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Cardiac computer models can help us understand and predict the propagation of excitation waves (i.e.,
action potential, AP) in healthy and pathologic hearts. Our broad aim is to develop accurate 3D MR
image-based computer models of electrophysiology in large hearts (translatable to clinical applications)
and to validate them experimentally. The specific goals of this paper were to match models with maps of
the propagation of optical AP on the epicardial surface using large porcine hearts with scars, estimating
several parameters relevant to macroscopic reaction–diffusion electrophysiological models. We used
voltage-sensitive dyes to image AP in large porcine hearts with scars (three specimens had chronic myo-
cardial infarct, and three had radiofrequency RF acute scars). We first analyzed the main AP waves’ char-
acteristics: duration (APD) and propagation under controlled pacing locations and frequencies as
recorded from 2D optical images. We further built 3D MR image-based computer models that have infor-
mation derived from the optical measures, as well as morphologic MRI data (i.e., myocardial anatomy,
fiber directions and scar definition). The scar morphology from MR images was validated against corre-
sponding whole-mount histology. We also compared the measured 3D isochronal maps of depolarization
to simulated isochrones (the latter replicating precisely the experimental conditions), performing model
customization and 3D volumetric adjustments of the local conductivity. Our results demonstrated that
mean APD in the border zone (BZ) of the infarct scars was reduced by �13% (compared to �318 ms mea-
sured in normal zone, NZ), but APD did not change significantly in the thin BZ of the ablation scars. A gen-
eric value for velocity ratio (1:2.7) in healthy myocardial tissue was derived from measured values of
transverse and longitudinal conduction velocities relative to fibers direction (22 cm/s and 60 cm/s,
respectively). The model customization and 3D volumetric adjustment reduced the differences between
measurements and simulations; for example, from one pacing location, the adjustment reduced the abso-
lute error in local depolarization times by a factor of 5 (i.e., from 58 ms to 11 ms) in the infarcted heart,
and by a factor of 6 (i.e., from 60 ms to 9 ms) in the heart with the RF scar. Moreover, the sensitivity of
adjusted conductivity maps to different pacing locations was tested, and the errors in activation times
were found to be of approximately 10–12 ms independent of pacing location used to adjust model
parameters, suggesting that any location can be used for model predictions.

� 2011 Elsevier B.V. All rights reserved.
ll rights reserved.
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1. Introduction

Cardiac computer models can be utilized to study normal prop-
agation of action potential (AP) and potential inducibility of
arrhythmic events, with the most dangerous manifestation of
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arrhythmias being ventricular tachycardia (VT) and ventricular
fibrillation (VF) (Janse and Wit, 1989; Kleber and Rudy, 2004). Theo-
retical predictions of AP propagation play a major role in electro-
physiology since they can complement clinical observations
(limited to surfacic measures) helping one understand inducibility
of reentrant VT/VF, and they can give mechanistic insights into the
generation of VF and defibrillation mechanisms. In particular,
attention has been recently given to 3D MR image-based models
built from high resolution scans of hearts with myocardial infarc-
tion (Vadakkumpadan et al., 2009; Vigmond et al., 2009), a major
cause of sudden death in the industrialized world (Martinez-Rubio
et al., 1999). These sophisticated in silico computer models of the
heart could not only advance the basic cardiac research field, but
also help clinicians tailor radiofrequency ablation (RFA) therapy,
assist in the implantation of defibrillator devices and optimize car-
diac resynchronization therapies (Trayanova, 2006, 2009). How-
ever, before integrating these mathematical models into realistic
clinical platforms, they have to be validated experimentally with
a sufficient level of detail and accuracy (Clayton, 2001; Hunter
et al., 2008). In addition, regardless of the species modeled, such
validations are often hampered by the degree of complexity spe-
cific to multi-scale models as well as the large number of variables
involved in the mathematical equations.

Research is needed to enrich the current cardiac experimental
databases and to perform model customization from electrophysi-
ological data/measures, particularly for large animal hearts that are
the most relevant to human clinical applications. Important tasks
include: (1) the choice of appropriate imaging modality that pro-
vides sufficient detail of anatomy, fiber direction and morphology
(scar) to construct the 3D heart model, including histological vali-
dation of scar heterogeneities; (2) the choice of appropriate math-
ematical model whose output parameters can be compared at a
spatiotemporal scale replicating experiments performed under
precisely controlled conditions; (3) the selection of a suitable
experimental technique for electrophysiological measures; and
(4) model customization and adjustment of the input parameters.

One imaging modality of choice is MRI, currently used to eval-
uate cardiac disease in preclinical studies and routine clinical
examinations. For instance, late-enhancement MRI (using contrast
agents) is known to be a powerful tool used to characterize infarct
heterogeneities associated with reentrant VT in patients with myo-
cardial infarction (Yan et al., 2006; Schmidt et al., 2007), but the
current 5–8 mm slice thickness used can introduce partial volume
effects. In addition, the right ventricle wall cannot be well visual-
ized and segmented; therefore, the accuracy in reconstructing a
3D heart in vivo model could be severely affected. In an animal
model of macro-reentrant VT, the electrophysiological properties
of tissue were correlated with the contrast-enhanced MR signal
(i.e., anatomic identification of dense scar and the border zone) ob-
tained ex vivo, with sub-mm resolution (Ashikaga et al., 2007).
Unfortunately, these studies lack the evaluation of fiber direction
and the local quantification of anisotropy within the infarction
area, which is crucial to the modelling of wave propagation in
myocardial tissue (Kadish et al., 1988; Taccardi et al., 2008; Vetter
et al., 2005). Alternatively, other ex vivo MR studies have explored
non-contrast techniques like diffusion-tensor (DT) MRI, which are
particularly useful in scar identification and reconstruction of fiber
orientation (Wu et al., 2007). In order to accurately determine the
extent of dense, collagenous scar in chronic infarcts, one can com-
pute maps of fractional anisotropy (FA) and/or apparent diffusion
coefficient (ADC), and, based on the MR signal heterogeneity, these
maps can be further segmented into healthy tissue, border zone
and core scar zone. Using such high-resolution maps, 3D cardiac
computer models have been constructed so far for rabbit, dog,
and porcine hearts (Bishop et al., 2009; Vadakkumpadan et al.,
2010; Pop et al., 2009b) and used for different simulation purposes.
Cardiac multi-scale and multi-dimensional mathematical mod-
els give unprecedented detail as they integrate structural and func-
tional information from sub-cellular levels, to slabs of myocardial
tissue and whole organ (Gavaghan et al., 2006; Austin et al.,
2006; Hunter and Nielsen, 2005; Hunter et al., 2008; Prassl et al.,
2009; Niederer et al., 2011); however, one has to consider the level
of detail of the model when considering implementation in a clini-
cal setting where computational time is an issue. Moreover, certain
applications might not justify the use of sophisticated equations
and super-computers. The fastest and simplest numerical model
is based on the Eikonal equations (Keener and Sneyd, 1998) which
compute wavefront propagation; the result can be compared with
clinically observed surfacic measures of depolarization isochrones;
however, this model lacks refractory properties of the myocar-
dium. At an intermediate level of complexity are the monodomain
equations based on reaction–diffusion phenomena (Aliev and
Panfilov, 1996b). In these models, the heart is modeled as a contin-
uous medium (syncytium) and the solution for AP captures the
main characteristics of the AP wave: duration, shape and upstroke.
For simple applications, the monodomain model can be used to
simulate normal and reentrant wave propagation in large hearts
(Nash and Panfilov, 2004; Aliev and Panfilov, 1996a), requiring less
than 1 h computational time (on an ordinary PC) to simulate 1 s of
cardiac cycle (Sermesant et al., 2006). This choice is also attractive
for some clinical (Sermesant et al., 2005), given that little
difference (2%) in the activation times was found compared to
the bidomain model (Potse et al., 2006), which requires 130 CPUs
to simulate 1 s of heart cycle.

Finally, the experimental technique should be appropriately se-
lected to enable comparison between measurements and the out-
puts of the theoretical model, at the same spatio-temporal scale.
The comparisons can be used to customize the model; that is, sev-
eral parameters of interest can be estimated from measurements
and used to adjust the model variables (Sermesant et al., 2003).
At the organ level, except for monophasic action potential catheter
measurements (Kim et al., 2002; Hao et al., 2004), the clinical elec-
trophysiological techniques are limited to measurements of depo-
larization times (Schmitt et al., 1999; Dukkipati et al., 2008);
moreover, all provide surfacic measurements only, primarily from
the endocardium. An alternative is to study electrophysiology at
the tissue level; optical fluorescence imaging (which uses fast volt-
age-sensitive dyes) provides accurate measurements of AP waves
in explanted perfused hearts prepared under physiological condi-
tions approximating those seen in vivo (Bayly et al., 1998; Efimov
et al., 2004; Hillman et al., 2007; Hyatt et al., 2005a,b; Kay et al.,
2004; Banville and Gray, 2002; Yang et al., 2007; Nanthakumar
et al., 2007; Qin et al., 2003). Several optical studies demonstrated
that the optical technique is also feasible for mapping action po-
tential propagation in the presence of structural obstacles, which
perturb normal propagation. For instance, epicardial propagation
of AP (during pacing conditions or VT/VF) was mapped in rabbit
and rat hearts with chronic infarcts (Li et al., 2003; Mills et al.,
2005) and revealed changes in conduction velocity at the border
zone of the infarct. Other studies mapped the AP propagation in
the presence of macroscopic obstacles created by thermally dam-
aging the tissue using cryoablation, high intensity focused ultra-
sound or laser energy (Qu et al., 2004; Pastore and Rosenbaum,
2000; Girouard and Rosenbaum, 2001). Using our experimental
set-up (Pop et al., 2007) we recently reported results obtained by
mapping optical AP waves in large, healthy porcine hearts. We also
performed 3D model construction from MRI scans of the same
hearts and adjusted the associated model based on optical mea-
surements (Pop et al., 2009a).

In this paper, we present novel results obtained in experimental
and theoretical studies for explanted porcine hearts with scars. In
accordance with the diagram below (Fig. 1), we map the optical



Fig. 1. Study overview – 3D MRI-based computer models of pathologic scars, together with comparison to and model customization from optical fluorescence measurements
of action potential, AP.
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AP propagation in pathologic hearts and build 3D cardiac computer
models allowing monodomain formalism, specifically, reaction–
diffusion equations proposed by Aliev and Panfilov (1996b). We
further estimate model parameters from the comparison between
the measured and computed activation maps, and observe the
model’s behavior in response to stimulation at different locations
and with various pacing frequencies. Specifically, we built 3D
MR-image-based models obtained from large porcine hearts with
two different types of large scars: (1) large lesions generated by
RF ablation and (2) chronic infarct scars. We hypothesized that
the first type is an unexcitable scar that will not propagate action
potential due to myocytes’ necrosis within the thermally coagu-
lated scar; this corresponds to a simplified 3D heart model com-
prised of two zones: healthy (with normal conductivity) and scar
(with zero conductivity). The second type of pathology (i.e., chronic
infarct) was selected due to heterogeneities specific to the healing
process, where dense collagenous scar and border zone (i.e., a mix-
ture of necrotic and surviving myocytes with altered electrophysi-
ological properties) give rise to a more complex cardiac electrical
propagation.

The last goal was to demonstrate the potential for parameter
estimation and model adjustment from experimental measures
for a given stimulus pattern and subsequent prediction of response
to different stimuli. To achieve the customization, we estimated
several parameters (e.g., anisotropy ratio, AP duration and up-
stroke) directly from 2D optical recordings; and also adjusted the
3D conductivity map (tuning the conduction velocity) by minimiz-
ing iteratively the error between simulated and measured depolar-
ization times. Finally, to observe the influence of perturbation in
fiber orientation, we generated synthetic fibers and studied their
effect on the activation times compared with those obtained with
the realistic directions calculated from DTI.

2. Materials and methods

We first performed the optical experiments of AP propagation
on explanted hearts, and then used 3D MR scans to construct the
heart model (i.e., the anatomy, fiber directions and scar). The com-
putational mesh was generated from the anatomy scans and the
simulations were performed with model parameters selected to
reproduce exactly the experimental conditions, for instance stimu-
lation at a given pacing frequency with a stimulus of certain dura-
tion and location. After estimating the main parameters (i.e.,
anisotropy ratio and AP duration) directly from 2D optical images,
we performed further model customization and adjusted the local
conductivity from maps of isochrones depolarization. We present
below in detail the steps performed to build both the experimental
and theoretical models, and associated analysis.

2.1. Optical experiment

Optical imaging was performed in six hearts explanted from
swine weighing 37–42 kg. Each animal was anesthetized, the chest
opened, and the heart explanted in accordance with the animal re-
search protocol guidelines approved at Sunnybrook Health Sci-
ences Centre, Toronto, Canada. Two types of scars were created
in various hearts as follows:

� In three hearts, large, acute RF ablation lesions were generated
using an RF electrode operating at 460 kHz; these lesions were
created in the left ventricle (LV) of the heart ex vivo.
� In three hearts, chronic myocardial infarcts (MIs), 4-weeks old

at the excision time were studied; each infarction was gener-
ated in an anesthetized animal by a 90-min coronary artery
occlusion via a balloon catheter inserted either in the left ante-
rior descending (LAD) or left circumflex (LCx), followed by
reperfusion and recovery.

After excision, the aorta of each heart was rapidly cannulated
and attached to a Langendorff ex vivo perfusion system. Through-
out the experiments, the hearts were constantly perfused with
an oxygenated mixture of blood and Tyrodes’ solution (95%O2

and 5%CO2; the ratio blood: solution was 1:4) maintained at a tem-
perature of 37.0 ± 0.5 �C and at a pH of 7.3 ± 0.3. The hearts were
paced via a bipolar stimulating Ag/AglCl2 electrode (E) coated with
gold at the tip to avoid polarization effects. A square-wave stimu-
lus of 5 ms duration was applied at different locations, and with 4–
5 different frequencies, via a SD9 stimulator (GrassTelefactor, USA)
operating in constant-voltage mode (the applied voltage during
stimulation was about 3–4 V).

As in our previous optical study performed in healthy porcine
hearts (Pop et al., 2009a), a 20-ml bolus of fluorescence dye solu-
tion (0.2 ml di4-ANEPPS, Biotium Inc.) was injected into the heart
via the perfusion line. To suppress the motion artifacts associated
with myocardial contraction, an electro-mechanical uncoupler (2,
3-butanediome monoxime, Sigma–Aldrich) was also injected in
the perfusion line right after the dye. The fluorescent dye was ex-
cited with green light (530 ± 20 nm) via 150-W halogen lamps
(MHF G150LR, Moritek Corp., Japan), denoted ‘‘S’’ in Fig. 2a. To
avoid photo-bleaching, the lamps were controlled by shutters.
The emitted signals from the fluorescing hearts were filtered
through a high-pass filter (>610 nm) and captured by a high-speed



Fig. 2. (a) Snapshot of the optical experiment using MICAM02 cameras (C) to record epicardial action potential (AP) wave propagation from ex vivo hearts attached to a
Langendorff perfusion system. (b) Examples of waves recorded in the heart without the uncoupler (top) and after the uncoupler (bottom) has been distributed throughout the
tissue; the relative loss of fluorescence signal DF/F = (F � F0)/F0 gives the change in transmembrane potential (i.e., AP). Note that DF/F and AP are in arbitrary units (a.u.) using
BV-Ana software.
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dual-CCD system (MICAM02, BrainVision Inc., Japan) with 3.7-ms
temporal resolution. The field of view of 184 � 124 pixels
(12 � 8 cm) yielded approximately 0.7 mm spatial resolution.

The relative changes in the intensity of the fluorescence follow
the changes in transmembrane potential. Fig. 2b shows examples
of recorded optical fluorescence signal prior to injection of the
uncoupler (top) during pacing at 1.1 Hz; the signal was denoised
using a spatial-cubic filter and displayed with BV-Ana software
(BrainVision, Japan). Further analysis of the AP waves was per-
formed using custom built Matlab code that enabled normalization
of the AP wave at each pixel, calculation of APD90 (APD at 90%
recovery), and averaging of results over the three hearts for each
type of lesion. At each pixel, the optical traces as well as associated
activation (depolarization time) and recovery (repolarization time)
were detected using the first (dF/dt) and second (d2F/dt2) deriva-
tives of the fluorescence signal intensity versus time as per the
method established by Efimov et al. (1994). This allowed us to ver-
ify (over selected regions of interest, ROI), the behavior of rate-
dependent properties of APD during pacing at various frequencies.
Specifically, we analyzed the APD restitution curve during dynamic
pacing (i.e., constant cycle length) performed in two hearts. These
two hearts (one with an RF lesion and one with an infarct scar)
were further used to build the 3D image-based models described
in detail below. The optical images recorded by the CCD cameras
from these two hearts were calibrated, rectified, and used to recon-
struct the 3D surface of each heart according to the stereoscopic
method described elsewhere, using custom built Matlab code
developed by Chung et al. (2006). The 3D optical stereo-surface
of epicardium was further registered with the 3D surface of the
MR image-based model as in (Pop et al., 2007), via opaque markers
visible in MR images, and using a rigid registration method imple-
mented in Matlab (Horn, 1987). This step allowed us to project the
measured isochronal maps onto each 3D heart mesh, similarly as
presented in (Pop et al., 2007, 2009a).

2.2. Magnetic resonance imaging, heart segmentation and histology

The pig ventricles were imaged using a 1.5-T Signa GE MR scan-
ner; the gross anatomy, fiber directions, fiducial markers, infarct,
and infarct heterogeneity were all visualized in the MR images.
As previously described (Pop et al., 2007, 2009a), for determining
the marker locations on the hearts, we used a 3D fast spin echo
(FSE) sequence with the following MR parameters: TE = 60 ms;
TR = 700 ms; slice thickness = 2 mm; a 10 cm FOV; and 256 � 256
matrix acquisition yielding an in-plane resolution of
0.4 � 0.4 mm. The diffusion-weighted imaging sequence (Helm
et al., 2005) was developed at the Laboratory of Cardiac Energetics
(NIH/NHLBI, USA) and implemented on our research scanner, for
which we used the following MR parameters: TE = 30 ms;
TR = 700 ms; NEX = 1; maximum b-value of approximately 600;
and seven directions for diffusion gradients, with the same FOV/
matrix as was used in the FSE sequence.

For both hearts, the anatomy was extracted from the un-
weighted images (i.e., b = 0) and used to generate the volumetric
mesh for the 3D computer model. DT images were used to recon-
struct the fiber directions in a manner similar to our previous in
healthy hearts.

Next, 3D volumetric ADC maps were computed from diffusion-
weighted MR images using MedINRIA (www.sop.inria.fr/asclepios/
software/MedINRIA/); these 3D ADC maps were further used to
segment the hearts. Specifically, the heart with the RF lesion was
segmented into two zones: normal/healthy tissue and scar. The in-
farcted heart had three zones: healthy; dense infarct scar; and bor-
der zone. The latter corresponds to myocytes with viable channels
but abnormal electrical activity. For partitioning the ventricular
myocardium into the two or three morphologic zones, we em-
ployed an image segmentation tool developed in Matlab using
the expectation–maximization (EM) algorithm (Van Leemput
et al., 2001), which does an expectation step where the likelihood
of initial parameters given the existing data is calculated, then uses
these statistics via a maximization step to search for new para-
meters values that would maximize this likelihood. In our case,
the healthy myocardium tissue and scar are modeled by two
Gaussian distributions based on histogram analysis. For the in-
farcted heart, for instance, voxels in the BZ of the scar, which do
not extend farther than 8 mm away from the scar, are seen as out-
liers of the models. The algorithm is initialized using a two-class k-
means method. During the EM loop, the means and variances of
the two Gaussian distributions are estimated from the voxels clas-
sified as healthy and scar classes at the previous EM iteration (EM
maximization step). Once the parameters are estimated, a belief va-
lue is computed. The belief quantifies how probable a voxel be-
longs to a given class, i.e., if it is below than a given threshold
(k = 0.5) for both tissue classes, the voxel is rejected, and it is con-
sidered as an outlier of the model (here, BZ). Prior knowledge about
the BZ is implemented in the belief value. At a given stage of the
EM algorithm, a distance map to the current estimation of the scar
area is computed. Voxels farther than 5 mm from the scar are
never rejected; they should belong to either scar or healthy tissue.
A voxel close to the scar is rejected if its belief value is lower than k
and half of its direct neighbors (6-connectivity) are also rejected.
This simplified Markov spatial regularization aims to reduce the
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effects of image noise on the segmentation. Finally, the image is
reclassified into the two classes plus the outliers (EM expectation
step), resulting in three zones (NZ, BZ and scar). The algorithm
loops until convergence. Similarly, for the heart with scar a simpli-
fied algorithm was implemented, since our assumption was that
this heart has only two classes/zones (and no outliers for BZ). Final-
ly, the segmented scar areas delineated by the EM algorithm were
qualitatively compared to the areas of necrosis identified in histo-
logical slices.

For histological analysis, these two hearts were preserved in
10% neutral-buffered formalin for approximately 1 week to avoid
shrinkage; then, right after the MR scan, histological processing
was performed on selected slices (�4 mm in thickness) cut to
match the MRI short-axis views. Tissue deformation and rupture
during dissection and slicing was minimized using a special
whole-mount microtome cutting system (Clarke et al., 2007). Dur-
ing the histological processing, the heart samples were dehydrated,
embedded in paraffin, cut with a 5-lm slice thickness, fixed on
glasses, and finally stained with Masson’s Trichrome dye (in which
healthy myocytes stain red, collagen fibers stain green, and nuclei
stain black). The whole-mount slides were digitally scanned at 5–
10 lm resolution and further analyzed using the Aperio-Image
Scope software.
2.3. Mathematical model and its implementation on the 3D mesh

We used the two-variable reaction–diffusion mathematical
model proposed by Aliev and Panfilov (1996b) of the heart to per-
form our simulations, extending the implementation previously
detailed in (Sermesant et al., 2006), to include restitution proper-
ties as presented in (Nash and Panfilov, 2004). In this macroscopic
model, described by the system of Eqs. (1) and (2), we solved for V,
the action potential, and r, the recovery variable contribution:

@V
@t
¼ r � ðeDrVÞ � kVðV � aÞðV � 1Þ � rV þ Istim ð1Þ

@r
@t
¼ � eþ l1r

l2 þ V

� �
ðkVðV � a� 1Þ þ rÞ ð2Þ

where except for a and k, most of the reaction and recovery param-
eters were set as in Nash and Panfilov (2004), that is e = 0.01,
l1 = 0.01 and l2 = 0.3. Generally, the term Istim represents the stim-
ulating current necessary to produce a local depolarization that
spreads from cell to cell through electrotonic diffusion; however,
in our simulations, this is achieved by applying a square pulse of
short duration (5 ms), i.e., a constant voltage V of maximum ampli-
tude on a small area on the mesh. The fast-variable of the equation,
V is normalized (reaching a value of maximum amplitude ‘‘1’’ dur-
ing excitation, followed by a slow recovery to the resting value, ‘‘0’’)
and its waveform reproduced the shape, duration, and restitution of
action potentials obtained from experiments in canine myocytes
(Elharrar and Surawicz, 1983).

The diffusion tensor eD ¼ d
1 0 0
0 q 0
0 0 q

0
@

1
A accounts for tissue dif-

fusivity and anisotropy, and was written in the local orthonormal
basis (i, j, k) of the fiber direction, where i is the direction parallel
to the fiber. One parameter of interest is the normalized scalar dif-
fusivity, d, which is often referred to as ‘‘bulk’’ or ‘‘pseudo-conduc-
tivity’’ (Ten Tusscher and Panfilov, 2007; Moreau-Villeger et al.,
2006; Clayton, 2001); and is set to 1 for normal/healthy myocardial
tissue. The conduction velocity is proportional to the square root of
bulk conductance (Walton and Fozzard, 1983; Kleber and Rudy,
2004); thus, this coefficient d determines the conduction velocity.
Moreover, the other important parameter in the tensor eD, is q,
the anisotropy ratio, which is computed as the squared value of
the ratio between the conduction velocity measured in the trans-
verse and in the longitudinal direction (relative to the fibers). For
instance, the velocity ratio is 1:1 for an isotropic medium and
1:3 for an electrical wave propagating twice as fast along versus
across the fiber (thus, the latter gives a value q = 0.11). Changes
in this value result in variations in the propagation velocity of
the depolarization front.

We solved the above reaction–diffusion equations for the trans-
membrane potential (V) using the Finite Element Method, with an
explicit Euler time integration scheme. The code was written in
C++ and used OpenGL libraries to display the results. The equations
were solved over a cardiac surface mesh which was created from
the anatomical images of the heart using classical segmentation
algorithms (thresholding, mathematical morphology, marching
cubes) followed by a tetrahedrization of the 3D volume with the
TetMesh-GHS3D package (INRIA, France). For each vertex, the as-
signed fiber direction is the principal eigenvector, as derived from
the DTI. For the simulations presented in this study, we used a
computational time step of 5 � 10�5 s. The simulation time for
0.8 s of the cardiac cycle on a mesh of approximately 180, 000 ele-
ments, was about 25 min on an Intel� Core (TM) 2 Duo CPU
1.83 GHz, with 4 GB of RAM.

In simulations, the excitation starts from a few selected vertices
corresponding to the precise location of the electrode tip in the
optical experiment (determined after projection of optical image
onto the 3D mesh). For the boundary conditions, as this is an iso-
lated heart model, we assumed that no currents flow out of the
myocardium; thus, a Neumann boundary condition was imposed
to represent this. As a result, the wave travels parallel to the sur-
face. Thus, the 2D and 3D speed vectors coincide on the surface.
Furthermore, depolarization velocity vectors were computed per
triangle as the inverse of the gradient of the depolarization times
of this triangle.

2.4. Parameter estimation and model adjustment from the
experimental optical data

Several mathematical model parameters were directly esti-
mated from the 2D measurements of local conduction velocities
and the duration of the action potential, specifically the anisotropy
ratio (q) and the parameter a. First, the conduction velocity was
precisely computed from the perpendicular distance between con-
tour lines of activation times (i.e., the axis of AP propagation). First,
we determined the ratio of the velocities of depolarization wave-
front measured around the tip of the stimulating electrode in the
longitudinal and transverse directions (relative to the fiber orienta-
tion). Then, the anisotropy ratio was computed using the formula
q = (CVtransv/CVlongit)2. The electrode was positioned on a relatively
‘flat’ area, such that the shape and curvature of the heart did not
affect the calculations. Second, the other parameter, a, was esti-
mated as follows: we simulated the APD90 for different values of
a, and fit a linear function APD90 = f(a) to these values (as in Aliev
and Panfilov, 1996b); we further extracted a corresponding to the
mean of the APD90 values (from normal and border zones) mea-
sured at low pacing rate (when APD does not change significantly
with increase in cycle length). The estimation for a was performed
for normal myocardium and border zones of the scar.

Finally, to evaluate the 3D model behavior, we quantified the
error in activation times between the measurements and simula-
tions using isochronal maps of depolarization times as previously
presented in the healthy heart model (Lepiller et al., 2008; Pop
et al., 2009a; Relan et al., 2009a, 2009b). In brief, the measured
isochrones of depolarization times from the optical data were
mapped onto the epicardial surface and further registered with
the 3D volumetric mesh of the pathological hearts. Next, we calcu-
lated the absolute error of the difference between the measured
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depolarization times (on the vertices where optical data is avail-
able, since only the anterior heart surface is exposed to cameras)
and the simulated depolarization times. We started the adjustment
with an automatic, crude initialization step which provided a glo-
bal value of d0, (for healthy ventricle); then, an iterative algorithm
was used to decrease the error in the mean conduction velocity for
each region. In order to obtain a regional adjustment as well as to
speed up the process, the left ventricle was divided into 17 zones
as per the American Heart Association (Cerqueira et al., 2002).
Additionally, the right ventricle was divided into 9 zones; thus
we obtained a total of 26 zones where the local conductivity
parameter di was constant within a zone (i) during the adjustment.
In particular, it was previously shown (Keener and Sneyd, 1998;
Moreau-Villeger et al., 2006) that for planar waves we can consider
the following relationship between the parameter d and the speed
of depolarization front (i.e., the conduction velocity, c): c/ (d)1/2.
We then initialized the value of di for each region from the mean
conduction velocity ci of that region computed from the measured
depolarization times. Note that d for the core of RF scar and infarct
was set to zero; these were additional zones determined from MR
images’ segmentation using expectation–maximization method
(described in the previous section). This affected the extent/geo-
metry of some of the 26 zones containing scars but not their
properties. After the initialization of the local pseudo-conductivity
d, we iteratively improved the model fitting by employing a trust
region method (Conn et al., 2000); here we implemented this using
the Trilinos solver package and used an objective function to min-
imize the difference between simulated and measured depolariza-
tion times, and a volumetric di map was obtained, for each of the
26 regions (Relan et al., 2009a, 2009b). The adjustment was
stopped after the mean error in activation time converged.

Lastly, we tested the sensitivity of adjusted conductivity maps
to different pacing locations; for instance, we used the adjusted
conductivity map obtained from one pacing location as an input
to the model where we paced from another site, and compared
these predictions against measurements.
2.5. Influence of fiber orientation

A total of 10 synthetic fibers datasets were computer generated
(five synthetic fiber datasets for each heart), and the ‘‘perturba-
tion’’ was implemented by allowing the helix angle to vary transm-
urally between the following ranges, from the endocardium to the
epicardium: �50�/+50�, �60�/+60�, �70�/+70�, �80�/+80� and
�90�/+90�. First, the perturbation in fiber orientations can be ob-
served qualitatively in the example below, shown for the infarcted
heart: (a) fibers were extracted from DT-MRI; and (b) fibers in the
synthetic datasets corresponding to various helix angles: �50�/
+50�, �70�/+70� and �90�/+90�. Next, we computed the angular
difference between the helix angle derived from synthetic fibers
and the helix angle from DTI-fibers; this calculation was imple-
mented in Matlab and the angular difference was expressed as
mean ± S.D. (over the all vertices of each mesh). Finally, we studied
the influence of perturbation in fiber direction, by performing sim-
ulations with all synthetic fibers datasets and DTI fibers; this al-
lowed us to evaluate the impact of fiber direction on activation
times.
1 For interpretation of color in Figs. 2–16, the reader is referred to the web version
of this article.
3. Results

3.1. Parameter estimation from 2D optical images: anisotropy ratio
and AP duration

Two important electrophysiological characteristics were esti-
mated directly from 2D optical images: (1) the ratio between
transverse and longitudinal conduction velocities; and (2) action
potential duration (APD). These estimates were used to tune the
parameters q and a, respectively, in the mathematical model (q va-
lue was computed as the squared value of the velocity ratio).

Fig. 3 illustrates an example of normal wave propagation
mapped from the epicardium just before the creation of an RF abla-
tion scar. Fig. 3a shows a 2D optical image of the heart (110 � 110
pixels). The spatial resolution was calculated from the calibration
of the CCD camera, yielding a 0.7 � 0.7 mm2 pixel size for this par-
ticular example. The anisotropy ratio was derived from a selected
�2 � 2 cm2 region of interest (approximately 30 � 30 pixels)
around the tip of the stimulating electrode; this ROI is highlighted
as a green1 box (Fig. 3a). For clarity, we also present the fiber orien-
tations determined from DT-MRI, in the same selected region
(Fig. 3b).

Fig. 3c and d illustrate the radial propagation of the impulse on
the epicardium, from the pacing site. A color isochronal map of the
depolarization times (after applying a 5-ms square pulse at the
electrode tip) is shown in Fig. 3c, with the earliest activation time
in red; the first 50 ms are presented, as indicated in the scale. To
facilitate the calculation of the anisotropy ratio, this color isochro-
nal map is also represented as a contour map with the isochronal
lines separated by 5-ms intervals (Fig. 3d). Near the pacing site,
the fiber orientations generated concentric ellipsoidal lines of
propagation; thus, we observed that the impulse conduction (here,
the front of depolarization wave) is faster in the direction parallel
to the fibers (long arrow) than in the perpendicular direction (short
arrow). In this example, the values for measured conduction veloc-
ity in the transverse and longitudinal directions were �22 cm/s,
and 60 cm/s, respectively, thus a value 1: 2.7 for the velocity ratio
was calculated (which gives an anisotropic ratio of q = 0.14).

Fig. 4a and b show representative examples of optical action po-
tential waves recorded in hearts with an RF lesion and an infarct
scar. We observed in detail the AP waves from normal zones and
zones bordering the scar, as well as from the dense scar. It was con-
sistently observed in the optical experiments (from all six hearts)
that, compared to the APD in the normal zone NZ, the APD in the
border zone BZ is slightly shortened in the RFA hearts, and sub-
stantially shortened in infarcted hearts. In the latter case, AP waves
also had noticeably smaller amplitude, slower up-stroke, and a ‘tri-
angular shape’. No optical signals (i.e., AP waves) were recorded
from the core scars of the hearts, regardless of the scar type. For
each type of scar (n = 3 hearts with RFA scar and n = 3 hearts with
MI scar), the mean APD at 90% repolarization (APD90) was calcu-
lated for regions of interest selected from the NZ and BZ, (note that
the calculation of the APD in the BZ of ablation scar was to verify
our hypothesis that this zone can be neglected in the model con-
struction for the RF heart).

These results are included in a bar graph and displayed in
Fig. 4c; the results of a one-way ANOVA test are also included. As
expected, there was no significant difference (P = 0.69) between
the mean values for APD90 measured in the NZs of the RFA hearts
(324.6 ± 15.7 ms) and the NZ for infarcted hearts (318.3 ± 14 ms).
There was a negligible difference between the measured values
in the NZ (324.6 ± 15.7 ms) and BZ (311.0 ± 12.2 ms) of the RF scars
(P = 0.112); however, in infarcted hearts, the difference in APD90
between the NZ (318.3 ± 14 ms) and the BZ (275.7 ± 15.6 ms) was
found to be significant (P < 0.05).

Using these results, we first estimated the model parameter ‘‘a’’
(see Fig. 4d) in the NZ of the hearts as in (Aliev and Panfilov,
1996b), for k = 8. We plotted several computed APD90 data points
obtained in the simulations by varying the ‘‘a’’ value in the



Fig. 3. Estimation of anisotropy ratio: (a) 2D optical image of a healthy heart; the box depicts the region of interest which was used for further analysis; (b) representative
fibers in the ROI with their direction derived from DT-MRI; (c) color map of activation times associated with impulse conduction during the first 50 ms after applying a 5-ms
pulse at the stimulating electrode tip; (d) isochronal contour map (lines 5 ms apart) used to calculate conduction velocity in the transverse (short arrow) and longitudinal
(long arrow) direction, respectively, giving a velocity ratio of approximately 1:2.7 (more detail in text).
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computer model. The plot yielded in a first approximation a linear
fit (using Matlab) and allowed us to find the corresponding param-
eter ‘‘a’’ for the mean APD90 values measured in the NZ of the in-
farct and ablated hearts (a = 0.112). Note that due to the small
difference in the APD90, we consider the parameter ‘‘a’’ to have
similar values in the NZ and BZ of the hearts with RF ablated scars.

In addition, after performing simulations with various values
for k, we found that k = 8 reproduces correctly the AP wave up-
stroke obtained in optical experiments; thus, this value is also a
good match for the porcine healthy tissue. However, in order to de-
rive k for the border zone BZ, we used a simplistic approach (i.e.,
‘trial and error’) and derived a generic pair of values (a, k) that
reproduced several characteristics of the AP wave. This pair was
find to be the best match to the average measurements for the up-
stroke derived on a ROI selected from the BZ of the infarct, having
set a conductivity three times smaller than in the healthy tissue.
Our analysis yielded the following pair of values for BZ: a = 0.2
and k = 2; this values could be generically used in the Aliev–
Panfilov model, to simulate the characteristics of the AP wave in
the ischemic BZ for hearts with 4–5 week old infarction.

Fig. 5 demonstrates the results obtained for experimental and
simulated restitution curves of APD90. Fig. 5a shows representa-
tive optical AP waves recorded from a NZ of the heart with an RF
scar (presented in Fig. 5a) obtained after stimulation at different
five frequencies (these waves are illustrated using the BV-Ana soft-
ware). As expected, the APD shortened as we increased the pacing
frequency (which is equal to the inverse of the cycle length, CL).
Similar behavior was observed in a NZ of the infarcted heart stim-
ulated at four different frequencies. For the actual calculation of
APD at each frequency, we determined the average APD90 (APD
at 90% recovery time) on selected regions from the normal zone
of the left ventricles, comprising AP waves from at least 200 pixels
(see Fig. 5b). These measured restitution curves APD = f (CL) are
plotted in Fig. 5c and compared to a simulated curve for which
the average parameter a = 0.112 (found above for the NZ) was used
as an input to the mathematical model. A good correspondence be-
tween the slope of the experimental restitution curves and the
simulated curve was observed; thus, it appears reasonable to use
the simulated curve for healthy tissue in computer models built
for porcine hearts.

3.2. Construction of 3D MRI-based models and adjustments of
conductivity maps

Fig. 6a shows long- and short-axis MRI sections of the heart
with an RF scar using an FSE sequence (a week after preservation
in 10% formalin). The ablated lesion showed a reduction of MR sig-
nal intensity; this is due to water dessication, a characteristic spe-
cific to coagulative necrosis processes following severe thermal
damage. A very thin, well demarcated border (yellow arrows, in
Fig. 6a) can be visualized between the scar and the surrounding
normal myocardium.

A whole-mount histopathology slice stained with Masson’s Tri-
chrome and scanned at 10 lm resolution is presented in Fig. 6b.
Overall, we demonstrated very good correspondence in the shape
and extent of this acute RF lesion between histology and MRI. Spe-
cifically, in the selected regions (shown in higher magnification in
Fig. 6b), we observed normal tissue with healthy myocytes and



Fig. 4. (a) Model fitting for action potential duration, APD: (a) 2D optical image of a heart with an RF lesion and examples of AP waves at different pixel locations selected
from the NZ, BZ and RF scar; (b) 2D optical image of a heart with a 4-week-old myocardial infarct and examples of AP waves at different pixel locations from the NZ, infarct
scar and BZ (the latter has AP waves with reduced APD90 and slower up-stroke); (c) comparison between APD90 in the normal and border zones: column heights are the
mean and error bars are the standard deviation (calculated from n = 3 hearts for each scar type); the one-way ANOVA analysis demonstrates a significantly smaller value for
APD90 in the BZ of the infarcted hearts compared to the NZ (P < 0.05); (d) plot of the simulated APD90 as a function of a in the Aliev–Panfilov model (the small dots represent
the simulated data and the line is the linear fit obtained using Matlab); example of estimation for a values of 0.112 corresponding to measured APD90 in the NZ of either
ablation/infarct hearts. Note that the measurements are the mean APD90 as shown in (c).
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preserved architecture, whereas the ablated scar has typical char-
acteristics of acute thermal damage (with ruptured, dead myocytes
and severely disorganized bundles). Notable in histology is a very
thin rim, as observed in MRI; this rim is likely due to accumulation
of edematous fluid and some red blood cells at the BZ. The myo-
cytes are viable in the BZ; thus, most likely this rim is responsible
for the slightly reduced APDs observed in the optical recordings
from these areas. Our initial hypothesis was that this rim (border
zone) can be neglected and the APD measures confirm this; thus,
we proceed further with the construction of a 3D MRI-based model
with two zones (ablation scar and healthy zone).

Fig. 7 shows the resulting 3D MR image-based computer model
constructed for the heart with an RF ablation scar. The 3D compu-
tational volumetric mesh (of �180, 000 tetrahedral elements) was
constructed from anatomical MR images. However, based on the
optical and MRI observations, this 3D model has only two seg-
mented zones: normal myocardium and RF scar (Fig. 7a). Fig. 7b
illustrates the fiber directions as specified at each vertex in the
mesh. The mesh segmentation corresponding to the 26 AHA zones
is shown in Fig. 7c (three zones are highlighted).

The volumetric adjustment of conductivity maps is based on the
comparison between experimental and simulated isochronal maps,
and is schematically presented in Fig. 8. The model is initialized
with literature values for global conductivity with all AHA zones
having the same values (d0). As mentioned in Section 2.3, in the
3D model, the scar is assigned a zero value for conductivity. The
other two model parameters (a and q) were globally tuned in the
model using the values obtained in Section 3.1.

The pacing site in the simulation corresponds precisely to the
electrode tip location in the optical recordings and has the earliest
activation time in both the simulated and experimental color iso-
chronal maps, where the associated scales are in ms (red is 0 ms
and corresponds to the earliest activation time; blue corresponds
to late activation time with 120 ms being the latest time). The
average error between the simulated and experimental depolariza-
tion times was iteratively reduced from 57 ms to 10 ms (that is
approximately 6-fold); the adjusted 3D conductivity map (d1) is in-
cluded in Fig. 8. We observed a slower conductivity within the LAD
territory (most likely due to some fat deposition around the vessel)
as well as around the RF scar, which was expected because ana-
tomical blocks are known to reduce the conduction velocities in
their proximity.

The adjustment process involved re-evaluation of the local con-
ductivity di in each zone; a histogram of the conduction velocities
computed on the epicardium (at each vertex in the mesh) using the
d1-map after the last adjustment step is presented in Fig. 9a. The
histogram of velocities computed from the optical isochronal
map is shown in Fig. 9b. An absolute error between simulated
and experimental conduction velocity is shown in Fig. 9c.

The error in conductivity maps and sensitivity to different pac-
ing location is presented in Fig. 10. The second pacing location is
shown in Fig. 10a; the corresponding volumetric d-map for the sec-
ond location is shown in Fig. 10b. The absolute difference (d1–d2)
between the adjusted d-maps (from the two pacing locations) is
shown in Fig. 10c. Evolution of error in the simulated depolariza-
tion times during the adjustment (first 20 iterations) is illustrated
in Fig. 10d. Furthermore, the sensitivity of model prediction to pac-
ing location was tested by computing the isochronal maps at the
second pacing location and using d1 as input for conductivity val-
ues; the error between the measured isochronal maps and these
simulated isochrones is presented in Fig. 10e. Fig. 10f shows the
correlation plot between computed conductivities from one pacing
location (D1) vs. the values obtained per zone from the other pac-
ing location (D2), yielding a coefficient r = 0.89 for this RF heart.



Fig. 5. Experimental and simulated restitution curves for APD90: (a) representative AP waves measured at the same pixel location obtained in the heart with an RF scar, at
different pacing frequencies; (b) example calculation of the APD at 90% repolarization for a cycle length CL = 830 ms; and (c) measured restitution curves (the square dots
correspond to the data points measured in the RF scar heart, the triangle dots represent the data points for the infarct heart and the circle dots are the simulated data points
(for the simulated curve).
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The Bland–Altman analysis (Fig. 10g) demonstrated no significant
bias between these values, thus any of the maps can be used as in-
put to the specific model, for each heart.

The following results were obtained from heart with a chronic
infarct scar (4 weeks old). The construction of the 3D MRI-based
computer model has a similar pipeline as the one presented above.

Fig. 11 shows a 3D view through the MRI volumetric data set;
here we present a 3D volumetric map of the ADC (ADC) used for
the construction of the model. Some heterogeneity in MRI signal
intensity was observed (see Fig. 11a); the bright areas correspond
to an expected increase in ADC values in the infarct scar areas. The
fiber directions derived from DT-MRI (Fig. 11b) are disturbed in the
infarct area; we observed a severe disarray of the bundles and sig-
nificant deviation from the normal orientation. The large infarct
area (in the LAD territory) was observable during gross visual
inspection after the heart was preserved in formalin (Fig. 11c)
and also corresponded well with the scar extent observed in the
optical images (Fig. 11b). The infarction involved both right and
left ventricles (note: the markers were used to register the optical
images with the mesh derived from MR images).

Further analysis using histological whole-mount preparation of
a slice stained with Masson’s Trichrome is shown in Fig. 11d; the
slice was taken at the height indicated by the red line in Fig. 11c.
On microscopic observation it appeared that infarct areas remod-
eled over time. The core scar (stained blue) has large areas with
myocytes replaced by dense, collagenous fibrosis, which is also
accompanied by a complete loss of anisotropy. The border zone
areas (border zone, BZ) have mixed islands of viable and non-viable
myocytes, as well as fiber directions slightly changed due to drop-
lets of collagen deposits between surviving cardiac myocytes (via-
ble myocytes stained red). Most importantly, the selected areas
shown with higher magnification in Fig. 11d (NZ, BZ and scar) also
showed differences in optical signals recorded from these zones,
with no signal (AP waves) in the scar as well as altered morphology
of AP waves in the BZ.

Results yielding to the construction of 3D MRI-based model in
the infarcted heart are shown in Fig. 12. First, the classification re-
sults obtained using the EM algorithm, are presented in Fig. 12a
and b, where the histogram in (Fig. 12a) clearly illustrates the mix-
ture of the Gaussian distributions mixture whereas in (Fig. 12b) we
illustrate the Gaussian distribution for NZ and scar (note that the
distribution for BZ does not necessarily have to be Gaussian). Next,
after tetrahedrization, a resulting mesh (see Fig. 12c) of �270, 000
elements and with fiber directions specified at each node was ob-
tained; this mesh has three morphological zones: NZ, BZ and scar,
(see red areas corresponding to BZ and green areas corresponding
to scar in Fig. 12e); dense scar had zero electrical conductivity. Pre-
sented in Fig. 12d is a short-axis slide from the 3D ADC map, and its
corresponding segmentation into the three zones (Fig. 12e). A good
histological correspondence was found for these three segmented
areas (see Fig. 12f).

After the adjustment of the local conductivity, the experimental
isochronal color maps (projected onto the 3D mesh) as well as sim-
ulated isochronal maps from the one pacing location are presented
in Fig. 13, where red represents the early activation time (0 ms)
and blue corresponds to the latest activation time (here 150 ms).
For values of q and a in NZ and BZ we used the parameters derived
in Section 3.1. Good qualitative agreement between the depolar-
ization times can be observed from the color isochronal maps
(Fig. 13b and d). Moreover, the absolute error in depolarization
time (after the adjustment) is presented in Fig. 13e.

Fig. 14a–b shows the resulting conductivity maps after the
adjustments were performed for two stimulation locations. The
areas of relatively low local conductivity (i.e., associated with slow



Fig. 6. Characteristics of the heart with RFA scar observed in MRI and histology: (a)
MR images in longitudinal and short-axis views; yellow arrows point to the border
between healthy myocardium and the dense scar (white arrows); and (b) Masson’s
Trichrome stain of a whole-mount histology sample corresponding to the slice
presented in the MRI short-axis view, with selected zoomed-in insets from the
healthy and ablated areas, respectively, demonstrating loss of architecture and
viability in the RFA lesion (scale bars: 300 lm).
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conduction velocity) were found to be around the infarct (in the
BZ) and around the large vessel; the corresponding absolute error
for d is plotted in (Fig. 14c). Fig. 14d illustrates the evolution of
mean absolute error in activation times (i.e., difference between
measured and simulated depolarization times) calculated at each
iteration during the adjustment. For the second pacing location,
the depolarization time error converged to a minimum value (from
56 ms to 8 ms) after approximately 30 iterations (requiring 12 h of
computation time); however, note that the error in activation time
is already reduced to approximately 10 ms after 8 iterations.
Fig. 14e shows the correlation plot between computed conductiv-
ities from one pacing location (D1) vs. the values obtained per zone
from the other pacing location (D2), yielding a coefficient r = 0.77
for this infarcted heart. The Bland–Altman analysis (Fig. 14f) dem-
onstrated no significant bias between these values, thus any of the
maps can be used as input to the specific model, for each heart.

Overall, our results demonstrated that a simple mathematical
model of electrophysiology (Aliev–Panfilov model) can be custom-
ized using the fusion of data from optical and MR imaging. Several
parameters can be directly estimated from 2D optical action poten-
tial measurements; in addition 3D volumetric adjustment of local
conductivity is feasible for both models built from pathologic
hearts (i.e., with either RF scar or infarct scar), with resulting con-
ductivity maps being relatively independent of pacing location.

Regarding the impact of perturbation in fibers orientation,
among the resulting datasets, we found that the smallest differ-
ence in helix angles relative to the data with fiber orientation
estimated from DTI, corresponded to the synthetic data with a
helix angle varying transmurally from �70�/+70�. Below are the
associated histograms for angular differences for this dataset,
which are included in Fig. 15a and b, respectively.

Specifically, for the RF scar we obtained a helix angular differ-
ence (between fibers from DTI and synthetic fibers) of
37.8 ± 22.4� in the healthy area and 48.4 ± 20.8� in the RF scar (le-
sion). For the scar with myocardial infarct MI, we obtained a helix
angular difference of 44.3 ± 23.2� in the healthy area, 51.3 ± 22.2�
in the BZ and 60.3 ± 21.7� in the dense scar.

Simulations were also performed using all synthetic fibers data-
sets, for both pacing location on each heart (i.e., a total of 20 new
simulations). Then, the computed activation times were compared
with the ones obtained using the fiber directions from DTI (note
that these simulations were performed with adjusted conductivity
maps). To quantify the differences between the simulated action
potentials with the DTI fibers and with synthetic datasets, we calcu-
lated (for depolarization times at all vertices in the mesh) the RMS
error and the Pearson’s correlation coefficient (r) together with the
associated mean ± S.D (ms). All associated results are presented in
Table 1 (see Supplemental Material A). This error analysis was per-
formed by implementing in Matlab the equations below, which are
similar to those given in (Muzikant and Henriquez, 1998):
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where N is the number of vertices in the heart mesh. ATsimDTI and
ATsimSynth are the simulated activation times (i.e., depolarization
times, in ms) using DTI fibers and synthetic fiber data, respectively.

From the analysis of these activation times, the datasets with
helix angles varying from ±60�, ±70� and ±80� have a small RMS er-
ror, small associated difference in activation times (mean ± S.D),
and very good correlation coefficients. For the heart with RF lesion,
the epicardial pacing produced better results (compared to the
endocardial LV pacing location #2), whereas for the infarcted heart,
the pacing location #1 (on the BZ, between the scars) resulted in
larger error, suggesting that the epicardial pacing location #2
(i.e., on the RV and slightly away from low conductivity zones)
gives better results. However, in both cases, we concluded that
the synthetic fibers can be used within an acceptable margin of er-
ror for the activation times, when DTI data is not available.

Finally, to evaluate the impact of global vs. local parameteriza-
tion for conductivity parameter, another sub-set of simulations
was additionally performed using global parameterization (i.e.,
constant values on all zones corresponding to a certain categoriza-
tion) for conductivity, that is, d having values of 1, 2 and 3 respec-
tively. We then compared the activation times obtained using this
global d parameterization and the locally adjusted conductivity
maps. The difference between these computed activation times,
was expressed in terms of RMS error, and mean ± SD (ms). For in-
stance for the infarcted heart, using d = 1 in the healthy zones, RMS
was 46.7%, and mean 37 ± 16.9 ms; for d = 2, RMS error was 15.9%
and mean 9.4 ± 4.9 ms; and for d = 3, RMS error was 21.3% and
mean 11.2 ± 5.7 ms. From this analysis, we concluded that global
values of d = 2 (and d = 3) could be used for the conductivity
parameter of the healthy tissue for hearts 7–8 cm in height and
meshes having 1–1.2 mm element length (since d is scalable as a
function of computational domain size and elements size as well),
with an acceptable error.

4. Discussion

The development of 3D image-based cardiac electrophysiology
models is gaining considerable attention since they can provide



Fig. 7. 3D MRI-based model construction for the heart with RF scar: (a) 3D volumetric model with two segmented zones (normal myocardium and RF scar); (b) fiber
directions integrated onto the model; (c) the tetrahedral mesh and three highlighted AHA zones out of a total 26 AHA zones presented all in a planimetric view in (d).
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insights into the transmural propagation of electrical waves
through the heart, complementing surfacic measurements
(Chinchapatnam et al., 2008) and into the causes of arrhythmogen-
esis (Vadakkumpadan et al., 2010). In particular, parameter
estimation and further customization of the 3D MR image-based
cardiac models is now regarded as a very important step in this
emerging cardiac field. However, progress is currently hampered
by either the lack of experimental electrophysiological data
obtained particularly in large, pathologic hearts or by the number
of parameters to be estimated. The main 3D MRI-based computer
model ingredients are: (1) a computational mesh built from anat-
omy and structural imaging scans (with fiber directions integrated
to realistically simulate anisotropic wave propagation); and (2)
mathematical equations, modelling the propagation of impulse
conduction (often, the models’ output is the action potential, AP).
Multi-scale integrative models are highly demanding in terms of
computational time, but most importantly, they contain complex
details at different spatiotemporal scales. Several input parameters
though are fundamental, and are present in most of the cardiac
models. These include the anisotropy ratio between transverse
and longitudinal conduction velocities forms the diffusivity tensor
(eD). Model customization consists in tuning the input parameters
such that the main output (i.e., the AP wave and its characteristics
of duration, shape, and upstroke) is close to measured behavior.

In this work, we specifically characterized the propagation of AP
in pathologic hearts using optical fluorescence imaging and a 3D
MR-image-based computer model that uses a simplistic monodo-
main approach based on a macroscopic formalism combined with
reaction–diffusion equations (i.e., the Aliev–Panfilov model). Sev-
eral contributions are novel to the field including, to the best of
our knowledge, the following: (1) the mapping of optical fluores-
cence AP in large pathologic hearts; (2) a 3D MR-image-based
model of porcine hearts integrating anatomy, fiber directions and
myocardial tissue heterogeneities (healthy vs. scar and border
zone) with histological validation; and (3) model customization
by estimating several parameters from 2D optical images (anisot-
ropy ratio, duration of AP), as well as volumetric adjustment of lo-
cal conductivity from maps of depolarization isochrones.

It is the choice of the researcher which computer model to use;
such selection is always based on the purpose of the study (Clayton
and Panfilov, 2008). For instance, one can use the Eikonal model
computes only the propagation of the depolarization wavefront
(Keener and Sneyd, 1998); this model is fast but only suitable to
applications where the depolarization times are of interest (since
it does not calculate the repolarization phase of the action poten-
tial). Such an approach was used recently for patient-specific car-
diac model personalization (Chinchapatnam et al., 2008), where
the authors used clinical EP measurements recorded by a basket
electrode to perform customization of conductivity maps based
on the conduction velocities calculated from measured activation
depolarization times. Thus, while we agree that the Eikonal model
is useful for customization of conductivity maps, it should be noted
that the Aliev–Panfilov model allows more parameters to be cus-
tomized (using patch-clamp or optical measurements). On the
other side, the bidomain model is superior to the Aliev–Panfilov
model, because it solves for a realistic, physical solution of the
transmembrane potential, while the simplistic, macroscopic
Aliev–Panfilov model gives only normalized values of the action
potential wave. This is a limitation in accurately modelling ische-
mia (where the resting potential is about �70 mV, compared to



Fig. 8. Example of a 3D volumetric adjustment of conductivity d in the heart with RF scar; with model initialization (d0-map and pacing location) and final results (d1-map)
and associated mean error in activation times after adjustment.

Fig. 9. Histogram of computed conduction velocities (at each vertex) from: (a) simulated isochrones after adjustment; (b) experimentally measured isochrones; and
(c) corresponding absolute error between conduction velocity maps calculated at each vertex and interpolated on the 3D mesh.
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�90 mV for healthy tissue) and drug-tissue interaction. However,
we preferred using the simplistic Aliev–Panfilov model over the
bidomain model, because: (i) from the experimental point of view,
the recorded optical action potentials do not have absolute values
for intra- and extracellular voltages, thus the bidomain predictions
for Vext and Vint cannot be validated from optical measures; and (ii)
from the computational point of view, the bidomain model re-
quires solving a set of PDE for the direct solution. Computing 3D
numeric solutions to this system is time consuming because of
the large sparse linear systems, at each time step (even with an
explicit time-stepping method), and also because of the time scale
and the space scale (thus, the need of super-computers and clus-
ters). Advantageously, the monodomain model is reduced to ordin-
ary differential equations (ODE). These equations, in the
phenomenological simplified model proposed by Aliev and Panfi-
lov, can be solved 500–1000 time faster than a PDE. Moreover,
Regarding the CPU times and performance of the model, the time
step we used in the direct model is 5 � 10�5 s (on meshes with
average length of elements of �1.2 mm); this resulted in a total
computation time of 25 min for 0.8 s of heart cycle on a regular



Fig. 10. Volumetric adjustment of conductivity for the second pacing location indicated in (a); (b) its computed d-map; (c) absolute error between d-maps at the two
locations; (d) evolution of error in activation time during the iterative adjustment; (e) sensitivity of model prediction to pacing location shown by the mean error in
depolarization time; (f) correlation plot between the conductivity values derived by zone for different pacing conditions, yielding a correlation coefficient of 0.89 (for the RF
heart); and (g) associated Bland–Altman analysis, with the red line corresponding to the mean difference and the blue lines correspond to ±2 SD (note that some zones have
the same value for d, see text for detail).
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PC (i.e., Intel� Core (TM) 2 Duo CPU 1.83 GHz, with 4 GB of RAM),
compared to 2 h for 1 s of heart cycle simulated with the Luo-Rudy
model using thirty 1.4 GHz processors in parallel (Xie et al., 2004)
or 2 days with the bidomain model (Potse et al., 2006) on 32 pro-
cessors. The latter study demonstrated that the propagations of the
action potential (AP) were only 2% faster in the bidomain model
than in the monodomain model, which also justifies our choice
of model. In addition, for the direct solution of AP, the code used
in this paper is relatively fast because we set e = 0.01 (where e�1

is a time constant associated to the recovery phase) as in the paper
from Nash and Panfilov (2004); however, a more realistic value
would be e = 0.001 (to be closer to the cell-membrane/unit vol-
ume), but such a small value needs a much finer mesh (likely 10
times smaller in each direction, which means 1000 time more un-
knowns in 3D, and a step 100 times smaller as well). Regarding the
model performance for the inverse problem: the solution for each
conductivity zone was derived in approx 15 min per zone on a reg-
ular PC (same as the one used in Relan et al., 2011), resulting in a
total computational time of approximately 6 h for the RF heart (for
26 zones), and approximately 12 h for the infarct heart (which had
52 zones).
In this paper, we report successful mapping of the AP measured
from the epicardium of large pathologic hearts in a porcine model,
ex vivo. Two relevant types of scars generating disturbed propaga-
tion in the presence of unexcitable areas were used in this experi-
mental model: acute lesions created via RF thermal damage and
chronic myocardial infarct scar. The mean APD of the waves opti-
cally recorded at low pacing frequency (1.1 Hz) in all these patho-
logic hearts were close to the mean values reported by us
previously in healthy porcine hearts (Pop et al., 2009a) and by
other researchers (Caldwell et al., 2005). The electrophysiological
characteristics of the optical AP immediately following RF lesion
creation ex vivo, revealed that the AP wave had no significant mor-
phological changes in the very thin transitional area (called border
zone, BZ) between healthy tissue (NZ) and RF scar (where,
abruptly, no optical APs were recorded). The mean APD90 in the
BZ (over three specimens) was reduced by only 4% compared to
APD90 in the NZ, and the AP wave had a barely distinguishable
change in steepness for the recovery slope. As demonstrated by
histology, this BZ zone surrounded the scar and contained the fol-
lowing: surviving myocytes with a healthy structural appearance
and preserved organization; some small collapsed vessels; mild



Fig. 11. MRI and histology of the infarcted heart: (a) reconstructed 3D ADC volume from MR scans, with the infarct delineated by the bright areas; (b) reconstructed fiber
directions from DT-MR images; (c) gross inspection of the ex vivo heart after preservation in formalin – the horizontal red line corresponds to the height from which the cross-
section slice was taken for whole-mount histology; and (d) Masson’s Trichrome specifically stains healthy myocardium in red and collagen in blue; selected areas from the
NZ, BZ and dense scar are shown at higher magnification.
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inflammation; and edematous fluid. All of these are typically found
in the red rim of the acute phase of RF thermal damage. Thus, most
likely, the small change in APD could be explained by the fact that,
in the BZ of RF lesion, the ionic concentration changes in the extra-
cellular space due to fluid accumulation (produced by an outward
‘drift’ of water, from the core of the RF scar toward its margin, dur-
ing dessication). Furthermore, several cells (contributing to the
optical signal from the pixels in the BZ) could undergo acute ische-
mia, which always triggers a shorter APD.

On the other hand, the relative changes in APD in the BZ of the
myocardial infarcts were found to be as large as 14%. The shorten-
ing of the APD in this area was consistently observable 4 weeks
after infarction in the occlusion-reperfusion model in all three
hearts we studied. This is in contrast with another optical study
performed in a non-reperfused rat model of MI 7 days after infarc-
tion which did not find significant changes in APDs in the border
zone; however, this could be due to the infarction model. That
study also demonstrated that APs in the BZ have lower amplitude
and slower up-stroke (potentially due to a reduction in the peak
sodium current), which is in accordance to our observations.
Meanwhile, a longitudinal study reported that the shortest APD
measured in canine myocardial cells is after 2 weeks and full
recovery of APD was observed at 2 months using canine infarcts
(Ursell et al., 1985). Our measurements fall between this range,
with values that are shorter than normal at week 4.

M-cells (typically found in the mid-wall) are known to exhibit
longer APDs in larger hearts, from pigs weighing 60–80 kg
(Stankovicova et al., 2000) and other species, including humans
(Janse and Wit, 1989). Our APD recordings from optical fluorescence
measurements were limited to the epicardium; however, we do not
expect significant transmural variation in our model because it was
demonstrated via intramural optrode measurements that juvenile
pigs (of similar weight to our study) lack M-cells (Caldwell et al.,
2005). From the modelling perspective, the fact that there is no
transmural heterogeneity in the APD for juvenile pigs means that
we correctly used the same a-values in the NZ across the wall; this
was valid for both models (regardless of the scar type).

The restitution curves derived in our studies from recordings at
different frequencies were as expected, with slopes <1 (for normal
myocardium). More importantly, for NZ, the simulated restitution
curve was produced after customizing the parameter ‘a’ in the
model with the corresponding value estimated from measure-
ments. We used the average value of ‘a’ and compared the resulting
curve to two experimental curves; the simulated curve behaved
rather well suggesting that it could be used to generically repre-
sent the memory effects in APD in normal porcine myocardium,
at least in the case of dynamic pacing (constant cycle length). We
acknowledge that it is difficult to customize simultaneously d, a
and k since they actually depend on each other (for instance, the
up-stroke of the AP wave can be change by manipulating either k
or d parameter). With this respect, the Mitchell-Schaeffer model,
for instance, is a superior model to use since a and d can be fitted
independently, as recently demonstrated in a study performed in
healthy hearts (Relan et al., 2011). However, we suggest that the
following pairs (a = 0.112, k = 8) and (a = 2, k = 2) could be generi-
cally used as input to this particular model, to reproduce the char-
acteristics of the AP wave in healthy and ischemic BZ areas,
respectively, for porcine hearts with 4–5 week old infarction. For



Fig. 12. Results from the model construction of infarct heart: (a) histogram showing a Gaussian mixture distribution for the myocardium; (b) histogram of each zone; (c)
constructed 3D volumetric mesh with the infarct zone highlighted in green; (d) a short-axis ADC map from DW-MRI; (e) resulting segmentation into three zones; and (f)
corresponding Masson’s Trichrome histology with magnified areas from the healthy/normal myocardium, border zone and the dense scar. Note that in (b), (c) and (e) NZ is
blue, scar is green and BZ is red.

Fig. 13. Comparison between experimental and simulated isochrones (after adjustment) in the infarcted heart: (a) 2D optical image showing the position of the electrode; (b)
measured isochronal map computed for depolarization times; (c) the 3D model in blue corresponding to resting phase, just prior the application of the stimulating pulse
(location indicated by the red bullet); (d) simulated depolarization times; and (e) corresponding error (i.e., absolute difference in activation time) after adjusting the local
conductivity.

M. Pop et al. / Medical Image Analysis 16 (2012) 505–523 519



Fig. 14. Volumetric adjustment of the conductivity maps in the infract heart: (a) and (b) are resulting 3D conductivity maps derived from adjustments associated with two
different pacing locations; (c) the corresponding absolute difference between the d-maps obtained from 2 pacing locations (note: all scales have normalized d); (d) evolution
of the mean absolute error in depolarization time as it converged to a minimum during the iterative adjustment process; (e) correlation plot between the conductivity values
derived by zone for different pacing conditions, yielding a correlation coefficient of 0.77 (for the infarcted heart), and (f) associated Bland–Altman analysis, with the red line
corresponding to the mean difference and the blue lines correspond to ±2 SD (note that some zones have the same value for local d).

Fig. 15. Histograms for angular differences between DTI and synthetic fibers, with orientations ranging over �70/+70�: (a) RF heart and (b) infarcted heart.
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d, one has to consider a certain scaling due to the size of the heart
and element size, but generally values of d = 2 (or 3) could be used
for healthy tissue, while reduced values should be used to repre-
sent the conductivity in the BZ of such chronic cases.

The values for conduction velocities measured in the NZ, and
consequently the anisotropy ratio computed in our study, are with-
in the normal range measured and reported by other investigators
in pig hearts and are close to values reported in rabbit, rat and hu-
man hearts under paced conditions in explanted hearts (Janse and
Wit, 1989; Sung et al., 2000). As a limitation, we did not measure
the velocity ratio in the BZ, which could be different than the
�1:2.7 ratio we obtained in normal myocardial tissue. Such spe-
cific values were found to be different in rat models (Mills et al.,
2005) and human hearts (De Bakker et al., 1988; Kawara et al.,
2001); these human studies reported a conduction velocity in the
transverse direction severely reduced due to fibrosis deposition
in the substrate area. Thus, the anisotropy ratio in the BZ could
have an impact from the model’s perspective; however, the latter
human measurements were taken in patients with heart failure,
years after infarction. Further experimentation is needed with this
respect, with smaller FOV and focusing on BZ areas, rather than
mapping the whole large heart.

Overall, the differences in electrophysiological measurements
across regions corresponded very well with the varying myocardial
characterization determined from MR images and histology. The
very thin BZ in the RF scar model was not included as a separate
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zone; thus this model was simplified to a two-zone model that
accurately predicted the propagation of the AP wave in the pres-
ence of a large unexcitable scar. The MI model has three MR-im-
age-based zones (whose extent was validated against histology
with good agreement).

The other achievement of this paper is that we successfully built
a realistic macroscopic 3D cardiac computer model of pathologic
hearts and performed 3D volumetric adjustment of conductivity
maps. The construction of each 3D computer model from MR
images was based on integrating information of scar morphology
and of structural anisotropy from MR measurements of fiber direc-
tions. The model customization and 3D volumetric adjustment
were successfully performed; for example, from one pacing loca-
tion, the adjustment reduced the absolute error in local depolariza-
tion times by a factor of 5 (i.e., from 58 ms to 11 ms) in the infarcted
heart, and by a factor of 6 (i.e., from �60 ms to 9 ms) in the heart
with the RF scar. Moreover, the sensitivity of adjusted conductivity
maps to different pacing locations was tested, and the errors in acti-
vation times were found to be of approximately 10–12 ms, suggest-
ing that any location can be used for model predictions.

Lastly, we studied the impact of perturbation in fiber directions
on the wave propagation. This was accomplished by generating
synthetic fibers datasets with helix angle allowed to vary transm-
urally between the following ranges (from the endocardium to the
epicardium): �50�/+50�, �60�/+60�, �70�/+70�, �80�/+80� and
�90�/+90�. Our results showed that the comparison between the
activation times obtained using these synthetic fibers datasets
and DTI fibers, yielded good correlation and small error for the
datasets with the helix angles varying from ±60�, ±70� and ±80�.
These datasets had the smallest RMS error and mean ± S.D associ-
ated with, and very good correlation coefficients (e.g. 0.94 for the
RF heart and 0.82 for the infarcted heart from one of the pacing
locations for the ±70� synthetic dataset). We therefore suggest that
synthetic fibers can be used within an acceptable margin of error
for the activation times, when DTI data is not available. This result
is also important for applications aiming to translate such 3D MRI-
based models in the clinics, since DTI is not used routinely in vivo
due to motion artifacts (Wu et al., 2006).

In summary, our results demonstrated overall that a simple
mathematical model of electrophysiology (Aliev–Panfilov model)
can be customized using optical measurements of AP as well as
MR images acquired in pathologic hearts. Several parameters can
be directly estimated from 2D optical action potential measure-
ments (a, k, anisotropy ratio); in addition 3D volumetric adjust-
ment of local conductivity is feasible for both models built from
pathologic hearts (i.e., with large conduction blocks RF acute lesion
Fig. 16. Convergence test for mean conduction velocity, CV (cm/s), computed from activ
points on the slab).
and infarct scar). Regarding 3D model customization from mea-
surements, we will address the parameter estimation step using
more complex and biophysical models. Such efforts are ongoing
and preliminary results were reported recently for healthy heart
models, showing that the error in activation time converges faster
using models of intermediate complexity, and that more parame-
ters corresponding to the APD and conduction velocity restitution
curves can be adjusted independently (Relan et al., 2011).
4.1. Limitations of the 3D computer model

Although we obtained good correspondence between measure-
ments and simulations after the customization step, our simple ap-
proach using a macroscopic formalism might not be accurate
enough compared to complex biophysical models. However, one
related issue is the spatial scale and mesh density used in compu-
tational studies. With this respect, it was recently shown in a wide
benchmark study (Niederer et al., 2011) that for complex biophys-
ical models (e.g. Ten Tusscher & co model) only very fine meshes
(sub-milimetric resolution) can be used to obtain accurate solution
and correct numerically convergence. In our study, we approached
the monodomain model with a ‘macroscopic formalism’ at tissue
level and not at the cellular level; thus, we used meshes with mean
element size of 1.3 and 1.5 mm. We acknowledge that this mesh
resolution could introduce a small error in the computation of up-
stroke and conduction velocity of wavefront. Therefore, to provide
justification for our meshes used, we performed an additional con-
vergence test in which we computed the conduction velocity on a
virtual slab of tissue (1 � 1 � 3 cm), using the Aliev–Panfilov model
and different mesh resolutions (i.e., element edge size of: 5 mm,
3.33 mm, 2.5 mm, 2 mm, 1 mm, 0.5 mm and 0.33 mm, respec-
tively). In Fig. 16, we plotted the mean conduction velocity at ten
different points (as the mesh is refined).

The convergence test demonstrated that meshes with element
edge less than 2 mm but close to 1 mm slightly underestimate
the CV compared to denser meshes (0.5 mm or finer resolution);
thus our future work will address in detail this particular problem
and the spatial-scale effect on the d-maps using realistic different
3D heart models (healthy and pathologic). Notable, a potential
solution could be the use of the recent pipeline proposed by Ca-
mara et al. (2011) (which is based on the optical and MRI data from
Pop et al., 2009b), where the authors demonstrated the advantages
and disadvantages of several simple and complex models, and
showed that these models can also be integrated into the same
pipeline.
ation times for different mesh resolutions (values displayed at ten random different
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5. Conclusion

In this work, we built a 3D cardiac model of pathology and param-
eterized the model using a simple monodomain macroscopic ap-
proach. Specifically, we compared the output of a computer model
calibrated with MRI data (depicting anatomy, scar heterogeneity
and fiber orientations), with measurements of action potential ob-
tained using an optical imaging technique in large, porcine hearts
with scars. Further analysis of AP wave characteristics (i.e.,
up-stroke, duration and restitution effects at different pacing fre-
quencies) and the speed of the propagation of the depolarization
wavefront can be used to adjust locally the model input parameters
in heterogeneous myocardium tissue (i.e., healthy and border zone).
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