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Abstract
Diffusion Tensor MRI can be used to depict the anisotropy of tissue. Translation
of this technique to moving objects such as the beating heart has recently become
feasible, but remains a challenging task, often leading to high noise levels and limited
accuracy. Ultimately, knowledge of the 3D fibre architecture of the myocardium in-
vivo should allow for a better understanding of the cardiac function both in healthy
and pathological situations.

The main goal of the work presented in this thesis is to overcome the difficul-
ties that such technology presents, by introducing a combination of image process-
ing and analysis approaches. In particular, the characteristic ellipsoidal shape of
the left ventricular chamber is used to introduce a shape-based prolate spheroidal
coordinate frame that allows for comprehensive, robust and dedicated analysis of
diffusion tensor data within the myocardial wall. It is shown that the description
of this information is more compact in this coordinate frame. Furthermore, it is
demonstrated that the acquisition limitations can be overcome by introducing an
approximation scheme based on this coordinate frame. These techniques are tested
on ex-vivo datasets to assess their fidelity and sensitivity. Finally, these techniques
are applied in-vivo on a group of healthy volunteers, where 2D DTI slices of the LV
were acquired at end diastole and end systole, using cardiac dedicated diffusion MR
acquisition. Results demonstrate the advantages of using curvilinear coordinates
both for the analysis and the approximation of cardiac DTI information. Resulting
in-vivo fibre architectures were found to agree with previously reported studies on
ex-vivo specimens. The outcome of this work can open the door for clinical appli-
cations and cardiac electrophysiology modelling, and improve the understanding of
the left ventricular structure and dynamics.

Keywords:
cardiac DTI, cardiac fibre architecture, curvilinear coordinates, prolate

spheroidal coordinates, kernel-based interpolation, group-wise analysis, cardiomy-
opathy
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Introduction

Contents
1.1 Motivations and Challenges . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement and Contributions . . . . . . . . . . . . . 4

1.3 Organization of the Manuscript . . . . . . . . . . . . . . . . . 4

1.4 Personal Publications Related to the Thesis . . . . . . . . . 6

1.1 Motivations and Challenges
Understanding the cardiac function has always generated a great academic interest
and many investigations [Mall 1911, Fernandez-Teran 1982]. Over the last decades,
there has been an important and growing interest in attempting to unveil the macro-
scopic and microscopic architecture of the heart, and the relation between cardiac
function and structure.

The heart has the critical role of ensuring blood flow in the entire vascular system.
The right heart receives deoxygenated blood from the vena cava and pumps it to the
lung system for re-oxygenation. The left heart receives oxygenated blood from the
pulmonary veins and ejects it to the entire vascular system through the aorta. These
two systems are correlated through a constant amount of blood in the body. The
anatomical structure of the heart is illustrated in Fig. 1.1. The function of the heart
can be observed at different levels. The mechanical movement is the macroscopic
phenomenon that is directly observed by medical imaging techniques. This motion
is obtained by the contraction of microscopic myocardial cells, the myocytes. The
contraction is induced by an electrical impulse propagating throughout the heart.
The electrical activity of the heart can be observed indirectly with the help of
electrodes placed on the chest of the patient or volunteer, resulting in an electro-
cardiogram (ECG). The sequence of actions of the ventricular function is illustrated
in Fig. 1.2. The beginning of the systolic phase is marked by the R-wave. As the
ventricular pressures increases, the aortic valve opens to allow rapid ejection of the
blood into the vascular system through the aorta. After contraction (end systole),
the aortic valve closes, quickly followed by the opening of the mitral valve, to allow
filling of the ventricle from the pulmonary system during the diastolic phase.

The cardiac myocytes are elongated mono-nucleated cells about 10-20µm wide
and 80-100µm long. Macroscopically speaking, they are highly connected with each
other adjacently, and with a branching structure. The electrical impulse triggering
cell contraction is propagating at very high speed in the direction of the myocytes.
The propagation velocity in the direction of the myofibre directions is about three
times greater than in the perpendicular plane. Therefore, the spatial arrangement
of these myocytes is of great importance as it explains the complex contraction of
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Figure 1.1: Heart Anatomy: The right heart (in blue) ejects deoxygenated blood to
the lungs. The left heart (red) ejects reoxygenated blood to the vascular system (from
http://www.texasheart.org)

the atria and ventricles, and by extension the cardiac function [Goergen 2011]. The
myocardial fibres are organized into layers, known as laminar sheets [LeGrice 1995],
which are 3 to 4 cells thick. These layers are separated by an extra-cellular collagen
network. The electrical coupling is strong within a laminar sheet and sparse between
laminae. In early studies [Streeter 1969, Streeter 1979, Fernandez-Teran 1982], the
authors already describe the orientation of the myocyte fibres throughout the left
ventricle (LV) as a complex and very organized structure. In multiple studies
these orientations were found to have a significant importance in the cardiac out-
put [Bovendeerd 1992, Kanai 1995, Vendelin 2002], and in remodelling of the heart
after infarction [Ursell 1985, Fieno 2004, Wu 2006]. In particular it was found that
the torsion and the local stress of the ventricle seems to be very sensitive to the
local distribution of fibre orientations [Bovendeerd 1994]. These fibre orientations
therefore have a crucial role in the understanding of patient specific cardiac function,
for instance through modelling [Seemann 2006, Sermesant 2008].

Depicting the arrangement of cardiac fibres has been and still is challeng-
ing. Early descriptions from [Streeter 1969, Grimm 1976, Fernandez-Teran 1982,
LeGrice 1995] have used histology studies. While these techniques remain gold stan-
dard for quantification, they present some significant drawbacks. The most obvious
is the invasiveness of the technique. These studies are performed post-mortem. Sec-
ondly, the methodology damages the tissue during dissection which can introduce a
potential bias in the resulting fibre orientation quantification. Thirdly, these histol-
ogy studies are (mostly) limited to a selection of ventricular sections, as a complete
analysis of the ventricle(s) wall(s) would be too time consuming.

Recently, emergence of diffusion magnetic resonance imaging (MRI) and its
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Figure 1.2: The electrocardiogram, or ECG (bottom curve) measures the electrical activ-
ity of the heart, which triggers contraction and relaxation of cardiac myocyte fibres, and
therefore explains cardiac function. Left ventricular pressure (top curve) is correlated to
the ECG and allows understanding the different steps of ventricular function.

derivatives (e.g. diffusion tensor imaging - DTI) have allowed the depiction of pre-
ferred orientation in tissue [Basser 1996]. It has been shown that the main eigen-
vectors of tensors as acquired with DTI correlate with the direction of the elongated
myocytes in the ventricles [Scollan 1998, Hsu 1998]. Post-mortem studies then re-
vealed with great detail the fibre architecture of the LV in healthy animals and hu-
mans [Helm 2005, Peyrat 2006, Lombaert 2012]. In the case of pathological hearts,
DTI can also potentially provide useful information. For instance, an infarction of
the myocardium provokes a change of ventricle shape and a remodelling of the fibre
architecture around the infarcted zone [Fieno 2004, Wu 2006]. Post-mortem studies
of this remodelling process have been done [Wu 2007, Chen 2003, Helm 2006] where
diffusion tensor imaging facilitates the understanding of this complex process in a
comprehensive and quantitative way. Measuring this re-orientation on a beating
heart is yet to be done.

Most of the literature reporting successful applications of DTI techniques
to in-vivo environment have been performed on a single slice [Garrido 1994,
Edelman 1994, Reese 1995, Tseng 1999]. Those studies demonstrate the feasibility
of such acquisition in 2D. In [Sosnovik 2009] the different possible MR acquisition
techniques are discussed. It has become clear that such DTI technique translated
to in-vivo beating heart situations can be of great interest, as it allows to correlate
the cardiac structure with its function [Goergen 2011].

Despite the recent acquisition advances cited above, a certain number of chal-
lenges are still to be addressed. In particular, it is crucial to adapt the classical
image processing and analysis techniques to the specific situation of the LV in order
to extract physiologically meaningful information. Additionally, methods allowing
robust analysis of the fibre architecture within a population are necessary in order
to understand the characteristics of such population, and potentially detect discrep-
ancies between a healthy population and pathological situations such as myocardial
infarction or ventricular hypertrophy.

Additionally, the acquisition techniques presented here still require a significant
amount of scan time. They often yield limited amount of measures, and high lev-
els of noise. These limitations justify the need of image processing techniques that
allow the estimation of the full ventricular fibre architecture information from a
limited amount of acquisition measurements, corrupted with significant noise. Fur-
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thermore, electrophysiological (EP) modelling of the cardiac function is becoming
increasingly important in clinics as it could help the description of pathologies. As
these models necessitate global fibre information throughout the ventricle, full esti-
mation techniques as mentioned above would help calibrating the EP models to a
specific patient and would potentially improve patient response to treatments such
as in cardiac resynchronisation therapy [Niederer 2011].

1.2 Problem Statement and Contributions
The three main motivations for this thesis are the following: first, what are the
necessary modifications to apply to image and tensor processing tools in order to
extract meaningful orientation information from the specific situation of (beating)
heart? Second, can the global fibre architecture of the entire LV be approximated
from a limited amount of measurements using optimal and adapted methods? And
third, can we apply these methods in an in-vivo situation in order to estimate the
fibre architecture of the heart whilst beating, and confront these results with the
literature.

It is therefore the objective of this thesis to address the challenges in depicting the
fibre architecture of the beating heart, to provide solutions in the field of biomedical
image analysis by developing new image processing tools for the comprehensive
interpretation of DTI information of the left ventricle. The main contributions of
this thesis can be summarized as follows:

• Chapter 3: Develop a conformal mapping methodology that allows the de-
scription of (tensor) data in the LV in a robust and reproducible way. This
methodology involves a non-linear registration step and a change of coordi-
nates to a Prolate Spheroidal frame where the data is described and analyzed.
The method is demonstrated on a database of explanted canine hearts.

• Chapter 4: Define an approximation scheme that is dedicated to the esti-
mation of a dense tensor field within the LV from a limited amount of mea-
surement slices. The method and its parameters are tested on an explanted
human heart.

• Chapter 5: Investigate the influence of certain MRI acquisition parameters
on the resulting fibre tractograms through the definition of a local distance
metric between tractograms. The method is evaluated on a set of explanted
lamb hearts.

• Chapter 6: Apply the tools defined in Chapters 3 and 4 in in-vivo situation,
on a database of 10 healthy volunteers and investigating the dynamics of the
fibre architecture.

1.3 Organization of the Manuscript
An illustration of the organization of this manuscript is given in Fig. 1.3. In Chap-
ter 2, an introduction on theoretical concepts of MRI, and diffusion MR is presented,
as well as the concepts of cardiac MRI. The topology of the space of tensors as sym-
metric definite positive matrices is introduced. Finally, recent advances in in-vivo
cardiac DTI acquisition are presented.
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Figure 1.3: Global Work-flow: Chart illustrating the workflow of information, from
the acquisition of diffusion weighted images to full left ventricular fibre arrangement ap-
proximation. Chapter 6 is dedicated to in-vivo applications.

Chapter 3 is dedicated to the description of the main methodological contribu-
tion of this thesis. After the introduction of the prolate spheroidal (PS) coordinate
system, its suitability to describe information in the LV is demonstrated. A work-
flow to transform data from an anatomical LV towards a PS frame is proposed.
In particular, the proposed method allows transformation of diffusion tensors from
different LV of a population into a normalized reference PS frame. The introduced
concepts are illustrated through three concrete examples, where features of interest
are extracted from a database of ex-vivo canine hearts. Finally, the sensitivity of
this method with regards to certain parameters is presented.

Chapter 4 introduces a dense approximation method from sparsely acquired LV
noisy diffusion tensors. An approximation operator in PS coordinates is presented.
The operator makes use of a convolution kernel bandwidth matrix parameter. Using
an ex-vivo human DTI dataset, optimal values of this matrix parameter are found
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by defining a least square criterion on the approximated tensor field. A performance
comparison between the proposed PS operator and the same operator in Cartesian
coordinates is presented. A detailed study on the sensitivity of the proposed method
is presented. Finally, the dense approximation scheme is extended to allow for
localised approximation of tensors using zone-dependent kernel parameters.

In Chapter 5, the influence of acquisition parameters on the output fibre trac-
tography results is investigated. A method allowing the comparison of fibre fields
without point correspondence is proposed. This methods utilizes the concept of
currents to derive a distance index between fibre fields. The proposed scheme is
tested on synthetic fibre tractography and applied to a ex-vivo lamb DTI dataset
to assess the influence of noise and acquisition plane orientation on the global fibre
architecture.

Chapter 6 presents the in-vivo applications of the methods introduced in this
thesis. A description of two cardiac specific DTI acquisition protocols is given. Nec-
essary registration and restoration preprocessing steps are defined and illustrated.
From the sparse DTI data acquired at end systole and end diastole on a small group
of healthy volunteers, a detailed group-wise data analysis of the fibre architecture
in the healthy left ventricle is derived. The dynamics of this fibre architecture is
investigated. Additionally, a method to depict and visualise the laminae structure
of the beating LV is presented and applied to systolic in-vivo dataset.

Finally, Chapter 7 concludes this thesis by discussing contributions and pro-
viding various perspectives on the presented research.

1.4 Personal Publications Related to the Thesis
[1] Markand Patel, Nicolas Toussaint, Geoffrey Charles-Edwards, Jean-Pierre
Lin and Philip Batchelor. Distribution and fibre field similarity mapping of the
human anterior commissure fibres by diffusion tensor imaging. Journal of Magnetic
Resonance Materials in Physics, Biology and Medicine, vol. 23, pages 399–408, 2010.
10.1007/s10334-010-0201-3.
[2] Christian T. Stoeck, Nicolas Toussaint, Philip G. Batchelor and Sebastian
Kozerke. Sequence Timing Optimization in Multi-Slice Diffusion Tensor Imaging of
the Beating Heart. In Proc. of the the annual meeting of International Society of
Magnetic Resonance in Medicine (ISMRM’11), 2011. Abstract 282.
[3] Christian T. Stoeck, Nicolas Toussaint and Sebastian Kozerke. Adaptative
Trigger delay for Cardiac Diffusion Weighted MR. In Book of Abstracts, Intl. Soc.
in Magn. Reson. Med., Sockholm, June 2010 (ISMRM’10), 2011.
[4] Christian T. Stoeck, Nicolas Toussaint, Peter Boesinger and Sebastian Koz-
erke. Dual Heart-Phase Cardiac DTI Using Local-Look STEAM. Proceedings of Intl.
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chitecture Estimation using Shape-based Diffusion Tensor Processing. (manuscript
under review).
[6] Nicolas Toussaint, Stanley Durrleman, Maxime Sermesant, Sebastian Kozerke
and Philip G. Batchelor. Error Assessment on Myocardial Fiber Orientations from
DTI Measurements. In Book of Abstracts, European Society of Magnetic Resonance
in Medicine (ESMRMB) 26th Annual Scientific Meeting, vol. 22, no. 1, page 59,
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puting and Computer-Assisted Intervention - MICCAI 2010, volume 6361 of Lecture
Notes in Computer Science, pages 418–425. Springer Berlin / Heidelberg, 2010.
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Cardiac Diffusion Tensor MRI
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2.1 Magnetic Resonance Imaging
The principles of magnetic resonance imaging originally come from another area of
physics : Nuclear Magnetic Resonance (NMR). The dynamics of electrically charged
nuclei such as protons (1H+) make them behave like microscopic magnetic dipoles,
rotating at a certain speed. This speed can be explained, or quantified by its oriented
angular moment – or spin

−→
S . Thanks to this movement, the particle induces a

magnetic moment −→µ . Macroscopically speaking, the sum of several such particle’s
magnetic moments will result in a net magnetization

−→
M . In a null magnetic field

environment, the net magnetization
−→
M is the null vector

−→
0 . Magnetic moments −→µ

are randomly distributed.
Net magnetization: Since in presence of an external static magnetic field

−→
B0

in the z-direction, these moments −→µ align parallel (or anti-parallel) to the direction
of
−→
B0. The energy state of the anti-parallel state is slightly higher than the parallel

one. Thus the number of particles aligned parallel to
−→
B0 is slightly higher than those

aligned anti-parallel : N↑/N↓ > 1. In presence of a static magnetic field
−→
B0, the net

magnetization, written
−→
M0 is not null and oriented towards the static field. This

property is very important as all MR signal measurements rely on this inequality.
Precession: Since there is an angle between −→µ and

−→
B0, there is a torque gen-

erated leading to the precession around
−→
B0.It precesses around it with the Larmor

frequency ω0 = γB0, where γ is the gyro-magnetic ratio, depending on the charge
and mass of the particle of interest. For instance, protons have a gyro-magnetic
ratio of approximately 42MHz.T−1. Although all proton spins precess at the same
frequency (assuming no inhomogeneities in B0), their phases are incoherent. There-
fore all vector components perpendicular to the external magnetic field are canceling
out and a net magnetization parallel to

−→
B0 is formed.
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Radio-Frequency (RF) pulse: In a population of protons at equilibrium state
in an external static magnetic field

−→
B0, all spins are precessing around

−→
B0 at the

Larmor frequency ω0. Consider now that a time-varying RF electromagnetic field is
applied in direction perpendicular to

−→
B0 at the exact frequency ω0 which is equivalent

to adding a rotating magnetic field
−→
B1, rotating around B0 at the Larmor frequency.

Spins then enter a resonance state. This phenomenon is called excitation. From a
macroscopic point of view, the net magnetization is tilted away from the

−→
B0 axis

towards the perpendicular plane xy. In other words, the longitudinal magnetization
Mz decreases while the transverse magnetization Mxy increases.

Excitation can also be described as a precession phenomenon with respect to
the rotating field B1. The precession also follows the Larmor equation ω1 = γB1.
The flip angle is defined as the angle between the spin net magnetization and the
longitudinal axis z, it depends on the strength of the RF pulse ‖B1‖ and its duration
δ:

αflip = ω1δ = γδ‖B1‖ (2.1)

For instance, for proton spins in a 1.5T MRI, and ‖B1‖ = 10µT , a π/2 flip angle
(maximal transversal magnetization) would require the RF pulse to last 0.585ms.

Relaxation, T1 and T2: When the RF pulse is stopped, the system slowly
returns to its equilibrium state, spins loose phase coherence and Mz increases to
the initial value while Mxy decreases to zero. This phenomenon is called relaxation,
and two independent processes with two different relaxation times T1 and T2 can be
identified: the longitudinal relaxation (increase ofMz) and the transverse relaxation
(decrease of Mxy). The longitudinal relaxation corresponds to the magnetization
recovery due to spins jumping back to lower energy states. The transverse relaxation
is due to the dephasing of the spins in the xy plane.

Both phenomena are described in Fig. 2.1, they follow exponential behaviours:

Mxy = M0.e
−t/T2 (2.2a)

Mz = M0.(1− e−t/T1) (2.2b)

where M0 is the net longitudinal magnetization. T1 and T2 are respectively called
longitudinal and transversal relaxation times.

Rotating Frame: As mentioned above, the spins enter a resonance state
during the RF pulse. They rotate at the Larmor frequency around the z axis. The
net transversal magnetization in Eq. (2.2a) is expressed in a rotating frame. In the
fixed xyz frame, Eq. (2.2a) would actually correspond to the carrier wave of the
true magnetization : Mx = M0e

−t/T2 cos(ω0t+ φ).
Faraday induction will produce a time-varying voltage at the ports of the receive

coil. The voltage produced is proportional to ω0Mxy. Hence through this coil, a
direct measure of Mxy(t) can be calculated.

2.2 Diffusion MR: Measuring Water Motion
Diffusion as occurring at a microscopic level is the movement of molecules in a
medium. This movement is a random path known as Brownian motion. It was first
observed by the botanist Robert Brown in 1827 and later explained by Einstein’s
theory on molecular kinetics in [Einstein 1905].
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M  = M (1 − e    )z
−t/T1

0

M   = M e−t/T2
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Figure 2.1: Relaxation process: After a 90o excitation pulse, spins return to an equi-
librium state following exponential relaxation laws. The longitudinal magnetization Mz

regains amplitude with a time constant T1, while transversal magnetization Mxy decays
due to the loss of phase coherency, with a time constant T2.

At a macroscopic level, this random walk of molecules in a medium is charac-
terized by a scalar diffusion coefficient µ, that can be related to the microscopic
level by the following statement: the probability of a particle to move by a dis-
tance r during a time τ follows a Gaussian distribution of variance V = 2τµ. This
expression is true when the medium has isotropic diffusion properties. When the
diffusion is anisotropic, this model is not sufficient. The introduction of a spatial
diffusion property distribution is necessary. Under the first assumption that the
Brownian motion follows a Gaussian distribution in space [Alexander 2002], it can
be described by a tensor D of rank 2:

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (2.3)

The 3 × 3 matrix D is real, positive and semi-definite, and can be seen as a
covariance matrix of the particle movements. The diagonalisation form Σ with
D = UΣUT is commonly used for describing tensor D. The diagonal elements of
Σ are known as the eigenvalues of the tensor, denoted λ1, λ2 and λ3. Let us denote
U = (u1, u2, u3), u1, u2 and u3 are the eigenvectors of D. It is common to visualise D
as an ellipsoid where λ1u1, λ2u2 and λ3u3 are its three radii. This representation is
shown in Fig. 2.2. D can be also seen as a representation of the covariance matrix of
the Brownian motion walk mentioned above. The probability of a particle to move
to a distance r in a direction d during a time τ follows a Gaussian distribution of
variance V = 4τdTDd.

In organic fibrous tissue, such as brain white matter or muscle, water molecules
move more freely along the fibres than in the perpendicular plane. Thus the diffusion
process is anisotropic.

The pulsed-gradient spin echo sequence: To measure the effect of diffusion
in a tissue, the commonly used pulse sequence is the spin echo (SE) sequence intro-
duced by [Stejskal 1965], also called the diffusion weighted sequence. It consists of
the following steps (see Fig. 2.3):
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Figure 2.2: tensor representations: A tensor can be represented as an ellipsoid. Three
characteristic shapes are shown. (left) Cigar shape indicates a high diffusion anisotropy in
a single direction. (middle) Planar shape indicates an "ambiguity" in the tissue anisotropy
direction. This can be due to partial volume effect that occurs in fibre crossing in brain
white matter, or in the myocardium as an effect of the sheet structure if myo-fibres. (right)
The spherical shape indicates an absence of diffusion anisotropy.

1. The 90 deg RF excitation pulse is applied to tip the magnetization vector
perpendicular to

−→
B0. Spins precess in phase at the Larmor frequency

2. A gradient Gd of direction d is applied during a time δd. The phase of the spins
is offset gradually in direction d. The value q of this offset is proportional to
the gradient strength:

q = γδdg (2.4)

where g is the projection of the gradient over
−→
B0.

3. An inversion pulse (180 deg) is applied to invert all spins.

4. Another gradient Gd is applied during a duration δd, the spins rephase grad-
ually in direction d. The period between gradients is ∆. If spins have not
moved during this period, their phase recovery will be total. However if spins
have moved from x1 to x2 along direction d, i.e. a displacement of r = x1−x2,
due to a diffusion process, then the phase will not be entirely recovered. The
residual phase is then qr, and the altered magnetization at echo time TE is
then md(q) = M0 exp(iqr), where M0 is the magnetization without gradient.

5. At the echo time TE, the signal is acquired. The magnetization being at-
tenuated by the diffusion process, a reference signal (without any diffusion
gradient) is needed to measure the diffusion effect relatively to this reference,
which is the b-0 image.

To express the net magnetizationM , the sum the magnetization of each possible
spin displacement is calculated:

Md(q) = M0

∫
p(r) exp(iqr)dr (2.5)

Assuming a noise-free signal, the imaginary part is null. A normalized format
of the magnetization is derived: the signal net attenuation A(d, q) = Md(q)/M0.
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Figure 2.3: pulsed-gradient spin echo sequence: This is the standard sequence used
for diffusion encoding measurement. A double gradient Gd is applied in direction d to
phase-shift the spins that have moved in this direction during the period (∆ − δ/3). The
sequence has to be repeated N > 6 times to reconstruct a diffusion Gaussian profile, i.e. a
tensor.

Following calculus of the attenuation expression detailed in [Stejskal 1965] or
in [Basser 1994, Rohmer 2006] leads to:

log(Ad(q)) = −γ2δ2(∆− δd/3)g2dTDd (2.6)

This calculus derives from the integral function of the gradient over the time of
diffusion. Recalling that γ is the gyro-magnetic ratio of the particle (in s−1.T−1)
and g is the constant projection of the gradient among

−→
B0 (in T.m−1). The scalar

coefficient b = γ2δ2(∆− δd/3)g2 is called the b-factor (in s.m−2). The equation can
be rewritten as follows:

log(Ad) = −bdTDd (2.7)

This expression of the attenuation assumes a Gaussian model for the diffusion
process. Several authors propose other higher order models. For instance the spher-
ical harmonics have been used by [Alexander 2002] to model the diffusion profile on
a sphere. A mixture of more than one Gaussian can be considered for the proba-
bility function p. The model is called Multi-Compartment. The attenuation is then
written as Ad =

∑n
i=1 ai exp(−bdTDid), where n is the order of the model (number

of compartments) and ai are the compartments’ volume fractions.
Diffusion Tensor MRI [Basser 1996] hence consists of measuring – observing -

– at each position the signal attenuation Ad due to the diffusion along direction
d. Recalling that the covariance tensor D has 6 degrees of freedom, at least 6 non-
collinear directions di are needed to reconstructD, leading to 6 different observations
of the attenuation. Fig. 2.4 illustrates this by presenting an example of an acquisition
of a brain, where the baseline and the N=6 diffusion weighted images are shown.
The method that is commonly used to estimate D is a linear least square fitting
scheme. Let us consider N non-collinear directions acquisitions of the attenuation.
The tensor reconstruction therefore satisfies:

argmin
D

N∑
i=1

(
log(Adi) + bdTi Ddi

)2 (2.8)

The more directions acquired – the larger N – the more over-determined is the
system, and the better will be the fit ofD. The gradient directions must be uniformly
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distributed on the unit sphere. Jones and colleagues suggested optimal gradient
schemes in [Jones 1999, Jones 2004b], based on electro-static repulsion analogies,
that are now widely used by MR vendors for the diffusion sequences.

Figure 2.4: (a) The baseline (b-0) image does not have any gradient encoding and serves
as a reference signal S0 for tensor estimation. (b) Here 6 DWIs have been acquired in the
directions (x),(xy),(xz),(y),(yz),(z).

2.3 Topology of the Tensor Space
Symmetric positive-definite matrices, or tensors, are commonly used in many differ-
ent contexts. In mechanics, they express stress [Usyk 2000] for instance. Structure
tensors are also used to classify texture [Brox 2003]. In DT-MRI, they are used
to express the covariance matrix of the probability distribution of water molecule
movement due to their diffusion process within tissue.

From a mathematical point of view, a diffusion tensor belongs to the space of
3×3 real square matrices that are positive definite. That is, symmetric matrices M
that satisfy ∀x ∈ R3, xTMx > 0.

Matrix calculus applies with usual operations, such as addition, difference, aver-
age of a set of tensors. A crucial definition is the distance between two tensors. As
mentioned by Batchelor et al. in [Batchelor 2005], if the distance function is taken
as the linearly component definition – d2(D1, D2) =

∑
ij

(
D1ij −D2ij

)2 – then it
leads to the property stating that a difference between two positive definite tensors
may not be a positive definite tensor, i.e. its eigenvalues may be negative. This
behaviour raises the need for a more robust and efficient mathematical framework



2.3. Topology of the Tensor Space 14

for the calculus on the space of tensors. It has been found in [Batchelor 2005] and
later in [Arsigny 2006] that the use of the matrix logarithm allows desirable prop-
erties for the distance. Indeed, in these frameworks, tensors with null or negative
eigenvalues are at infinite distance to any strictly positive eigenvalues tensor.

In particular, Pennec et al. defined in [Pennec 2005a, Arsigny 2006] a new
adapted metric called Log-Euclidean. In this formulation, the tensor addition
and scalar multiplication are re-defined using the matrix-exponential and matrix-
logarithm. Assuming two tensors Σ1 and Σ2, the following equation can be written:

Σ1 ⊕ Σ2 = exp(log Σ1 + log Σ2) (2.9)
λ� Σ = exp(λ. log Σ) (2.10)

These operators give the space of tensors a structure of vector space when work-
ing in the logarithm map. Calculus is therefore very simplified as the tensor in-
terpolation or extrapolation are ensured to stay in the space of positive definite
matrices.

Thanks to this vector space structure operations on tensors can be computed in
an easier manner: all operations are performed on the matrix logarithm of tensors.
The result is mapped to the Euclidean space with the matrix exponential.

The weighted average of a set of tensors, in that sense, is thus defined as followed:

S(D1, w1...DN , wN) = exp

(
N∑
i=1

wi log(Di)

)
(2.11)

where wi are weights on tensors.
This metric guaranties the monotony of the tensor’s determinant during inter-

polation, which is a desirable property. It is acknowledged that this framework is
not the only one that could be used. In particular, Kindlmann et al. introduced
a geodesic interpolation method on loxodromes [Kindlmann 2007b] that infers a
monotonic variation of the tensor’s invariants. In the remaining of this thesis, the
Log-Euclidean metric is often used to perform operations on tensors. Tensors de-
noted L will refer to tensors in the “Log-space”, such that L = log(D)

Furthermore, as noted in [Arsigny 2006], one can use the “vec” operator in order
to simplify notations and calculus. The vec operator corresponds to a minimal
representation of a 3× 3 (symmetric) matrix by a 6 dimensional line vector, that is,
a projection of the tensor onto the 6-dimensional orthonormal basis of Sym+

R :

vec : L 7→ l

with


L =

L11 L12 L13

L13 L22 L23

L13 L23 L33


l =

[
L11,
√

2L12, L22,
√

2L13,
√

2L23, L33

]
(2.12)

This isomorphic operator is useful to minimize representation for statistical op-
erations, and the Euclidean L2 norm of the tensor L is equal to the classical Eu-
clidean norm over vectors of l. The

√
2 factors on the off-diagonal coefficients of L

are explained by the fact that they are counted twice in the L2 norm over matri-
ces [Kindlmann 2007a]. This notation is particularly used in Chap. 3 in order to
simplify notations and calculus.
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The invariants of a second order tensor D are the the one dimensional real valued
coefficients of the characteristic polynomial of D, that is:

p(D) := det(A− αE) (2.13)

with E the identity second order tensor and α the indeterminate of p (λ ∈ C). For
instance, the tensor trace Tr(D) and determinant det(D) are two tensor invariants.
In [Kindlmann 2007a], the authors make sure that the introduced metric on tensor
monotonically interpolates these tensor invariants.

The shape of a tensor D is fully described by the relationship between its
eigenvalues, extracted from the diagonalisation D = UΣUT (Fig. 2.2). In the
isotropic case, the three eigenvalues are equal, λ1 ∼ λ2 ∼ λ3. If λ1 is predominant,
i.e. λ1 � λ2 ∼ λ3, the tensor has a prolate spheroidal cigar shape. Finally, if
λ1 ∼ λ2 � λ3, then the tensor is called planar and has an oblate spheroidal shape.
To quantify these shape characteristics, positive real-valued coefficients have been
introduced. For instance, the Fractional Anisotropy [Basser 1996] (FA) is defined
as follows:

FA =
1√
2

√
(λ1 − λ2)2 − (λ2 − λ3)2 − (λ1 − λ3)2)√

λ2
1 + λ2

2 + λ2
3

(2.14)

While FA measures the global anisotropy of the tensor, some more geometrical
coefficients can be extracted. For instance, the tensor can be separated into its
linear Dl, planar Dp, and spherical Ds parts [Westin 2002]. After normalization by
the trace of the tensor, three geometrical coefficients can be derived to describe the
tensor:

cl =
λ1 − λ2

λ1 + λ2 + λ3

, cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

, and cs =
3λ3

λ1 + λ2 + λ3

(2.15)

One can note the obvious identity cl + cp + cs = 1, and that each component is
ranged between 0 and 1. These components are useful in characterizing the shape of
tensors more specifically than the Fractional Anisotropy. One particular interesting
use of these coefficients is the three-phase barycentric plot [Alexander 2000]. An
example of this plot is presented in Fig. 2.5. It is an efficient way to characterize
the distribution of tensor shapes within a dataset.

High Angular Diffusion MRI
In the sections above, the probability density function that describes the diffusion of
water molecules in tissue was assumed to follow a multi-variate zero-mean Gaussian
distribution, resulting in a full description of the process by a second order tensor.
This assumption is sufficient in tissue with relatively simple architecture, where the
underlying anisotropy of cells is restricted to a single preferred direction. It is the
case for instance in the Corpus Callosum (the main fibre pathway interconnecting the
two hemispheres of the brain). However, as shown by Tuch, Wedeen and colleagues
in [Tuch 2002] and later in [Alexander 2002], this assumption is insufficient in the
case of fibre crossing as it occurs in the brain white matter architecture.

In order to account for this tissue heterogeneity, many groups have studied diffu-
sion under non-Gaussian profiles. For instance, [Alexander 2002] proposed to model
the apparent diffusion coefficient distribution as a mixture of Gaussian profiles. The
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Figure 2.5: Barycentric plot. (a) The shape of a tensor D is described by its geometrical
coefficients cl, cp and cs. (b) Example of such plot in an in-vivo cardiac DTI dataset
acquired in systole.

model was able to depict the heterogeneity of tissue in regions of fibre crossings in the
brain. Tuch et al. proposed a technique referred to as Q-Ball imaging [Tuch 2004]
which samples the spatial dimensions together with the b-value dimension (Q-space)
and estimate the Orientation Distribution Function (ODF) of the diffusion process.
Those techniques and their derivatives are able to depict the potential heterogeneity
of tissues within a voxel [Jansons 2003, Tournier 2004, Descoteaux 2007] and proved
useful for instance in improving fibre tracking results [Perrin 2005, Fillard 2011].

As detailed in Sec. 1.1, the cardiac muscle tissue consists of elongated myocite
cells organised in laminae layers. Water diffusion occurs in the inter-cellular medium
between myocardial fibres, as well as in the embedded myocardial capillary system,
which runs parallel to the myocardial fibres [Phillips 1979]. The work presented in
this thesis is restricted to the analysis of the major orientations of the fibres in the left
ventricle. Therefore in this case, the multi-variate Gaussian model will be used as it
is sufficient to describe the underlying tissue orientation for fast diffusion [Hsu 2001].

2.4 Motion in Cardiac MR
One of the most important requirements for successful cardiac MR imaging is the
accurate synchronization of the data acquisition with respect to the motion of the
beating heart. The images produced then accurately reflect the state of the heart
during its different stages of contraction and relaxation and have minimal motion
artefacts. To achieve such synchronization, the electrical activity of the myocardium
is simultaneously recorded through the Electrocardiogram (ECG) so that the actual
image acquisition can be triggered with it (See Fig. 2.6).

The trigger delay Td then corresponds to the period between the detected R-wave
and the initial RF-pulse. There is a minimum for Td, therefore the remaining period
of time where the acquisition can take place is below 100 % of the R-R interval.
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Figure 2.6: ECG gating: The Electrocardiogram of the heart is recorded at all time. By
detecting the R-wave, the image acquisition is triggered at the desired cardiac phase. There-
fore, multiple acquisitions are synchronized at the same cardiac phase, assuming constant
heart rate.

2.4.1 Cardiac Planes

The orientation of the heart obeys specific semantics where three planes are defined
(as shown in Fig. 2.7): the short axis view, the 2-chamber and the 4-chamber views
– also respectively called vertical and horizontal long axis views.

Figure 2.7: Heart planes: The acquisition has to be done in the geometry of the heart,
which differs for each patient / volunteer. The three orthogonal axes in this figure represent
the views of the myocardium that are commonly used by clinicians / radiographers.

These planes are not aligned with the scanner physical referential. This property
is of great importance especially in DTI. Indeed, each oblique diffusion weighed
image is intrinsically coupled with an encoded gradient direction. Great care must
be taken to reorient the gradient direction in the image acquisition referential in
order to accurately solve the system in Eq. 2.8.
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2.4.2 Breath-holds and Navigating

The respiratory movement shifts the diaphragm and thus the heart moves during
inspiration and expiration phases. This movement mainly occurs in the foot-head
direction: the diaphragm pushes the heart towards the head direction during in-
spiration. To account for this movement, one can use breath-holds. In order to
ensure that the heart stays at the same position during successive breath-holds, a
1D profile image of the diaphragm / lung interface is acquired at the beginning of
each breath hold, in the foot-head direction, as shown in Fig. 2.8. The (i + 1)th

profile is compared to the ith and if they differ too much the data is not acquired.
The tolerance window is in mm and is set considering precision requirements.

Figure 2.8: Navigator: To detect foot-head motion due to respiration, the 1D profile
around the diaphragm is acquired. Then a tolerance window (right) will check the mis-
alignment and reject acquisitions that don’t lie within.

An additional technique allows to track this profile and then shift the acquisition
Field Of View (FOV) according to the observed shift in the profiles. This technique
is called Slice-Tracking.

2.5 Cardiac DTI Acquisition: Recent Advances
As pointed out earlier, the main problem addressed in that matter is the motion
involved in the beating heart. One could think of acquiring the data during the
rest period of diastole, as this is the cardiac phase of relative stasis. Unfortunately,
this phase coincides with a very thin thickness of the myocardial wall. To maximize
signal between endocardium and epicardium, data can be acquired in the systole
phase. However, contraction of the myocardium during systole provokes distortions
in the MR signal. Several solutions have been proposed in the literature to tackle
this motion sensitivity.

Originally, [Edelman 1994] suggested the use of a Stimulated Echo pulse,
or STEAM pulse sequence (instead of Stejskal-Tanner Spin Echo (SE) se-
quence [Stejskal 1965]), synchronized with the cardiac cycle. That is, the two diffu-
sion sensitizing gradients of the sequence are applied to the exact same cardiac phase
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Figure 2.9: rotation and shortening: During cardiac systole, the left ventricle is
shortened to ensure maximal blood ejection in the arteries. A rotation, or twist of the
ventricle is also observed, caused by the myocardial sheet shearing with each other. If
diffusion is to be encoded when there is spin motion in the diffusion direction, a phase shift
is induced on the signal, depending on the position and speed of the displacing spin. By
encoding diffusion at symmetric points around the systolic peak (around 60 % of the systole
phase), this phase shift cancels out, overcoming the distortion effect.

in two consecutive cycles. This sequence has the disadvantage to take two entire
cardiac cycles to acquire a diffusion weighted image. Moreover, tissue deformation
occurring during the acquisition interval (both in-plane rotation and through-plane
motion) alters intensively the signal and thus leads to unpredictable outputs.

Figure 2.10: STEAM pulse sequence: the Stimulated Echo Acquisition Method con-
sists in letting spin diffuse over the entire cardiac cycle. In this case, the rotation that
affects the diffusion encoding is narrowed.

Reese, Tseng, Dou et al. suggested a workaround by explicitly expressing the
alteration of the signal by cardiac strain [Reese 1995, Tseng 1999, Dou 2003]. Thus,
by applying additional velocity-encoding gradients, the strain tensor can be esti-
mated over the cardiac cycle. The altered tensor Dobs is expressed as a function of
the Strain Tensor St and the intrinsic tensor D0 by the following equation:

Dobs = D0 −∆−1

[
D0

∫
∆

St(τ)dτ +

(
D0

∫
∆

St(τ)dτ

)T]
(2.16)

where ∆ denotes the cardiac period. This expression is an approximation assuming
small strain eigenvalues.
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In 2007, Gamper, Kozerke et al. suggested to go back to the Spin Echo se-
quence (SE) and use bipolar gradient lobes as well as a reduced Field Of View
(FOV) [Gamper 2007]. In this work, a synthetic study of the effect of systolic mo-
tion over the k-space signal is explained. This motion results in a spin phase shift
depending on the direction and speed of the spins during the acquisition. This phase
shift induces distortion of the image when the voxel in-plane resolution is not suf-
ficient enough. By using bipolar gradients introduced in [Dou 2002], the diffusion
sequence is less sensitive to this phase shift and the voxel resolution requirements
are thereby relaxed.

Figure 2.11: Bipolar diffusion sequence: by using two bipolar diffusion gradient lobes
instead of one, the strain effect is nullified, assuming 2δd is still much inferior to ∆. This
sequence uses Spin Echo (SE) read-out as in the standard diffusion sequence in Fig. 2.3,
instead of the Echo Planar used in the STEAM sequence.

The SE sequence is faster (one cardiac cycle) and has a better signal to noise ratio
(SNR) performance than the STEAM sequence. The diffusion encoding gradients
have to be applied symmetrically around the 180 deg pulse. To compensate for
strain distortion effect, the trigger delay has to be tuned in order to place this pulse
at the systolic peak, that is, at around 60 % of the systolic phase (see Fig. 2.9).
Accordingly, the phase shift induced in the first Gd is nullified after the second Gd.

The two sequences shown here are meant to encode a single diffusion direction
for one 2D slice. As explained earlier, this measurement has to be repeated N times
(N > 6) to reconstruct the full Gaussian probability distribution, i.e. the tensor.
Therefore, N+1 cardiac cycles are needed to acquire the tensor field over a single 2D
slice. Moreover, to improve the SNR of the dataset, each measurement is repeated
kNSA times and a signal average is performed, leading to a total of kNSA(N + 1)
cardiac cycles for a DTI slice acquisition.

Acquisition Examples

Figure 2.12 shows short axis slices acquired on healthy volunteers. It is clear from
these DWIs images that the SNR performances are limited when compared to the
brain DWIs presented in Fig. 2.4. Additionally, net differences are observed in terms
of artefacts patterns and image contrast between SE and STEAM sequences. As
the STEAM sequence has an intrinsic fat suppression embedded, there is no need
for any pre-pulse to achieve that in this case, whereas this pre-pulse is necessary in
the SE case. Consequently, the STEAM DWIs appear less affected by fat induced
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artefacts than their SE equivalents. When reconstructing the tensors, Fig. 2.12(sec-
ond line) shows main eigenvectors consistent with anatomical general knowledge in
both acquisition techniques. However apparent noise levels seem to be lower in the
SE case. Both acquisitions have taken approximately 12-13 minutes. The STEAM
acquisition needed breath-holds, whereas the SE acquisition was realized in free
breathing, using respiratory navigation.

The single Gaussian model assumption is mostly used in the case of the cardiac
muscle. Indeed, cardiac myocytes are organized in a linear manner, embedded in a
collagen mesh structure. There is no specific reason to assume any fibre crossing in
healthy myocardial tissue. However, in some localised areas, such as the junction be-
tween the RV wall and the LV wall for instance, or in damaged tissue after an infarct,
the tensor model might not hold and the underlying tissue might be heterogeneous
within a voxel. Attempts to apply High Angular diffusion techniques and higher
order reconstructions have been reported in ex-vivo hearts in [Dierckx 2009]. The
study shows some genuine heterogeneity (fibre crossings) in the junction between
ventricles. The resolution and SNR in in-vivo cardiac DTI restricts the diffusion
model and for the remaining of the thesis the simple tensor model is considered.

Figure 2.12: Examples of a DTI acquisitions on two different healthy volunteers in the
mid-ventricle area, using (a) the Spin Echo (SE) bipolar sequence from [Gamper 2007] and
(b) the Stimulated Echo protocol (STEAM) from [Tseng 1999]. The first line shows one of
the diffusion weighted images and the second shows the tensor reconstruction. Tensors are
shown using their first eigenvectors, color coded with their direction.
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Prolate Spheroidal Frame for
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3.1 Motivations
Representing information in a coordinate system which is adapted to the shape of the
object can have a crucial impact on performance when processing this information.
The prolate and oblate spheroidal coordinates belong to the restricted family of
coordinate systems where the Laplace equation can be solved with the method of
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separation of variables [Zipoy 1966]. This property is used in the field of astrophysics
for instance. It is indeed common to represent the shape of the Earth (or other
celestial object) as an oblate spheroid, and translate any given problem (such as the
resolution of gravitational or vacuum fields) into the corresponding oblate spheroidal
coordinates [Gates 2004].

The LV wall is a relatively thin and non-convex structure with a shape
close to an ellipsoid. The prolate spheroidal (PS) coordinates are therefore well
adapted to represent such an object, and have the advantage of being physi-
ologically meaningful with respect to the ventricular shape and fibre architec-
ture [Nielsen 1991, Costa 1996, LeGrice 2001, Rohmer 2006].

This chapter presents a new approach for representing the LV DTI data in PS
coordinates, highlighting the practical advantages of such technique. This approach
is then applied to a series of experiments, using ex-vivo canine heart dataset, in
order to extract comprehensive features from LV DTI data.

3.2 Insight to the PS Coordinates
The PS coordinate system is a curvilinear yet orthogonal system in R3. This means
that the intersecting surfaces of constant coordinate are orthogonal to each other.
The transformation operator from Cartesian coordinates x = (x1, x2, x3)T to PS
coordinates ξ = (ξ1, ξ2, ξ3)T is denoted Ψ : x → ξ = Ψ(x). However, it is more
commonly given in its inverse form Ψ−1:

Ψ−1 :


x1 = f sinh(ξ1) sin(ξ2) cos(ξ3)

x2 = f sinh(ξ1) sin(ξ2) sin(ξ3)

x3 = f cosh(ξ1) cos(ξ2)

(3.1)

The scaling parameter f is the semi-foci distance. Figure 3.1 illustrates the
construction of the coordinate system. The first coordinate ξ1 is defined in ]0,∞[
and can be interpreted as the through-wall depth, ξ2 is the long axis angular abscissa
going from 0 at the apex to π/2 at base level, and ξ3 as a circumferential angular
abscissa from 0 to 2π.

The contravariant base vectors (g1, g2, g3) of a (curvilinear) coordinate system
are the vectors that are orthogonal to each of the coordinate isosurfaces. They are
defined as gi = ∂x

∂ξi
. In the common Cartesian system, the contravariant basis is

stationary in R3, i.e. ∂x
∂xi

= ei. The PS equivalent, here denoted G = (g1, g2, g3)
varies in space as illustrated in Fig. 3.1. Their detailed expression is as follows:

g1 = f ·

cosh(ξ1) sin(ξ2) cos(ξ3)
cosh(ξ1) sin(ξ2) sin(ξ3)

sinh(ξ1) cos(ξ2)

 g2 = f ·

sinh(ξ1) cos(ξ2) cos(ξ3)
sinh(ξ1) cos(ξ2) sin(ξ3)
− cosh(ξ1) sin(ξ2)


g3 = f ·

− sinh(ξ1) sin(ξ2) sin(ξ3)
sinh(ξ1) sin(ξ2) cos(ξ3)

0

 (3.2)

Where f is the semi-foci distance (See Fig. 3.1). The null component in g3

confirms that this vector is always parallel to the (x, y) plane, as the derivation
of the third line of Eq. 3.1 with respect to ξ3 is null. The basis G is direct and
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orthogonal, but not orthonormal. The norm of each vector gi depends on the so-
called coordinates scaling factors, which are defined as Ψ−1 local derivatives : hi =
∂x/∂ξi, leading to the relationship ‖gi‖ = 1/hi. The PS coordinates are defined
everywhere in R3, except on a singularity segment located between foci, as detailed
in App. A.

The contraction of the ventricle can therefore be mostly described by 1) a twisting
movement along g3, 2) an apex to base shift along g2, and 3) a wall thickening along
g1. Those considerations justify the use of the PS coordinate system for describing
left ventricular shape and function [Costa 1996, LeGrice 2001, Rohmer 2006].

In the literature the usual convention appears to take an indirect basis
(g1, g2,−g3) instead of the basis described in this chapter. When using the indi-
rect convention, the helix angle is positive in the endocardium and negative at the
epicardium, as in [Streeter 1973a, Greenbaum 1981, Scollan 1998]. In this thesis,
the opposite convention is used. The basis is kept direct for mathematical consis-
tency. However, in order to compare graphs with the literature, they are shown in
the indirect convention (i.e. the helix angle is positive at the endocardium).

Figure 3.1: The PS coordinate system, defined at each position in R3 depends on the
position of an ellipsoid centre O, a focus f1. f is the semi-foci distance. Iso-lines of
constant coordinates are drawn to illustrate its suitability to the ventricular shape.

Prolate spheroidal coordinates have the advantage of describing the highly non
convex volume that is the ventricle wall as a parallelogram, as shown in Fig. 3.2. In
the PS frame, the shortest path from two distinct points of the ventricle remains in
the ventricle. Therefore, a metric defined in this frame becomes geodesically convex.

3.3 Practical Properties of the PS Coordinates

3.3.1 AHA Subdivision

Representing left ventricular data in a PS coordinate frame has several advan-
tages. The natural normalization of the coordinate system allows straightforward
division into regions (or zones) as defined by the American Heart Association
(AHA) [Cerqueira 2002]. Indeed, since ξ2 is the apico-basal coordinate and ξ3 is
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Figure 3.2: Convexity: A left ventricle volume (left) is non convex in a Cartesian frame
whereas the same volume expressed in a PS frame (right) becomes a convex box.

the circumferential coordinate, dividing linearly the segments [0, ξbase] and [0, 2π]
into equal lengths yields to appropriately distributed AHA segments.

Figure 3.3(a) shows an example of such division. The ξ3 = 0 plane is aligned
with the limit between AHA zones 1 and 2, i.e. the limit between the anterior wall
and the right ventricle.

Figure 3.3: AHA segments in the PS sense. The segments are linear divisions of the
naturally normalized coordinate system. The plane (ξ3 = 0) is aligned with the limit between
the anterior wall and the right ventricle.

Another practical use of this curvilinear representation is the bullseye representa-
tion of data in the left ventricle. A bullseye map is a projected polar representation
of the LV shape, as seen from the apex point of view. Thanks to the PS coordi-
nate frame, the bullseye map is derived in a straightforward way, with any required
subdivision levels (see Fig. 3.3(b)).
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3.3.2 Expressing Diffusion Tensors in PS Coordinates

When diffusion tensors are expressed into the local PS basis G, each component of
the tensor can be interpreted in a physiologically meaningful way. For instance, the
main eigenvector of tensors Dξ can be calculated. Their projection on G provide
comprehensive measure of the fibre architecture. Three projections are defined as
follows (see illustration in Fig. 3.4(b)):

• The helix angle, denoted α, is the signed angle between the tensor’s main
eigenvector v1 and the transmural short axis plane (g1, g3). Its variation with
respect to the transmural depth (ξ1) is of particular interest as it follows a
recognizable pattern on healthy subjects.

• The transmural angle β is the signed angle between v1 and the wall surface
(g2, g3). It measures the deviation of the fibre from circumferential direction.

• The sheet angle γ as the signed angle between v3 and the wall surface (g2, g3).
The laminar structure of the myocardial fibres can also be described by the
DTI data. As the plane defined by the vectors v1 and v2 is parallel to the
laminar sheet, the direction of v3 fully describes the sheet orientation. A high
absolute value of γ implies that the local laminar sheet is close to be parallel
to the wall surface.

Using the PS expression of the diffusion tensor, these angles are therefore math-
ematically defined as:

α = arcsin(v1, g2); β = arcsin(v1, g1); γ = arcsin(v3, g1); (3.3)

Figure 3.4: (a) Sheet structure of the left ventricle. (b): Helix (α), transverse (β) and
sheet (γ) angles are defined in PS coordinates w.r.t the tensor’s eigenvectors.

3.3.3 Natural Normalization of the System

The PS frame constructed with this approach allows an interesting set up for the
comparison of different datasets, as it is naturally normalized. That is, indepen-
dently of the subject, the third component ξ3 is naturally normalized between 0 and
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2π. The ξ3 = 0 position is imposed to be the intersection between the anterior wall
and the the Right Ventricle (RV). Similarly, the second component ξ2 is naturally
normalized between 0 at the apex and ξbase at the basal region. The value ξbase
depends on the basal cutting performed on the manual segmentation S. In the ex-
periments carried out in this thesis, ξbase is found to be 107 deg±4 deg. The range of
the first component ξ1, on the other hand, is not naturally normalized, and depends
on both the radius of the LV and its thickness. However, the lower (endocardial)
and upper (epicardial) limits of ξ1 are very stable among a population. Therefore
the PS coordinates provide an easy and comprehensive way to compare DTI data
within a population of hearts.

3.4 Workflow: from Anatomical LV to Normalized
PS Frame

3.4.1 Non-Linear Registration

In order to ensure that the curvilinear coordinate system strictly follows the shape
of a specific LV, the segmented ventricle has to be registered to a perfectly shaped
truncated ellipsoid volume. The source image S and target image T of this non-
rigid registration step are respectively the binary mask of the segmented LV and
the binary mask of a corresponding approximated truncated ellipsoid volume (See
Fig. 3.5). As detailed further in this chapter, the DTI data will be transformed to
the ellipsoid and back to the anatomical geometry. The registration process has to
fulfil three requirements:

• The transformation provided by the registration needs to be invertible.

• The displacement fields needs to be smooth, in order to avoid strong rotation
components of the transformation.

• As binary masks are used, there is no feature in the mid-wall regions of S and
T to drive the registration process. Therefore a plasticity/elasticity property
of the registration is needed to ensure physiologically plausible displacements.

Those requirements drove the choice over the registration towards the symmet-
ric version of the log-domain diffeomorphic demons [Dru 2009]. This registration
algorithm has the crucial characteristic to provide symmetric invertible displace-
ment fields. To add an elasticity constraint on the displacement, methods described
in [Mansi 2011] are used. The Poisson ratio κ controlling the degree of global elas-
ticity (Eq. 9 in [Mansi 2011]) has to be chosen small (of the order of 1), as too
large values result in incompressible displacements. In our setting, there is no rea-
son to impose such a strong constraint on the displacement field, because there is
no reason to believe that the source and target masks have the same volume. This
technique provides forward Φ and backward Φ−1 transformations between the vol-
unteer’s anatomy and a volumetric truncated ellipsoid. S is obtained by a manual
segmentation of the myocardium using a 3D anatomical MRI image. The software
CardioViz3D [Toussaint 2008] was used for this purpose. It provides an interactive
segmentation based on variational implicit surfaces, as proposed in [Turk 1999].
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The centre of mass and main axis of symmetry of S are used to produce the
target volumetric truncated ellipsoid image T that is the closest to S. Fig. 3.5
shows a superposition of masks S and T onto the anatomical image.

Figure 3.5: The binary mask S of the anatomical left ventricle (in green in on the images)
is obtained by manual segmentation. From the centre of mass and main axis of revolution
of S is derived the closest volumetric truncated ellipsoid mask T (in red in the image). S
and T are then registered using symmetric diffeomorphic demons algorithm.

Now that the subject’s LV is transformed onto the perfectly shaped truncated
ellipsoid volume T , the operator Ψ can be used to express this information in PS
coordinates. Position transformation from Cartesian to PS coordinates is defined by
inverting the system in Eq. 3.1. Details of the inversion are given in Appendix A.

The overall transformation process towards a common PS frame can be summa-
rized as follows:

ξ = Ψ ◦ Φ(x) (3.4)

The operators Φ and Ψ are fully invertible, apart from the singularity segment
(see Appendix A). As a consequence, it is possible to transform any LV input data
into the PS frame, process it in a well adapted coordinate system, and transform it
back to the anatomical referential.

The global transformation process is illustrated in Fig. 3.6. The anatomical left
ventricular wall volume Ω is transformed to the convex box Ω′′ that is the PS frame.
A natural path lying within the LV wall (dotted lines in Ω) becomes a straight line
in Ω′′. Therefore, any process, such as interpolation or geodesic distance definition,
described in PS frame will follow the natural shape of the LV. In particular, dense
approximation benefits from this characteristic, as presented in Chapter 4.

3.4.2 Extension to Tensors: a Finite Strain Approach

In our work, the type of data is not scalar but consists in tensors. A series of
adjustments to the transformation operators are needed in order to account for that
increased data dimensionality. Let us denote Φ̃ the induced transformation from Φ
on tensors. Transforming the diffusion tensors implies a reorientation scheme using
the Jacobian JΦ−1 (in our case directly available from Φ−1).
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Figure 3.6: Workflow: this diagram shows the data transformation throughout the proce-
dure. The anatomical LV (Ω) is registered onto a truncated volumetric semi-ellipsoid (Ω′)
with the displacement field Φ. The change of coordinate system from Cartesian to PS is
performed with the operator Ψ, which results in a convex representation of the ventricular
volume (Ω′′).

In [Alexander 2001], two different reorientation strategies were compared to ad-
dress the problem:

• The Finite Strain (FS) method separates the deformation in a rigid rotation
and a pure deformation one, and only applies the rotation ĴΦ−1 to the tensor.

• the Preservation of Principal Direction (PPD) method takes the full Jacobian
to reorient the tensor.

The study concludes that FS strategy is sufficient if the deformation is close
to be rigid, and that PPD must be used if the deformation includes significant
non-rigid parameters such as large shearing for instance. In [Peyrat 2006], the same
strategies were compared and it was found that Finite Strain (FS) was best suited for
preserving the geometrical properties of diffusion tensors in the context of diffusion
tensors registration in the myocardium. The FS strategy was chosen for this reason
and its computational efficiency. Additionally, the Jacobian determinant of the
displacement fields Φ and Φ−1 obtained in Sec. 3.4.1 appears close to 1 (i.e. close
to isovolumic displacements), as shown in Fig. 3.7. Indeed, the elasticity constraint
added in the registration process yields to smooth deformation fields and pushes the
displacements towards rigid ones.

Extending the change of coordinate to tensors necessitates the induced trans-
formation of the operator Ψ. The Jacobian of Ψ corresponds to the contravariant
basis G (Eq. 3.2). This matrix is orthogonal by definition (PS coordinates is an or-
thogonal coordinate system), but not orthonormal. The norm of the contravariant
vectors correspond to the scale factors of the coordinate system, which are the local
derivatives hi = ∂x/∂ξi. In our setting, the domain of definition is a volumetric
ellipsoid, and factors hi vary spatially within the domain. In particular, they de-
crease with the distance to the long-axis. Therefore, taking the full Jacobian of Ψ
to reorient the tensors and performing interpolation in the PS frame would privilege
tensors of endocardial regions against epicardial ones, which is not desirable. Con-
sequently, only the rotational component of Ψ̃ is used: let us denote Ĝ the matrix
constructed from the normalized column vectors of G, using the scale factors hi (see
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Figure 3.7: Jacobian determinants. (a) histogram of the determinant of the Jacobian ma-
trix JΦ−1 . (b) Short axis view of the Jacobian determinant, with a left ventricle delineation
superimposed.

Appendix A). Recalling that G is direct and orthogonal, Ĝ has therefore by construc-
tion a determinant equal to 1. Eq. 3.4 is rewritten with the induced transformations
on tensors:

ξ = Ψ ◦ Φ(x) and Dξ = Ψ̃ ◦ Φ̃(Dx)

with :

{
Φ̃ : D → Φ̃(D) = Ĵ T

Φ−1 .D.ĴΦ−1

Ψ̃ : D → Ψ̃(D) = ĜT .D.Ĝ
(3.5)

The induced transformations Φ̃ and Ψ̃ both represent the finite strain transfor-
mations of tensors under Φ and Ψ.

3.5 Differential Operator in PS Coordinates

3.5.1 Gradient Computation

In data analysis, it is often important to be able to quantify the local variation of
a quantity over space. The spatial differential operator of a function is well defined
when the measure points (centres) are regularly distributed on an orthogonal grid,
using finite differences. However, as our tensor data is transformed to a PS frame,
the data centres are not regularly distributed in the PS frame, and the density of
this distribution is heterogeneous within the domain of definition. These properties
are illustrated in Fig. 3.8(a). In this section, a description of a computation method
for the local gradient of a tensor field in such situation is provided.

Let us denote L = logD, the local gradient in PS coordinates is defined as
∇ L = (∂ξi L), i = 1..3 where ∂ξi L are projection of ∇ L on the axes of the
coordinate system.

For clarity, we use the “vec" operator as defined in 2.3: l = vec(L). The local
gradient therefore becomes ∇l = (∂ξil), i = 1..3, and ∇l is of dimension 3 × 6.
On a regular lattice, the directional gradients in the orthogonal directions ui are
defined as ∂uil(ξ) = 1/2(l(ξ + ui) − l(ξ − ui)). In case the measure centres are
irregularly distributed (Fig. 3.8(b)), the above computation is not feasible, and the
non-symmetric version has to be considered: ∂uil(ξ) = l(ξ+ui)− l(ξ), where ∂uil(ξ)
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are projections of the total gradient ∇lV on the directions ui in a neighborhood V
(see Fig. 3.8(b)).

Figure 3.8: (a) In the PS frame, spatial distribution of measurement points is not regular,
and the distribution density is heterogeneous. (b) The local spatial gradient ∇lV(ξ) is a
weighted combination of its projections onto each known direction of a neighborhood V, i.e.
∂uil(ξ). The least square solution gives an approximation of this gradient at position ξ,
using the local PS metric tensor Σ.

Furthermore, one has to be careful if the spatial metric is not isotropic, which
is the case in PS coordinates (i.e. the scale coefficients hi are not equal). Since an
Euclidean representation of the spatial variation is needed, a metric correction is
necessary. Using the metric tensor of the PS coordinates Σ at position (ξ + ui), the
corrected non-symmetric directional gradient is written as follows (see Fig. 3.8(b)):

Σ =

h1(ξ + ui) 0 0
0 h2(ξ + ui) 0
0 0 h3(ξ + ui)

 → ∂uil(ξ) = ∇lV(ξ)T · Σ · ui (3.6)

In Eq. 3.6, ∇lV(ξ) is the unknown gradient to be estimated from its projections
∂uil(ξ). When considering a neighborhood V of centres around ξ, this problem
can be solved in the least square sense. Let us perform a change of variable using
uΣ
i = Σ · ui. The following set of equations can be written:{

∂uil(ξ) = l(ξ + ui)− l(ξ)
∀ui ∈ V , ∂uil(ξ) = ∇lV(ξ)T · uΣ

i

(3.7)

Let us define the matrix UΣ, with each line i being directional vector uΣ
i , and

the matrix ∂U l, with line i being ∂uil(ξ). Eq. 3.7 can then be written in its matrix
form:

∇l(ξ)T · UΣT = ∂U l(ξ)
T ⇐⇒ UΣ∇l(ξ) = ∂U l(ξ) (3.8)

This least square problem is solved by minimizing the residual ‖∇lV(ξ)T · UΣ −
∂U l(ξ)‖2. As described in [Pennec 2005b] (Sec. 5.2), the least square solution in-
volves the pseudo-inverse of UΣ:

∇lV(ξ) = (UΣTUΣ)−1UΣT · ∂U l(ξ) (3.9)
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In the case where U is restricted to the 3× 3 diagonal matrix diag(sp1, sp2, sp3),
it can be noticed that this gradient reduces to the case of the one of a regular lattice
of spacing [sp1, sp2, sp3].

The size and cardinality of the neighborhood V is particularly influent in
the resulting gradient solution in Eq. 3.9. However, the influence of projec-
tion ∂uil(ξ) is linearly decreasing with its distance from ξ. One efficient way
to proceed is first to estimate the average (prolate spheroidal) spacing of the
dataset and then define V as the ball neighborhood of twice this spacing around ξ.

3.5.2 Inertia Matrix Computation

In the previous section, Equations 3.8 and 3.9 therefore present a calculation of the
local differential operator in the Prolate Spheroidal frame. This operator allows us
to measure the local derivative of a tensor field. In addition to computing the spatial
gradient, it is sometimes interesting to detect features in the tensor field. In image
analysis, this can be achieved by quantifying the inertia matrix [Knutsson 2011]
(also called gradient tensor [Bigun 1987]) of the quantity of interest. This matrix is
constructed as the outer product of the local gradient ∇l ·∇lT . As diffusion tensors
are seen as vectors l in the Log-Euclidean sense, the inertia matrix of this set of
vectors is defined as follows:

SV(ξ) = ∇l · ∇lT

=

 ‖∂ξ1l‖2 〈∂ξ1l|∂ξ2l〉 〈∂ξ1l|∂ξ3l〉
〈∂ξ2l|∂ξ1l〉 ‖∂ξ2l‖2 〈∂ξ2l|∂ξ3l〉
〈∂ξ3l|∂ξ1l〉 〈∂ξ3l|∂ξ2l〉 ‖∂ξ3l‖2

 (3.10)

As we are set in the log-space (i.e. l = vec(L) = vec(log(D))), the norm ‖.‖ and
scalar products 〈.|.〉 written in Eq. 3.10 have to be taken as the classical Euclidean
norm and scalar products over vectors.

From Eq. 3.9 and Eq. 3.10, the inertia matrix SV(ξ) can be computed on an
irregularly distributed set of diffusion tensor measure centres. As we will see later
in this chapter, this quantity can be used to evaluate the directionality of most
changes in a tensor field. The implementation algorithm of this computation is fully
described in Alg. 1.

3.6 Experiments: Tensor Feature Extraction
In order to test and illustrate our approach, a database of 9 healthy canine hearts
high resolution DTI ex-vivo acquisitions 1 provided by Dr. Patrick A. Helm and Dr.
Raimond L. Winslow at the Centre for Cardiovascular Bioinformatics and Modeling
and Dr. Elliot McVeigh at the National Institute of Health was used.

Each of the dataset consists of a DTI volume and a B0 volume. Both volumes
have a high resolution voxel size (0.4297 × 0.4297 × 1.0 mm). The B0 volume was
used to manually segment the left ventricular wall. Care was taken to avoid the
papillary muscles, as shown in Fig. 3.9(a). The extreme basal boundaries are also
intentionally avoided. As explained in Sec. 3.4.1, the truncated ellipsoid closest

1http://www.ccbm.jhu.edu/research/DTMRIDS.php
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Algorithm 1: AHA Zone Tensor Variability Computation

Data: The set of acquired tensors Di at arbitrary Cartesian positions xi
Result: The set of Inertia Matrices Cross-Correlations SV(z) for z = 1→ 17
Coordinate Change
foreach (x,Dx) ∈ Ω do

ξ = Ψ ◦ Φ(x)

Dξ = Ψ̃ ◦ Φ̃(Dx)
l(ξ) = vec(log(Dξ))

end
Gradient and Inertia Matrix Computation
foreach ξ, l(ξ) do

i← 0
foreach ξ′ 6= ξ in V , l(ξ)′ do

Σ = diag(hi)
UΣ(i) = Σ(ξ′ − ξ)
∂U l(ξ)(i) = l(ξ′)− l(ξ)
i← i+ 1

end
solve the least sq. problem UΣ∇lV(ξ) = ∂U l(ξ)
SV(ξ)← ∇lV(ξ)∇lV(ξ)T

end
AHA zone Inertia Matrix Computation
for z = 1→ 17 do

SV(z) = 1
Nz

∑
i SV(ξi)

ScartV (z) = Φ̃−1 ◦ Ψ̃−1(SV(z))

end
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to this segmentation is found by computing the axis of symmetry of the mesh,
and estimating the major-axis and minor-axis lengths. Fig. 3.9(b) illustrates this
process. The grey wire-frame grid represents the ellipsoid volume found, and the
surface mesh shows the LV segmentation.

Figure 3.9: (a) The B0 map of one of the canine hearts is shown together with its
corresponding LV segmentation outline. (b) The long-axis of the ellipsoid (wire-frame grid)
is found using the axis of symmetry of the segmentation (surface mesh), and the lengths of
the axes of the ellipsoid are derived.

Binary masks of the ellipsoid T and of the LV segmentation S were used for
registration and DTI tensor data have been transformed to the PS frame.

To extract characteristics of interest of a tensor field within the left ventricle,
three different applications of the approach described in this chapter will now be
described.

3.6.1 Orientation Feature Extraction

The helix, transverse and sheet angles at each position were extracted as described
in Sec. 3.3.1. There are several ways of visualising and interpreting these angular
features. One way is, in the PS frame, to construct the joint histogram of each
angle versus the transmural abscissa ξ1. These joint histograms are presented in
Fig. 3.10 for one of the explanted canine hearts (heart # 2). The helix angle is
strongly correlated to the transmural abscissa (correlation coefficient of 0.71) and
agrees with earlier analysis of the fibre directions on explanted hearts [Peyrat 2006,
Lombaert 2011]. The transverse angle is very stable around zero, confirming a low
deviation from circumferential direction also observed in earlier studies. The sheet
angle does not seem to be significantly correlated to the transmural depth.

Another way of visualising the helix angle distribution is to take advantage of
inverse operators Φ−1 and Ψ−1 in order to warp back this angular information in
the anatomical space of the corresponding explanted heart, as detailed in Sec. 3.4.1.
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Figure 3.10: Joint histograms of respectively the helix, transverse and sheet angles with
respect to the transmural abscissa. The black lines indicate the mean (per column) and the
window at 1 σ.

In Fig 3.11, tractography results of explanted heart # 2 are color-coded by the
extracted local helix angle α. Helix angle boundary values are found to be +43deg.
at the endocardium and −37deg. at the epicardium. This study can be considered as
an alternative study to the work presented in [Peyrat 2009], where the same database
was used to produce a statistical atlas of cardiac DTI. The discrepancy between the
endocardial and epicardial boundary values of the helix angle may be explained
by the intentionally strong constraints during left ventricular segmentation. The
extremal regions at the endocardium for instance might include the papillary muscles
where the helix angle reach very high values (details on this matter are presented
in Sec. 3.7.1).

Figure 3.11: Helix angle α mapped onto the fibre field of an explanted canine heart.

3.6.2 Shape Feature Extraction

In this section, two different scalar features were extracted from a canine dataset:
the fractional anisotropy FA and the linear coefficient cl. Both are alternative
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measures of elongation of the tensor shape:FA =
√

3
2

√∑3
i=1(λi−λ̄)2√∑3

i=1 λ
2
i

cl = λ1−λ2∑3
i=1 λi

(3.11)

The two quantities have been evaluated on the single ex-vivo canine heart #
2 and are plotted on a bullseye plot in the PS sense in Fig. 3.12, as explained in
Sec. 3.3.1. Linear coefficient gives a lower contrast of values than the fractional
anisotropy, but both measures present the same patterns. The septal wall appears
to give high anisotropy values, and generally the basal regions are more anisotropic
than the apical ones.

Figure 3.12: Tensor shape feature extraction on a single canine ex-vivo dataset: (a)
bullseye plot (in PS sense) of the fractional anisotropy FA. (b) Bullseye plot (in PS sense)
of the linear component cl.

The distribution of the FA throughout the entire ventricle appears to follow a
Gaussian distribution with a mean value of 0.32 and a standard deviation of 0.12.
This FA value is characteristic from cardiac tissue anisotropy following necrosis, as
observed in [Eggen 2012].

3.6.3 Variability Feature Extraction

For the purpose of this example, each PS transformed DTI dataset was divided into
AHA zones as detailed in Sec. 3.3.1. Let us denote Ωz the domain of definition of
AHA zone z, and [Dξ]

z the set of tensors belonging to Ωz, with z = 1..17. This set
of tensors can then be used to derive zone-specific quantities of interest.

For instance, it is of interest to quantify the variability of the tensor field in each
AHA region. As suggested by [Basser 2007], one can consider the evaluation of the
exhaustive spectral decomposition of the variability of a set of tensors by computing
the full covariance 4th order tensor. Alternatively to this very interesting approach
(left for future investigation), some properties of this variability can be obtained by
computing the inertia matrix as described in Sec. 3.5.1.

The inertia matrix quantity, SV(ξ), computed everywhere in the ventricle wall
(see Sec. 3.5.2) describes the local variability of the input DTI tensors in space.



3.6. Experiments: Tensor Feature Extraction 37

For this application, an infinite support has been chosen for the computation of the
gradient ∇lV(ξ), i.e. we consider the whole tensor field as neighborhood V . As a
covariance matrix, SV(ξ) is symmetric definite positive, and can be visualised the
same manner as are tensors. Fig 3.13(a,b) presents the DTI data of a long axis slice,
acquired in ex-vivo canine hearts # 2 and # 3, and the corresponding local inertia
matrices SV(ξ) are shown in Fig 3.13(c,d). The immediate observation concerns the
direction of the principal eigenvectors of SV(ξ). They correspond to the principal
direction of spatial change of the tensor field. They appear very consistently oriented
in the transmural direction, suggesting that the variability of the fibre structure
information is almost entirely contained in its ξ1 projection.

Finally, to quantify the regularity of the inertia matrix over the LV, we evaluated
the mean inertia matrix in each AHA zone Ωz:

SV(z) =
1

Nz

∑
i∈Ωz

SV(ξi) (3.12)

With Nz the number of data centres in zone z.

Figure 3.13: (a,b) DTI slice (long axis) of one of two healthy ex-vivo canine hearts. Ten-
sors are color-coded with their main eigenvector directions. (c,d) Inertia matrices Sσ(ξ) of
the diffusion tensor field. They illustrate the spatial variability of the tensor field. The prin-
cipal eigenvectors s(ξ) of the inertia matrices SV(ξ) are mainly oriented in the transmural
direction.

Figure 3.14 shows the resulting set of mean inertia matrices SV(z) for z = 1 ∼ 17.
They are represented as superquadrics, 3D parallelelograms with each pair of sides
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are proportional to the corresponding eigenvectors and eigenvalues of SV(z). The
main direction of variation of the underlying tensor field is characterized In the first
eigenvector of the mean inertia matrix. This main direction is shown to appear
mostly parallel to the transmural axis. It therefore shows that the fibre architecture
of a (healthy) heart is varying mostly between endocardium to epicardium, but is rel-
atively constant in the other directions, as also observed in [Fernandez-Teran 1982].
The second mode of variation (second longest side of the parrallelogram) is in the
apico-basal direction, which indicates that fibres show generally more variability in
this direction than in the circumferential direction. The parallelograms are color-
coded with their respective volume, which quantifies the amount of variability of the
tensor field in the corresponding AHA zone. One can note the greatest variability
appears at the apex, where fibre architecture is the least coherent.

Figure 3.14: Mean inertia matrices calculated over each AHA zone for 2 different ex-vivo
canine hearts. These symmetric matrices are represented as superquadrics and are color-
coded with the matrix determinant. They illustrate that the main direction of change of the
fibre architecture is along transmural depth. The greatest variability appears at the apex.
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3.7 Workflow: Sensitivity to Parameters
This approach to tensor data representation in the left ventricle depends on several
steps:

• The manual segmentation of the left ventricular endocardium and epicardium.

• The definition of the closest ellipsoid. That is, its centre, major and minor
axes.

• The diffeomorphic registration performed between the LV binary mask and
the ellipsoid binary mask.

Each of those three steps can introduce inaccuracy. In this section the influence
of these three potential errors in the final results is discussed. Additionally, the
accumulation of error during the entire workflow is quantified.

3.7.1 Manual Segmentation

As detailed in Sec. 3.4.1, the anatomical shape of the ventricle is extracted through
manual segmentation, and the closest truncated ellipsoidal volume is extracted using
this segmentation. It can be argued that the workflow is therefore subject to seg-
mentation errors and might bias the statistical study. One important characteristic
of the presented workflow is that it relies on a registration between this segmented
ventricle and the truncated ellipsoid. Measure positions and DTI data are trans-
formed to this ellipsoid simply for statistical analysis and interpolation purposes.
Since tensors are reoriented according to the Jacobian of the transformation Φ, it
can be argued that only the rotation components of Φ can potentially bias the ac-
curacy of the statistical results. It is therefore important that the segmentation
is smooth to prevent for strong rotation components of the transformation Φ that
would cause an anatomically inaccurate extra rotation of the tensors.

Additionally, a misevaluation of the segmented wall will provoke the inclusion
or exclusion of tensor data at the boundaries of the LV. As shown in Fig. 3.9,
the endocardial boundary of the segmentation was carefully monitored to avoid the
papillary muscles. To illustrate the influence of the segmentation on helix angle
graphs, Fig. 3.15(b) shows two elevation angle graphs when including or excluding
the endocardial papillary muscles.

3.7.2 Ellipsoid Definition

The axis of rotation of the truncated ellipsoid is defined as the main axis of mass
of the segmented LV. A variation of this axis will impact the resulting statistical
study. For instance, its effect on the graphs presented in Fig. 3.10 would be an
increase/decrease of the vertical standard deviations of the angles α, β, and γ with
no impact on the mean values. Indeed, the mean bias cancels out around the ξ3

direction. However, it is important to note that a misevaluation of this axis by
only 10 deg. at the base would already deviate the apex location by 1cm, and the
error would be straightforward to pick during the process. In this case a manual
adjustment of the axis is necessary to ensure a good overlap of the ellipsoid and the
LV volume.
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Figure 3.15: (a) A DTI slice of one of the ex-vivo datasets. (b) The elevation (helix)
angle is reported with respect to the transmural depth. The dotted line concerns the dotted
rectangle

3.7.3 Diffeomorphic Registration Accuracy

The accuracy of the registration can be quantified by computing the overlap between
the target image T and the transformed source image Φ(S). A common way to
evaluate this overlap is through the Dice coefficient [Dice 1945]: d = (T∧Φ(S))/(T∨
Φ(S)). Values of d close to 1 denote a good overlap. The Dice coefficient was
computed for the 9 ex-vivo canine cases and a value of d = 0.95±0.003 was obtained
(mean ± standard deviation). This indicates a very good overlap between masks.
However, the initial source and target binary masks are already close together: the
Dice coefficient between initial S and T is already dinit = 0.80 ± 0.05. It can be
explained by the fact that the ellipsoid is constructed for this aim, and that the
segmentation is constrained to a certain degree of smoothness.

3.7.4 Error Accumulation

The transformation steps applied to the DTI data are the following: the position
and tensor data are transformed to the PS frame using the two operators Φ and Ψ,
and transformed back to the initial anatomical geometry using Ψ−1 and Φ−1. Error
can accumulate during this process. In order to quantify this accumulation, two
quantities are computed:

• The spatial misalignment εx between each Cartesian measurement centre x of
the domain Ω and the corresponding transformed point.

• The angular difference εv between the first eigenvector v1 of initial tensor Dx

at Cartesian position x, and its corresponding transformed one{
εx(x) = ‖Φ−1 ◦Ψ−1 ◦Ψ ◦ Φ(x)− x‖
εv(x) = Φ̃−1 ◦ Ψ̃−1 ◦ Ψ̃ ◦ Φ̃(Dx)−Dx

(3.13)

Histograms and bullseye maps of these errors are shown in Fig 3.16. Histograms
show very low position and angular errors. The position error εx presents a peak
misalignment value at the antero-lateral wall region (indicated by the arrow). How-
ever this peak has a value of 0.02 mm, which corresponds to less than 5% of the voxel
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size. From these results it can be concluded that the error accumulation in position
and tensor orientation is not significant. In practice, this error quantification can
be used as an implementation error detection. If there is an inaccuracy in one of
the steps of the workflow, it will reflect in this test with high error values.

Figure 3.16: Accumulated error during the global workflow. (a) The spatial misalignment
between initial point and transformed one. (b) The directional error (in deg.) between
initial tensor and transformed one.

To summarize, the diffeomorphic registration accuracy and the error accumula-
tion in terms of position and orientations are found to be not significant. On the
other hand, the sources of error involving manual input can influence the quantita-
tive analysis output. Especially, the segmentation of the myocardial wall is subject
to inter-operator variability. This variability provokes the inclusion or exclusion of
the papillary muscles borders at the endocardial wall and the septum, explaining the
relative instability of helix angle ranges reported in the literature. In the remain-
ing of this thesis, care has been taken to minimize the inclusion of the endocardial
papillary muscles in order to reflect the fibre architecture of the myocardial wall
alone.

3.8 Note on AHA Subdivisions
The AHA segmentation of the left ventricle detailed in this chapter is based on a
linear division of the ellipsoid in PS coordinates. Especially, it assumes that the
septum is 2 segments wide, that is, 120 deg. We discovered that this assumption
does not hold on the canine heart database used in these experiments. Figure 3.17(a)
demonstrates that if the usual AHA segmentation is kept and if the anterior wall
/ RV separation is imposed as the limit between zone 1 and 2, then a significant
mismatch of the other end of the septum is observed. To address this problem,
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the definition of the AHA segmentation is extended to take a septum width of 150
deg. The result is shown in Fig. 3.17(b). The 150 deg. width is kept for the
first 2 layers of AHA zones (i.e. zones 1∼12). This correction appeared necessary
for all canine hearts encountered in the John Hopkins database. Interestingly, it
was not necessary in the human heart of the same database, or in any of the in-
vivo volunteer’s data encountered later. This finding may indicate an anatomical
difference between the two species, however the low number of datasets cannot allow
us any strict conclusion.

Figure 3.17: (a) The usual AHA segmentation which assumes 120 deg. for the width of the
septum appears to introduce a mismatch (red circle) in the canine hearts. (b) A correction
is necessary to consider a septum width of 150 deg. The AHA zones are separately color-
coded for distinction.

3.9 Conclusions
This chapter presented the PS coordinate system and showed its suitability to de-
scribe information in the left ventricular wall. By using a symmetric and elastic
registration scheme, any scalar information contained in the anatomical LV can be
mapped onto a naturally normalized PS frame. Using Finite Strain reorientation,
this approach was extended to higher order data such as tensors.

This reference frame gives the opportunity to analyse and quantify features from
the initial data along PS coordinates, which are physiologically meaningful. These
concepts were illustrated by applying them to a database of ex-vivo canine DTI
datasets. Features of interest such as the helix and transverse angle transmural
variations were extracted. This approach provides powerful tools for data analysis
and visualisation. For instance, this chapter showed the analysis of the variability
of the fibre architecture via the computation of the inertia matrix of the DTI data
in PS coordinates. This variability information could be used as a prior information
for more complex processing such as approximation. For instance, one can use the
inverse of the cross-correlation S−1

V (z) as optimal kernel Hz presented in Sec. 4.5.
Further investigations on this matter could include the computation of the quantity



3.9. Conclusions 43

defined as Tσ = Gσ ∗ ∇lTV · ∇lV (swapping the transpose sign from Eq. 3.10). This
would describe the variability in the tensor space rather than in the physical space.

Sensitivity of our approach to a number of potential input errors was quantified.
In particular the error accumulation during the application of operators Φ and Ψ has
been studied. Results indicate error values below any significance in terms of posi-
tion and tensor orientations. As discussed in the next chapter, this data description
approach can appear very useful when applied to complex processing such as the
dense approximation of a tensor field from sparsely acquired DTI data. Additionally,
as opposed to mesh-based PS parameterizations - such as in [Lamata 2011] -, the
approach described in this chapter gives continuous (and symmetric) mappings be-
tween the anatomical space and the PS normalized frame, which can become a very
desirable characteristic for instance when interpolating data. For potential external
use, we publicly released the complete c++ implementation of our approach 2 (see
App. C for details). It is already used in several external contexts, and is scheduled
to be partly integrated in the medical imaging software medInria 3.

2https://github.com/ntoussaint/Cardiac-Prolate-Spheroidal-ToolKit
3http://med.inria.fr
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4.1 Motivations
In Sec. 2.5 the recent advances in cardiac DTI acquisition were reviewed. It was
shown that the challenges of such techniques make it difficult to acquire the diffusion
information in the entire left ventricle, both for clinical time reasons and because of
complex motion patterns in the apical and basal regions. However, it is of interest to
obtain an approximation of this information in the entire volume, in order to exploit
it for instance in patient specific electrophysiological models. Indeed, although the
myocardial fibre orientations have a great influence on the cardiac electrical activity
and motion, most studies still rely on prior models of the fibre architecture (see
e.g. [Sermesant 2008, Seemann 2006, Vadakkumpadan 2012]). In this chapter, a
method is introduced to approximate a dense tensor field lying in the LV wall from
a set of data sparsely acquired. It involves an approximation operator used in the
common PS frame described in Chap. 3. This operator has a tri-variate kernel width
as parameter which is optimized using a human ex-vivo dataset.
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4.2 Theory
Representing data in a continuous frame presents a number of advantages. In par-
ticular, any parameter of interest requiring a spatial differentiation could not easily
be evaluated on a sparsely sampled dataset. In [Pajevic 2002], the authors show
that a smooth approximation of a sparse set of noisy diffusion tensors allows a ro-
bust and reliable evaluation of characteristics of the underlying tissue of interest.
In their setting, they consider a regularly sampled set of data centres, and build a
mathematical framework in order to approximate the underlying continuous tensor
field. The method described in this section shares the goals of [Pajevic 2002], but
considering an irregularly sampled set of data centres.

4.2.1 Approximation Operator in PS Coordinates

As explained in Sec. 3.5.1, data in the PS frame is not regularly distributed and
heterogeneous. This heterogeneity is further increased in in-vivo situations as a
limited amount of DTI slices are acquired. Let us consider the estimation of a
dense 3D tensor field from a set of sparse DTI measurements irregularly distributed
across the ventricle. Let us consider a set P of M measured positions and tensors
P = (xi, Dxi)i=1:M (i.e. centres). An operator WP is defined over a domain Ω
(covering the ventricle wall volume), describing how to recover data at position X
from noisy and scattered input data:

∀x ∈ Ω, Dx :=WP (x) (4.1)

where Ω refers to the spatial target domain where samples are needed. It can be
of lower or higher cardinality than P and may not be necessarily defined on a regular
grid nor constrained within the convex hull of P . Solutions to approximate missing
data and data fitting have been explored extensively in the past. For instance,
in [Fillard 2005], the authors used Radial Basis Functions (RBFs) in order to find a
smooth solution for WP that satisfies the interpolant constraint, that is: WP (xi) =
Dxi , for i = 1, 2, . . .M . More precisely, they find the set of scalar coefficients γi that
satisfy the following system of linear equations :

RBF approach: find [γ] s.t. ∀j : Dxj =
M∑
i=1

γih(‖xi − xj‖) (4.2)

with h being a univariate multi-scalar function. Alternatively, [Pajevic 2002] pro-
pose a method to create a continuous representation of a tensor field from a regularly
sampled measure grid.

However, because our input data can be corrupted by significant noise, and
does not lie on a regular lattice, an approximation operator (or regularized estima-
tion) was considered rather than a rigorous interpolation operator. An interpola-
tion operator gives back the input data at measure points (i.e. WP (xi) = Dxi),
whereas a regularized estimation can approximate results (WP (xi) 6= Dxi). Meth-
ods to regularize noise corrupted tensor fields have been proposed in the litera-
ture [Jones 2002, Fillard 2007, Frindel 2009]. In this study, the approximation op-
erator takes the role of integrating the regularisation. The operator WP therefore
consists of taking a weighted mean of surrounding tensors as an estimate. The fol-
lowing question remains: which type of interpolation should be used to compute
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this weighted mean ? Over the recent years, many different options have been in-
troduced. As indicated in Sec. 2.3, symmetric definite positive matrices do not lie
on a vector space. It has been therefore pointed out by several studies that us-
ing Euclidean interpolation is inappropriate as it does not reflect physical meaning.
To avoid swelling effect on tensors and to address the fact that the spatial den-
sity of P can be low in the practical case, the mean in the log-Euclidean sense is
used [Arsigny 2006].

WP : x→WP (x) = exp

(∑N
i=1K(x− xi) log(Dxi)∑N

i=1K(x− xi)

)
(4.3)

The kernel K is, in our study, tri-variate and not necessarily isotropic:

KH : dX → KH(dx) = det(H)−1k
(√

dxTH−2dx
)

(4.4)

where H is a 3× 3 matrix that has to be optimized [Härdle 1985]. The function
k is a given univariate kernel function. In this work, two different functions were
taken into consideration, k1 the Normal Gaussian function, and k2 the Kaiser-Bessel
function, commonly used in k-space gridding [Jackson 1991]:

k1(x) =
1√
2π

exp
−x2

2

k2(x) =


I0(β
√

1−(2x/W )2)

I0(β)
if −W/2 ≤ x ≤ W/2

0 otherwise
(4.5)

Figure 4.1: Shapes of different univariate kernel functions. In dotted line is the Normal
Gauss function. All Kaiser-Bessel functions shown in plain lines have a fixed window size
of W = 7.0, and the parameter β is varying from 8 to 20.

In this proposed approximation scheme, spatial coherence is enforced indepen-
dently in each of the main directions of the heart anatomy (e.g. radial, circumferen-
tial and longitudinal in PS coordinates). In consequence, the bandwidth matrix H
is constrained to be diagonal. Therefore diagonal values of H control the resulting
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approximation. In other words, as opposed to the RBF approach in Eq. 4.2, as
detailed later in this chapter, our approach finds H (of tri-variate kernel KH) that
minimizes global discrepancy between WP (x) and Dx:

Quasi-Interpolant: find H s.t. H = argmin ‖WP (Σ)− Σ‖ (4.6)

where Σ denotes the input tensor field.
The approximation scheme in Eq. 4.3 can be applied on the set of pairs

P ′′ = (ξ,Dξ) in the PS frame (see Chap. 3). To be precise, it is important to
note that, in addition to the centres P , the operator Ψ ◦Φ also needs to be applied
to each position X of the target domain Ω where estimates are needed. Each re-
sulting estimates WP (ξ) are eventually transformed back to Cartesian coordinates
and warped back to the initial geometry using invert operators, that are defined
and available everywhere except at the singular section (details of the inversion and
the singularity are provided in Appendix A), and the approximation operator can
therefore be written as:

WP (x) = Φ−1 ◦Ψ−1 ◦WP (ξ) (4.7)

Algorithm 2: Dense Approximation in PS coordinates

Data: The set of acquired tensors (Dx) at arbitrary positions (x) and a
kernel width H

Result: The dense tensor field D′x on a dense regular lattice (x′) (i.e. Ω)
Data Coordinate Change
foreach (x,Dx) ∈ P do

ξ = Ψ ◦ Φ(x)

Dξ = Ψ̃ ◦ Φ̃(Dx)
l(ξ) = vec(log(Dξ))

end
Approximation operator
foreach (x′) ∈ Ω do

ξ′ = Ψ ◦ Φ(x′)
l(ξ′) = 0
W = 0
foreach (ξ, l(ξ)) do

dξ = ξ − ξ′

w = det(H)−1k
(√

dξTH−2dξ
)

l(ξ′) = l(ξ′) + wl(ξ)
W = W + w

end
l(ξ′) = l(ξ′)/W
D′ξ = exp (vec−1(l(ξ′)))

D′x = Φ̃−1 ◦ Ψ̃−1(D′ξ)

end
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4.2.2 Kernel Width Optimization using Ex-Vivo Data

As explained in the previous section, the dense approximation depends on a 3 × 3
matrix denoted H. This matrix describes the shape of the tri-variate kernel. This
matrix was constrained to be diagonal, however the optimal diagonal components
that minimize the error between measured and approximated data remain to be
estimated, while keeping a certain degree of smoothness. To do so, a high resolu-
tion DTI ex-vivo acquisition of a human heart 1 provided by Dr. Patrick A. Helm
and Dr. Raimond L. Winslow at the Centre for Cardiovascular Bioinformatics and
Modeling and Dr. Elliot McVeigh at the National Institute of Health was used. This
dataset provides a ground truth that was manipulated to simulate in-vivo situations.

Figure 4.2: Reference tensor field was down sampled and reoriented to obtain a voxel size
of 2 × 2 × 4mm in a short axis way (left). Then the number of slices N was varied to
simulate different in vivo acquisition situations.

It is hypothesised that a typical in-vivo cardiac DTI acquisition would consist
of a limited amount of short axis (SA) slices. Furthermore, these slices are usually
constrained to the equatorial part of the ventricle as motion pattern and partial
volume effects around the apex hamper acquisition of images with sufficient quality.
In consequence, N SA equatorial slices from the ex-vivo dataset were extracted
while avoiding the apex and base boundaries, as shown in Fig. 4.2 (centre). Each
of the N slices was then transformed to a series of 6 DWIs, using the L2 norm over
the tensors as a baseline image and 6 non-collinear gradient orientations uniformly
distributed on the sphere. Complex Rician noise of variance V was added to the
DWIs, as illustrated in Fig. 4.3.

Figure 4.3: Ex-vivo experiment: 6 Diffusion Weighted Images (DWIs) were artificially
computed from the reference tensor field. Each DWI was corrupted by additive Rician
noise, and the tensor field was then estimated. The variance of the added Rician noise in
this example was V = 0.04 for each DWI, which results in a signal to noise ratio of 10.0.

1http://www.ccbm.jhu.edu/research/DTMRIDS.php
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The DWIs were then used as input data for the approximation scheme detailed
in Sec. 4.2.1 and the full ventricular tensor field was computed. The output was
compared to the true tensor field in a voxel-wise manner. The similarity map is used
to optimize matrix Hopt, as a trade-off over the entire ventricle domain Ω between
a Least Square (LS) term that describes the data fit and a smoothness term (Reg):

Hopt = argmin
H∈Diag(3)

(LS(H) + λ.Reg(H)),

with

{
LS(H) =

∑
∗ dist (D∗,WP (∗))2

Reg(H) =
∑
∗ ‖ ∂WP (∗) ‖2

(4.8)

where ∗ refers to x ∈ Ω in Cartesian coordinates or ξ ∈ Ω′′ in PS coordinates,
and λ to the scalar controlling the influence of the regularisation. Among different
existing similarity measures between tensors (named dist in the formula), the Log-
Euclidean metric distance [Arsigny 2006] was used. That is, the Frobenius norm of
the matrix-log difference: dist(A,B) =‖ log(A) − log(B) ‖. The smoothness term
(or regularisation term) can be seen as an equivalent of the total variation of the
tensor field, i.e. the squared norm of the tensor field gradient in the log domain:
∂WP (∗) = ∇ log(WP (∗)).

In the case where the Gaussian function was chosen for Eq. 4.3 (i.e. k = k1), the
parameter space of this minimization problem only consists of the three diagonal
elements of the bandwidth matrix H. In the situation where the Kaiser-Bessel
function is chosen (k = k2), The window size is fixed to W = 20 and the parameter
space therefore consisted of the scalar β in addition to the diagonal elements of
H. The minimization of Eq. 4.8 was performed using a gradient-free multivariate
optimization scheme [Powell 2008].

The residual error made on the tensor field estimation depends on several vari-
ables: the Rician noise level (of variance V ), the input data distribution (number
of slices N), and of course the choice of coordinate system. In Sec. 4.3.1 the perfor-
mance of the overall approximation process with respect to these factors is reported.
Note that in the case where Cartesian coordinates are used, the approximation oper-
ator described in Eq. 4.1 is taken as it is, in Cartesian coordinates. In this particular
case, there is no need of any non-linear registration. The matrix H is optimized the
same way.

For a better comprehension of the noise levels, the signal to noise ratio (SNR)
of the noisy DWIs was computed. A region of interest R was drawn in the
exterior wall of one of the DWIs. Then the SNR was calculated as follows:
SNR = mean(R)/std(R). For instance, the reference ex-vivo dataset used as a
ground truth has a value of SNR = 36.

4.2.3 Residual Error Computation

The optimization of the diagonal matrixH was performed for different case scenarios
of values of N and values of SNR. The residual mean error between the reference
tensor field and the approximated one was calculated. This error was defined as the
angle difference between main eigenvectors of the reference and the approximated
tensor, denoted ε, in a voxel-wise manner. If ε is considered a random variable,
then it can be seen as the combination of two independent random variables that
are the polar angular errors ε1 and ε2. To be calculated, those polar angular errors
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Figure 4.4: (a) Residual error ε due to the approximation scheme on the angle between
the approximated tensor’s first eigenvector v1a and that of the reference tensor v1r . ε can
be seen as a combination of two independent polar signed angles ε1 and ε2. (b) If ε1 and
ε2 have a zero-mean Gaussian distribution, then the distribution of ε is strongly skewed,
and depends on the standard deviations of the polar angle errors.

need the definition of two arbitrary planes going through the reference tensor’s
first eigenvector v1r , then ε1 and ε2 are the respective (signed) projections of the
approximated tensor’s first eigenvector v1a onto each of the planes, as shown in
Fig. 4.4(a). Spherical trigonometry therefore infers that ε follows the distribution
of arccos(cos ε1. cos ε2). An example of such distribution is simulated in Fig. 4.4(b).
In this simulation ε1 and ε2 are chosen to have a zero-mean Gaussian distributions.
The distribution of ε is computed (shown in red in Fig. 4.4) and shows a strongly
skewed shape. The value of the mode (or peak) is therefore a good indicator of the
most probable angular error, and of the performance of the approximation scheme.

4.2.4 Fibre Tractography

Fibre Tractography [Basser 2000] is a common way of visualising the main paths of
white matter tracts that are derived from DT-MRI information. In the heart the
tracts correspond to the main myocyte orientation paths throughout the ventricles.
In order to facilitate the interpretation of the approximation scheme, tractography
results was computed from the resulting dense tensor fields. Fibres were tracked from
each voxel of the tensor field, using a propagation term as described in [Fillard 2003]
and a fourth order Runge-Kutta integration. The fibre tractography approach used
here utilizes advection-diffusion terms derived from [Weinstein 1999, Lazar 2003].
At any spatial position p, the local diffusion tensor D is estimated (tri-linearly),
and the next direction vout is calculated from the previous one vin using:

vout = cle1 + (1− cl)
(
(1− g)vin + gD · vin

)
(4.9)

where e1 and cl are respectively the first eigenvector and the linear coefficient of
D, as suggested in [Weinstein 1999], and g is a smoothness parameter that has to
be chosen manually. As the fibres are not intended to be constrained to a superficial
smoothness, and due to the potential high curvature of the helical cardiac fibres, a
small value of g = 0.2 was chosen.

First, fibre fields were produced using the reference fully sampled tensor field.
Second, fibre fields were produced using the dense approximated tensor fields in the
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case scenario of (N=7, SNR=10). For comparison purposes, fibres were computed
both in the case PS coordinates were used for the approximation operator, and in
the case Cartesian coordinates were used.

4.3 Results

4.3.1 Kernel Optimization and Sensitivity Analysis using Ex-
Vivo Data

The approximation bandwidth matrix H was optimized for different cases of number
of slices N and different SNR using the reference ex-vivo tensor field. For each
case the resulting kernel values (diagonal elements of Hopt, in mm) are reported
in Fig. 4.5(a,b,c). In the case of PS approach, the kernel sizes (kξ1 , kξ2 , kξ3) are by
definition not in the same scale than in Cartesian coordinates (kx, ky, kz). In order
to be able to compare these values, they were divided by their respective PS scaling
factor (h1, h2, h3) corresponding to the derivative hi = ‖∂ξi/∂xi‖. It is acknowledged
that these factors are not homogeneous in space. The graphs presented here were
computed using their mean values in the domain of definition Ω. In Fig. 4.5(d)
the determinant of the optimal kernel bandwidths was computed (|KHopt , in mm3).
Here again this determinant had to be divided by the product of the scale factors
Π(h) in the PS case in order for the values to be compared.

4.3.2 Residual Error with respect to parameters and position

For each case scenarios, the voxel-wise distribution of the residual error ε between
reference field and approximated field, defined in Sec. 4.2.2, was extracted and its
mode value reported in Fig. 4.6.

The two maps show this mode value as a function of both the number of slices
N and the SNR of the DWIs, when using Cartesian coordinates (left) and PS co-
ordinates (right) for the approximation scheme. As an example, we present in
Fig. 4.7 the local distributions of ε along the ventricle for the specific case of (N=7,
SNR=10). The mode value of these distributions was 11.5 deg and 8.3 deg when
applying the approximation scheme respectively in Cartesian or in PS coordinates.
The grey rectangles represent the location of the 7 input noisy slices.

4.3.3 Fibre Tractography

Fibre tractography results are reported in Fig. 4.8. In (a) the result of tractography
from the fully sampled reference tensor field are shown. In (b) and (c) the tractog-
raphy resulting from the dense tensor fields approximated in PS coordinates and in
Cartesian coordinates are respectively shown, using the set of noisy tensors (N=7,
SN=10).
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Figure 4.5: (a,b,c) The optimal kernel values are reported in the three coordinates of each
system (Cartesian and PS). They are normalized by the scale factors to be comparable. (d)
Determinant of the kernels as an measure of their volumes.

4.4 Discussions

Optimal Kernel Values

The values of the optimal kernel bandwidth matrices Hopt shown in Fig. 4.5(a,b,c)
are interesting to discuss. It can be seen that in the Cartesian approach, the three
different diagonal values are balanced with each other. For instance they converge
around 2 ∼ 3mm in the case (N=7,SNR=10). In the PS approach however, most
of the weight is concentrated in the ξ2 and ξ3 directions, leaving very small values
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Figure 4.6: Modes of the residual angular error ε of the approximation process showed as
a function of both the number of slices N and the SNR of the DWIs.

Figure 4.7: Maps of the angular error ε for the case N=7 and SNR=10. Results are
presented for both Cartesian (left) and PS (right) coordinates. Grey rectangle: region
covered by the 7 slices.

in the wall depth direction. The determinant of this bandwidth matrix, shown
in Fig. 4.5(d) can be seen as a representation of the volume of the kernel. It is
interesting to notice that, apart from the extreme cases where noise is maximum
and N is minimum, both the PS and the Cartesian approaches give approximately
the same total kernel volumes. It is indeed natural that the volume of information
(number of data centres) needed for optimal approximation is independent of the
coordinate system used for interpolation. Using PS approach, the topology of the
region where those centres are taken is modified to follow the natural paths of the
ventricle.
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Figure 4.8: (a) Tractography result from the reference fully sampled tensor field. (b) and
(c) Tractography results from approximated tensor fields when using the noisy set of tensors
(N=7, SNR=10), and respectively PS approach and Cartesian approach.

Sensitivity to Coordinate System

The angular error modes shown in Fig. 4.6 confirmed that in all the situations
studied in this experiment it was preferable to use PS coordinates in the dense
approximation rather than Cartesian coordinates. As predicted, both approaches
gave similar performances when the number of slices approached its maximal values
(i.e. at full ventricle coverage). It is here again natural to think that, at full sampling,
the performance of the approximation is independent of the coordinate system used
for interpolation. However, the lower the number of slices, the stronger was the
discrepancy between approaches. These results, together with the comparison of
kernel volumes in Fig. 4.5(d), help us conclude that even if the same volume of
data is taken into consideration, the shape of the kernel is crucial in the outcome
performance of the approximation scheme, as seen in Fig. 4.7.

In Fig. 4.8 the fibre tractography resulting from both approaches are compared
in the case scenario of (N=7, SNR=10). The stripes that appear in the Cartesian
approach (Fig. 4.8(c)) are an undesirable effect of the Cartesian interpolation. Using
the shape adapted PS interpolation removes this artifact.

Error Localisation

The maps presented in Fig. 4.7 show that the majority of the high frequency of ε
appears in the apical region and at the endocardial borders of the ventricle. The
localisation of the initial data is indicated by the grey rectangle. Therefore, tensors
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outside this region represent an approximation based on distant information (i.e.
extrapolation). It is clear from this figure that choosing a curvilinear approach
for the approximation gives better extrapolation performances. The low errors of
distant regions in the PS map suggest that the fibre orientation structure is relatively
smooth along the ventricle, except at the apex.

For instance, the modes of the error ε in the specific case-scenario presented in
Fig. 4.7 are 11.5 deg and 8 deg when using respectively Cartesian or PS coordinates.
One could argue that this difference does not seem very significant as it is only a
few degrees deviation between modes. However, it might be of interest to appreciate
the overall shape of the distributions, noting that the error is better contained in
lower values in the PS case, compared to the Cartesian one. For instance, if the
“half energy window” of the distribution is calculated, values of respectively 17 and
28 deg are obtained for PS and Cartesian shapes respectively. The image presented
in Fig. 4.7 shows that the majority of the high frequencies of ε appear in the apex
region and the endocardial borders of the ventricle. The localisation of the initial
data is materialized by the grey rectangle. Therefore, tensors outside this region
represent an approximation based on distant information (i.e. extrapolation). The
low errors (indicated by blue colors in this map) of distant regions suggest that the
fibre orientation structure is relatively smooth along the ventricle, apart at the apex,
where error peaks above 60 deg.

Robustness to Noise

The evolution of the error ε with respect to the addition of slices (each column of
the error maps in Fig. 4.6) seems to be significantly robust to noise. That is, the
pattern was almost constant until reaching a SNR ≤ 5. This is again explained by
the relatively strong smoothness of the fibre orientation structure in a healthy left
ventricle such as the one used as reference in this sensitivity analysis.

Smoothing Effect

In the experiments shown in this work, a global set of kernel parameters was used
throughout the ventricle. Local variations in the acquired tensor dataset can be
smoothed by this process. This effect is clearly visible in Fig. 4.8(b) and Fig. 4.8(c).
In the case of healthy subjects, this property might be desirable under the reasonable
hypothesis that the fibre structure is relatively smooth. In clinical cases such as
infarct subjects, the fibre architecture is suspected to be disoriented in the scar
region. In this situation some more local approach would be necessary. For instance,
one could consider using smaller kernel parameters in such regions in order to depict
the fibre structure in more details. Tensor shape indices, such as the Fractional
Anisotropy (FA) or the Spherical Coefficient (SC), could potentially be used as a
detector of such regions in order to adjust the kernel parameters accordingly. As
suggested in [Yang 2012], here a metric on tensor which avoid FA collapse should
be preferred.

Lambda parameter

The regularisation parameter λ (Eq. 4.8) controls the influence of the tensor field
smoothness in the estimation of the optimal matrix Hopt. It has therefore a great
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impact on the resulting full ventricular tensor reconstruction, and has to be chosen
carefully. A common technique used to choose its value is the L-curve method as
described in [Hansen 1992]. The L-curve and its curvature were computed for the
set of variables - N = 10 and V = 0.01 (corresponding to SNR=10) - in order to
find a suitable value for λ. As shown in Fig. 4.9, the curvature of the L-curve was
found almost constant. However, it indicated an inflexion point at λ ∼ 1 − 1.5.
The constant curvature might be explained by the fact that the system we try to
solve is non-linear and does not correspond to a Tikhonov regularisation problem,
as opposed to the system described in [Hansen 1992].

10−1.3 10−1.2 10−1.1

Figure 4.9: L-curve experiment of the energy cost function in Eq. 4.8. The L-curve is
shown in plain line, and its discreet curvature is shown in dotted line. The curvature has
been magnified to be able to visualise the inflection point at λ = 1.5.

4.5 Extension: Zone-dependent Approximation
As mentioned in the previous section, this dense approximation has the limitation of
being global. That is, the approximation operator uses a single tri-variate kernel KH

for the entire ventricle volume. The main consequence is the potential smoothing
of meaningful local information. In this section we investigate an extension of the
dense approximation scheme detailed above that allow localised approximation to
overcome this potential loss of information.

4.5.1 Theory

It was shown in Chap. 3 that the PS coordinates give us the advantage of a straight-
forward definition of left ventricular AHA zones (see [Cerqueira 2002]).Let us denote
Ωz the anatomical region of AHA zone z, and Kz

H the tri-variate kernel as defined in
Eq.4.4, associated with this zone. For each measure point in PS coordinates ξi, the
AHA zone containing ξi is detected (i.e. zi). The approximation operator (Eq. 4.1)
is therefore redefined as follows:

W ′P : ξ →W ′P (ξ) = exp

(∑N
i=1K

zi
H (ξ − ξi) log(Dξi)∑N
i=1K

zi
H (ξ − ξi)

)
(4.10)
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This formalism gives the opportunity to weight the influence of a measure ac-
cording to its localisation. As previously, it is then possible to find the optimal
weights to a certain sense. In our case, the criterion in Eq. 4.8 can be modified
usingW ′P instead ofWP . This approach therefore consists of finding the set [Hopt]z
of optimal bandwidth matrices that minimizes (LS([H]z) + λ.Reg([H]z)) with:

LS([H]z) =
∑
∗

dist (D∗,W ′P (∗))2

Reg([H]z) =
∑
∗

‖ ∂W ′P (∗) ‖2 (4.11)

The computing time of this minimization problem becomes very significant as the
number of degree of freedom is three times the number of zones. In theory, there is
no limitation on this number, and one could define a zone per measurement centre,
therefore arriving to N different tri-variate kernels to find. This approach then
converges to the RBF approach where each centre has its own (matrix) weight, as
in Eq. 4.2. However it is difficult to achieve for computation time reason. However,
the 17-AHA zone division remains practically applicable to this concept and can
provide us with meaningful information.

4.5.2 Experiment

The ex-vivo human dataset provided by John Hopkins university was used, and the
17-AHA zones division of the left ventricle in the PS sense was derived. The optimal
series of kernels [H]z for z = 1..17 were computed in the sense of Eq. 4.11, in PS
coordinates. This series depend on the cardinality M of the input set of measured
positions/tensors pairs P . It is important to note that Hz is very influenced by the
number mz of centres included in zone z, and is not defined if mz = 0.

The local kernel optimization was performed for two different case scenarios.
First, using the fully sampled dataset (N = Nmax) and SNR=10. Second, using
a more realistic set of tensors (N=7, SNR=10). In this second case, only kernels
[Kz

H ], z = 7..12 will be defined since there is no input data in the other AHA
zones. Figure 4.10(a) shows the division of the left ventricle in 17 AHA zones. The
minimization process needs an initialization state. These initial kernel shapes are
shown in Fig. 4.10(b) using their “envelopes” (surfaces represent the iso-contours of
the weights Kz

H(x)) at Kz
H(x) = 1/2.

4.5.3 Results and Discussions

Figure 4.11(a) present the envelopes of local AHA zone optimal kernels in the case
(N = Nmax, SNR = 10). As predicted, they are elongated in the apex-base and
the circumferential axes, and very narrowed in the transmural axis. Figure 4.11(b)
presents the envelopes in the case (N = 7, SNR = 10). In AHA zones where there is
no information (basal and apical regions), the kernels are not defined. The elonga-
tion is more pronounced in this second scenario, enforcing the observed smoothness
in apico-basal direction until regions where no information is present.

The numerical results of the optimal kernel diagonal values are gathered in Ta-
ble 4.1.
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Figure 4.10: (a) The 17 AHA zones of the ex-vivo human dataset. (b) All 17 kernels Kz
H

are initialized prior to optimization with the diagonal values [0.024597, 0.147368, 0.236092],
they are shown here with their respective envelopes at Kz

H(x) = 1/2.

Figure 4.11: Optimal kernel envelopes at Kz
Hopt

(x) = 1/2. (a) when using the fully-
sampled dataset, that is, the case (N = Nmax, SNR = 10). (b) when using 7 mid-
ventricular slices (N = 7, SNR = 10).

4.6 Conclusions
In this chapter the problem of approximating a diffusion tensor field over the entire
left ventricle when data is available only in sparsely distributed acquired centres was
addressed. This situation is often encountered when acquiring DTI in the beating
heart. The PS change of coordinates concepts presented in Chapter 3 were exten-
sively applied. A dense approximation operator in the PS frame was introduced. It
involves a tri-variate kernel as parameter. The optimal widths of this kernel are ob-
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AHA zone ↓ / axis → transmural (ξ1) apico-basal (ξ2) circumferential (ξ3)
# 1 0.00789481 0.199923 0.292906
# 2 0.00591417 0.155381 0.26296
# 3 0.00846043 0.117285 0.346664
# 4 0.012477 0.106367 0.143527
# 5 0.0142015 0.0579522 0.141149
# 6 0.0123444 0.0996348 0.137482
# 7 0.00882262 0.123739 0.166411
# 8 0.00508657 0.0934024 0.29993
# 9 0.00884071 0.254009 0.453831
# 10 0.00840109 0.188087 0.190297
# 11 0.0121165 0.0967548 0.228948
# 12 0.010069 0.113458 0.261271
# 13 0.020961 0.0798364 0.191824
# 14 0.00990214 0.0667319 0.123361
# 15 0.0140844 0.146883 0.240552
# 16 0.0145749 0.0872193 0.184861
# 17 0.0300814 0.138803 0.333442
mean 0.0120136 0.1250274 0.2352597

Table 4.1: Local optimal kernel estimation in PS coordinates for each AHA zone (for
N = Nmax, SNR=10).

tained by using an ex-vivo human dataset. The cost function of this optimization is
a trade-off between a least-square error term and a total variation smoothness term.
This set up also allowed us to compare this approach over the classical Cartesian
interpolation one. Results show that embedding such a curvilinear interpolation in
the approximation significantly improves the performance of the overall process and
should be preferred over the Cartesian approach, especially when the data centre
density is low or heterogeneous as it is the case in-vivo.

One of the effects of such a convolution based approximation technique is that it
intrinsically smoothes the input data. Although this characteristic can be desirable
for low SNR images, it might be considered inadequate in clinical cases where the
aim is rather to detect or analyse regions of fibre disarray. Our approximation
approach was extended to a zone-based kernel version. In this set up, the size of
the kernel for each region can be refined in order to depict local variations of the
fibre structure. The workflow presented in this chapter can be seen as a form of
extended regularisation process. It could be of interest to further investigate in
this direction, in particular to compare the performances of our approach to other
techniques, where the data is regularized at the diffusion weighted image level, such
as in [Parker 2000]. Another approach would have been to extend the complete
mathematical framework reported in [Pajevic 2002] to an irregularly sampled grid.
In this paper the authors use so-called atomic spaces in order to describe the data in
a continuous manner. Their approach is stronger than the one used in this chapter
as it allows for the control over the type of approximant. That is, it allows to
control whether or not the approximation matches the interpolation constraint (the
continuous field passes through the discrete measured data precisely). However they
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restrict their framework to the case of discrete but regularly sampled datasets. It
could be of great interest to extend the concepts presented there to the particular
situation where the data density is not homogeneous along the organ of interest.
These modification would for instance include the replacement of integer k by real
numbers in Eq. A.4 of [Pajevic 2002] for instance, and the outcome properties would
still hold.

All algorithms presented here are freely available in the Cardiac Prolate
Spheroidal ToolKit 2. Details about the implementation can be found in App. C.

2https://github.com/ntoussaint/Cardiac-Prolate-Spheroidal-ToolKit
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5.1 Motivations
The last chapter introduces techniques that allow the full reconstruction of the left
ventricular DTI information from sparsely acquired data centres. From these result-
ing dense DTI tensor fields fibre tracking is feasible. Those tractograms describe
visually the main orientations of fibres and their variability within the ventricle.
In the following work, the influence of acquisition parameters on the output trac-
tography result is assessed. As mentioned in Sec. 2.5, in cardiac in-vivo situation,
low SNR images and poor through plane resolution are often encountered. In this
chapter, the issue of evaluating the loss of information induced by an increase of
the slice thickness, as well as of a change of the acquisition plane orientation is
addressed. This is achieved by comparing pairs of fibre tractography results from a
number of synthetic and real experiments. Typical methods include angle or tensor
difference at each voxel [Vadakkumpadan 2012]. However in the setting described in
this chapter, the sampling grid is different between datasets, therefore the methods
cited above cannot be used. Another potential approach to this problem would have
been the direct measure of distance between tracts, such as in [Fillard 2011]. But
this method requires point to point correspondence. In the method described below,
a distance metric is defined globally between sets of fibre tracts, therefore removing
the constraint of point to point correspondence.

5.2 A Similarity Measure on Fibre Fields
The common output of DT-MRI is the delineation of major continuous pathways of
fibres from the diffusion tensor data [Basser 2000]. These fibre tracts are a concrete
representation in space of the discrete tensor field. This kind of representation
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has the advantage of not depending on the original volumetric grid. It is also
reasonable to think of methods for measuring the accuracy of those tracts. The
paths depend on both the diffusion model taken into account and the tractography
algorithm. In [Fillard 2011] the authors benchmark 10 different combinations of
diffusion models and tractography techniques on a realistic diffusion phantom. To
do so they impose seed points and compare the ground truth trajectories with paths
resulting from those combinations. To compare sets of fibres, they are parameterised
with B-splines, and their arc length are normalized to [0,1]. Then a match score
was computed based on a point to point distance between fibres, therefore they
assume a point to point correspondence. In the following section, new techniques
introduced in [Durrleman 2008] are used in order to introduce a solution to this
problem without any parameterisation of the fibre tracts.

Estimating dissimilarities between sets of curves is not a straight forward prob-
lem. The concept of currents as introduced by Glaunès, Durrleman et al in
[Glaunès 2008, Durrleman 2008], is the following: A curve is seen via the way it
integrates a vector field. That is, a continuous curve, or set of polygonal lines L, is
characterized by the path integral of a vector field ω along it:

∀ω ∈W, L : ω →
∫
L

〈ω(l), τ(l)〉R3dl (5.1)

where τ(l) is the unit tangent vector of L at point l. W is a constrained space of
vector fields, also called test space. From this definition, curves L as currents define
a vector space W∗ satisfying :

∀(L1, L2) ∈W∗2, (L1 + L2)(ω) = L1(ω) + L2(ω)

(λL)(ω) = λL(ω)

From [Durrleman 2008] and references, it is shown that the space of curves W∗
can be provided with an inner product 〈·, ·〉W∗ . Let denote a set of curves L as its
polygonal elements:

∑
k δ

τk
ck
. That is, if ck are the centres of each segments and τk

are their unit tangent vectors, then δτkck is a polygonal segment of the curve. thus
the inner product between two sets of curves L1 and L2 can be written as follows:

〈L1, L2〉W∗ =
n∑
i=1

m∑
j=1

(τi)
T .Kλ(ci, cj).(τj) (5.2)

where the superscript T denotes the transposed vector, and Kλ(ci, cj) is a Gaus-
sian kernel defined as

Kλ(c1, c2) = exp(−‖c1 − c2‖2
W∗/λ

2).

λ is a standard deviation to be chosen. As explained in detail in [Durrleman 2008],
λ controls the desired scale to which the inner product in Eq. 5.2 will detect dis-
crepancies between considered curves. The authors recommend to set λ of the order
of the mean distance between curves.

From this inner product, A Hilbert distance between two sets of curves L1 and
L2 is defined as follows:

d2(L1, L2) = ‖L1 − L2‖2
W∗ = 〈L1 − L2, L1 − L2〉W∗ (5.3)
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Thereby, the distance index d2 provides us with a measure of global dissimi-
larity between two fibre fields L1 and L2. If L1 and L2 are considered as two sets
polygonal segments, and compute their Hilbert distance. Although this index is
already interesting by itself, it can be of interest to search for a local estimation of
this distance, while keeping the non-parameterisation aspect of this approach. At
any spatial position p, a local subset of the current L, denoted L∗p, is defined as the
convolution of L with a Gaussian kernel Kσ centered in p:

L∗p = L ∗Kσ(p) (5.4)

This subset is a concrete representation of the curve L at position p. It is then
argued that measuring the Hilbert distance between p-subsets of two different curves
L1
∗
p and L2

∗
p, represents an estimation of the Hilbert distance between L1 and L2 at

position p.
This finally leads to the definition of a local Hilbert distance between two sets

of curves at position p:

d2(L1, L2)(p) = ‖L1
∗
p − L2

∗
p‖2

W∗ (5.5)

On a practical point of view, the difference (L1 − L2) can be expressed by cu-
mulatively summing all centres and tangents from both sets of curves, and take an
opposite sign for tangents of L2.

The local Hilbert distance introduced here depends on two spatial parameters,
λ the spatial distance on which it is intended to measure discrepancies, and σ the
spatial window on which the resulting subset L∗p is considered local.

5.3 Case Study on Synthetic Fibres
To validate this method, the behaviour of the error index measurement is inves-
tigated on synthetic tensor datasets. An ellipsoidal-shaped DTI field has been
built, where the artificial tensors are restricted to have a linear and planar co-
efficients of cl = 0.5 and cp = 0.3. The main eigenvector is varying from epi-
cardium to endocardium to match helix angles variations taken from the literature:
−40o < αhelix < +60o from epi to endo. From this reference DTI dataset, noisy
tensor fields are derived by adding Rician noise to corresponding DWIs, similarly
to Sec. 4.2.2. Fibre tractography is applied to each tensor field using the tensor
deflection propagation as detailed in Sec. 4.2.4. Let us denote S0 the fibre tracts
from the initial tensor field, S1, S2, S3, S4 the fibre tracts from noisy tensor fields
using variances of respectively V = 0.0025, V = 0.005, V = 0.01 and V = 0.02. In
Fig. 5.1, the initial synthetic tensor field and two levels of noisy tensor fields are
shown (top row). Their corresponding fibre tractography results S0, S2 and S4 are
shown in the bottom row, where fibres are color-coded by the local tensor’s helix
angle.

The noisy fibre fields are compared against the initial one using the local Hilbert
distance index introduced in the last section, using σ = λ = 1.5 mm. The distances
values d2(S0, S1)(p) and d2(S0, S2)(p) are projected back to the initial reference
fibre field structure, and the resulting distance maps are presented in Fig. 5.2. The
histograms of the Hilbert distance index for 4 different Rician noise variances are
presented in Fig. 5.4. Their modes are reported in Table 5.1
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Figure 5.1: (top) Synthetic tensor fields have been created reproducing the LV ellipsoidal
shape. The orientation of the main eigenvector follows the variation of the helix angle
αhelix of −40o to +60o from the epicardium to the endocardium. Rician distributed noise
of growing variance is added to the DWIs to obtain noisy tensor field on the right. (bottom)
Fibre tractography of the corresponding tensor field, color-coded with the local helix angle.

5.4 Application to Ex-Vivo Cardiac DTI: a Repro-
ducibility Study

In this experiment, the quantification of the impact of the image resolution and the
orientation of the slice acquisition plane on the resulting fibre tractography output
is investigated. To achieve that, a protocol is set up, where three DTI volumes of an
ex-vivo heart are acquired with (1) an isotropic voxel size, (2) an anisotropic voxel
size (increasing in the through plane direction) and (3) an anisotropic voxel size and
a rotated acquisition plane.

Material: Diffusion tensor imaging has been performed on an explanted healthy
lamb’s heart. The excised heart was washed and put in a cylindrical box. An MR
transparent solution of Fromblin was used as surrounding medium. Imaging was per-
formed on a 3T clinical scanner (Philips, The Netherlands), with gradient strength
of 80mT/m. An 8-channel head coil was used to receive the signal. Diffusion im-
ages were acquired using a Pulse-Gradient Spin Echo sequence with 12 diffusion
directions. The b-value was 400 s/mm2. The acquisition protocol consisted of
three different DTI volumes covering the entire myocardium. First, an isotropic
1.8× 1.8× 2mm3 image was produced in a short axis acquisition plane. Second, an
anisotropic 1.8× 1.8× 5mm3 image using the same acquisition plane. And third, a
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Fibre Field → S0 S1 S2 S3 S4

Variance V - 0.002 0.005 0.02 0.05
h.d. mode (.10−4) vs. S0 - 0.996 1.230 1.582 2.871
# of fibres 3521 3489 3511 3550 3487

Table 5.1: Description of the synthetic fibre fields S∗. Rician noise of variance V is added
to reference S0 to obtain S1,S2,S3 and S4. Modes of ‖S∗ − S0‖W∗ are reported, as well as
the number of fibres of each field.

Figure 5.2: The Hilbert distance is evaluated locally between different levels of noisy fibre
fields S2 and S4 against a reference fibre field S0. maps of the distance are presented in
both cases.

second anisotropic 2 × 2 × 5mm3 image was acquired, but rotating the acquisition
plane by 35 deg.

Results: Fibre tractography was performed on the three DTI volumes. Let us
denote Dhigh the fibre field resulting from the first acquisition (isotropic 1.8×1.8×2
mm),Dlow the fibre field from the second (anisotropic 1.8×1.8×5 mm) andD′low from
the third (35 deg rotated acquisition plane). The local Hilbert distance as in Eq. 5.5
was estimated between Dhigh on one side, and Dlow or D′low on the other, using
σ = λ = 1.5 mm. Figure 5.3(a) shows the resulting error map for ‖Dhigh−Dlow‖W∗ .
The local Hilbert distance is defined at any position, and not restricted to the
data centres of either the first or the second fibre field. However, the distance was
measured at the centres of Dhigh, in order to have the same amount of measures in
the two different cases, i.e. distance against Dlow and against D′low.

5.5 Discussions
Synthetic simulations: As reported in Table 5.1, the local Hilbert distance index
is able to capture the discrepancies of the output fibre fields due different level of
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Figure 5.3: (a) Superposition of Dhigh in red and Dlow in blue. Local dissimilarities
between both fibre fields were measured, and mapped onto Lhigh (right).

Figure 5.4: Histograms of the local Hilbert distance index, for the 4 different levels of
synthetic noisy fibres, and for the ex-vivo lamb heart experiment, using σ = λ = 1.5 mm.

noisy tensor fields. The mode of the distance index increases with the noise vari-
ance. Interestingly, the number of fibres stays constant despite the increase of noise.
The amount of fibre tracts is often used as a measure of accuracy in DTI stud-
ies, for instance when studying tensor regularisation methods (e.g. [Frindel 2009]).
However, this simple experiment suggests that this might not be a valid measure to
quantify fibre pathways “accuracy”. However, an index such as the one introduced
here allows to compare the both orientations and alignments of fibres in a pair-wise
manner provides us with a measure that can locally quantify the difference between
fibre fields, without any need of point to point correspondence.

Ex-vivo Experiments: The maps of distances between reference fibre field
Dhigh and respectively Dlow and D′low are presented in Fig. 5.3. A higher level of
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discrepancies is observed in the right ventricle area than in the left ventricle. This
might be explained by the lower thickness of the wall in the RV. Their histograms are
reported in Fig. 5.4. They show modes at 0.32 and 0.37.10−3. These distributions
demonstrate little difference between cases. This result suggests that rotating the
plane of acquisition does not significantly compromise the fibre tracts in a global
manner. However, the maps indicate local differences that would suggest that,
when choosing highly anisotropic voxel sizes, then the orientation of this anisotropy
matters.

5.6 Conclusions
This chapter presented a new approach for the comparison of curves as resulted
from fibre tractography process. Using the concepts of currents, a local measure
of discrepancy between fibre tracts was introduced. This method was tested on
synthetic fibre fields in order to measure the influence of noise introduce in tensor
measurements onto the resulting fibre tractography. This approach was applied
to ex-vivo explanted hearts. This method gave an insight into errors on the fibre
orientation estimation due to an increase of the through-plane voxel size. Results
tend to indicate that using fibre tractography outputs as object of comparison allows
for a robust and smooth evaluation of the local differences between fibre fields.
Globally, it was found that the fibre tractography results were relatively robust
to the change of acquisition plane orientation. Additionally, it was found that,
when increasing the through-plane voxel size, the fibre field misevaluation appears
greater in the right ventricle area, which can be explained by the smaller thickness
of the myocardial wall. Finally, an alternative application of this distance metric
is presented in Appendix E, where the variability of the human cerebral anterior
commissure is derived.
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6.1 Motivations
In Chapters 3 and 4, a data representation approach allowing a powerful and con-
venient analysis of DTI information in the left ventricle using PS coordinates was
introduced. We embedded this representation in a dense approximation workflow.
In this chapter we are interested in the application of these methods in a human in-
vivo setting. As mentioned in Sec. 2.5, there are two major types of sequences that
have proved successful in acquiring diffusion images in the beating heart. The first
one is a Stimulated Echo technique (STEAM) derived from [Tseng 2003, Dou 2003].
The second is a Spin Echo based sequence from [Gamper 2007]. Here, two dis-
tinct acquisition experiments respectively based on these sequences are presented.
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In the first experiment (using the STEAM sequence), both systolic and diastolic
DTI data were acquired on 5 healthy volunteers. In the second (using the SE se-
quence), systolic DTI images were acquired on 5 healthy volunteers. From both
these sets of data, the techniques presented in Chapters 3 and 4 are applied. Fibre
architecture statistics and dense reconstructions are then reported. The results cor-
relate well with previously reported ex-vivo studies, and confirm the feasibility and
reproducibility of human beating heart DTI.

6.2 Acquisition Protocols

6.2.1 Local-look STEAM Sequence

For this protocol, imaging was performed on a 1.5T Philips clinical MRI system
equipped with a 32 channel cardiac receiver array and a gradient system allow-
ing a maximal gradient strength of 40mT/m at a slew rate of 200 mT/m/ms per
channel. Cardiac DTI data was acquired using a diffusion weighted STEAM se-
quence [Tseng 2003]. The in-plane resolution was 2 × 2mm2. The Field Of View
(FOV) was 230 × 105mm2 and the slice thickness was 8 mm. The Echo Time was
20 ms. A 60% partial Fourier sampling is used to reduce the acquisition time. Diffu-
sion encoding was performed along 15 different directions uniformly sampled on the
sphere, reaching a b-value of 500 s/mm2. A number of 9 averages per direction are
used. The duration of the diffusion encoding gradients was 3ms. Each direction was
acquired in a separate breath-hold with a duration of 18 R-R (R-wave to R-wave)
intervals each. To guarantee identical breath hold levels, a respiratory navigator
with a gating window of 5 mm was placed on the right hemidiaphragm. The regular
FID crushers were removed from the sequence and replaced by the diffusion encod-
ing gradients. Field-of-view reduction (local-look) was implemented by applying the
first slice-selective excitation pulse in phase encoding direction, while the refocus-
ing pulses remained in slice direction. The sequence diagram is shown in Fig. 6.1.
Systolic and diastolic rest periods were used as imaging window. The exact timing
was determined based on high temporal resolution cine images in short axis and
long axis views. Slices of the diffusion weighted acquisitions were manually placed
in short axis view and their positions were adjusted for the difference in ventricular
length in systole and diastole. Four to six slices along the LV were acquired for both
cardiac phases. A B0 map was acquired covering the LV in order to perform im-
age based shimming. Additionally, two 3D whole-heart acquisitions were performed
covering the entire LV during the systolic and diastolic rest periods. This protocol
was repeated on 5 healthy volunteers (2 males / 3 females), of age 23.5± 4.

Diffusion tensors were then directly reconstructed from the DWIs, solving the
least square problem of Stejskal-Tanner equation 2.8. Examples of acquired datasets
are shown in Fig. 6.2. For both volunteers, a DTI slice acquired in diastole (left) and
systole (right) is presented. The first visual inspection confirms the circumferential
pattern and the angle variation from epicardium to endocardium, in both phases.
For the second volunteer, we intentionally show the RV diffusion tensors, in order to
illustrate the potential of acquiring DTI targeted to the RV wall. Tensors seem to
indicate circumferential directions, but do not present a significant angle variation
within the wall depth.
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Figure 6.1: Schematic of the local-look STEAM sequence with diffusion encoding gradients
and a single-shot EPI readout

Figure 6.2: Example of 2 volunteers’ acquired DTI slices (without any processing), in
systole and diastole. The circumferential patterns is clearly visible. Data in the right
ventricle has been included for volunteer # 2 to demonstrate the potential of acquiring DTI
targeted to the RV wall.

6.2.2 Spin Echo Sequence

For this protocol, cardiac DTI was performed in 5 health subjects (2 males, 3 fe-
males) on a 1.5T clinical MR scanner (Philips, The Netherlands) equipped with a
gradient system with maximal strength of 80 mT/m and a slew of 100 mT/m/ms
per channel. A 32 channel cardiac coil array was used. The imaging protocol con-
sisted of a B0 map for image based shimming, a trigger delay scout sequence for
estimation of optimal trigger during systolic contraction [Stoeck 2011], the actual
DTI acquisition, and a single breath hold 3D T2 contrast enhanced whole heart ac-
quisition (resolution 2× 2× 4 mm3). All sequences were ECG-triggered, and DWIs
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were acquired during free breathing using a respiratory navigator, with a gating
window of 5 mm, placed on the right hemidiaphragm. DTI acquisition was planned
in short axis view of the heart and four to six slices were placed manually along the
long axis of the LV. Imaging was performed using a diffusion weighted spin echo
sequence with single shot echo planar imaging readout. Imaging parameters were
as follows: TE/TR 59 ms/2R-R intervals, FOV: 230 × 102 mm2, in-plane resolu-
tion: 2 × 2 mm2, slice thickness: 8 mm. The echo time was shortened by the use
of a rectangular FOV (local-look), applying the excitation pulse in phase encod-
ing direction and the refocusing pulse in slice encoding direction [Gamper 2007].
Furthermore a partial Fourier coefficient of 0.63 was used and the echo pulse dura-
tion was further shortened applying the variable rate selective excitation (VERSE)
technique [Hargreaves 2004]. Diffusion encoding was achieved by two bipolar gra-
dients [Dou 2003] applied in 18 directions distributed on the unit sphere, creating
a b-value of 500s/mm2. A diagram of the sequence is presented in Fig. 6.3. Ten
averages were acquired for each diffusion encoding direction and residual breath-
ing offsets were corrected for by in-plane image registration during post processing.
The total scan time was 10 to 15 minutes per DTI slice, depending on navigator
efficiency. The trigger delay of the whole heart acquisition was set identical to the
trigger delay of the diffusion weighted imaging.
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Figure 6.3: Diffusion weighted spin echo pulse sequence with single shot EPI readout.
Diffusion encoding is established with a pair of velocity compensating bipolar gradient. For
local look imaging, the excitation pulse is applied in phase encoding direction, while the
echo pulse remains in slice encoding direction. The echo pulse duration is shortened using
VERSE

Acquired datasets are shown in Fig. 6.4. Similarly to the previous acquisition,
it is clear from Fig. 6.4(a) that the 5 volunteers share a very significant circumfer-
ential pattern of fibre orientations. The blue patches observed in the epicardial and
endocardial boundaries (at the limit with the papillary muscles) present an early
indicator of helix angle variation in agreement with the expected structure reported
in the literature for ex-vivo hearts [Streeter 1973b, Scollan 2000, Lombaert 2011].
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Figure 6.4: Description of the population of N=5 volunteers. (a) One acquired DTI slice.
Tensors are color-coded with the direction of their main eigenvector. (b) Distribution of the
acquired slices for each volunteers, superimposed with the segmentation of the Left Ventricle
(LV).

6.3 Preliminary Processing

6.3.1 Misalignment Correction

The acquisition protocol described in 6.2.2 gives a series of 180 DWIs per slice, di-
vided into 18 different gradient encoding directions. The residual misalignment be-
tween DWIs was found significant enough to alter the tensor reconstruction, making
it necessary to correct for residual displacement. Correcting for DWI misalignment
has been studied in the literature. [Andersson 2002] and later [Rohde 2004] address
the problem of eddy-current distortion correction, jointly with the problem of (pa-
tient) motion correction in diffusion weighted MR, in the tensor reconstruction. Both
eddy-currents and respiratory motion provoke potential distortions in our DWIs. In
this experiment, the distortions between DWIs are assumed to be modeled by an
in-plane rigid translation. In this section, the problem of realigning the DWIs under
this hypothesis is addressed. The realignment is performed prior to averaging per
direction using an approach very similar to the one detailed in [Oubel 2012]: in a
first iteration k = 0, all DWIs Si are used to compute the mean diffusion image
S0
r . Each DWI is then rigidly registered to S0

r , using the Mutual Information sim-
ilarity metric, and a regular gradient descent optimization scheme, resulting in a
rigid transformation A0

i . In the following iteration (k + 1), the transformations Aki
are used as initialization for the registration algorithm, therefore avoiding successive
resampling of the initial DWIs Si. The operation is repeated until the mean square
error (MSE) between two consecutive iterations is lower than a small threshold ε:
MSE(Sk+1

r , Skr ) ≤ ε. In practice five iterations are sufficient for convergence.
To illustrate the result of this registration, the standard deviation image is com-

puted: ΣS = std{Si}i=1:N , before (ΣS) and after (ΣS′) the registration process. This
image characterizes the amount of signal change between diffusion direction at each
position. It is therefore not expected to be null, as the signal intensity changes
naturally with the diffusion encoding direction. However, if the Si are misaligned,
it will induce some blurring of ΣS. Two resulting images, for one acquisition, are
shown in Fig. 6.5. This figure shows that the standard deviation image derived from
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Algorithm 3: Register DWIs (Si)i=1:N

Data: The set of initial DWIs (Si)i=1:N , and a threshold ε
Result: The set of registered DWIs S ′i
foreach i ∈ [1 : N ] do A0

i ← Id;
k ← 1;
S0
r ← E[Si];
e← 1.0;
while e ≥ ε do

for i = 1→ N do
Aki ← inplaneregistration(Skr , Si) with Ak−1

i as initialization;
end
k ← k + 1;
Skr ← E[Aki ◦ Si];
e←MSE(Skr , S

k−1
r );

end
foreach i ∈ [1 : N ] do S ′i ← Ak−1

i ◦ Si)

registered DWIs (b) appears sharper than the one derived from original DWIs (a).

Figure 6.5: Example of standard deviation maps from DWIs pre- (a) and post- (b) reg-
istration used for the SE data. The slight blurring due to residual small misalignments
between DWIs is reduced in (b).

When the STEAM protocol is used, the breath-hold acquisition produces very
small misalignments compared to those observed in free-breathing. No significant
improvement in the data was found by applying this registration algorithm on the
STEAM data. Thus, this pre-processing step is discarded in this case.

6.3.2 Tensor Restoration and Normalization

In a healthy left ventricle, there is no reason to believe the diffusion properties of
the tissue undergo major change throughout the ventricle wall. For instance, ex-vivo
studies show little variation of the Fractional Anisotropy or the Mean Diffusivity
(MD) through out the ventricle. Therefore the mean Apparent Diffusion Coefficient
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(ADCi, or MD) should theoretically be close to homogeneous in this region. In an
in-vivo setting, noise and movement artifacts often lead to diffusion signal attenu-
ations (see Eq. 2.7) greater than 1. These observations are not physically relevant
and prevent us from reconstructing the tensor at these locations. This is illustrated
in Fig. 6.6(a) where, in this slice, the ventricle has 20% of its data centres where the
tensor reconstruction is ill-posed (Eq. 2.8), and where the anisotropy is very hetero-
geneous. Whilst the tensor anisotropy is a quantity of interest, one can argue that
the observed heterogeneity is genuine or caused by noise and motion in the DWIs
and in the B0 signal. A classical solution to this ill-posedness of noisy diffusion MR
system consists of replacing the non-positive tensors by the average of their neigh-
bourhood. This approach assumes local smoothness of the tensor field, discarding
all the information given by the DWI at the problematic location. In this work, on
the other hand, smoothness of the mean diffusivity is assumed. Let us express the
hypothesis that the diffusion properties of the tissue is smooth in the ventricular
wall. The expression of the sum of the log-attenuations is written as follows:∑

N

log
Si
S0

= −3NADCi (6.1)

With N the number of gradient directions. The B0 signal from this equation can
be extracted using classical logarithm rules:

S0 = N

√∏
N

(Si) exp(3ADCi)

It is hypothesised that, with N sufficiently large (a good sampling of the
sphere), the assumption of diffusion property homogeneity implies a positive con-
stant ADC = Ȳ throughout the ventricle wall. For instance, one can compute the
expectation value of ADCi through the ventricle wall and choose it as the constant
value: Ȳ = E[ADCi]. Then an altered “normalized ” B0 signal is derived:

S̄0 = N

√∏
N

(Si) exp(3E[ADCi])

The normalized signal S̄0 is the product of the geometric mean of the diffusion
signals with a geometric parameter e3Ȳ (greater than 1). Therefore the initial as-
sumption of a constant diffusion property is obtained by using this normalized signal
instead of the initial S0 in the tensor reconstruction process. However, it is impor-
tant to notice that using that normalized signal will bias the anisotropy property
of the tensor (in both directions), towards the mean tensor of the ventricle. Addi-
tionally, it could potentially invalidate voxels that were previously well-posed (when
ADC is underestimated). On the other hand, choosing a Ỹ greater than the local
mean diffusivity is equivalent to a systematic overestimation of the observed mean
diffusivity. This overestimation will relax the least square problem in Eq. 2.8:

S̃0 = N

√∏
N

(Si) exp
(
3(ADCi + f.E[ADCi])

)
(6.2)

For instance, the DTI slice shown in Fig. 6.6(b) corresponds to the normalization
with an overestimation as in Eq. 6.2, with a factor of f = 0.2. Figure 6.6 demonstrate
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the capacity of this restoration process to reconstruct tensors in previously ill-posed
voxels. These new reconstructed tensors look coherent with their neighbours, sug-
gesting that there was indeed valuable information in the initial DWIs, hidden by
the ill-posedness of the system. A second observation is that the size of the tensors
is smoother after normalization. This is due to the fact that the ADC relative over-
estimation is greater when ADC is lower. Thirdly, in areas where the system was
well-posed initially, a slight alteration of the eigenvalues relative magnitude can be
noticed, i.e. the tensor shape is altered. Indeed, using Ỹ = ADCi+f.E[ADCi] tends
to push the tensors towards identity when f > 0. The shape bias provoked by this
process was quantified by measuring the tensor FA with or without normalization.
The FA is decreased by 0.063±0.049 after normalization, which corresponds to 15%
decrease. This property is very undesirable if statistics on tensor shape are needed.
In consequence, the original un-normalized tensors are used for tensor shape anal-
ysis (FA, cp, etc). However, since this process does not alter the tensor directions,
and that it gives additional information about the fibre orientation arrangement, we
performed the normalization on original DTI slices for the fibre orientation analysis
(angles), using f = 0.2.

Figure 6.6: Tensor Restoration/Normalization: Noise and motion artifact lead to wrong
observations of the diffusion attenuations, and ultimately to ill-posed tensor reconstruction
(a). Using a controlled normalization in Eq. 6.2 allows to recover the fibre orientation, at
the price of a bias in the tensor shape recovery (b).

6.4 Dual Phase Comparison of Fibre Architecture
By analysing strain and diffusion tensors, [Dou 2003] showed that fibre shorten-
ing and fibre shear contribute only little to myocardial thickening, while sheet
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shear, sheet extension and shear normal thickening play a major role. In contrast,
in [Chen 2005], excised rat hearts were fixated both in systole or diastole. Using
DTI, a transmural change of helix angle by 10 deg. to 30 deg. between diastole and
peak systole was found. Furthermore a significant reduction in magnitude of the
sheet angle from diastole to peak systole was concluded in this study. In the present
study, the STEAM acquisition allowed us to depict in-vivo fibre architecture of the
human beating heart, in diastole and systole.

Figure 6.7: (a,b) Segmentation contours (orange lines) with the anatomical image of one
volunteer in the diastolic (a) and systolic (b) phase. (c) The segmentations of the left
ventricle in diastolic phase (grid mesh) and systolic phase (plain mesh) are super-imposed.

6.4.1 Data Cumulation and Distribution

A segmentation of the left ventricular wall as detailed in 3.4.1 was performed for each
phase. The ventricular segmentation was stopped at the base prior to the valves.
Care was taken to avoid including papillary muscles at the endocardial boundaries.
Fig. 6.7 shows the segmentation contours in both phases. In Fig. 6.7(c), the change of
shape between cardiac phases is illustrated by super-imposing the two segmentation
volumes at scale.

As mentioned in Sec. 3.3.1, the PS coordinate system can potentially be used
as a naturally normalized setup that facilitates group-wise statistics within a set
of data. In this section, these concepts are applied on the two in-vivo databases.
Transformations of Eq. 3.5 are applied to each of the NSTE

dias = 5, NSTE
sys = 5 and

NSE = 5 datasets. A normalization of the first component ξ1 is then applied, with
a target range corresponding to the mean of the measured lower and upper limits:
[0.39 ∼ 0.65] in diastole and [0.32 ∼ 0.55] in systole.

The resulting transformed DTI information constitutes a homogeneous and nat-
urally normalized set of data:{

for each volunteer v, Pv = {xi, Dxi}v
A def

= {Ψv ◦ Φv(Pv)}v=1:5

(6.3)

Let us denote ASTEdias , ASTEsys and ASE, the cumulated dataset respectively corre-
sponding to the STEAM datasets in diastolic phase, the STEAM datasets in the
systolic phase, and the SE datasets in systolic phase respectively.

These quantities are not straightforward to visualise, as they are expressed in
the PS frame. Therefore, the inverse transformations of one volunteer Φ−1

v∗ ◦Ψ−1
v∗ is
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applied to A to allow its visualisation in the template truncated ellipsoid volume
(the choice of the volunteer here does not matter, we chose v∗ = v1 in each case).
The resulting transformed tensor fields are shown in Fig. 6.8. Tensors are shown
as segments pointing to their first eigenvectors. In the SE case, the total amount
of slices is 23, resulting in 18350 measurement points(data centres) throughout the
ventricle wall. In the STEAM cases, the total amount of slices are 16 and 15
respectively in diastolic and systolic phases, with 13189 and 13212 data centres.
The cumulation of the volunteers datasets A illustrated in Fig. 6.8 shows an overall
good coverage of data centres among the ventricle. As predicted, the area close to
the apex is poorly populated. This is due to the challenge of acquiring this part of
the LV, as the non-linear motion involved makes the acquisitions not representative
of the actual anatomical fibre structure. However it has been possible to acquire
data close to the apex using the STEAM sequence. The numerical boundaries
in each direction are gathered in Table 6.1. Several interpretations can be drawn
from this table. Firstly, the ξ1 lower and upper limits are very stable amongst the
datasets (and have very low standard deviations). This property partly justifies the
hypothesis that the ξ1 normalization performed between volunteers is not affecting
the statistical significance of our findings. Second, a larger lower boundary in the ξ2

coordinate is observed for the ASE dataset. This is confirmed visually in Fig. 6.8(c)
where the apex region is poorly populated in comparison to the first two datasets.
Third, the ξ2 upper boundary is relatively stable amongst datasets and close to π/2.

Figure 6.8: The cumulations of the volunteers data A in each of the three acquisition
scenarios. (a,b) using STEAM sequence respectively in diastole and systole (ASTEdia and
ASTEsys ). They respectively contain 13189 and 13212 data centres. (c) using SE in systole
(ASE), containing 18350 data centres.

A can be used for comprehensive statistical analysis. For instance, one can
calculate the main eigenvector directions of tensors Dξ. As explained in Sec. 3.3.1,
since these vectors are expressed against the PS contravariant basis G, the extraction
of meaningful information is straightforward. In this experiment, three different
projections of interest from the acquired in-vivo tensors were extracted. That is,
the helix, transverse and sheet angles, as described in Fig. 3.1, and defined in Eq. 3.3.
Joint histograms of the three angles with respect to the normalized transmural depth
ξ1 are presented in Fig. 6.9. For the STEAM experiment, the same linear variation
was found, with boundary values of +48 to −41 in diastole, with a correlation factor
of 0.68, and +59 to−41 in systole (correlation factor of 0.72). For the SE experiment,
the helix angle α was found to vary between +55 deg at the endocardium to −30 deg
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A # sl. # pts. ξ1 min ξ1 max ξ2 min ξ2 max
ASTEdias 25 13189 0.30± 0.02 0.60± 0.04 0.38± 0.19 1.57± 0.05
ASTEsys 26 13212 0.24± 0.04 0.59± 0.04 0.35± 0.21 1.48± 0.09

ASE 23 18350 0.31± 0.02 0.63± 0.06 0.49± 0.28 1.62± 0.12

Table 6.1: PS description of the data repartition in the three cases. The mean boundary
values amongst the set of respectively NSTE

dia , NSTE
sys and NSE volunteer is shown, ± the 1

σ deviation. The number of acquired slices is indicated (sl.), as well as the total number of
data centres (pts).

A endocardium (α1) epicardium (α2) corr.
ASTEdias +51.6± 28 −45.3± 29 0.74
ASTEsys +53.2± 24 −46.4± 28 0.72

ASE +55.2± 32 −32.1± 35 0.58

Table 6.2: Helix angle boundary values at endocardium and epicardium for ASTEdia , ASTEsys ,
and ASE, and the corresponding correlation coefficient.

at the epicardium, with a correlation coefficient of 0.58. In all experiments, the
transverse angle β was found stable along the transmural depth with a mean equal
to 0, and has consequently low correlation coefficients. This suggests that myocardial
fibres show a very low deviation from circumferential direction. On the other hand,
the distribution of the sheet angle γ is changing significantly from diastole to systole,
but does not seem to have a linear correlation with the transmural depth. This
property is further studied in Sec. 6.5. Numerical results of the helical variation are
reported in Table 6.2. A large correlation coefficient of the helix angle α with the
ξ1 coordinate is observed.

Using the cumulated datasets ASTEdia , ASTEsys , the joint histograms of the helix,
transverse and sheet angles with respect to the transmural depth in both phases
are reported in Fig. 6.9. The linear variation of α is clearly detectable in both
phases. As reported in Table 6.2, the epicardial boundary value (denoted α2) shows
no significant difference between phases. The transverse angle β is very close to the
zero-line, in both phases, suggesting that myocardial fibres keep their orientation
parallel to the wall surface during the entire cardiac cycle.

6.4.2 Regional Analysis

The AHA division detailed in Sec. 3.3.1 was applied to the two datasetsASTEdia , ASTEsys ,
in order to evaluate the fibre orientation patterns specifically in each AHA regions.
The helix angle α joint histogram against the transmural depth for each AHA zone
for both phases is reported in Fig. 6.11. An erratic pattern at the apex is observed
in both phases, due to a fewer number of data centres, and a lower SNR. The basal
regions seem to share a higher linearity of the helix angle variation, compared to the
apical regions (AHA regions 13-16). From these results, no significant differences
between phases can be denoted.

A step further in the comparison between cardiac phases, bullseye plots of the
Fractional Anisotropy (FA) and the Planar Coefficient (cp) of the two datasets ASTEdia
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Figure 6.9: Joint histograms of the three comprehensive angles α, β, γ, derived from
the projections of the tensors onto the PS contravariant basis G, as defined in Eq. 3.3,
against the first PS coordinate ξ1, using STEAM in diastolic cardiac phase (top), STEAM
in systolic cardiac phase (middle) and SE in systolic phase (bottom). The plain lines show
the median value per column and their window at 1σ.

Figure 6.10: Barycentric plots (extracted from coefficients cl, cp and cs, of the cumulated
datasets ASTEdia (left) and ASTEsys (right), showing a more orthotropic distribution in diastole.
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Figure 6.11: Joint histogram of the helix angle against the transmural coordinate in each
of the 17 AHA zones, for both the diastolic phase (using ASTEdia ) and the systolic phase
(using ASTEsys ).

and ASTEsys are shown in Fig. 6.12. The FA shows a mode at 0.69 in diastole and 0.56
in systole. The planar coefficient cp shows a mode at 0.37 in diastole against 0.36
in systole, with similar distribution (Fig. 6.12(right)). The bullseye maps allow to
denote a set of antero-septal regions where the FA is slightly greater than the rest of
the myocardium in diastole. The FA values are significantly greater than the values
found in ex-vivo studies [Lombaert 2012]. This high discrepancy may be due to fast
tissue anisotropy decay after necrosis, as reported in [Eggen 2012]. FA values found
in the current study are also greater than those reported in pathological rat hearts
ex-vivo [Chen 2003]. Additionally, the FA difference between phases reported in the
present study is found to be significant with a p-value of 0.09. This FA decrease
during contraction was also reported ex-vivo in rats in [Chen 2005].

6.4.3 Cross-Correlation Comparison

Finally, the structure cross-correlation computation as detailed in Sec. 3.6.3 was
applied to the two datasets ASTEdia and ASTEsys . Resulting tensors Rs(z) for z = 1 ∼ 17
in both phases are reported in Fig. 6.13(a). It appears from these illustrations that
there is a slight but noticeable discrepancy in the variability of the tensor field
between diastole and systole. These cross-correlations are measuring the variability
of the structure tensor of the sparse tensor field. The more anisotropic the cross-
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Figure 6.12: Bullseye maps of the Fractional Anisotropy FA (top) and the Planar coef-
ficient cp (bottom) in diastole (left) and systole (centre). The white regions denote area
where there is no information. Their normalized distributions are reported on the right.

correlation is, the more stable is the structure tensor within a region. To quantify the
shape of these cross-correlation tensors, the Fractional Anisotropy and the planar
coefficient of Rz were computed. Scatter plots of these two quantities between phases
are shown in Fig. 6.13(b). These plots indicate that, while there is no significant
change in FA, cp is significantly greater in systole in all zones (apart from the apex).

6.4.4 Dense Approximation In Vivo

The dense approximation scheme detailed in Chap. 4 was first applied independently
on each of the subjects’ datasets (in both phases for the STEAM data), in the PS
frame. The chart in Fig. 6.14 summarizes the workflow. A subsample of the result-
ing tensor fields for each case is presented in Fig. 6.15 as a mid-ventricular short
axis section. The kernel bandwidth H was chosen from the optimal bandwidth HSE

opt

obtained in the case (N=7, SNR=10) for the SE experiment (see Sec. 4.3.1), as it
corresponded to the mean measured in vivo slice distribution and noise levels. An
increase of SNR and ventricular coverage in the STEAM data was observed. A dif-
ferent set of parameters was therefore used for the kernel sizes of the approximation
operator. The optimal bandwidth obtained for the case-scenario (N=15,SNR=14)
was chosen. The kernels were therefore HSTE

opt = diag(0.0129, 0.1293, 0.2731) and
HSE
opt = diag(0.0189, 0.1793, 0.3131). Fibre tractography was performed for each

subject and a selection of fibres is shown in Appendix. D. All datasets show a char-
acteristic double helical pattern, as found in histology studies [Streeter 1973b] and
in ex-vivo DTI studies [Peyrat 2006, Lombaert 2011]. The transmural variation of
fibre orientation is clearly visible from the short axis slices in Fig. 6.15.
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Figure 6.13: (a) The ellipsoids represent the cross-correlations Rz of the first eigenvectors
of the tensor field Structure tensors within each AHA region z, in diastole (left) and systole
(right). (b) Scatter plots of the FA (left) and the Planar coefficient cp of cross-correlation
Rz between phases.

The dense approximation was then applied to the cumulated datasets A∗ illus-
trated in Fig. 6.8. The resulting dense tensor field was warped back to one of the
volunteer’s anatomical LV, and fibre tractography was performed (see Sec. 4.2.4).
In Fig. 6.16, the resulting approximated tensor fields and fibre fields from ASTEdia (left
column) and ASTEsys (right column) are shown. Fibres are color-coded with the local
helix angle α. The helical structure of the myocardial fibres is revealed by the fibre
tractography maps in both phases.

6.5 In-Vivo Insight into the Laminae Structure
The laminar sheet organization of the heart has been observed in many ex-vivo
studies [Spotnitz 1974, Costa 1999]. These studies have shown that cardiac my-
ocytes are grouped in layers of approximately 4 cells thickness [LeGrice 1995] sepa-
rated by cleavage (sheet) planes, that can be observed using high resolution imag-
ing [Kohler 2003, Gilbert 2012]. The laminae arrangement is believed to strongly
determine tissue shearing during contraction [Costa 1999]. Based on this hypothe-
sis, [Arts 2001] were able to discriminate two distinct populations of laminae, and
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Figure 6.14: Workflow: This chart illustrates the global workflow, for one dataset, from
a set of DTI slices towards the full ventricular approximated tensor field. All operators are
fully invertible and diffeomorphic, except WP . All illustrations are respectively at scale,
apart from the PS frames (right), which have been expanded with an homothetic transfor-
mation to ease visualisation.

Figure 6.15: Examples of approximated dense tensor fields. in diastole (top) and sys-
tole (bottom) for three different volunteers, using PS approximation operator described in
Sec. 4.2.1.

observed this dual-population pattern in excised canine hearts. This study reports
measured sheet angle γ scatter plots with respect to the transmural depth where
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Figure 6.16: (a) Approximated tensor fields from the cumulated datasets Adia (left) and
Asys (right), and their respective fibre tractography reconstructions (b). Fibres are color-
coded with the local helix angle α.

the two populations are clearly visible. In [Hooks 2007], the authors report a very
strong correlation between the laminae structure and the local tissue electrical con-
ductivity. In their experiment, they found a sheet angle predominantly negative,
with no visible evidence of the dual-population. In this section we demonstrate
that in-vivo DTI is capable of detecting discrepancies between diastolic and systolic
laminae organization that agrees with previously reported histological studies.

Details of the acquisition can be found in Sec. 6.2.1. The third eigenvector v3

of tensors was extracted at each voxel. The orientation of this vector is believed
to be perpendicular to the underlying laminae plane [Kung 2011], as described in
Fig. 6.17(a). Maps of v3 orientations in systole and diastole are shown in Fig. 6.17(b).
The discrepancy between phases is visible. In particular, the cleavage planes seem
to be oriented parallel to the myocardial wall in diastole and arrange in a more
complex structure where the planes are parallel to the short axis in the mid-wall
region. The orientation of the sheet planes can be measured by the sheet angle as
described in Sec. 3.3.2. The distribution of this angle in both phases is shown in
Fig. 6.18(c). In this plot the mirroring of the distribution between phase is visible.

Significance of the third eigenvector: To test the hypothesis that v3 con-
tains information, one can measure the relative magnitude of the second and third
eigenvalues. The transverse anisotropy TA of a tensor can be defined as the ratio
between the two last eigenvalues TA = e3/e2. If the mode of this ratio is close to
unity, it would suggest that there is no information given by the third eigenvec-
tor direction. TA was extracted at each voxel of the datasets described in 6.4.1.
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Figure 6.17: (a) Schematics of the cardiac fibre architecture organized in laminae surfaces
(b) Example of maps of the observed third eigenvector v3 in diastole and systole.

Its distribution in each phase was compared against the one computed from ran-
domly distributed second and third eigenvalues. Let us first assume the hypothesis
that there is no information contained by this direction. To materialize that hy-
pothesis, two random variables x1 and x2 having similar Gaussian distributions are
considered, and the random variable of the ratio r = min(x1, x2)/max(x1, x2) is
constructed. Under the “no information” hypothesis, TA would therefore have a
distribution close to the one of r. Figure 6.18(d) presents the distribution of such
random variable r for normal distributions of mean µ = 0.7 and standard deviation
σ = 0.2 (thin line). The distribution of real transverse anisotropies TA for both
phases are shown respectively in plain bold and dotted bold lines. Both distribution
are significantly away from random ((p〈0.0001)), therefore rejecting the “no infor-
mation” hypothesis, and confirming the assumption that the information given by
the third eigenvector direction is significant. The distributions show a noticeable
difference between phases, suggesting, similarly to Fig. 6.12, that the tensors are
more planar in diastole than in systole.

Figure 6.18: (a,b,c) Distribution of the helix, transverse and sheet angle in diastole and
systole from gathered in-vivo data. (d) Histogram of transverse anisotropy TA in both
phases compared with the one of randomly distributed eigenvalues (thin line).

Plane tracking for laminae visualisation: The v3 maps shown in Fig. 6.17
(bottom) suggest a non-random arrangement of cleavage planes. In diastole, the
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laminae are predominantly organized parallel to the wall surface, a visual confirma-
tion of the histogram in Fig. 6.9 (top right). On the other hand, the organization
seems more complex in systole.

To depict the 3D arrangement of these cleavage planes observed in systole, we
propose to examine the corresponding dense approximated tensor field. Similarly to
the concept of fibre tracking, it is hypothesised that one can spatially track, or span
the laminae plane surface. From a starting position, it is assumed that the local
laminae surface corresponds to the plane (e1, e2) of the two first eigenvectors. To
span the surface, one can track the laminar sheet from both e1 and e2 directions with
a certain propagation rule. As described in 4.2.4, the fibre tractography algorithm
used here has an advection-diffusion combined propagation (Eq. 4.9). We propose
the following propagation for the sheet surface tracking:

vout = cpe3 × [e3 × vin] + (1− cp)
(
(1− g)vin + gD · vin

)
(6.4)

where e3 and cp are respectively the third eigenvector and the planar coefficient
of D. The operator × is the cross product between vectors. One can notice that
the linear coefficient cl of Eq. 4.9 was replaced by the planar coefficient cp. Thereby
confidence in the local third eigenvector is correlated to the planarity of the local
tensor. The local direction e3 × [e3 × vin] can be seen as the normalized projection
of vin onto the local tensor plane (e1, e2).

To demonstrate the capabilities our plane tracking algorithm, it was applied to
the in-vivo dense approximated tensor field in systole. Resulting tractograms are
presented Fig. 6.19.

Figure 6.19: Application of the surface tracking algorithm using propagation in Eq. 6.4
on the in-vivo approximated dense tensor field from AdiaSTE (left) and AsysSTE (right).

Previous histological studies [Spotnitz 1974, Costa 1999, LeGrice 1995] on the
laminae organization and dynamics suggest that the sheet planes are changing ori-
entation during the cardiac cycle. Specifically, [Spotnitz 1974] reports sheets parallel
to the wall when the wall is the thinnest and going toward parallel to the short axis
when the wall thickens (Fig. 2 in [Spotnitz 1974]). As illustrated in Fig. 6.17, our
findings confirm this histological report by suggesting that laminae are organized
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parallel to the myocardial wall in diastole and that, during contraction and wall
thickening, the laminae spread to a more complex organization (“chevron pattern”,
as observed in [Costa 1999]) where the sheet planes tend to become parallel to the
short axis plane in the mid-wall area (Figures 6.18 and 6.19). Furthermore, TA
distributions in Figure 6.18(d) confirm the assumption that the information given
by the third eigenvector is significant (p-value < 0.001). The graphs also indicate a
change of distribution between phases, suggesting that the tensors are more planar
in diastole than in systole. This characteristic may be explained by fibre cell short-
ening and diameter increase during contraction, thereby allowing more diffusion
perpendicular to the fibre direction. Additionally, Fig. 6.18(a,b,c) suggest that, as
opposed to the sheet orientation, the fibre orientation does not change significantly
between phase. In conclusion, this work represents to our knowledge the first report
on laminae structure dynamics from in-vivo DT-MRI.

6.6 Discussions

6.6.1 Acquisition Limitations

Assessing in-vivo 3D DTI information on a beating heart is still a challenging task.
The acquisition techniques used in our experiments remain difficult to reproduce
and demand relatively long scanning time in a clinical setting. Breathing motion
and position mismatch induce misalignments between DWIs. In this experiment,
only the in-plane translation is corrected, and higher order distortions have not been
addressed.

It is still unclear what is the optimal amount of directions to used.
In [Frindel 2007], the authors benchmarked a number of combinations between num-
ber of directions and number of repetition against the quality of DTI images in
ex-vivo hearts, and found that 12 directions with 4 repetitions would give optimal
results, while other more general studies such as [Hasan 2001] suggest 6 directions.
In a beating heart situation, the signal to noise ratio of DWI acquisitions is signifi-
cantly lower than in the brain or in explanted organs, require higher number of both
directions and repetitions. It became clear from these experiments that the Stimu-
lated Echo (STEAM) acquisition protocol is giving more reproducible results than
the Spin Echo (SE) one. However, the latter is easier to transfer to clinical practice as
it does not require a large number of breath holds. Very recently, an in-vivo study
reports a free-breathing version of the STEAM protocol [Nielles-Vallespin 2012],
opening the gates of clinical translation of this protocol.

6.6.2 Dual-Phase Fibre Organization

The findings reported in this chapter reveal an in-vivo helix angle of ∆α 97 and
99 deg. respectively in diastole and systole. These results, as well as their corre-
lation with the transmural depth, concur significantly with previous ex-vivo stud-
ies [Greenbaum 1981, Peyrat 2006, Lombaert 2012]. The change of orientation be-
tween phases remain controversial. In [Chen 2005] they report ranges ∆α of 96 deg.
in diastole and 108 deg. in systole, but both with standard deviations of ±10 deg.
The range reported here therefore agrees with [Chen 2005]. However, we did not
find significantly different ∆α between phases. The local AHA segment analysis re-
veal similar patterns of helix angles in all 17 regions (with a more erratic behaviour
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at the apex) in both phases. Based on these results, one can argue that there is
no significant discrepancy of the helical fibre orientation throughout the ventricle
and throughout the cardiac cycle, or none that could be detected with the current
state of beating heart DTI acquisition. The in-vivo fibre tractography results re-
ported here are in good correlation with ex-vivo studies, especially in [Peyrat 2009]
and [Lombaert 2012].

A significant change of the Fractional Anisotropy of the tissue was found between
phases. A mode of the FA at 0.69 was observed in diastole against 0.56 in systole,
however with a relatively high p-value of 0.09. This difference can be physiologically
explained by the tissue density being greater in diastole than systole, therefore
decreasing the inter-cellular medium volume. In both phases the planar coefficient
shows a relatively high mode at 0.36. In this chapter it was demonstrated that
the ordering of the last two eigenvalues show significant difference with random
behaviour, demonstrating that the third eigenvector direction contains meaningful
information. A drastic difference was found in the organization patterns of the
sheet angle γ between diastole and systole, which is confirmed visually with third
eigenvector maps. However it is our belief that there is no strong physiological
justification of a strong structural change of the laminae organization during the
cardiac cycle. Nevertheless, this chapter has shown laminae surface tracking results
observed in systole, using a new propagation rule. These laminae planes have a
similar appearance with the ex-vivo ones reported in [Rohmer 2007].

However, it is important to put these discrepancies in perspective with the limits
of the acquisition. Especially, the motion involved during the systolic acquisition
window can potentially influence the observed tensor shape, and might also explain
the difference in sheet organization and structure variability reported in this chapter.

6.7 Conclusions
In this chapter the theoretical contributions of this thesis were put in practice with
in-vivo experimental study. DTI data in both diastolic and systolic phases was
acquired in a set of 5 healthy volunteers, and used the curvilinear analysis approach
introduced in Chap. 3 to conduct a group-wise analysis of the fibre structure of the
healthy left ventricular myocardium. These findings reveal little change of the helix
and transverse angles during the cardiac cycle, with boundary values concurring
with previously reported studies on ex-vivo hearts. The dense approximation scheme
detailed in Chap. 4 was then applied. The resulting fibre tracts demonstrate a clear
double helical fibre structure. Additionally, arguable differences were observed in
the sheet organization and in the variability of the tensor shape between phases.

In conclusion, these results, together with some other recent in-vivo studies,
bring the field of beating heart DTI acquisition to the rank of a feasible application,
and can lead to a better understanding of the underlying structure of the heart -
i.e. the arrangement of myocardial fibres - and its relationship with the cardiac
function.
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This thesis has shown that DTI provides the ability to image myocardial tissue
in a non-invasive manner. In particular, the orientation of myofibres within the ven-
tricle wall can be depicted in-vivo during the cardiac cycle. Coupled with advanced
image processing and analysis techniques, this provides a tool to help apprehending
the global fibre structure of the myocardium, and by extension understanding car-
diac function. Additionally, it could help surgery planning and cardiac modelling of
pathological situations.

Our goal throughout this thesis has been to show how advanced tensor/image
processing, tensor field approximation, and data analysis, could overcome some lim-
itations of in-vivo cardiac DTI acquisition. In the next section, the main contri-
butions of this PhD thesis will be reviewed and perspectives for further research
directions extending this work will be presented.

7.1 Contributions

Methodological Contributions

One of the main contribution of this PhD is the integration of the curvilinearity
of the object of interest in the statistical study and in the approximation process.
Chapter 3 has shown that using an elastic and non-rigid registration algorithm, and
changing coordinates towards a normalized prolate spheroidal frame, allows the de-
scription of left ventricular information in a physiologically relevant manner, and
provides a continuous and adapted scheme for data analysis and processing. Addi-
tionally, a description of the variability of a set of tensors on arbitrarily distributed
grid has been provided, with the computation of the structure matrix of such a set
in PS coordinates. The advantages of these approaches have been demonstrated by
applying them to ex-vivo canine hearts. The proposed method was evaluated with
regard to its sensitivity to parameters. In particular, it was found to be robust to
error accumulation, both position and directional error accumulation are found not
significant.

Chapter 4 pushes the use of this curvilinear approach one step further by in-
troducing a dense tensor field approximation scheme in PS coordinates. It was
shown that approximation from sparsely distributed data centres is more optimally
performed when it is applied in the PS frame rather than on a regular Cartesian
frame. The fidelity of the introduced approach was demonstrated with the help of a
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high-resolution ex-vivo human heart DTI dataset. This technique was shown to be
particularly helpful when the data is very sparsely distributed across the ventricle.
In this situation, it was illustrated that using the approximation operator in the PS
frame helps recovering the full ventricular fibre architecture with low error on the
local fibre orientations.

It is important to notice that the space occupied by the ventricular wall is highly
non convex when viewed in a Cartesian frame. However, in the PS frame, the
same volume becomes contained in a convex rectangular box. The Riemannian
metric induced by redefining the approximation problem in PS coordinates becomes
geodesically convex which is a very desirable property in such interpolation process.

Additionally, the influence of acquisition parameters on the final fibre tractogra-
phy results has been investigated in Chapter 5. A method allowing the comparison of
fibre fields without point correspondence was proposed. It was applied to an ex-vivo
heart DTI acquisition and robustness to through-plane resolution and acquisition
plane orientation was quantified.

Contributions in Terms of Applications

The manuscript concludes with Chapter 6, where the methodologies introduced
in this thesis were applied to in-vivo situations. In this chapter, it has been
shown that human in-vivo cardiac DTI is possible in a reasonable acquisition
time. Each short axis slice is acquired in 10 minutes, either using a modified
version of the velocity compensated sequence introduced [Gamper 2007], or us-
ing an extension of the STEAM sequence as presented in [Dou 2002]. These se-
quences have been successfully applied to two small groups of 5 healthy volunteers
each. Using the curvilinear data analysis approach, it was shown that the fibre
orientations depicted by such techniques correlate with similar studies on ex-vivo
hearts [Greenbaum 1981, Peyrat 2006, Lombaert 2012]. The findings reported here
suggest that there is a significant change of Fractional Anisotropy and planar coef-
ficient between diastole and systole. However, results reported in this thesis suggest
no significant discrepancies in terms of fibre orientations between phases in a healthy
situation.

By using the proposed curvilinear approximation scheme, the global fibre archi-
tecture of the healthy left ventricle in-vivo was reconstructed at end systole and
end diastole. The resulting global arrangement of fibres is in good agreement with
patterns found in ex-vivo specimen. To our knowledge it is the first reconstruction
of the global fibre structure in healthy human left ventricle in different phases of the
cardiac cycle.

Software Contributions

In biomedical imaging in general, it is important that the methodological contribu-
tions are ensured to be re-usable in a sustainable manner. It has been an important
aspect of this PhD to implement all the processing steps into a compact c++ set
of commands. As detailed in App. D, they are gathered in a cross-platform c++
toolkit, from which the algorithms described in this thesis are available for further
use. Additionally, a publicly available git repository 1 was released. This toolkit

1https://github.com/ntoussaint/Cardiac-Prolate-Spheroidal-ToolKit



7.2. Perspectives 91

is intended to be integrated in a innovative medical imaging platform called med-
Inria 2.x (http://med.inria.fr), and is already used in external projects within the
Asclepios research team at Inria Sophia Antipolis.

7.2 Perspectives

Theoretical Perspectives

Adapting the coordinate system to the shape of the studied object, as presented
in Chapter 3, can potentially be much more generalized. The PS coordinates are
part of the set of 11 coordinate systems that are well-defined in the sense that the
Laplace equation can be solved with separating variables. A generalization of the
concepts described in Chapter 3 would consist of finding, out of these 11 coordinate
systems, the most suitable one to describe an object of interest in a compact manner.
Another approach that could be interesting to investigate would be to become in-
dependent from any coordinate system by only considering topological information,
where only the curvature of the object will dictate the local metric tensor to use.
This type of curvature-based approach is sometimes used in computer vision, such
as in-painting [Chan 2001], although in our case we refer to topological curvature
rather than scalar curvature within an image.

As mentioned in Chapter 3, an interesting development would be to extend
the tensor variability in the spatial domain introduced here, to the variability in
the tensor domain by computing the quantity tensor domain structure matrix. This
measure could provide information on the mode of variations of a local set of tensors,
such as within an AHA zone for instance, and be a adapted candidate for prior
knowledge to incorporate into the localised approximation scheme described in 4.5.

Concerning the dense approximation scheme described in Chapter 4, it is clear
that the (non-)control over the smoothing effect can be overcome by some further
development of the technique. For instance, as mentioned in the conclusion of this
Chapter, one might benefit from using the local variability of the tensor field as
a prior for the kernel’s bandwidth in the approximation scheme. Alternatively,
[Pajevic 2002] suggests a multi-channel approximation scheme based on B-spline
approach in each of the 6 independent components of the tensor. It may be possible
to extend their concepts to our particular problem that is an arbitrarily distributed
measure centres.

Impact on Cardiac Modelling

As mentioned throughout the thesis, one of the potential application of in-vivo car-
diac DTI is its use in patient specific electromechanical modelling of the cardiac
function. It is still unclear how much the fibre orientations infer the model be-
haviour. For instance, it has been suggested that the fibre orientations can be taken
from a synthetic model without biasing the mechanical or electrophysiological out-
come of the model [Bovendeerd 1992, Niederer 2009]. However, in other studies the
opposite conclusion has also been found [Wong 2010], where the authors suggest
that a cardiac mechanical model is significantly sensitive to fibre orientations.

The answer to this difficult question might be found when, additionally to the
cardiac mechanics and electrical activity, fibre orientations are imaged in-vivo using
the work presented in this thesis. It would then be possible to perform simulations
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using different sets of model parameters and compare to ground truth motion and
conductivity patterns in order to quantify the impact of the fibre orientations on
the accuracy of the modelling.

DTI Information in Scar Area

Finally, an important development of this work is the translation to the understand-
ing of the cardiac function dynamics after myocardial infarction. It has been shown
in-vivo that the fibre structural arrangement is changing drastically in and around
the infarct zone [Wu 2009]. These studies suggest that myocardial infarction is fol-
lowed by an increase in ADC and a decrease in FA in the scar zone. They have
been limited to a single short axis DTI slice. It could be of interest to extend the
acquisition to a larger portion of the ventricle and, using the approaches described
in this thesis, quantify the global remodelling [Chen 2003] of the myocytes within
the left ventricle.

From the work and results presented in this PhD thesis, it is clear that in-vivo
cardiac DTI, combined with adapted image processing and analysis methods such as
those introduced here, will open the door for improved diagnosis and understanding
of cardiac pathologies. It will allow personalised patient cardiac electromechanical
modelling, could improve the prediction of patient response to certain treatment
such as cardiac resynchronisation therapy and participate to the improvement of
the understanding of the left ventricular structure and function.



Appendix A

Inversion of the Prolate Spheroidal
Transformation

We use the trigonometric and hyperbolic identities:

cos2 + sin2 = 1 and cosh2− sinh2 = 1

If we take the following notations from Eq. 3.1:

A = f 2

C = x3
2

B = x1
2 + x2

2

α = sin2(ξ2)

then, using first and second definitions from Eq. 3.1, and the trigonometric iden-
tity, we obtain:

B = A sinh2(ξ1)α (A.1)

sinh2(ξ1) is a function of α, A, and C using the third definition from Eq. 3.1 and
the hyperbolic identity, which finally gives us a polynomial in α:

Aα2 + (−A+B + C)α−B = 0

Of the two roots of this polynomial, one is positive and one is negative. Since α
is a positive number by definition, only one root needs consideration:

sin2(ξ2) =
(A−B − C) +

√
(A−B − C)2 + 4AB

2A

Since ξ2 is an angle from 0 to π, sin(ξ2) is always positive, therefore we can
extract ξ2. ξ1 is also a positive number, thus we can extract it from Eq. A.1 when
sin2(ξ2) 6= 0 (everywhere but on the axis of revolution). When sin2(ξ2) = 0, we can
use sinh2(ξ1) = C/A − 1, which holds true everywhere on the axis apart between
foci, where Prolate Spheroidal coordinates are undefined. Note that this singularity
can be noticed directly from the third line of Eq. 3.1 and by remembering that
cosh(∗) ≥ 1. In practice this singularity is never reached as it is always outside the
ventricle wall. We can nevertheless extend the definition domain by its limit close
to the axis of revolution, i.e. imposing ξ1 = 0 in the segment between foci.

Finally, ξ3 is simply obtained by dividing the second with the first line of Eq. 3.1:
ξ3 = arctan(x2/x1). If the point is on the axis of revolution, ξ3 can take all allowed
values. We use ξ3 = 0 by convention.
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Contravariant Basis Vectors

The prolate spheroidal contravariant basis G = (g1, g2, g3), defines the differential
vectors for each of the coordinates: gi = ∂x/∂ξi.

g1 = f

cosh(ξ1) sin(ξ2) cos(ξ3)
cosh(ξ1) sin(ξ2) sin(ξ3)

sinh(ξ1) cos(ξ2)


g2 = f

sinh(ξ1) cos(ξ2) cos(ξ3)
sinh(ξ1) cos(ξ2) sin(ξ3)
− cosh(ξ1) sin(ξ2)


g3 = f

− sinh(ξ1) sin(ξ2) sin(ξ3)
sinh(ξ1) sin(ξ2) cos(ξ3)

0

 (B.1)

The basis G is direct and orthogonal, but not orthonormal. The norm of each
column vector is also known as the local scale factor: ‖gi‖ = hi.

The calculation of the scale factors and the contravariant basis is involved in the
“Finite Strain” reorientation for the induced transformation Ψ̃.



Appendix C

The Cardiac Prolate Spheroidal
ToolKit

Early in this project, it became necessary to build a sustainable implementa-
tion of the workflow, especially of the steps detailed in Chap. 3. The Insight
ToolKit [Ibanez 2005] appeared to be a good choice of a c++ library to start with for
such an implementation, for its parallelization capabilities and the features it offers.
Therefore, throughout the PhD project, each data processing step of the workflow
has been implemented on top of this library. We gathered all implemented features
in a stand-alone toolkit, named the Cardiac Prolate Spheroidal ToolKit (CPSTK),
and released the plain c++ code in a git repository 1.

The first and principal component of this toolkit is the
itk::ProlateSpheroidalTransform class. It derives from an itk::Transform
and is templated over the pixel precision. It corresponds exactly to the implemen-
tation of the Ψ operator, as defined in Sec. 3.2. The transformation is defined with
the 3D position Cartesian coordinates of three landmarks. That is, first the centre
of basal section O (i.e. the origin of the coordinate system), second the apex A
(OA is therefore the ellipsoid main axis length) and the mid-wall basal point B
taken at the intersection between the LV and the RV, at the anterior wall region.
(O,A,B) entirely define the coordinate system change. Especially, the eccentricity ε
and the semi foci distance f are evaluated from those coordinates. The coordinate
change can be “Forward” - from Cartesian towards prolate spheroidal coordinates Ψ
- or “Backward” - from prolate spheroidal towards Cartesian coordinates Ψ−1. The
user is invited to control the direction of the operator with SetForward() method.
By definition, the inverse of the Forward transformation is the related Backward
transformation. Therefore, accessing GetInverse() has the same effect as using
the same transform but changing direction to “Backward”. In the class member
ParametersType m_Parameters, we naturally store the coordinates of O,A, and
B. The method GetJacobian() is not implemented as it expects the Jacobian with
respect to each of the transform’s parameters, which is not defined. However, we
provide the local Jacobian matrix with respect to the coordinates with the method
GetJacobianWithRespectToCoordinates(), which, in this case, corresponds to
the contravariant basis matrix G, as well as access methods to the scale local factors
hi and the Jacobian determinant Πhi. The class therefore allows the user to switch
back and forth between Cartesian and prolate spheroidal coordinates using the
classical methods TransformPoint() and TransformVector().

The entire toolkit is built around this class. We provide a certain num-
ber of itk filters that achieve specific tasks, such as the intersection of a data
structure with a specific AHA zone, a.k.a. itk::LimitToAHAZoneImageFilter,
which uses a itk::ProlateSpheroidalTransform as parameter in order to per-
form the intersection. Another important key filter of the toolkit is the

1http://github.com/ntoussaint/Cardiac-Prolate-Spheroidal-ToolKit/
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itk::GaussianInterpolationTensorMeshFilter(2). These classes are a concrete
implementation of the approximation and local approximation operators WP and
W ′P as defined in Chap. 4. The input of this filter is an unstructured mesh with
tensor information at each node, that is, our raw data P = (xi, Dxi)i=1:M . One of
the most high level filter is the class itk::ExtrapolateTensorField, that concate-
nates other filters to provide an implementation of the global dense approximation
of a tensor field in the prolate spheroidal frame. It expects the set of data centres
P for input, as well as the domain of definition Ω (in the form of a binary image),
the non-linear displacement fields Φ and Φ−1, the prolate spheroidal transform that
corresponds to the operator Ψ, and the kernel sizes Kz

H . We gather in Table C.1 a
non exhaustive list of classes contained in the toolkit.

Class Name Description

itk::ProlateSpheroidalTransform
Transformation class from Cartesian
coordinates to PS Coordinates

itk::KaiserBesselKernelFunction
Kaiser Bessel kernel used for density
estimation and non-parametric regression

itk::LimitToAHAZoneImageFilter
Crop a (tensor)image with
an AHA zone

itk::ExtrapolateTensorField Dense Approximation filter

itk::TensorMeshStatistics
Compute tensor statistics
in the PS frame

itk::GaussianInterpolationTensor...
Implements the approximation
operator WP

itk::WarpTensorMeshFilter
Warp a tensor mesh with a
displacement field (FS strategy)

itk::TensorMeshIO
Read/Write tensors embedded in
a (unstructured) mesh

itk::TensorMeshToImageFilter
switch between unstructured mesh and
regular grid representation of tensors

Table C.1: Main classes of the CPSTK toolkit and their description.

For an easy access to the user, we embed the main features into a single bi-
nary, named cpstk, utilizing a system of Command/Factory combination. Through
command-line, the user can therefore easily process each step of the work-flow de-
tailed in this thesis. In Fig C.1 we show the output of the help message of the cpstk
binary. It details all features and provides a short description of them. Each line
represents a call to the corresponding Command that implements the actual feature.

All filters derived from itk::ImageToImageFilter and therefore take advantage
of their multi-thread implementation. Additionally, we extended the multi-threading
concepts to itk::MeshToMeshFilter filters. Indeed, if an operation has to be com-
puted on each node of the mesh, and does not depend on the result of this operation
on other nodes, then one could consider using parallel computing to perform the
task separately in each node. In our work-flow, one of the most computationally
expensive task is the dense approximation, as it is an N ×M operation, where N is
the number cardinality of our measures P , and M the cardinality of the domain Ω.
The parallel implementation of itk::GaussianInterpolationTensorMeshFilter
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Figure C.1: Screen shot of the CPSTK command-line tool. The help message lists the
available Commands. The commands are stand-alone and handled through a system of
factory registration. Each command comes with a usage message.

Figure C.2: Screen shot of the prototype built for the 3D-Net platform, showing the
volunteer’s anatomy image, the left ventricle segmentation, a bull’s eye graph of the β
angle distribution, and its corresponding histogram.

and itk::GaussianInterpolationTensorMeshFilter2 allows an acceleration fac-
tor equal to the number of threads of the computer. For example, the dense approx-
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imation of a dataset with N = 19000 measure centre, and M = 64000 for Ω, takes
49.5 seconds on a dual core computer. Another computationally expensive task is
the evaluation of the structure tensors, as detailed in Sec. 3.6.3. The results shown
in this section concern a DTI tensor unstructured field of N=35000 nodes, and the
structure tensors are evaluated on the same grid (i.e. M = N). The computational
cost of the gradient operator is N2, but there is a linear regression of size N × 6 to
solve at each node. The total computational time is for instance 1 minute 3 seconds
on a 12 core computer, for the dataset described above.

CPSTK is open-source, and only depends on ITK, VTK and the Tensor Toolkit 2,
and is therefore straightforward to set up. It compiles under any platform, espe-
cially Windows, MacOSX, Ubuntu and other unix systems. There is a Doxygen
documentation available 3. It is planned to be used in the MedINRIA platform 4 for
cardiac analysis purposes. We also embedded part of the analysis features provided
by the toolkit in a prototype for the 3D-Net platform 5. It aims at deploying the
capabilities of the toolkit to a wild range of clinical and researcher users. We show
in Fig. C.2 an early version of this prototype.

2www.gforge.inria.fr/projects/ttk
3http://ntoussaint.github.com/Cardiac-Prolate-Spheroidal-ToolKit/Doxygen
4www.med.inria.fr
5http://www.3dnetmedical.com



Appendix D

In-Vivo Tractography Results

In Chapter 6, in-vivo measurements of DTI data on 5 healthy volunteers using the
STEAM sequence were presented. DTI was performed at end systole and end dias-
tole phases. The dense approximation scheme (see Chap. 4) was used to reconstruct
the 3D dense tensor field for each volunteer (and in both phases). Fibre tractography
was then performed on these approximated tensor fields. The results are presented
in the following figure. Fibres are color coded with the local helix angle.

The variation of helix angle between epicardial and endocardial regions is clear
in all datasets for both phases. We notice a net increase of the angle around the
septum (left on the images). Although in some cases angle differences are visible
between phases, it is not clear whether or not those discrepancies are genuine or due
to different noise patterns, or bias in the acquisition or even the image processing
analysis.



100

Figure D.1: In-vivo fibre tractography of the left ventricle for 5 healthy volunteers (line-
wise), at end diastole (left) and end systole (right). The fibres are color-coded with the local
tensor’s helix angle.



Appendix E

Dissimilarities of the Anterior
Commissure using DTI
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An extensive use of the distance index introduced in Chapter 5 has been done
in a collaborative work with P.G Batchelor, J.P. Linn, G.C. Edwards and M. Patel
and was published in [Patel 2010]. The present chapter presents the main results
found in this study.

E.1 Introduction
The anterior commissure is a critical interhemispheric pathway in animals, yet its
connections in humans are not clearly understood. Its distribution has shown to
vary greatly between species, and it is thought that in humans it may convey axons
from a larger territory than previously thought. The aim of this study was to use
anatomical mapping methods to observe the anterior commissure fibre tracts and
compare their distribution, against previously reported anatomical understanding.

The cerebral hemispheres are interconnected by the corpus callosum (CC) and
the anterior, posterior and hippocampal commissures. The largest of these connec-
tions is the CC spanning across the length of the cerebral hemispheres, providing the
majority of interhemispheric information transfer. In those who have complete sec-
tions of the CC, it has been shown that motor, language, cognitive and behavioural
functions can remain unaffected [Spencer 1988, Berlucchi 1995]. This suggests alter
native routes play a part, and in particular the anterior commissure (AC), as seen
in Fig. E.1, has been shown to provide many interhemispheric routes for informa-
tion [Risse 1978]. Investigating these connections of the AC may be important in
the understanding of epileptic spread between the hemispheres, since both the CC
and the hippocampal commissure have been shown to be critical in the contralateral
spread of electrical potentials [Spencer 1988]. Limiting seizure spread in those with
uncontrolled epilepsy is possible by sectioning the commissural fibres and has shown
to prevent an unconscious state during seizures [Spencer 1988, Amacher 1976]. It is
common to leave the AC intact during surgical procedures for epilepsy, and it may
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be possible for epileptic potentials to travel through this pathway, inducing bilateral
spread [Spencer 1988]. The mid-sagittal cross-sectional area of the AC has been
shown to be 1% of the CC area, and variations in the area are thought to represent
the distribution of interhemispheric communication [Foxman 1986]. Hypertrophy of
the AC especially in congenital agenesis of the CC may be due to re-routing of some
neuronal axons for better functional compensation [Fischer 1992, Bamiou 2007]. An
increase in the total number of axons passing through the AC without hypertro-
phy has also been observed in acallosal mice, suggesting it can be used as an
alternative pathway for information transfer [Livy 1997]. Distribution of the AC
to various parts of the brain in animals has been shown to vary greatly between
species [Horel 1981, Pandya 1973].

For species that do not possess a CC, the AC is the largest and most crit-
ical interhemispheric pathway, carrying the CC-related functions [Bamiou 2007,
Pandya 1973]. Relatively less work has looked at the human AC, and until recently it
was presumed that the commissure has connections similar to non-human primates,
but is now thought to convey axons from a much larger territory [Di Virgilio 1999].
The AC in humans is classically divided into two distinct tracts, the anterior and
posterior limbs. The anterior limb connects to the olfactory bulbs, their nuclei and
the inferior-posterior orbital gyri and is thought to be a minor component of the
AC fibre tracts [Di Virgilio 1999, Barr 1974]. It is thought that phylogenetically
as the functions of the olfactory complex regress, connections of the AC appear
to shift to neocortical regions in the temporal lobes, to which the corpus callo-
sum does not project [Pandya 1973, Fox 1948, KAROL 1971]. The posterior limb
travels within the basal part of the striatum and into the temporal cortex towards
the amygdala [Turner 1979], temporal pole [Demeter 1990], parahippocampal, in-
ferior temporal and fusiform gyri [Di Virgilio 1999, Jacobson 2008, Demeter 1990].
Additional afferent from the occipital cortex, precentral gyrus and central fissure
have been described through the posterior limb [Di Virgilio 1999]. Studies in hu-
mans looking at the fibres passing through the AC have mostly involved dissections
of the brain, followed by staining and tracing. However, with recent advances in
MRI neuroimaging techniques tractography from DTI data enables the construc-
tion of pathways of high water diffusion that are associated with white matter
fibre tracts in the brain, thereby allowing visualisation and investigation of con-
nections between different brain regions, in vivo and noninvasively. This can be
used to better comprehend the fibre connections through the AC. DTI uses a set
of diffusion-weighted MR images acquired in at least six directions to enable es-
timation of the diffusion tensor in each voxel. Tractography algorithms, such as
streamlines, can then display the path of the principle direction of diffusion in
anisotropic tissue until termination in areas of low anisotropy. Large anisotropic
diffusion is observed in white matter, where molecular motion is greater parallel to
the myelinated axonal fibres rather than perpendicular to them [Bihan 2001]. Fibres
reconstructed, therefore, represent paths of the most probable direction of molec-
ular diffusion, hence along the axonal fibres. DTI has shown distribution of the
AC fibres to the amygdala and temporal pole as well as the ventrolateral temporo-
occipital cortex [Jellison 2004, Catani 2002, Catani 2005], supporting Di Virgilio et
al. [Di Virgilio 1999] who illustrated through dissection that the AC receives axons
from the inferior occipital cortex in man and that these connections are not present
in macaque [Rockland 1986]. This study aims to use DTI-based tractography with
an anatomical mapping tool to look at the AC fibres and to compare the distribution



E.2. Subjects and image acquisition 103

findings with published anatomical understanding.

Figure E.1: Anterior commissure: Inversion recovery sequence image of an axial slice
at the level of the anterior commissure, highlighting its connection between both hemispheres

E.2 Subjects and image acquisition
Data were acquired from eight healthy subjects using a Philips Achieva 3T MRI
system with an eight-channel head coil. Two DTI data sets were acquired from each
subject with b-values of 0, 1000s/mm2 and 0, 1500s/mm2 , respectively. Echoplanar
imaging with a simple Stejskal-Tanner sequence was used with a TR/TE of 10,
313/55 and 18750/50.5 ms, respectively, with acquisition times of 7 min 38 s and 12
min 58 s. A lower TE was used with a b-value of 1500s/mm2 to compensate for the
reduced signal-to-noise ratio at this higher diffusion weighting. Other acquisition
parameters were 2 × 2 × 2 mm voxels, 60 slices, FOV = 224 mm, matrix size =
112 × 112, partial Fourier = 0.678, SENSE factor = 2 and 32 diffusion-encoding
directions. This was repeated on a separate occasion with three of the subjects
using identical acquisition parameters in order to assess reproducibility.
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Conventional T2-weighted volumes were acquired for anatomical localisation of
the fibre tracts in each subject with a TR/TE of 3,000/80 ms and voxel size of
0.449×0.449×4 mm. STIR (short TI inversion recovery) images with a TR/TE/TI
of 4,811/9.1/200 ms, voxel size of 0.449 × 0.449 × 2 mm and slice spacing of 2
mm were also acquired in the sagittal plane from each subject to produce images
for optimum visualisation of the AC for size measurements and region of interest
selection.

Figure E.2: Image showing the anterior commissure fibres from a single subject projected
onto the three-dimensional T2-weighted volume, for assessing distribution of the tracts

E.3 Data processing
The STIR data sets were registered with the b=0 volume from the DTI data using
rigid manual landmark-based methods in MedINRIA ImageFusion [Toussaint 2007]
to produce transformation matrices. Points that were clearly visible on both im-
ages were selected, including along the border of the AC and edges of the globus
pallidus and lateral ventricles. Tensor estimation and fibre tracking was performed
for each of the data sets in MedINRIA DTI Track [Toussaint 2007] using the stan-
dard streamline approach for tractography [Fillard 2003, Xu 2002], in which every
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voxel of the data set was used as a seed point. The algorithm introduced a sta-
bilisation “advection” vector to minimise fluctuations introduced by low anisotropy
regions (especially planar tensors) [Weinstein 1999]. The parameter controlling the
smoothness of the tracking process is a factor between 0 and 1. A weighting fac-
tor of 0.20 was chosen as advised by [Weinstein 1999] which affects “how much the
propagation should be encouraged to puncture through planar tensor areas”. In this
framework, this parameter replaces an angle threshold used in the basic streamline
approach. The anisotropy threshold was set to 0.3. All fibres were generated prior
to the region of interest selection, using every valid voxel of the data set, where
every voxel containing a positive tensor with a fractional anisotropy greater than or
equal to 0.3 as seed point.

These fibre fields were then transformed using the previously acquired matrices,
and the STIR images were used to pro- duce two three-dimensional regions of inter-
est either side of the AC, by manually drawing around the AC on up to three sagittal
slices either side of the midline. After this, only fibres passing through both AC re-
gions of interest from one hemisphere to the other were retained. In total, there
were AC fibre tracts from 22 unique data sets. Six of these data sets from three sub-
jects were unus- able as no interhemispheric fibre connections through the AC were
produced on tractography. The AC fibre data for each of the remaining five subjects
were then manually registered with each other using rigid landmark-based registra-
tion to ensure the AC was not translated across subjects. A Procrustes algorithm
is used by MedINRIA ImageFusion to perform this registration [Fitzpatrick 2001].
Initially, several landmarks distant from the AC were used, such as the tips of the
lateral ventricles, edges of the globus pallidus and vertex of the brain for correcting
obvious misorientation. Landmarks were then focussed around the AC for more
subtle alignments, including the most inferior-posterior point in the AC as well as
recognisable neuroanatomical features such as the inferior border of septum pel-
lucidum, the anterior border of the fornix and the inferior portion of the corpus
callosum. It was then possible to produce a combined map of the total AC fibres
across the five subjects. The T2-weighted volumes were also registered with the
b=0 volume using rigid manual landmark-based methods. The AC fibre bundles
were visualised on the T2-weighted volumes, as seen in Fig. 2, along with the STIR
volumes to assess distribution of the fibres.

E.4 Reproducibility of tractography
The fibres tracked through the AC from the different diffusion-weighted and repeat
acquisitions are shown in Fig. E.3 for the five subjects. Although the distribution
of the major fibre bundles appear similar when scans are repeated, the number of
fibres does vary, especially when the diffusion weighting is increased. The number of
fibres passing through the AC, its crosssectional area in the midline and its relation
to the CC size are shown in Fig E.4, omitting the subjects in whom tractography
was unsuccessful. Using linear regression, a good correlation was found between the
AC mid-sagittal cross-sectional area and the number of fibres passing through it at
a b-value of 1,000 s/mm2 , although there was greater variation of fibre numbers at
a b-value of 1,500 s/mm2 .

Fibre tracking revealed large differences in the distribution of AC fibres across
subjects. Tractography from subject 1, as seen in Fig. E.3, showed a large proportion
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of fibres in the posterior limb of the AC travelling bilaterally above the hippocampus
into the parietal lobe, especially into the inferior parietal lobule where the majority
terminated. Another bundle carried on further to the superior parietal lobule and
postcentral gyrus, with a smaller bundle to the precentral gyrus. The other portion
of the posterior limb entered the temporal lobe towards the amygdala, but much
more so on the right than left side. There was no anterior limb of the AC visible.
Although there was a wide distribution of fibres from the AC through the posterior
limb, the fibre field similarity maps showed a large Hilbert distance projected onto
the parietal lobe fibres and fibres crossing the corpus callosum and a small Hilbert
distance in the main trunk of the posterior limbs, as shown in Fig. E.5.

Tractography from subject 2 showed posterior limb fibres travelling into the
occipital lobe bilaterally, with a larger number on the left. There were also temporal
lobe fibres through this limb, with a large number on the right. The anterior limb
contained fibres towards the orbitofrontal cortex bilaterally. Fibre field similarity
maps showed a large Hilbert distance in the left temporal lobe, where there were
fewer fibres than on the right and a relatively small Hilbert distance in the anterior
limbs. Tractography from subject 3 showed a very small number of fibres compared
to the other subjects, although the majority of these made up the anterior limb
bilaterally towards the orbitofrontal cortex. The posterior limb showed small num-
bers of fibres into the occipital lobe and the temporal lobe bilaterally. Fibre field
similarity maps showed a large Hilbert distance in the occipital lobes and a relatively
small Hilbert distance in the body of the AC. Tractography from subject 4 showed
bundles travelling into the parietal and temporal lobes bilaterally. The anterior limb
fibres towards the orbitofrontal cortex were also present on the right. Fibre field
similarity maps showed a large Hilbert distance in the anterior limb and body of the
AC. Tractography from subject 5 showed the posterior limb fibres to the occipital
lobe and temporal lobe mostly on the right, as well as the anterior limb fibres for
a short distance bilaterally towards the orbitofrontal cortex. Fibre field similarity
maps showed a large Hilbert distance in the right posterior limb and relatively low
Hilbert distance in the body of the AC.

E.5 Discussion
Using tractography the fibres passing through the AC for five of the subjects were
isolated, fibre distributions were determined, and the fibre field similarity for each
subject was calculated. The distribution of fibres through the AC was shown in
all subjects to pass via the posterior limb to the temporal lobe and either the
occipital or parietal lobes. The temporal lobe connections of the AC fibres to the
amygdala and temporal pole were seen in the majority of subjects, as described
in the literature [Turner 1979, Demeter 1990, Jacobson 2008, Johnston 2008]. The
parietal lobe fibres were seen in two of the five subjects, and occipital lobe fibres in
the remaining three subjects. This is in line with results from the dissection study by
Di Virgilio et al. [Di Virgilio 1999], which showed connections to the occipital cortex,
central fissure and precentral gyrus, as well as DTI studies showing fibres from the
AC extending to the ventrolateral occipital cortex [Jellison 2004]. The anterior
limb which extends towards the orbitofrontal cortex after passing through the AC
was visible to some extent bilaterally in four of the five volunteers and has been
described in the literature [Barr 1974]. This data is consistent with observations
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Figure E.3: Fibres tracked through the AC in the five subjects, with differences between
diffusion weightings and the first and repeat scans. The two views shown are the superior
and right lateral views of the fibres.

from Di Virgilio et al. [Di Virgilio 1999], suggesting that axons to the AC may be
conveyed from a larger territory than previously proposed, specifically from parts
of the occipital cortex and various parts of the parietal lobe. This may be due
to connections of the AC shifting phylogenetically to neocortical areas where the
corpus callosum does not project [Pandya 1973, Fox 1948, KAROL 1971].

As shown in E.4, the CC area varied between 54 and 299 times the AC cross-
sectional area; hence, the AC being 0.3-1.8% of the CC area. This supports the
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Figure E.4: Graphs showing the relationship between the anterior commissure mid-sagittal
cross-sectional area and the number of fibres tracked through it for a the acquisitions at
1000s/mm2 and b acquisitions at 1500s/mm2.

study by Foxman et al. [Foxman 1986] that the AC area is about 1% of the CC
cross-sectional area. It has been suggested that a larger commissural area would
have more nerve fibres crossing between the hemispheres, and consequently those
cognitive functions that rely on only one hemisphere are more likely to be shared,
and therefore less dependent on that one hemisphere [Kimura 1999]. The correlation
between AC fibre number and cross-sectional area was as expected and shown not
be a result of postprocessing techniques. A b-value of 0, 1,000 s/mm2 is typically
the standard value used for clinical DWI [Mukherjee 2008]. As the b-value increases,
the signal intensity decreases as the contributions of T1 and T2 weighting decrease,
leading to a reduced signal-to-noise ratio as DWI signals are closer to the background
noise level [Jones 2004a], but having an increased diffusion sensitivity [Mori 2006,
Meyer 2000]. This may explain why the repeat scans with a b-value of 1,000 s/mm2

were more consistent than at 1,500 s/mm2 . Due to the higher level of background
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Figure E.5: Image showing the fibre field similarity map produced for subject 1 from
a superior view of the brain. The fibres are colour labelled with the Hilbert distance, a
measure of the local distance between each subjects’ fibre tracts and the combined map.
The histogram represents the Hilbert norms for each of the subjects 1-5.

noise, there was much greater variation when scans were repeated, and consequently
the number of fibres passing through the AC also varied considerably. At a b-value
of 1,500 s/mm2 , there will have been greater diffusion sensitivity and consequently
better estimation of fibre direction where nerve fibres cross, and so it may suggest
the general increase in fibre numbers when compared with a b-value of 1,000 s/mm2

. One observation noted was that out of the eight subjects, there were five in which
results were obtained, and the remaining three subjects’ data sets could not be used
due to a lack of AC fibres passing from one hemisphere to the other. As seen in
Fig. E.4, two of those subjects had AC cross-sectional areas of below 2 mm2 , which
were consider- ably smaller than the subjects in which tractography through the
AC was successful. The last subject had an AC cross-sectional area of 7.04 mm2

which is in the middle of the successful range of areas, yet there were still no fibres
produced on tractography. Fibres were produced in the structures surrounding the
AC, such as the fornix, yet none passed through the AC itself.

The fibre field similarity measure provided a novel approach to calculation and
visualisation of the distance between bundles for a particular region of interest,
using fibre data between subjects. This technique can aid in the segmentation of
white matter bundles within the brain, by identifying the extent to which fibres are
anatomically distant from the population map. Fibres that appear to have a large
Hilbert distance may be classed as outlying fibres which do not lie close to the overall
population fibre bundles. This along with other fibre characteristics such as curva-
ture and torsion appears to have applications for looking at normal versus abnormal
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fibre tracts for example in the presence of a tumour [Batchelor 2006]. Although the
fibre field similarity measures and maps are very useful, there were limitations in
this study as comparing across subjects meant that any large anatomical differences
between the subjects would affect the fibre field similarity calculations, causing a
larger Hilbert distance to be displayed if for example the brain size was significantly
different to the population.

There are also several limitations when using DTI to look specifically at fibres
through the AC. Since microscopic information is averaged over the volume of the
voxel, in areas where anatomically large fibre tracts come close to smaller fibre bun-
dles, a proportion of fibres closest to the larger tracts appear to follow incongruent
paths indicative of falsely reconstructed fibre paths. This could be the case with the
posterior limb of the AC, as anatomically the axons pass posteriorly before turning
anteriorly into the temporal lobe. Lying close to this bundle is the inferior longi-
tudinal fasciculus and fronto-occipital fasciculus, which transverse the entire length
of the brain and enter the temporal and occipital lobes, respectively [Catani 2008].
Since these pass fairly close to the AC axons, it may be possible that with DTI
several fasciculi fibres are picked up erroneously as AC fibres to the occipital lobe.
Anatomical differences of crossing white matter tracts between subjects may ex-
plain the inter-subject variation of AC distribution as seen in Fig. E.3, as it causes
premature termination of the streamlines at various points along the AC fibres.
Intra-subject comparisons of the AC fibres shows fairly similar tracts, although
these differences may be explained by changes in the magnetic field inhomogeneities
due to the time difference between the first and repeat scans. Ways to overcome the
effects due to crossing fibres would be to first improve the imaging resolution, for
example by using fast spin-echo DTI which allows sub-millimetre voxel sizes, and
also means that multiple voxels can characterise the smaller anterior commissures
in subjects [Gui 2008]. Secondly, other methods apart from conventional stream-
line tractography can be used, such as high angular resolution diffusion imaging
(HARDI) and Q-ball imaging (QBI), which allow better reconstruction in areas
with crossing fibres [Dong 2004, Alexander 2007]. It is at present difficult to trust
the connectivity maps of the AC, but these methods may help define the normal
anatomy of the AC which is still under question from past dissection studies and
recent DTI work. They may also help overcome the unsuccessful AC tractography
in the last subject from Fig E.4, where the problem may be related to the angle
at which the AC and the fornix are related. The fornix branches off the AC just
prior to the AC crossing from one hemisphere to the other. If the angle of the white
matter tract is steeper within the AC than the fornix, it may be possible that the
fibres reconstructed represent those of only the fornix. Therefore, HARDI and QBI
would be more appropriate and allow a more reliable reconstruction of the AC fibre
tracts, hence giving a better understanding of the posterior limb connections of the
AC, and how the AC cross-sectional area relates to distribution.

E.6 Conclusion
This DTI study has shown that the AC may play a more important role in inter-
hemispheric communication than currently presumed by conveying axons from a
wider territory, specifically from the occipital cortex and parietal lobes. This may
be clinically relevant in the spread of electrical potentials from one hemisphere to
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the other in patients with epilepsy. The study has also looked at the reproducibility
of the AC fibre tracts using DTI, confirming the previously recognised temporal and
orbitofrontal projections, and given a novel approach to quantifying and visualising
characteristics of these fibre tracts through fibre field similarity measures and maps.
However, further work with improved technical and processing methods is required
to more accurately characterise these AC fibres and its normal anatomy.
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