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Abstract. This article describes a process to include in a volumetric
model various anatomical and mechanical information provided by dif-
ferent sources. Three stages are described, namely a mesh construction,
the non-rigid deformation of the tetrahedral mesh into various volumetric
images, and the rasterization procedure allowing the transfer of proper-
ties from a voxel grid to a tetrahedral mesh. The method is experimented
on various imaging modalities, demonstrating its feasibility. By using
a biomechanical model, we include physically-based a priori knowledge
which should allow to better recover the cardiac motion from images.

1 Introduction

In a previous publication [19], we presented an active electro-mechanical model
of the heart triggered by the electrocardiogram. The future objective of this
model is the automatic segmentation of temporal sequences of cardiac images
and the automatic extraction of functional parameters useful for the diagnosis
and for patient’s follow up [1]. This work was initially motivated by the seminal
work of McCulloch et al. on the construction of electro-mechanical models of the
heart [11] and the use of myocardium mechanical properties in a segmentation
process by Papademetris and Duncan [15].

Fig. 1. Left: isosurfaces extracted from the segmented heart of the Visible Human
Project. Middle: diffusion tensor image to define fiber directions. Right: the electro-
mechanical model of the heart in a 3D ultrasound image.

An intermediate stage to reach this objective is the ability to include in
the model various anatomical and mechanical information provided by different



sources. An example is the introduction of the precise location of the Purkinje
network, which provides important information on the sources of the electrical
impulse in the myocardium. Another example is the knowledge of the fiber di-
rections, which create dramatic mechanical and electrical local anisotropy. A last
example is the knowledge of interactions between the organ and nearby struc-
tures, which can be modeled by fixed points at specific locations for instance.

Once the model is equipped with the required attributes, it is then possible to
use a subset (or all) of these properties to guide its deformation in the images of
a studied patient. This last stage is different but connected to other approaches,
which also propose to use biomechanically controled meshes to compute defor-
mations [6, 9, 2, 5].

The process of building a biomechanical heart model can be decomposed into
three independent tasks. First, a geometric mesh consisting of a set of tetrahedra
is created from a volumetric image or from any other dataset. Second, this mesh
must be registered to a given image modality (such as Diffusion Tensor Imaging,
MR Imaging or histology reconstruction). Finally, the third stage consists in
retrieving the information of interest (fiber directions, anatomical regions,. . . )
from the volumetric image to the volumetric mesh. Since, we are using different
image modalities, several registration and information retrieval tasks may be
performed. The next three sections detail each of these three stages.

2 Volumetric Mesh Creation
We created a volumetric mesh of the heart that includes both right and left
ventricles. Indeed, many image modalities have a field of view large enough to
include both ventricles. Furthermore, the right ventricle motion provides also
information that are relevant clinically. We have chosen to use a geometric rep-
resentation based on tetrahedra rather than hexahedra (as proposed in [11])
in order to better capture the important geometric details of the RV and LV
during the image segmentation stage. Moreover, tetrahedral meshes allow to
perform local mesh refinement in a straightforward manner, whereas one must
use more sophisticated hierarchical adaptive refinement of basis functions for
achieving the same results on hexahedral meshes. However, it is widely accepted
that hexahedral finite elements are better suited than tetrahedral elements for
the deformation computation of incompressible materials.

When creating a tetrahedral mesh, one must take into account two parame-
ters. First the mesh size should be small enough in order to keep the computation
time compatible with user interaction. Second, the shape quality of tetrahedra
must be high enough in order to produce accurate results. Our approach has been
to create a triangular mesh of the ventricles as the result of a several low-level
tasks : image segmentation, morphological operations, image smoothing, con-
nected component extraction, isosurfacing and mesh decimation. The quality of
triangular elements and their sampling (increased at parts of high curvature)
was controlled visually. The tetrahedral mesh was generated with this triangular
shell using the commercial software Ghs3d1 developed at INRIA. The resulting
mesh has 2000 vertices and 10000 tetrahedra.
1 http://www-rocq.inria.fr/gamma/ghs3d/ghs.html



3 Registering the Mesh to a given Image Modality

The registration of our biomechanical heart model to a given image modality is
necessary in order to fuse multiple information in the same volumetric model.
Furthermore, this stage is also a prerequisite before performing the segmentation
and tracking in a image modality (MR, 3D US or functional imaging) used
clinically. For this reason, this registration stage must be robust but also fairly
efficient since it is part of interactive segmentation software.

To achieve the non-rigid registration, we rely on a coarse-to-fine approach
proposed by Montagnat et al. [12] that smoothly combines registration and de-
formable model framework. At a coarse scale, an Iterative Closest Point [3] type
of algorithm is applied with successively a rigid, similarity and affine transfor-
mations (see section 3.2). At a fine scale, the minimization of an internal and
external energy allows to obtain more local deformations (see section 3.3). For
both methods, it is necessary to determine the closest boundary point to each
mesh vertex.
3.1 Computation of the Closest Boundary Points
Few authors [7] have previously proposed to segment myocardium images based
on a volumetric model. They often rely on interactive segmentation [15] or pre-
computed distance maps [17] to define the boundary attracting force driving
their models. In our approach, the computation of this force at a surface vertex
depends not only on the vertex location but also on its normal direction. Dif-
ferent type of forces may be applied depending on the image modality. We have
chosen to combine intensity and gradient information with a region-based ap-
proach [13] applied to the intensity profile extracted at each vertex in its normal
direction. It consists in defining a region with a range of intensity values and
then finding its boundary by looking at the voxels of high gradient value. The
extent of the intensity profile is decreased in the coarse-to-fine process.

Since there are often occlusions or very noisy parts (for instance, the right
ventricle may not be visible or may be greatly biased), we can set the extent
of the image interaction (external force) to different values depending on the
anatomical regions of our model (determined in section 4): parts which are not
seen in the image do not contribute to the external energy.
3.2 Computation of the Global Transformation
In our case the initial alignment is simply given by the correspondence of the
image and model axes and the rough super-imposition of the ventricles. Then,
we iteratively estimate the point matches and the transformation in an Iterative
Closest Point-like loop. A rigid transformation is first estimated, then a similarity
and finally an affine transformation.

The problem we had with standard least-square similarity and affine estima-
tions in such an iterative loop with real data (like MRI) is that a global minimum
is obtained if all model points are matched to the same image point, in which
case the transformation is singular (null determinant of the linear part) but the
error is null (thus minimized !). In practice, we observed that the least-square
estimation was biased toward singular transformations and that the ICP loop
often lead to collapse the model into a single voxel.



To avoid this problem, we use a new affine registration criterion C which
is symmetric and forbids singular transformations (xi and yi are the matched
model and image points, A the affine transformation and t the translation):

C(A, t) =
∑

i

(A.xi + t− yi)t.(Id + At.A).(A.xi + t− yi)

This criterion can be derived from a statistical formulation and has a closed
form solution, detailed in [16]. The scale estimation is different from the least-
squares and the Procrustes ones: it is symmetric (like the Procrustes method [8])
but takes into account the individual matches and not only global properties of
the point sets.

The use of this criterion allowed to initialize well the model with a global
transformation even in biased images, before fitting the model with a better
accuracy using local deformations.

3.3 Computation of the Local Deformation

At this stage, our biomechanical model evolves under both the influences of
an Internal Energy computed from the physical properties of the organ and an
External Energy computed from the image, as defined in the deformable model
framework.

Internal Energy The internal energy is computed with linear elasticity using
the Tensor-Mass model [4]. We use the Finite Element Method with linear tetra-
hedral elements and mass-lumping in a Newtonian differential equation with an
explicit time integration scheme. If we want to fit a model built from a heart to
an image from another heart, there is no physical basis to the deformation, so we
use isotropic elasticity with small Lamé constants to allow greater deformations.
But if we want to adapt a model to another image of the same heart, we use
anisotropic linear elasticity with Lamé constants, as it physically corresponds to
a deformation of the myocardium. And we can also use the anatomical regions
to better control the internal energy as we can include different regions (like fat,
ischemic zones,. . . ) modeled with different Lamé constants.

External Energy At each step of the deformation, we apply forces on the sur-
face nodes of the model along the normal which are proportional to the distance
to the match point. The a priori information used is the fact that the points of
the mesh we want to match with the image are on the surface of the model and
that we know the intensity profile of the boundaries we want to match on these
points.

3.4 Results of the fitting of the model to a 3D image

We first experimented this method by fitting a canine heart model from dtMRI
to the human heart of the VHP (see fig. 2). We used this segmented VHP
heart image to define the anatomical regions in the mesh. Although the rotation
between the initial mesh and the data was quite important and we were fitting a
canine heart mesh to a human image, the rigid to affine to local transformation
sequence allowed us to register the model to the image and gave a qualitatively
good segmentation of the myocardium.



Before the transfer of the regions from the image to the mesh by the described
rasterization process, we built distance maps from the anatomical image: it al-
lows to assign regions to the parts of the mesh which are not included in the
anatomical image due to the limitations of the fitting.

Fig. 2. Fitting of a canine heart model to the Visible Human heart image. dark: before
deformation, light: after deformation

Another experiment was the fitting of the same canine model to a human
cardiac MRI. The similarity and the affine transformations could not be com-
puted with the classical least-squares criterion and we had to use the new cri-
terion presented in 3.2. As the right ventricle is very noisy in this image, we
only used regions where the myocardium was visible to compute the external
forces. MR Images are biased, and a consequence is that the intensity is higher
in the apex than around the base. Automatic segmentation of the myocardium in
MRI is rather difficult and the presented method gave qualitatively good results
(cf. fig. 3).

Fig. 3. Fitting of a canine heart model to a human MRI. dark: initial mesh, light: after
deformation

The fitting of the model in a 3D image takes around 30 s on a standard
PC with a 10 000 tetrahedra mesh (due to the anisotropy of the MRI voxels, a
finer mesh would not be useful). It is fast enough to be visually controled and
interactive.

4 Assignment of Anatomical Properties
Our objective is to store several informations originating from different image
modalities inside the same volumetric mesh. This information may be quan-
titative in the case of Diffusion Tensor Magnetic Resonance Imaging (dtMRI)



where fiber directions of the myocardium [10]) are extracted. But it can also
be qualitative (semantic) when extracted from precisely segmented anatomical
atlases built from the Visible Human Project (VHP) [18] or histology [14]. This
information may be stored at the vertex or tetrahedron level.

If we assume that the mesh has been precisely registered with a given image
modality, we need to find for each tetrahedron (resp. vertex) of the mesh, its
corresponding voxels in the volumetric image: this is called the rasterization
stage. If the information is to be stored at a vertex, we estimate the attribute
with a trilinear or nearest-neighbor interpolation depending if it is a quantitative
or qualitative parameter. However, when the information is to be stored at a
tetrahedron, we first find the image voxels whose center points are located inside
this tetrahedron and then assign either the median or average value depending
of the signal to noise ratio.

This set of voxels is found by performing a cascading set of 1D drawing
operations. First, the highest and the lowest horizontal planes intersecting the
tetrahedron is determined. Then we find the analytical intersection of its six
edges for each intermediate horizontal planes spaced by one voxel height. Thus,
we define for each plane, an intersected convex polygon (triangle or quadrilateral)
for which we must again find all inside voxels. The same algorithm is applied for
filling this polygon by selecting all parallel planes orthogonal to the X direction
for instance. A more complex algorithm would consist in taking into account the
partial volume effect by weighting each voxel by its amount of inclusion inside a
tetrahedron. However, considering that the size of tetrahedra is larger that the
size of a voxel, we think this level of accuracy is not necessary. A result of this
process is a biomechanical model of the heart for cardiac image analysis (fig. 4).

Fig. 4. Left: segmented heart image of the VHP to define anatomical regions. Mid-
dle: dtMRI vectorial image to define fiber directions. Right: dorsobasal left epicardial
ventricle zone and anisotropy displayed on the final biomechanical model.

5 Conclusion and Perspectives

We presented an efficient process to build biomechanical models using a fast vol-
umetric deformation method to fit these models to 3D images. Using a biome-
chanical model ensures a strong topology constraint and allows to easily include
many anatomical and mechanical properties. The deformable model framework
is efficient to link biomechanical models and medical images as the image inter-



acts as a boundary condition in the model evolution. Additional videos can be
found on the web2.

A near perspective is to segment sequences of cardiac images by propagating
the fitting result obtained a time t as the initialization in the image at time
t + 1. Preliminary results were obtained on a cardiac SPECT sequence of the
left ventricle (fig. 5). The evolution of the wall thickness was well represented by
this segmentation.

Future work will couple this with the electro-mechanical model presented
in [19] to propose a spatiotemporal segmentation process for cardiac images
based on a dynamic model of the heart. By using a biomechanical model with
an electro-mechanical internal energy, we include a priori knowledge on the ge-
ometry and the motion, and we believe it should allow to better recover the
cardiac motion from cardiac images.

Fig. 5. Tracking of the left ventricle in a 4D SPECT sequence (8*64 × 64 × 64). The
right ventricle regions have no interaction with the image as they do not appear in it.
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