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Abstract
Glioblastoma multiforma (GBM) is one of the most aggressive tumors of
the central nervous system. It can be represented by two components: a
proliferative component with a mass effect on brain structures and an invasive
component. GBM has a distinct pattern of spread showing a preferential
growth in the white fiber direction for the invasive component. By using the
architecture of white matter fibers, we propose a new model to simulate the
growth of GBM. This architecture is estimated by diffusion tensor imaging in
order to determine the preferred direction for the diffusion component. It is
then coupled with a mechanical component. To set up our growth model, we
make a brain atlas including brain structures with a distinct response to tumor
aggressiveness, white fiber diffusion tensor information and elasticity. In this
atlas, we introduce a virtual GBM with a mechanical component coupled with
a diffusion component. These two components are complementary, and can
be tuned independently. Then, we tune the parameter set of our model with an
MRI patient. We have compared simulated growth (initialized with the MRI
patient) with observed growth six months later. The average and the odd ratio
of image difference between observed and simulated images are computed.
Displacements of reference points are compared to those simulated by the
model. The results of our simulation have shown a good correlation with tumor
growth, as observed on an MRI patient. Different tumor aggressiveness can
also be simulated by tuning additional parameters. This work has demonstrated
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that modeling the complex behavior of brain tumors is feasible and will account
for further validation of this new conceptual approach.

(Some figures in this article are in colour only in the electronic version)

Introduction

The incidence of central nervous system (CNS) primary malignant and secondary tumors
has been increasing over the last 25 years for all age categories, whereas mortality rate has
decreased for people younger than 65 years old (Legler et al 1999).

The majority of CNS primary tumors is of glial, astrocytic or oligoglial origin. The
treatment of these tumors is based on surgery, radiotherapy and/or chemotherapy. However,
the current treatment of high grade cerebral tumors is disappointing (Mineo et al 2007, Fazeny-
Dorner et al 2003, Jeremic et al 2003). Anaplasic astrocytoma and glioblastoma multiforma
(GBM) are among the most aggressive tumors. In spite of ongoing research and various
treatment protocols, overall survival is about a year. Overall survival is similar regardless
of the treatment. Radiotherapy alone is a reasonable option (Miralbell 1999). The role of
chemotherapy in adjuvant treatment and in the treatment of tumor recurrence is currently
questionable: the additional benefit varies among the published series in the literature and
seems to be low (Wolff et al 1999, Frenay et al 2000). Patients with high-grade astrocytomas
have also been treated with 3D treatment planning and high-dose conformal radiotherapy (Lee
et al 1999a). These high-dose conformal radiotherapy protocols did not improve survival, but
altered the pattern of relapse (Nakagawa 1998) since fewer local failures were observed.

A better understanding of tumor cell diffusion in the brain may help to interpret these
results. This can be achieved by numerical simulation of both tumor growth and tumor cell
diffusion. Moreover, feeding that simulation to individual data (i.e. patient data) may allow
the generation of personalized simulations.

Previous models of GBM growth pattern have been described in the literature and were
based either on Gompertz’s theory (Swanson et al 2002a, Tracqui et al 1995, Deisboeck et al
2001) or biomechanical models (Kyriacou et al 1999). A more complicated model simulates
both tumoral growth and diffusion (Woodward et al 1996). Computer simulation of tumor
growth will allow quantitative and qualitative comparison with histological reality, and provide
additional information concerning tumoral spread (i.e. microscopic invasion).

The aim of this work was to develop a model of GBM growth for better understanding.
GBM growth can be represented by two components—a mechanical component with a
mass effect on surrounding brain structures and an invasive component that infiltrates brain
structures.

The first component is incorporated to the model by using different biomechanical
parameters for different cerebral structures (skull, falx, ventricles, gray and white matter),
while the second one uses the architecture of white matter fibers estimated by diffusion tensor
imaging (Ruiz-Alzola et al 2002).

The main improvement of our model is the use of diffusion tensor imaging to determine
the preferred direction of diffusional tumor extension. A relation between mechanical and
diffusion components is described. We tuned the parameter set of the method to calibrate the
model on patient images with patients’ MRI.
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Figure 1. Theoretical relation between T2 weighted MRI and tumor infiltration. Left: tumor
image on T2 MRI. Center: theoretical T2 weighted MRI centered on the tumor. Right: zoom on
tumor section (from bottom to top: necrosis, wall of active cells, migrating cell responsible for
edema and isolated migrating cells in the normal brain).

Previous work on tumor growth

Tumor growth results from tumor cell division. After each cell cycle, the cell population
doubles. After C cycles, the number of cells will be multiplied by 2C. Exponential growth
describes the population density N(t) at any time in terms of the initial population density (0)
at time t = 0 and at the growth rate constant k. The experimental growth is later limited to an
asymptotic rate:

P(t) = M exp(−α exp(−Mkt) (1)

where

• α = ln(M/P 0) exp(Mkt) with P0 the initial population,
• P is the population density,
• t is the time,
• k is the cell growth rate and
• M is the maximum sustainable population.

Tumor growth results from an imbalance between cell proliferation and cell death. Moreover,
malignant tumors consist of different cellular clones with different growth properties and
behaviors (Kansal et al 2000a). Therefore, tumor growth is more often unforeseeable or
anarchistic and it is difficult to imagine that all tumors conform to simple rules (Retsky et al
1990, Patel et al 2001, Bussemaker et al 1997, Kansal et al 2000b, 2000c, 2000d).

Case of GBM

GBM are brain tumors with a central necrosis, peripheral tumor cells and migrating cells
responsible for edema (MRI T2 weighted). Further, in the brain periphery there are not
enough migrating cells to trigger the edema reaction (Kantor et al 2001) (see figure 1). Since
GBM can exhibit different growth rates, it is challenging to find the best model parameters to
characterize the local or global tumor aggressiveness.

Previous publications on glioma modeling isolate two key features: a proliferation
component and a diffusion component (Tracqui 1995, Swanson et al 2002b). The diffusive
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Figure 2. Flowchart of the method. All patients’ MRIs were previously transformed using
an automatic rigid matching method with the atlas to fit patients’ MRI with atlas geometry.
Segmentation (GTV1+GTV2) of the tumor was made on initial MRI (1) and was match (A) onto
the atlas (2). Then the tumor grew (B) until six months later on the atlas and created local
deformations (3) and invasion. Finally, we reported deformations and new tumor volume on the
patients’ initial MRI. Comparisons were made between this MRI and the real patient MRI (5).

model proposes a macroscopic way to describe tumor growth. Conservation equations were
formulated by Murray (Swanson et al 2002c, Murray 2002):

∂c
∂c

∂t
= −div(J ) + S(c, t) − T (c, t) (2)

where

• c represents the tumor cell density,
• J represents the diffusion pattern of tumor cells,
• S(c, t) represents the source factor tumor cells function and
• T (c, t) models the efficacy of anti-tumor treatment.

The proliferation component generates new matter which has a mechanical volume effect on the
brain and pushes back brain structures according to their elasticity. The diffusion component
invades adjacent structures and is responsible for infiltration of white and gray matter. The
interaction between these two components defines the virtual glioma (VG) growth.

Material and methods

To set our model, we have compared simulated VG growth (initialized with patients’ data)
with observed growth in MRI patients. To tune the parameter set of the method, we use the
steps presented in the flowchart (see figure 2).
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Table 1. Image sequences of T1 weighted MRI and T2 weighted MRI.

MRI T1W, T1W with contrast T2W

TE (ms) 1.7 102
TR (ms) 7.9 5000
Band width 5 (kHz) 15.153 31.25
FOV (cm) 26 26
Excitation 2 2

Table 2. Image characteristics of atlas MRI, T1 weighted MRI, T2 weighted MRI and diffusion
tensor imaging (DTI).

MRI Atlas MRI T1W, T1W with contrast MR1 T2W DTI

XDIM 181 256 256 256
YDIM 217 256 256 256
ZDIM 181 60 64 36
TYPE Signed fixed Unsigned fixed Unsigned fixed Signed fixed
PIXSIZE 16 bits 16 bits 16 bits
VX (mm) 0.6 1.015 623 1.015 641 1.0
VY (mm) 0.6 1.015 625 1.015 625 1.0
VZ (mm) 0.6 2.000 000 1.900 000 4.0
Field (mm) 173 × 230 173 × 230

Pre-processing. All MRIs from our patients are matched with the atlas using an automatic
(mutual information) rigid matching so that MRI patients can be resampled in the atlas
geometry.

Patients

Standard imaging protocols for brain tumor radiotherapy were used for this study. MRI
acquisitions used a head coil, and three sequences (T1, T2 and T1 with gadolinium injection)
were performed. For this work, we used a typical case of localized glioma. Images were
exported in a Dicom-3 format. Image characteristics are shown in tables 1 and 2. These
MRIs were performed during standard follow-up analyses following treatment. At the time
of the initial set of image, a patient was asymptomatic and refused any specific treatment.
Yet, he accepted to have an MRI six months later. At that time, the second MRI showed a
tumor progression (figure 2) and the patient was symptomatic. Then, the patient accepted a
multimodality treatment including surgery, chemotherapy and radiotherapy.

Tumor segmentation

To develop a customized model of tumor growth, the delineation of the tumor in a patient’s
image is mandatory. This step was conducted manually by a medical expert on the patient’s
initial MRI. We assumed that tumor segmentation error was minimal as compared to the size of
the tumor. The tumor volume was defined as the area of the hypersignal observed into MRI. It
was split into two parts as recommended in some protocols for radiotherapy treatment. Gross
tumor volume 1 (GTV1) was delineated in T1-weigthed MRI after gadolinium injection (MRI-
T1i). The hypersignal in the MRI-T1i sequence shows the proliferate volume of the tumor.
Tumor cell (alive or dead by necrosis or apoptosis) density in GTV1 represents 100%. Gross
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tumor volume 2 (GTV2) was delineated on T2-weighted MRI (MRI-T2). The hypersignal in
MRI-T2 shows edema volume. GTV2 took not only the GTV volume, but also the volume of
edema where the migrating tumor cells are very likely to be present. This edema is usually
surrounding the tumor, and is visualized as a hypersignal on T2-weighted MRI. We assume
that less than 5% of tumoral cells are outside GTV2. We initialize the mechanical component
of our model with GTV1 and the diffusion component with GTV2. As the model includes
white fiber direction (see below) known to influence tumor growth, it is essential to delineate
GTV1 on MRI-T1i and GTV2 in MRI-T2 accurately.

Atlas

Practically, our atlas consists of two images. One is an MR image. The other is an image of
labels where each color corresponds to an identified structure. We chose to use an artificial
MRI, generated by the brainweb (Cocosco et al 1997) software. To minimize partial volume
effects when matching, a high-definition MRI with smaller voxels than that of our patient’s
MRI was used.

An expert identified the contours for each cerebral structure of interest on this artificial
MR image (Bondiau 2005). Since our primary interest was tumor growth, we focused on
structures that were relevant to this application. Such structures with particular behavior were
the skull, the ventricular system, the gray matter (including basal ganglia), the white matter
and the falx, according to the anatomical data of the atlas of Jean Talairach (Talairach and
Tournoux 1998). After delineation, these structures were transformed into tetrahedral meshes
from which we simulated tumor growth, i.e., the tumor cells diffusion coupled with mechanical
interactions between tumor with the surrounding anatomical structures.

It is noteworthy that GBM is a tumor of glial origin that expands preferentially towards the
direction of white fibers (Price et al 2003). To better estimate direction and speed, data from
diffusion tensor imaging (DTI) were used in the white matter. This DTI is generic and does
not apply for this particular patient, it describes the anisotropic diffusion of water molecules
in normal brain tissues and thus gives an estimate of white fiber directions. DTI images were
coupled with the atlas. Ultimately, the complete simulation process was performed in the
high-resolution MRI and DTI. The characteristics of the atlas image are shown in table 2.

Mathematical model

This model corresponds to our tumor partition into two volumes: GTV1 and GTV2. GTV1 is
more closely associated with the proliferation component than with the diffusion component.
It is responsible for the mechanical volume effect on the brain. By adding new cells, GTV1
pushes away surrounding structures. GTV2 is more closely associated with the diffusion
component. It invades adjacent structures and is responsible for an infiltration of the white
and gray matter. This component expands faster than that of GTV1 but has a smaller volume
effect than the proliferation component.

Calibration with patient’s image was used to estimate two quantities: geometrical
displacements of each structure (i.e. deformations) and tumor cell density. The mathematical
equations on which our model was set are described below.

Mechanical model. We used the classical linear elasticity theory to describe the behavior of
the brain parenchyma (Fung 1993). Since the growing process is very slow, we assume that
the relation was linear. Thus at every point of the brain, the stress is related to the strain by

σ = kε (3)
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Table 3. Parameters of the brain model.

Structures Elasticity (mechanical) Diffusion

Ventricles 0 0
White matter 1000 Pa MRI Diffusion Tensor
Gray matter 1000 Pa 1/10 of max of MRI diffusion tensor
Skull Infinite 0
Falx cerebri 100 000 0

where σ is the stress tensor, k is the elasticity of the brain and ε is the linearized Lagrange
strain tensor defined by

ε = 1
2 (∇χ + ∇χt) (4)

where χ and ∇ are the displacement of the point considered and the gradient operator.
Then the mechanical equilibrium relation can be written as follows:

div σ + Fe = 0 (5)

where Fe is the external forces on the brain.
Since the different brain structures do not react the same way to GBM growth, we

incorporated different mechanical characteristics for these different structures. The atlas was
enriched with particular parameters of elasticity for white and gray matter, skull and falx (see
table 3 for values) in order to obtain a mechanical model of the brain. These parameters were
estimated in (Miga et al 2000). As the atlas includes these parameters, they are the same from
one patient to the other.

Diffusion model. We used the diffusion equation proposed by Murray in 1989 (Murray
1989):

∂c

dt
︸︷︷︸

Tumor rate
evolution

= div(D∇c)
︸ ︷︷ ︸

Diffusion
factor

+ ρc
︸︷︷︸

Source
factor

(6)

where c represents the normalized cell density (c varies from 0 to 1). The real cell density C
is obtained by multiplying c with the carrying capacity of the tissue Cmax (GTV1) estimated
to be equal to 3.5 × 104 cells mm−3 (Cruywagen et al 1995). D represents the diffusion
tensor defining the mobility of the glioma cells. The source factor, ρc, reflects tumor
aggressiveness. As our model has particular parameters of elasticity for ventricles, white
and gray matter, skull and falx, we assigned different diffusion values for theses structures.
The local behavior of the tumor depends only on the diffusion tensor D and the source factor
ρ (see figure 4 for the different diffusion behavior). By changing the source factor, a high
tumor aggressiveness can be simulated which corresponds to clinical experience. We consider
including this aggressiveness value if it could be predicted by pathology specimens and/or
biopsy.

The tumor also acts as an inner mechanical pressure correlated with tissue tumor density.
Diffusion of tumor cells along white fibers modifies tumor spread which, in turn, affects
mechanical modification. In this first approach, we did not take in account this phenomenon.

Noteworthy, this simulation process runs in a quarter of an hour in a PC equipped with a
single CPU at 2 GHz.
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Figure 3. Mechanical effect of tumor growth, frontal view. Left: original patient MRI. Middle:
simulated final MRI. Right: final patient MRI. This image only shows the tumor growth effect
on other brain structures. See the deformations of the left ventricle. Diffusion was not taken into
account for this image.

Practical issues

Model initialization. There are different evolutions of glioblastoma, some will have a higher
diffusion component than a proliferate rate, and other will have a higher proliferate rate than
diffusion. For that reason, our model needs to be initialized with GTV1 and GTV2 initial
contours. The model then predicts the expected GTV1 and GTV2 contours, together with
structure deformations and tumor cell density.

For educational purposes, any initialization shape can be performed. It is also interesting
to simulate individualized growth. To that end, we co-aligned patient’s images where GTV1
and GTV2 had been delineated with an atlas image, so that the two contours were easily
registered onto the atlas.

Numerical issues. We used a linear tetrahedron element to discretize our computation
domain is represented by a mesh of 250 000 tetrahedra. Using the finite element theory,
equations (3)–(5) can be transformed into linear systems with deformation, X, and tumor cell
density, c, as variables. We use MATLAB R© software5 for this part of the work. These systems
are then repeatedly solved by short time steps, until tumor growth yields the final expected
time.

Results

To test our model, we compared its results with tumor growth as observed on patient final
images. Model initialization was performed on a tumor recurrence visible on MRI. These
volumes were compared to a second MRI, performed six months later, on which interval
growth was estimated. To enable a comparison, estimated deformations as well as tumor cell
density were reported on the initial MRI, yielding a virtual image that would correspond to six
months of growth in our model. We first present the results of the mechanical model (diffusion
expansion is set to 0), then the results of the diffusion model (mechanical expansion is set to
0), and finally the results of the complete model. See figure 7 for complete 3D results.

Results of the mechanical model

Our results for the mechanical model are shown in an axial plane in figure 3. The result of the
simulation of brain deformation must be compared with the patient’s MRI done six months

5 http://www.mathworks.com/.

http://www.mathworks.com/
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(A)

(B)

(C)

Figure 4. Up: images differences between initial image and virtual image, for the skull area
(arrow 1), the result is black meaning there is no difference, but in the ventricle area (arrow 2 in
image A) the result is white meaning there is high difference. Middle: images differences between
initial image and real image of patient (six months later), in the ventricle area (arrow 2 in image
B) the result is white meaning there is high difference. Down: images differences between final
virtual and real patient image (six months later), in the ventricle area (arrow 2 in image C) the result
is dark gray meaning there is light difference the ventricle in C. Image differences are normalized
on initial image.

later. The deformations simulated by the model were applied to initial MRI data to simulate a
virtual MR image (the diffusion results are not reported; thus tumor shapes are not comparable
between the virtual and the patient’s MRI). The displacements of the different brain structures
observed on virtual images are in good agreement with the deformations observed on patient’s
MRI at six months. Deformations of the left ventricle and the deformation of sulci can be seen
in the middle and left images of figure 3, and the tumor mass effect can be appreciated.

We compute image differences (ID) between initial images, virtual images and patient
image six months later; the results are shown in figure 4. Difference images are normalized
relative to the initial image. We compute for each 3 image; histogram, average, odds ratio of
intensity of pixels. The results are shown in table 4. The average and the odd ration of ID
between virtual and real image is lower than between initial and virtual or initial and real.

In order to quantify the accuracy of the simulation, an expert manually selected
corresponding feature points on the first patient MRI (see figure 5), on the six months later
simulated MRI and in the six months later real MRI. The measured displacements of these
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Figure 5. Position of the selected landmark in initial MRI.

Table 4. Comparison between the measured displacements and the simulated ones on four
landmarks.

Image difference Initial–virtual Initial–real Real–virtual

Average 26 27 21
Odds ratio 38, 52 34 26
Number of pixel analyzed 30 000 30 000 30 000

Table 5.

Point (x, y) initial (x, y) final (x, y) final Distance A–B Distance A–C Distance B–C
A virtual B real C D E F

Unit voxel voxel voxel mm mm mm

1 (113, 109) (113, 108) (112, 108) 0.60 0.85 0.60
2 (136, 159) (134, 159) (134, 156) 1.20 2.17 1.80
3 (212, 122) (210, 120) (211, 120) 1.70 1.34 0.60
4 (180, 208) (174, 211) (176, 210) 4.03 2.68 1.34

Mean 1.88 1.76 1.09

points in six months can be compared to those simulated by the model. See table 5 for the
results.

Results of the diffusion model

The result of the diffusion model is shown in figure 6. There is no deformation of brain
structures in this figure; only the progression of the tumor diffusion is represented. This
result can be compared with patient MRI six months later. The introduction of the white fiber
directions allows for a simulation of the VG that is in good agreement with that observed on
patient’s images.
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Figure 6. Diffusion effect of tumor growth, axial view. Left: original patient MRI. Middle:
simulated final tumor. Right: final patient MRI.

Combined mechanical and diffusion models

In the first part of this work, images were computed in the model. We computed a new GTV2
each month, so that we could compare the changes of GTV2 during the simulation steps.
The initial, final virtual and final real volumes of GTV1 are 810, 12384 and 15120 mm3,
respectively. The GTV2 volume in the virtual final MRI is a ‘rate of tumor’ cell and we cannot
compute a volume and make a comparison with real images as we do not know the ‘rate of
tumor’ in real images. The size of GTV2 in the initial and real final images is 27.103 and
112.103 mm3, respectively.

The second part of this work shows the definitive results: the model (with GTV1 and
GTV2) is matched with patient’s MRI, after adding mechanical and diffusion components, and
interaction between the two components. Computing details are presented in the following
footnote6. Figure 7 shows results with different isolevels of diffusion with the mechanical
component superimposed with patient T2 MRI made six months later.

Discussion

The diffusion tensor imaging reflects the preferred direction of water movement and tumor
cells moves in the direction of water. The use of DTI to predict the future position of tumor
cells represents the main improvement of our model compared to other tumor growth models
and the results are promising. Simulated images are in good agreement with the patient real
image performed six months later, which can be considered as ground truth. It is critical
to use a reliable parameter set during simulation. In this work, we tuned our parameter set
to get a correct visual agreement, so that it is possible that different parameter sets apply to
different tumors. However, our model still has some default. For example, modification of
fiber structure composing the white matter in the vicinity of the tumor can have an effect on
the diffusion component. To our knowledge, the process governing this modification is not
well understood, and its modeling still remains a challenge.

The advantages of performing simulations of tumor growth are multiple. It may be helpful
to classify tumors with respect to their aggressiveness which can be estimated with some hidden
parameters (the ρ of the source factor ρc): given two images, these hidden parameters can be

6 http://www.inria.fr/rrrt/rr-5187.html.

http://www.inria.fr/rrrt/rr-5187.html
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Figure 7. Results of the mechanical effect and diffusion of tumoral growth in T2 MRI made
six month later. Superimposed color bands represent iso-level of the predicted tumor cells
concentration in percent. See the correct simulation of tumor growth in white matter, in white
fibers direction and the prediction of invasion at six months.

estimated as those obtained in the most realistic and reproducible simulation. Tumor growth
simulation could also help to improve focal treatment delivery for surgery or radiotherapy and
thus improve the definition of invasion margins (by tumor cell density estimation). It may also
serve for educational or scientific purposes.

Patient tumor growth rate

The numerical model can be used to quantify 3D invasion of GBM in a patient’s brain.
This approach can be used to establish a growth rate for a GBM. Since tumors can exhibit
different growth rates, the diffusion of some lesions can be more extensive than for others,
due to a higher ‘aggressiveness’. In these cases, a high diffusion component may dominate
over the mechanical component, resulting in a faster GTV2 growth. A reasonable range of
parameters can be determined. However, an accurate estimation of parameters prediction for
aggressiveness or tumor behavior (rate of tumor cell density) may be extracted from a biopsy
or pathology examination. Estimation of this aggressiveness would help to guide therapeutic
decisions, since tumors with a weak rate of diffusion can benefit from resection surgery
(Burgess et al 1997). Moreover, the simulation could help to predict the clinical outcome.

Radiotherapy margins

In radiotherapy treatments, the delineation of the clinical target volume (CTV) must take into
account the probability that isolated malignant cells may be present in the edema surrounding
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the tumor or in the adjacent brain structures. Some isolated malignant cells may have not yet
generated an edema and thus cannot be seen in T2 MRI. Presently, more than 90% of local
recurrences are within the irradiation fields (Wallner et al 1989, Gaspar et al 1992) or marginal
(i.e. on borders) and dose escalation seems reasonable (Lee et al 1999b). By estimating tumor
cell density, our approach could help to define a risk that malignant cells are present, and thus
help to delineate the CTV and respect brain matter. This could conduce to propose a clinical
study of delivering a localized high dose of radiation in the predicted recurrence area.

Furthermore, segmentation of GTV1 and GTV2 was based on pre-therapeutic MRI and
it is possible that the tumor still grows after the MRI and before treatment. In this case, the
VG would help to predict locoregional spread at the time of treatment.

After treatment for GBM, recurrences usually occur within 1 year (on average). The image
of radionecrosis, a well-know radiotherapy complication, might be difficult to distinguish from
a recurrence image, but the growth patterns are different. VG growth simulation may help to
distinguish between radionecrosis and recurrence.

Educational issues

This model was originally developed in order to investigate the development of brain tumors
and to study multidimensional features such as proliferation and invasion at the same time.
This type of tumor growth simulator could be of great interest to learning the mechanisms
underlying GBM spread. 3D visualization of tumor growth helps to understand the preference
for white matter, and why some tumors propagate into gray matter. This could lead to a better
comprehension of tumor growth.

Patients can present with symptoms related to a damaged brain area although the tumor
was absent in this area on the initial MRI. This can be explained by microscopic invasion of
these areas by tumor (i.e. not yet seen on the MRI). In this case, the predictive computation
of tumor spread computation of future development of the tumor in this area would help to
predict clinical outcome and symptoms.

Improving the model

Simulating GBM growth is complex, associating mechanical and diffusion components. The
model could be personalized by bringing more individual information: for instance, the patient
DT image or the tumor growth rate could be estimated by other means (biopsy and pathology
examination).

Conclusion

Glial tumors can be represented by two components: a proliferative component with a mass
effect on other brain structures and an invasive component infiltrating brain structures. In
this work, we simulated GBM growth by coupling these two components. This growth
was simulated on a virtual image (an atlas), where different structures of interest had been
delineated. The ‘introduction’ of white fiber directions, by using a DT image, improves the
realism of the diffusion component.

The results of our simulation have shown a good correlation with tumor growth as observed
on an MRI patient. Different tumor aggressiveness can also be simulated by tuning additional
parameters. This work has demonstrated that modeling the complex behavior of brain tumors
is feasible and will account for further validation of this new conceptual approach.
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The applications of this model are numerous: estimation of the microscopic invasion for
a better definition of margins (for surgery or radiotherapy purposes), estimation of tumor
aggressiveness for classification purposes, education, etc. The model does not require
specific imaging protocols. Routine imaging, such as MRI, sequences were sufficient for
such purposes.

This model was initialized on patient data, leading to realistic and promising but still
preliminary results.
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