) which is hardly vis-
ible in current medical images (without using tags). This kind
of model could help recover this motion, which is also quite im-
portant in cardiac function.
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The segmentation of a full image sequence with the proactive
model takes less than 5 min on a standard PC. We use a coarser
mesh (8 000 elements, 1 500 nodes) which is better adapted to
the limited image resolution. The isovolumetric phases are not
simulated in this case, saving a significant computational cost.
The whole segmentation time does not depend on the time reso-
lution of the image sequence as only the electromechanical phe-
nomena control the integration time steps, and then image forces
are computed for each of these integrated time steps.

IX. CONCLUSION AND PERSPECTIVES

The design of computational models of human organs is a
new research field which opens new possibilities for medical
image analysis and therapy simulation: this article presented a
number of steps toward this goal in cardiac imagery, and must
be understood as a preliminary proof of concept in this research
direction.

The model we presented was designed at a macroscopic level
with a limited number of internal parameters. Given the high
complexity of cardiac motion, composed of different twisting
rotations and radial and axial contractions, the proposed model
still allowed realistic simulation of the heart motion while
allowing reasonable computing time. We also showed that our
“proactive” deformable model using its internal contraction
forces synchronized on the ECG was able to better recover
the segmentation of the heart ventricles from a time series of
cardiac images than a more classical “passive” deformable
model which would deform under the action of image forces
only.

We acknowledge the limitations of the proposed model, at
the three levels of representation: anatomy, electrophysiology
and biomechanics. Possible improvements of the model would
include the integration of more anatomical structures (valves,
atria), a more realistic electrophysiology model (biophysical
models) and a more complex constitutive law. However, our
objective is not to build the more complex and faithful heart
model ever. Instead, we want to adapt the complexity of our
model to that of the available observations (images, signals) in
order to establish new tools for diagnosis, therapy planning and
therapy guidance. Thus, the described model is a starting point
that could be refined in complexity if required by a given clin-
ical application.

We already plan to test some refinements. First of all, the
problems created by the different properties of the available
anatomical data motivated us for the definition of an analytical
model of the myocardium (from ellipsoids) which would help in
the coherence of the data used. We hope that the rapid expansion
of the possibilities of medical imaging will make it possible to
have a precise idea of the variability of all the anatomical data
used, in order to be able to estimate the validity of using such
generic data.

We will look into introducing the atria and proximal portions
of arteries, to help define boundary conditions and extend the
number of pathologies that can be simulated. We also want to
introduce a Windkessel model, frequently used to link blood
pressure and blood flow in the arteries in order to compute the
after-load [75], [76].

We will also reconsider the simplifications made in the con-
stitutive law, both in the passive and active parts, to be able to
simulate more realistic local stress. We plan to test exponential
laws of the passive myocardium and integrate an influence of
the deformation in the active part, to better represent known be-
havior. However, we need to quantify the main source of error,
for instance with a sensitivity analysis. Both the simplification
of the constitutive law and the definition of the boundary con-
ditions have a great impact on the simulated motion. For the
second point, we are also looking into MR imaging of blood
flows to help better define boundary conditions.

Finally, if needed for some pathologies, the electrophysiology
model would be refined, for instance with a bi-domain or ionic
model. But all these evolutions will be balanced against the com-
putational cost and the parameter number increase to still be
compatible with clinical applications.

To achieve a complete validation and allow a quantitative use
of such models, one has to design parameter estimation proce-
dures. It would enable the automatic identifications of the in-
ternal parameters from a number of clinical measurements, in
particular new imaging technologies of cardiac electromechan-
ical activity [8]. Results on global adjustment of models from
these measurements are very promising [73]. It is of special in-
terest to analyze sensitivity and observability of these param-
eters. Ultimately, we would replace the current image forces
which are not physiology-based with an identification procedure
which would optimize the physical parameters of the model to
match the image data.
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