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a b s t r a c t

Cardiac resynchronisation therapy (CRT) is an effective treatment for patients with congestive heart fail-
ure and a wide QRS complex. However, up to 30% of patients are non-responders to therapy in terms of
exercise capacity or left ventricular reverse remodelling. A number of controversies still remain sur-
rounding patient selection, targeted lead implantation and optimisation of this important treatment.
The development of biophysical models to predict the response to CRT represents a potential strategy
to address these issues. In this article, we present how the personalisation of an electromechanical model
of the myocardium can predict the acute haemodynamic changes associated with CRT. In order to intro-
duce such an approach as a clinical application, we needed to design models that can be individualised
from images and electrophysiological mapping of the left ventricle. In this paper the personalisation of
the anatomy, the electrophysiology, the kinematics and the mechanics are described. The acute effects
of pacing on pressure development were predicted with the in silico model for several pacing conditions
on two patients, achieving good agreement with invasive haemodynamic measurements: the mean error
on dP/dtmax is 47.5 ± 35 mm Hg s!1, less than 5% error. These promising results demonstrate the potential
of physiological models personalised from images and electrophysiology signals to improve patient selec-
tion and plan CRT.

! 2011 Elsevier B.V. All rights reserved.

1. Introduction

Cardiovascular diseases (CVD) remain a major cause of morbid-
ity and mortality in the Western World.1 Within CVD, congestive
heart failure (CHF) has an increasing prevalence mainly caused by
the steadily increasing number of survivors following myocardial
infarction. This leads to progressive derangements in myocardial
function arising from scar formation post infarction. CHF has an
extremely poor prognosis with a 50% mortality in the first three
years after diagnosis. Many patients with heart failure also have
significant conduction disease with a broad QRS on ECG often man-
ifested as left bundle branch block. This results in electrical and

mechanical dyssynchrony and declining myocardial pump function.
Cardiac resynchronization therapy (CRT) consists of implanting
pacing leads to improve the synchronisation of cardiac contraction
(Cazeau et al., 2001). Recent large randomised controlled clinical
trials have shown that CRT induces significant reductions in morbid-
ity and mortality (Cleland et al., 2005). However, clinical trials have
also demonstrated that up to 30% of patients are non-responders to
the therapy (Ismail and Makaryus, 2010). There is still significant
controversy surrounding patient selection and optimisation of CRT
(e.g. lead positioning, pacemaker settings). Current guidelines for
selection for CRT rely on symptomatic, echocardiographic and
electrocardiographic criteria. A broad QRS (>130 ms) is generally
required to merit CRT implant. For instance, recent studies in patient
selection showed that patients with heart failure and narrow QRS
intervals do not currently benefit from CRT (Beshai et al., 2007)
and that no single echocardiographic measure of dyssynchrony
may be recommended to improve patient selection (Chung et al.,
2008). While image-based methods may give some insights into
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who might respond to therapy (Aggarwal et al., 2009), with e.g. de-
tailed strain analysis from Magnetic Resonance Imaging (MRI) (Kirn
et al., 2008), the precise prediction of the therapeutic effects and and
how best to optimise pacing parameters remain out of reach. There-
fore, new approaches are needed in order to provide a more accurate
characterisation of ventricular electromechanical function to facili-
tate improved planning and delivery of the therapy.

In parallel, the last decades have seen major progress in medical
imaging, cardiac modelling and computational power facilitating
personalised simulations (i.e. using models with patient-specific
parameters) of cardiac activity. While the scientific importance
and enormous clinical potential of this approach have been
acknowledged (Crampin et al., 2004; Hunter and Nielsen, 2005;
Kerckhoffs et al., 2008c), its translation into clinical applications
has yet to be achieved. We aim to build on the major scientific ad-
vances in cardiac modelling that have already been made, in order
to proceed to the next level and individualise such models to each
specific patient using state-of-the-art multi-modal imaging. This
approach has the potential to have a major impact on clinical prac-
tice. Indeed, patient management may be improved by allowing
the clinical response at specific pacing sites to be predicted and
fine-tuned in each patient.

In this article, we demonstrate the necessary first steps and a
preliminary validation of the personalisation of an electromechan-
ical model of the heart to predict the response in pressure develop-
ment due to pacing of the left ventricle at different endo and
epicardial sites (see Fig. 1). Such predictions may be used to quan-
tify the improvement in cardiac function that can be expected from
CRT. Such a model may also be able to predict the optimal location
of the pacemaker leads (stimulation electrodes) and allow optimal
programming of timing of the electrical stimulation to ensure a
maximal haemodynamic benefit. In this work we have only fo-
cused on the acute haemodynamic effects of CRT. The prediction
of chronic reverse remodelling of the heart with CRT (Sutton and
Keane, 2007) is out of the scope of the presented work.

There is an important body of literature on the functional imag-
ing of the heart, for instance: measurements of electrical activity,
deformation, flows, fibre orientation, and on the modelling of the
electrical and mechanical activity of the heart. Many of these mod-
els are direct computational models, designed to simulate in a real-
istic manner the cardiac action in a realistic manner, often
requiring high computational costs and the manual tuning of a
very large number of parameters.

Mechanical modelling was used in order to constrain and regu-
larise (Yan et al., 2007) or better interpret deformation from imag-
ing data (Liu and Shi, 2007) with simultaneous parameter
estimation (Hu et al., 2003), but without any prediction of changes
with therapy.

Recently, computational models have been used to simulate
CRT on a generic anatomy in computer studies (Kerckhoffs et al.,
2010) or in comparison with animal experiments (Kerckhoffs
et al., 2008a; Kerckhoffs et al., 2008b) and have provided important
insights on the pathophysiology of dyssynchrony. In order to trans-
late such models into the clinical arena and impact patient man-
agement and therapeutic planning, the models need to be
individualised to each specific patient, which remains a challeng-
ing task especially due to the dimensionality of the problem and
the parameter observability.

The proposed approach involves models whose complexity is
directly related to the phenomena observed in clinical data. This
is the reason why these models are often simplified compared to
those published in the literature. The observability of patient
parameters parameters (electrophysiological, mechanical and hae-
modynamic) was crucial in the personalisation step. Utilising a
limited number of pre-specified parameters allowed their identifi-
cation from clinical measurements on a specific patient by solving
a tractable inverse problem (see Fig. 1). While some steps of this
method were interactive, the chosen models have the correct
theoretical properties to make an automated adjustment possible.

A preliminary section details the clinical context, the data
acquisition, and the data fusion into the same spatio-temporal
reference frame. We then present the four sections describing
the personalisation of the model anatomy, electrophysiology,
kinematics and mechanics. Finally we demonstrate the predictions
of acute haemodynamics in comparison to direct interventional
measurements for multiple pacing conditions in two clinical
cases.

2. Clinical context, data acquisition and fusion

The construction, testing and personalisation of biophysical
models rely on the ability to fuse data from an array of sources.
For cardiac modelling, the fusion of anatomical, mechanical, and
electrophysiological data is of primary importance. This fusion
must be both in the spatial and temporal domains. The sources

Fig. 1. Global scheme of the clinical data used for the personalised models, the generated output maps and parameters, and the resulting predictions.

2 M. Sermesant et al. /Medical Image Analysis xxx (2011) xxx–xxx

Please cite this article in press as: Sermesant, M., et al. Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in
CRT: A preliminary clinical validation. Med. Image Anal. (2011), doi:10.1016/j.media.2011.07.003

http://dx.doi.org/10.1016/j.media.2011.07.003


of data used in the presented work are Magnetic Resonance Imag-
ing (MRI), electrophysiology catheters, pressure catheter and X-ray
fluoroscopy.

High quality cardiac anatomical and functional data can be ob-
tained from MRI, such as myocardial shape, wall motion, blood
flow and infarct sites, with a spatial resolution of approximately
1.5 " 1.5 " 7 mm3 and a temporal resolution of around 30 ms.
Electro-anatomical data can be obtained from catheter-based mea-
surements that are guided using X-ray fluoroscopy with a spatial
resolution of less than a centimetre and a temporal resolution close
to a millisecond. Acute haemodynamic data is acquired using a
high fidelity (200 Hz) pressure sensor to measure left ventricular
pressure.

Spatial fusion of electrical and anatomical data requires an
effective image registration strategy. Our solution has focused on
the use of an X-ray/MR (XMR) hybrid imaging system that allows
the seamless collection of both MRI and X-ray-based data (see
Fig. 2). We have developed a real-time registration solution (Rhode
et al., 2005) that allows the spatial integration of MRI-based ana-
tomical and functional data with X-ray-based catheter data, such
as intracardiac electrophysiological and pressure signals. For the
temporal integration, the electrocardiogram provides the informa-
tion on the heart rhythm to enable the synchronisation of the
datasets.

We present data based on two clinical cases scheduled to
receive CRT. The first patient was a sixty year old woman with
heart failure and NYHA class III symptoms.2 The aetiology of heart
failure was non-ischaemic dilated cardiomyopathy with no flow-
limiting disease on coronary angiography although cardiac MRI
did show subendocardial postero-lateral scar in the left ventricle.
The left ventricular ejection fraction was 25% on maximal tolerated
heart failure medication. The surface ECG demonstrated significant
conduction disease with left bundle branch block (LBBB) QRS dura-
tion of 154 ms (normal QRS is less than 120 ms). Echocardiogra-
phy, including Tissue Doppler, confirmed significant mechanical
dysynchrony in keeping with the ECG findings.

The second patient was a seventy-seven year old woman with a
much more developed dilated cardiomyopathy. She was in NYHA
class III heart failure with a LV ejection fraction of 18% and left

bundle branch block QRS duration of 200 ms. There was no late
gadolinium enhancement but functional conduction block was ob-
served in the electrophysiological mapping.

For both cases, the clinical data used to set up the patient-spe-
cific models consisted of a cine-MRI3 for the estimation of ventric-
ular function and volumes and late enhancement images with
gadolinium contrast agent for scar anatomy (in case of scars). A
non-contact mapping study was performed using the Ensite 3000
multi-electrode array catheter system (St Jude, Sylmar, CA). This
consists of a 64 laser-etched wire braid mounted on an 8 mm bal-
loon. The array records intracavity far-field potentials that are sam-
pled at 1.2 kHz and digitally filtered at 0.1–300 Hz. The resulting
signals allow the reconstruction of over 3000 virtual unipolar elec-
trograms superimposed on a computerised model of the left ventri-
cle created using a locator signal on a roving endocardial catheter.
We can then obtain both isopotential and isochronal maps. While
non-contact mapping can suffer from motion and distance artefacts,
it is well suited to create biophysical models as it can map several
different pacing conditions from a single heart beat (while contact
mapping would require a relatively large number of cycles for each
pacing mode). The XMR fusion provides the location of the Ensite

Fig. 2. (a) XMR suite with the MR scanner and the X-ray C-arm. (b) Real-time overlay of MRI-derived left ventricular (LV) surface model (red) onto live X-ray fluoroscopy
image (grey scale) to guide the placement of catheters: (1) St. Jude Ensite balloon, (2) LV roving, (3) coronary sinus sheath, (4) coronary venous/epicardial, (5) pressure, (6)
high right atrium, (7) His bundle, (8) right ventricle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Fusion of late-enhancement derived scars (red surfaces), anatomical MR
(volume rendering) and Ensite isochronal map (coloured surface). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

2 NYHA classes stand for the stages of heart failure according to the New York Heart
Association. Patients with NYHA III are comfortable at rest but any other activity
causes fatigue, palpitation, or dyspnea.

3 cine-MRI usually cover the ventricles by a set of 2D dynamic sequences for which
the image data are acquired with a temporal resolution of 20–40 ms.
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mapping with respect to the MR-derived information (see Fig. 3). We
will illustrate the whole method with the data from Patient 1, but
the same process was applied to the data from Patient 2.

3. Personalised anatomy

3.1. Model specification

The anatomical model used is the compact (i.e. without trabec-
ulae) ventricular myocardium. As we did not simulate the valves,
we did not integrate the papillary muscles into the segmentation.
This anatomical model is represented with a tetrahedral mesh
which resolution is around 2 mm (mean edge length). This is to
be compatible with the resolution of the data and the computa-
tional time of the models. We label the different tetrahedra of
the mesh for regional parameter adjustment. The labels used in-
clude the AHA segments and the scars. Endocardial and epicardial
surfaces were labelled as well. The complex cardiac fibre architec-
ture has an important role in the electrical and mechanical
function of the heart: electrical propagation and mechanical con-
traction are mainly along the fibre direction. The introduction of
the fibre orientation in cardiac electromechanical modelling is thus
essential for accurately simulating cardiac function. We use a
synthetic model built with analytical laws describing general
trends of fibre orientations observed in different studies (Streeter,
1979). We assign a fibre orientation to each vertex of the mesh.

3.2. Model personalisation

There is an extensive literature on the segmentation of the heart
from medical images (see for instance (Ecabert et al., 2008; Zheng
et al., 2008; Peters et al., 2010) and references therein). However,
to cope with extreme and variable anatomies due to pathologies,
we developed a simple yet efficient semi-automatic method which
combines specific image processing tools to extract the biventricu-
lar myocardium from cine-MRI. We segmented in the mid-diastolic
volume of the cardiac sequence: the left ventricle (LV) endocar-
dium (Fig. 4, red contour), the right ventricle (RV) endocardium
(Fig. 4, blue contour) and the epicardium (Fig. 4, green contour).
To this aim, we developed an interactive tool based on variational
implicit functions (Turk and O’Brien, 1999). This tool4 allows the
user to intuitively model any 3D surface in the 3D scene by placing,
moving or deleting control points inside, on and outside the desired
surface (Toussaint et al., 2008). Then it computes in real-time the
implicit function that interpolates those points and extracts its
zero-level set surface. Union and intersection operations using these
surfaces enables to generate a binary mask of the patient myocar-
dium muscle.

Then the CGAL5 and GHS3D6 software were used to respectively
extract the surface mesh from the volumetric binary mask and build

Fig. 4. Personalised anatomy using image segmentation. Left: Three surfaces were defined during the segmentation, the left ventricular endocardium (in red), the right
ventricular endocardium (in blue) and the epicardium (in green). Right: 3D visualisation of the obtained anatomical model. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Labelled volumetric mesh. Three main areas are defined: left ventricle (in red), right ventricle (in yellow) and scar (in white). Additional AHA segments subdivision is
also performed for regional personalisation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4 http://www-sop.inria.fr/asclepios/software/CardioViz3D/.
5 http://www.cgal.org/.
6 http://www-roc.inria.fr/gamma/gamma/ghs3d/.
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Fig. 6. Long axis and short axis cut of the fibre orientations generated on the patient anatomy according to the statistical atlas information. Colour encodes direction. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Long axis cut of the measured isochrones projected on the MR-derived endocardium (septum is in front). (b) Simulated endocardial isochrones with the
personalised model, and (c) within the whole myocardium. (d) Conduction velocity (CV) parameter map from the automatically estimated AC. High CV areas (in red)
represent probable areas of Purkinje extremities. Black regions are scar locations from MRI. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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the volumetric tetrahedral anatomical model from the surface mesh.
Each tetrahedron was automatically labelled according to the ana-
tomical region it belonged to (LV, RV or scar tissue, see Fig. 5). The
scar label was based on the expert manual delineation on late
enhancement MRI. Also, for regional parameter estimation, subdivi-
sion of the left ventricle according to the American Heart Association
17 segments was performed, see Fig. 5.

We generate the personalised fibre orientations by setting the
parameters of the analytical model according to the angles ob-
served in a statistical atlas (Peyrat et al., 2007), mapped into the
geometry of the patient’s heart (see Fig. 6). We only used here
transverse anisotropy, neglecting the effect of the myocyte layers
(Caldwell et al., 2009).

3.3. Error analysis

From visual inspection, the manual segmentation error is
close to the image resolution. We can add more control points
to refine the mesh, but the uncertainty on the data due to the
large slice thickness and differences in breathing position make
it unnecessary.

There is definitely error in the personalised fibres as we do not
have patient data to guide this personalisation and we do not
model the influence of the pathology on these.

4. Personalised electrophysiology

4.1. Model specification

Modelling cellular electrophysiology (EP) is a very active re-
search area (Hodgkin and Huxley, 1952; Noble, 1962; Beeler and
Reuter, 1977; Luo and Rudy, 1991; Noble et al., 1998; TenTusscher
et al., 2004). At the organ level, it involves a cell membrane model
embedded into a set of partial differential equations (PDEs) repre-
senting a continuum. Solving the dynamic PDEs is computationally
very demanding, due to the space scale of the electrical propaga-
tion front being much smaller than the size of the ventricles, and
the stability issues related to the dynamic nature of the equations.
Moreover, the currently available clinical electrophysiological data
only reliably measures the depolarisation times, and not the extra-
cellular or transmembrane potentials. The advantage of the Eikonal
equation (Keener and Sneyd, 1998; ColliFranzone et al., 1990) is
that the front can be observed at a larger scale, resulting in much
faster computations. Furthermore this equation can be solved very
efficiently by using an anisotropic multi-front fast marching meth-
od (Sermesant et al., 2007). For these reasons, we based our model
on the Eikonal diffusion (ED) equation. The static ED equation for
the depolarisation time (Td) in the myocardium is given by

c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTt

dDrTd

q
!r # ðDrTdÞ ¼ s ð1Þ

where c0 is a dimensionless constant related to the cell mem-
brane, s is the cell membrane time constant, r the gradient oper-
ator and r# the divergence operator. The tensor quantity relating
to the fibre directions is given by D ¼ dADAt , where d is the
square of the membrane space constant and thus related to the
volumetric electrical conductivity of the tissue, A is the matrix
defining the fibre directions in the global coordinates system
and D ¼ diagð1; k2; k2Þ. The parameter k is the anisotropic ratio
of membrane space constants along and transverse to the fibre
direction f and is of the order 0.4 in human myocardium (see
(Tomlinson, 2000) for more details on the ED equation and its
parameters). CV ¼ c0

ffiffiffi
d

p
=s is homogeneous to a conduction veloc-

ity thus we present this parameter in the parameter map (Fig. 7)
for easier interpretation.

4.2. Model personalisation

To personalise the electrophysiological model, there were two
important adjustments to perform: the onset of the electrical prop-
agation, and the local conduction velocity. From the Ensite map of
the left ventricular endocardium, we could see where the right
ventricle excitation traverses the septum into the left ventricle (it
corresponds to the isochrone 0 in the mapping data). We thus esti-
mated the right ventricle Purkinje extremities as the symmetric
through the septum of the zero-isochrone in the left ventricle En-
site data. We then used the ECG to compute the QRS duration in
order to estimate a mean conduction velocity. We finally estimated
the cardiac cell parameter d in the Eikonal model which corre-
sponds to an apparent conductivity (AC). We estimated the AC
by matching the simulated propagation times of the model to the
clinically measured propagation times of the patient (see Fig. 7).

Several methods for the automatic adjustment of the AC were
already proposed for surfaces (Moreau-Villéger et al., 2006; Chin-
chapatnam et al., 2008). Such approaches were extended to volu-
metric models, by using a coupled error criterion both on
endocardial depolarisation times (Fig. 7a) and QRS duration. The
multidimensional iterative minimisation is done using the NEW-
UOA algorithm (Powell, 2006).

The AC estimation was divided into two parts, first the endocar-
dium and then the myocardial wall. This adjustment has the fol-
lowing steps:

1. Location of the electrical onset from the mapping data.
2. Estimation of the endocardial regional AC by minimising the

regional mean error between measured and simulated depolar-
isation times on the endocardial surface, with adaptive domain
decomposition (at each iteration, we subdivide the region with
the highest error, see (Chinchapatnam et al., 2008) for details).

3. Coupled estimation of the myocardial AC. The LV myocardium
is divided into four regions: Septal, Anterior, Lateral, Posterior.
For each region, a single AC value is used for the whole myocar-
dial wall thickness (except the endocardium). We compute this
estimation by minimising a cost function J composed of both
the endocardial error with mapping and the QRS duration error
with ECG:

J ¼
Xne

j¼1

1
ne

Ts
j ! Tm

j

" #2
þ Ts

onset ! Tm
onset

$ %2 þ ðQRSs ! QRSmÞ2

where Ts
d and Tm

d are the simulated and measured endocardial depo-
larisation times on the ne endocardial points, T

s
onset and Tm

onset are the
simulated and measured onset depolarisation times on LV endo,
and QRSs and QRSm the simulated and measured QRS durations.

4.3. Error analysis

We applied this method to the baseline measurements and
obtained a good fit to the data (Fig. 7b), with a final mean error

Fig. 8. Simplified model constitutive law with a linear anisotropic elastic element
(Ec) and a non-linear active contractile element (Ec).
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between simulated and measured isochrones of 9.1 ms. Fig. 7c
shows the CV map from the estimated AC. The scar locations were
obtained from the segmentation of the late enhancement MR
images. The resulting AC map provides information on some po-
tential Purkinje network (high values) as well.

In the second patient case, a site of functional block was identi-
fied in the mapping data isochrones, and automatically estimated
when fitting the isochrones. We defined it as transmural, as simu-
lations without fully transmural block were not producing results
in accordance with the endocardial data. We ran the personalisa-
tion algorithm and obtained a 8.0 ms final mean error.

For Patient 1, the final number of endocardial regions was 56,
with the smallest region having an area of around 23 mm2. For Pa-
tient 2, the final number of endocardial regions was 37, with the
smallest region having an area of around 75 mm2 (see Table 1).

This personalisation provides results with less than 10% error
on the endocardium and a realistic extrapolation to the whole
myocardium. The detailed figures of the errors for the different
pacing conditions are presented in Table 2. These errors are low
after each personalisation, however we only have a very partial
view of the propagation from baseline data (only the left ventricle
endocardium, and for one condition), thus the accurate prediction
of the isochrones for different pacings is still work in progress.

In the following two sections we discuss how a simplified mod-
el was used to estimate the cardiac motion (kinematics), and then
how a more complex model was used to simulate the cardiac
forces (mechanics).

5. Personalised kinematics

5.1. Model specification

In this subsection, we extract the cardiac motion from the cine-
MRI. There are numerous methods proposed in the literature for
this task, but we want here to take advantage of the entire patient
data already integrated through the previous two sections. Thus
we use a 3D proactive deformable model approach to estimate
the motion of the heart from cine-MRI volumes. It enables to input
the prior knowledge on the anatomy and electrophysiology in the
motion estimation, while other methods from the literature cannot
benefit from such knowledge.

The 3D model used here was a simplified electromechanical
model designed for cardiac image analysis and simulation (Serme-
sant et al., 2006a) (see Fig. 8), derived from a multi-scale modelling

of the myocardium (Bestel et al., 2001). The complexity of the
model was designed to match the relatively sparse measurements.
It is composed of two elements in parallel: one anisotropic linear
visco-elastic to represent the passive properties of the tissue and
one active contractile element controlled by the command u. This
command was set to a constant kATP (the contraction rate) when
depolarisation occurs at time Td and to a constant !kRS (the relax-
ation rate) when repolarisation occurs at repolarisation time
Tr = Td + APD, with APD a given Action Potential Duration. For one
tetrahedral element, the active stress rc was controlled by u
through the ordinary differential equation (a reduced version of
the more detailed stress model used for personalised mechanics
in next Section 6):

_rc þ jujrc ¼ jujþr0

where r0 is the peak stress parameter and juj+ represents the posi-
tive part of the command u (u is positive during contraction and
negative during relaxation). Then, the integral of the divergence of
the active stress over a tetrahedron results in a 3D force vector
~fC ¼ rc

R
Sð~f #~nÞ~f dS with f the fibre direction, ~n the surface normal

and dS the element surface of the tetrahedron. The simplified
dynamics law is then:

M€Y þ C _Y þ KY ¼ FP þ FC þ FB ð2Þ

with Y the position vector, _Y ¼ dY=dt the velocity, Ÿ = d2Y/dt2 the
acceleration, K the stiffness matrix for the transverse anisotropic
elastic part (parallel element), M a diagonal mass matrix, C the Ray-
leigh damping matrix (internal viscosity component), FC the assem-
bled contraction force, FP the developed pressure forces in the
ventricles and FB a force vector corresponding to the other boundary
conditions. Furthermore, we simulated the four cardiac phases (fill-
ing, isovolumetric contraction, ejection and isovolumetric relaxa-
tion) as detailed in Sermesant et al. (2006a). Finally, the arterial
pressures were computed using a Windkessel model (Stergiopulos
et al., 1999).

5.2. Model personalisation

We estimated the motion of the heart by coupling this electro-
mechanical model with cine-MRI, based on the proactive deform-
able model described in Sermesant et al. (2006a), Billet et al.
(2009). We have shown in Billet et al. (2008) that this method is
related to the data assimilation approach described in Moireau
et al. (2008). Numerous studies on the adjustment of a geometrical
model of the heart to time series of medical images are based on
the concept of deformable models (Park et al., 1996; McInerney

Table 1
Patient 1 final error values obtained after electrophysiology model personalisation
(SD: standard deviation).

Pacing mode Mean error ± SD (ms) QRS error (ms)

Baseline 9.1 ± 7.3 1.3
Atrial 7.3 ± 6.9 1.6
RV 7.3 ± 6.5 0.1
LV endo 6.0 ± 5.5 0.4
TriV 9.1 ± 6.5 5.2

Table 2
Patient 2 final error values obtained after electrophysiology model personalisation
(SD: standard deviation).

Pacing mode Mean error ± SD (ms) QRS error (ms)

Baseline 8.0 ± 7.1 0.065
Atrial 7.5 ± 7.0 0.054
RV 8.7 ± 8.1 0.11
BiV 11.6 ± 10.3 2.8
TriV 8.1 ± 8.5 2.4

Table 3
Mechanical parameter values used in the two cases after personalisation. We can
observe the increased stiffness and decreased contractility of the scars in Patient 1
and the generally increased stiffness and decreased contractility in Patient 2, that may
be due to the importance of the cardiomyopathy.

Parameter Patient 1 Patient 2

Hyperelasticity j1 (in Pa) Non-scarred: 104 1.5 " 104

Scar: 105

Hyperelasticity j2 (in Pa) Non-scarred: 80 120
Scar: 800

Hyperelasticity j (in Pa) Non-scarred: 105 1.5 " 106

Scar: 106

Peak contractility r0 (in Pa) LV: 3.4 " 105 3.0 " 105

RV: 1.7 " 105 1.5 " 105

Scar: 4.6 " 104

Proximal capacitance Cp (in m3/Pa) 2.3 " 10!10 7.0 " 10!10

Proximal resistance Rp (in Pa s/m3) 2.1 " 107 7.2 " 106

Distal capacitance Cd (in m3/Pa) 7.2 " 10!9 2.7 " 10!8

Distal resistance Rd (in Pa s/m3) 2 " 108 8 " 107
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and Terzopoulos, 1996; Montagnat and Delingette, 2005). In this
framework, a mesh is fitted to the apparent boundaries of the myo-
cardium by minimising the sum of two energies: a data attachment
term and a regularisation term. In our case, this regularisation term
consisted in the energy of the dynamical system of the simplified
electromechanical model of the heart.

We aimed to minimise the difference between the simulated
motion of the myocardium and the apparent motion in the images.
To this end, we defined an image force FI which attracts each sur-
face vertex Yi towards its corresponding voxel Yimg

i in the image.
This corresponding voxel is searched for both with a gradient ap-
proach (Montagnat and Delingette, 2005) (looking for high gradi-
ent voxels along the mesh normal direction) and with a block-
matching algorithm (Ourselin et al., 2000) associated with each
surface vertex of the mesh. This combination allowed to correct
the block-matching tracking, when the initial position was not ex-
actly on the endocardium. The new law of dynamics with these
additional image forces FI is then given by this equation:

M €bY þ C _bY þ K bY ¼ FP þ FC þ FB þ FI ð3Þ

where bY is the estimated position of the heart nodes.
From global parameters like the ejection fraction we could cal-

ibrate the mechanical parameters of the contractile element (kATP,
kRS and r0).

5.3. Error analysis

Fig. 9 shows theMR images at end-diastole and at end-systole of
the cardiac cycle. The superimposed lines represent the intersection
of the endocardial and epicardial surfaces of the mesh with the
images.

We can observe that despite the limited quality of routine clini-
cal images, the estimation of the myocardium contours is good,

especially for the left ventricle (see Fig. 9 for a comparison with
an independant manual delineation, we focus here on the compact
myocardium, not on papillary muscles and trabeculae). Due to the
lack of contrast on the epicardium and the thinness of the right ven-
tricle, achieving a good tracking of the RV wall is still challenging.

This approach allowed to recover a realistic motion of the heart,
including a twisting component captured by the model even if the
images provide information mostly in the direction orthogonal to
the endocardium. This was actually validated with additional
tagged-MRI acquired on the first patient, where the circumferential
motion estimated with this method from cine-MRI was in good
agreement (up to the image resolution) with the one measured
from the tags by manually tracking tag intersections in seven short
axis slices (see Fig. 10). A more detailed validation and sensitivity
analysis of this method can be found in Wong et al. (2010).

6. Personalised mechanics

We then adjust a more detailed mechanical model in order to
personalise the simulated pressure curve.

6.1. Model specification

The myocardium constitutive law has to model the active, non-
linear, anisotropic, incompressible and visco-elastic properties of
the cardiac tissue. Numerous formulations have been proposed in
the literature, see e.g. (Humphrey et al., 1990; Nash, 1998; Hunter
et al., 1997; Caillerie et al., 2003; Hunter et al., 1998; Smith et al.,
2000; Humphrey, 2002; Sachse, 2004) and references therein. The
particularity of the model used in this study is that it was designed
to have a complexity compatible with the clinical data used for the
personalisation. As apparent motion and left ventricular pressure
are the main components of the observations, we relied on models

Fig. 9. Results of the motion tracking: manual delineation of LV blood pool and LV epicardium (without valves, red line) estimated myocardial mesh (green line)
superimposed with cine-MRI at (top) end-diastole and (bottom) end-systole. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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with limited parameters representing the passive and active parts
of the constitutive law.

Most of the components of the mechanical model discussed in
this section are quite classically used in heart models. However,
the specificity of our model are its consistency with essential ther-
momechanical requirements and the physiological interpretation
of its components. Moreover, its global integration preserves these
requirements from the continuous dynamical equations to the dis-
crete versions (see details in Sainte-Marie et al., 2006).

Denoting by rc the active stress and by ec the strain along the
sarcomere, the myofibre active constitutive law relates rc and ec
as follows (Bestel et al., 2001):

_sc ¼ kc _ec ! ðaj _ecjþ jujÞsc þ r0jujþ scð0Þ ¼ 0
_kc ¼ !ðaj _ecjþ jujÞkc þ k0jujþ kcð0Þ ¼ 0
rc ¼ sc þ l _ec þ kcn0

8
><

>:
ð4Þ

where u still models the electrical input from the action potential
(u > 0 contraction,u 6 0 relaxation). As theprevious simplifiedmodel
was derived from this one, identically named variables and parame-
ters are related but here the active component is more detailed.
Parameters k0 andr0 characterisemuscular contractility and respec-
tively correspond to themaximumvalue for the active stiffnesskc and
for the stress sc in the sarcomere, while l is a viscosity parameter.

The above active constitutive law was used within a rheological
model of Hill-Maxwell type (Chapelle et al., 2001), see Fig. 11
where the component Ec is associated with the above contraction
law, while Es and Ep represent elastic laws. This rheological model
is compatible with large displacements and strains and led to a
continuum mechanics description of the cardiac tissue (Sainte-
Marie et al., 2006). In the parallel branch of the Hill-Maxwell model
– namely, for element Ep – we considered a viscoelastic isotropic
behaviour, with a hyperelastic potential given by the Ciarlet-
Geymonat volumic energy (Le Tallec, 1994):

W ¼ j1ðJ1 ! 3Þ þ j2ðJ2 ! 3Þ þ jðJ ! 1Þ ! j ln J; ð5Þ

where (J1, J2, J) denote the reduced invariants of the Cauchy-Green
strain tensor, and (j1,j2,j) are material parameters. As regards
the branch containing Ec, it relates to a behaviour directed along
the cardiac fibres – namely, the corresponding combined stress–
strain law is one-dimensional, with that of Es taken linear. Note that
this introduces anisotropy in the overall passive behaviour.

Then the pressure within the ventricle represents the main
loading which balances the tissue stresses in the dynamics equilib-
rium equation, also called principle of virtual work when written in
a weak form, see (Sainte-Marie et al., 2006) for the detailed expres-
sion in the heart model considered. During the ejection phase, the
ventricle pressure also equilibrates the Windkessel pressure. Glob-
ally, the model equations are closed, and we can see the ventricle
pressure as an output of the system, while the electrical activation
u is the input.

6.2. Model personalisation

We input into the model the depolarisation and repolarisation
times estimated in Section 4, and now adjust the mechanical mate-
rial parameters. Some valuable information on the spatial distribu-
tion of these may be obtained from clinical measurements such as
late enhancement MRI, but the actual values of the perturbed
parameters cannot be directly measured. The completely auto-
mated estimation of these parameters is still a scientific challenge,
but we demonstrate here that an interactive calibration of the
parameters based on global physiological indicators and cardiac
motion can provide already satisfactory predictability in the direct
simulation of the cardiac function.

For this simulation, image information was no longer used to
constrain the motion, thus boundary conditions are especially
important to achieve realistic motion. As can be seen in the cine-
MRI sequences, there is an epicardium area near the apex on the
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Fig. 10. Mean radial (left) and circumferential (right) displacement error between the estimated motion (personalised kinematics) and the manually measured one in seven
short axis tagged MRI slices (in-plane image resolution is 1.6 mm2).

Fig. 11. Complex model constitutive law with a non-linear hyperelastic element
(Ep), a non-linear active contractile element (Ec), and a non-linear series element
(Es).
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inferior wall with small displacements, probably in relation with
the attachment of the pericardium to the diaphragm. We modelled
this physiological feature by prescribing some stiff viscoelastic
support as boundary conditions in this area. Furthermore, we used
soft viscoelastic support conditions on the valve annuli to model
the truncated anatomy. The corresponding viscoelastic coefficients
also required proper calibration with respect to the motion ob-
served in image sequences.

The constitutive parameters have then beenmanually calibrated
using the pressure–volume loop and the cine-MRI by means of the
local motion pattern of the ventricles. In a nutshell, the hyperelastic
constitutive parameters were calibrated using the data (ventricle
pressure and volume) corresponding to the atrial contraction. Next,
the tissue contractility was globally adjusted to obtain an adequate
ejection fraction when maintaining a fixed value for the arterial
pressure, namely, the measured end-systolic pressure. In order to
represent the less contractile areas, the corresponding contractility
parameters were weighted by a factor 1/5 with respect to their glo-
bal value, as substantiated in Chabiniok et al. (2009). Finally, the
Windkessel parameters (proximal capacitance Cp, resistance Rp, dis-
tal capacitance Cd and resistance Rd) were calibrated so as to obtain
an adequate arterial pressure curve over the whole cycle.

6.3. Error analysis

With these personalised parameters, we obtain a simulated mo-
tion relatively close to the one estimated from the personalised

kinematics. We compared the simulated motion with the persona-
lised mechanical parameters to the motion extracted from the
images with the personalised kinematic model and we obtained
differences close to the in-plane voxel size (see Fig. 12).

We output the simulated ventricular pressure and compared it
with the measurements, see Fig. 13. This personalised mechanical
model simulated a ventricular pressure curve in very good agree-
ment with the catheter measurement (see Fig. 13).

From this interactive adjustment, it was observed that for these
two patients, the global contractility was a key parameter in the
pressure personalisation, and the local adjustments were mostly
correcting the differences in local motion, without much impact
on the global indices.

Note that the slope of the simulated pressure curve (dP/dt) is
less accurate in the diastolic phase as the repolarisation time mea-
surement from non-contact mapping data is more difficult due to
the small size of the T wave and far-field effects, but CRT mostly
focus on the contraction phase.

7. Prediction of the acute effects of pacing on LV pressure

During the acute electrophysiological study preceding device
implantation, different pacing configurations were tested to evalu-
ate the effect of different lead locations and delays. We measured
the acute haemodynamic response to different pacing parameters
and lead locations. This was assessed using a pressure wire in

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Radial

Frame

Di
sp

la
ce

m
en

t d
iff

er
en

ce
 m

ag
ni

tu
de

 (m
m

)

Basal
Mid
Apical

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2
Circumferential

Frame

Di
sp

la
ce

m
en

t d
iff

er
en

ce
 m

ag
ni

tu
de

 (m
m

)

Basal
Mid
Apical

(b)

Fig. 12. Comparison between the motion from the personalised mechanical model and the personalised kinematic model in radial (left) and circumferential (right) directions,
for three (basal, mid and apical) ventricular regions.

0 0.2 0.4 0.6 0.80

50

100

time (s)

LV
 p

re
ss

ur
e 

(m
m

Hg
) measurement

simulation
(a)

0 0.2 0.4 0.6 0.8

1500

1000

500

0

500

1000

1500

time (s)

LV
 d

p/
dt

 (m
m

Hg
/s

) measurement
simulation

(b)

Fig. 13. Measured (solid red) and simulated (dashed blue) (a) pressure curves and (b) dP/dt curves in sinus rhythm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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the LV cavity from which we were able to measure dP/dt. This also
provides the opportunity to estimate what could be the expected
haemodynamic benefit from the pacemaker implant.

In this section, we tested the ability of our personalised electro-
mechanical model of the myocardium to predict the changes in the
heart function due to a new pacing condition. The different pacing
protocols tested here were atrial pacing (atrial), right ventricular
pacing (RV), left ventricular endocardial pacing (LVendo), biventric-
ular pacing (BiVsim), and biventricular pacing with simultaneous
endocardial left ventricular pacing (TriV). We first estimated the

volumetric depolarisation isochrones using themethod of Section 4
and then input these isochrones into the already personalisedmod-
el of Section 6 to simulate the new pressure curve.

For each of the pacing modes, we used the personalisation strat-
egy of Section 4 to obtain the volumetric depolarisation isochrones
from the endocardial mapping data. The obtained endocardial
isochrones are in good agreement with the data (see for instance
Fig. 14b).

Over all the different pacing modes and regions, we obtained an
average AC of 1.68 ± 0.29 for Patient 1 and 2.74 ± 0.61 for Patient 2.

Fig. 14. (a) Measured isochrones for TriV pacing, projected on the MR endocardium. The onsets on the LV free wall from the coronary sinus (CS) and endocardial (LVendo)
pacing catheters are clearly visible. (b) Predicted volumetric isochrones using the AC map estimation from the known onset locations in LV and RV and the endocardial
activation.

Fig. 15. Measured (solid red) and predicted (dashed blue) pressure curves for (a) atrial, (b) RV, (c) LVendo, and (d) TriV pacing modes. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Each pacing configuration was producing AC maps with the same
global characteristics, but local modifications fitting the local spec-
ificities of each pacing helped in achieving a good accuracy in all
the cases.

For the mechanical predictions, we used the model personalised
in Section 6 on baseline in sinus rhythm, without changing any
parameter, including the Windkessel parameters. To achieve these
mechanical model predictions, we only input the new electrical
command corresponding to the different pacing conditions. Hence,
the model parameters were not changed, except for the electrical
activation input.

7.1. Model predictions

The resulting simulated pressure curves (see Fig. 15) obtained
are in very good agreement with the measured. These curves al-

lowed to test in particular the predictions on the slope changes
of this pressure, which is sought to be optimised by CRT. One
important index of the effectiveness of the contraction is the max-
imum of the pressure time-derivative, (dP/dt)max. It describes how
the pressure builds up during the isovolumetric contraction. We
present in Figs. 16 and 17 the results on the predictions of (dP/
dt)max for the two patients (numerical figures can be found in Ta-
bles 4 and 5).

7.2. Error analysis

For this first patient, the different simulated pacing modes with
the model personalised from baseline measurements achieved a
very good agreement of the predicted pressure curve with the re-
corded data from the pressure catheter (see Fig. 15a). The improve-
ment of the cardiac function brought by the pacing in Patient 1 was
very reliably predicted by the in silico simulations. Such accuracy
was achieved for all the different pacing modes (see Fig. 16).

We applied exactly the same methodology on Patient 2, with a
more pronounced dilated cardiomyopathy (DCM) and without any
myocardial scar. A functional conduction block was visible from
the electrophysiological mapping data, which was reproduced in
the personalised model. For the mechanical personalisation, in or-
der to achieve a good adjustment to the measured motion and
pressure, the passive tissue stiffness was increased (see Table 3).
This could be explained by a fibrotic remodelling in a highly devel-
oped DCM. The adjustment on baseline and the predictions of (dP/
dt)max for atrial, BiV, and TriV pacing are presented in Fig. 17.

For this second patient, the predictions were still in agreement
with the measurements, however with a slightly larger error. This
is probably due to the influence of functional block in viable tissue
and therefore a binary definition of block and healthy tissue may
be too simplistic since the conduction properties are more hetero-
geneous than the current modelling parameters allow. Moreover,
the transmurality of such block is harder to evaluate as it does
not appear in images. The adjustment of the electrophysiology
model was more difficult, which can explain the loss in accuracy
of the resulting mechanical simulations.

Overall, in these two patients we obtained a mean error on sim-
ulated dP/dtmax of 47.5 ± 35 mmHg s!1, which is less than 5% error.
This is a very low error, given the different potential sources of er-
ror in this whole personalisation.

8. Discussion

We obtained promising results using models that are tractable
in terms of complexity and observability. Such mechanical predic-

Fig. 16. Patient 1: Measured (blue) and simulated (red) (dP/dt)max for different
pacing conditions. Parameters were estimated on baseline and then kept constant.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 17. Patient 2: Measured (blue) and simulated (red) (dP/dt)max for different
pacing conditions. Parameters were estimated on baseline and then kept constants.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Patient 1 measured and simulated dP/dtmax in mm Hg s!1.

Pacing Measured Simulated

Baseline 890 930
Atrial 960 970
RV 1020 1000
LV endo 1410 1440
TriV 1450 1420

Table 5
Patient 2 measured and simulated dP/dtmax in mm Hg s!1.

Pacing Measured Simulated

Baseline 680 740
Atrial 640 770
BiV 950 895
TriV 960 930
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tions are in themselves already an interesting result in order to
evaluate the relevance of such models. But in addition to the differ-
ent sources of error that are listed in the ‘‘Error Analysis’’ para-
graph of each personalisation section, there are different
limitations to the current method:

Anatomical personalisation. The automatic extraction of the dif-
ferent structures of the heart from medical images is now becom-
ing available (Ecabert et al., 2008; Zheng et al., 2008; Peters et al.,
2010). Regarding the fibre orientation, it is known that scarring af-
fects local fibre organisation (Zimmerman et al., 2000), but this is
not incorporated into in our anatomical model at present. As con-
ductivity and contractility are reduced within the scars in the sim-
ulations, the impact of these organisational changes may be
limited. Recent progress with in vivo cardiac DTI are very encour-
aging for patient-specific fibre architecture measurement (Wu
et al., 2009; Toussaint et al., 2010) and could be used instead of
the currently prescribed directions. However, data on the myocyte
layers will be significantly harder to measure, thus the effects of
the orthotropic anisotropy would only come from prior knowledge
(Caldwell et al., 2009).

Electrophysiology predictions. The accuracy of the final predic-
tions in the different pacing modes relies heavily on the accuracy
of the volumetric isochrones provided to the mechanical model.
We preferred here to separate the mechanical predictions from
the electrophysiological predictions of the model, because with
this clinical setting, a reliable estimation of the volumetric conduc-
tivity is difficult. Challenges come from the acquisition device
(non-contact mapping catheter relying on an inverse problem),
the surface reconstruction from a roving catheter for this inverse
problem, the registration between this surface and the imaging
data, and the only partial observation on the endocardium that
we have to extrapolate to the whole myocardium.

Mechanical personalisation. Another limitation is the manual
adjustment of the mechanical parameters. The methodology for
automatic parameter estimation is becoming available (Sermesant
et al., 2006b; Moireau et al., 2008;Wang et al., 2009; Moireau et al.,
2009). Any available motion information (for instance from
tagged-MRI) can be directly used within such frameworks. A ro-
bust method for automatic mechanical parameter estimation from
patient data would make the translation of such methods into clin-
ical practice achievable. But the small deformation observed in
such heart failure patients makes their clinical application
challenging.

Invasiveness of the data. We tested here the models on rich and
invasive data, but in order to be more clinically useful the final aim
is to obtain similar results from less invasive data. For instance, the
sinus rhythm activation map could be obtained from body surface
potential mapping, see e.g. (Pfeifer et al., 2008). If we can validate
the personalisation and the predictions of the electrophysiology
model from such data, it would be a great step towards a non-inva-
sive approach.

Data and model uncertainties. There are still important chal-
lenges in order to tackle personalisation robustly. One of the main
difficulties is to be able to include uncertainty on the data and the
model. Modern approaches (e.g. integrating polynomial chaos and
compressed sensing) offer new ways to handle this explicitly in a
tractable manner, as in Konukoglu et al. (2011).

9. Conclusion and perspectives

We have developed and demonstrated a personalised electro-
mechanical modelling technique to determine patient-specific
estimates of myocardial conductivity and contractility parameters
using cardiac MRI, LV endocardial electrophysiological mapping
and pressure recordings. We then used this model to predict the

acute haemodynamic effects of different left ventricular pacing
configurations in two subjects with heart failure. The behaviour
of the model in sinus rhythm as well as the predictions of the mod-
el under different pacing conditions compare well with the mea-
sured data for these two clinical cases, which makes such an
approach very promising.

This case study demonstrated how electromechanical models of
the heart can be adjusted to be patient-specific and is a first valida-
tion of how this approach may be useful for therapy planning. By
integrating information about the anatomy, the electrophysiology,
the kinematics and the mechanics, we can explore the correlation
between these different aspects for a given patient in order to pro-
vide an integrated view of the patient’s cardiac function and simu-
late and evaluate different therapies before their actual
application.

This method is still a relatively complex pipeline, however there
are interesting perspectives in order to automate many steps and
simplify its application. When validated, our method can provide
a way to test the effects of pacing before the actual implant and
optimise the pacing leads positions and delays based on in silico
tests to improve the clinical response to CRT in individual patients.
Such a model-based approach is promising for therapies like CRT
that are complex to explore and optimise. They can help in build-
ing new clinical indexes and biomarkers in order to better plan and
evaluate therapy. However there is an important need for uncer-
tainty quantification in these approaches, in order to be able to
estimate a confidence level on the predictions.
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