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Abstract. Despite important recent efforts in cardiac electrophysiology
modelling, there is still a strong need for validating macroscopic models,
that are well suited for diagnosis and treatment planning. In this paper
we present a method to adjust the parameters of a macroscopic elec-
trophysiology model on depolarisation and repolarisation maps obtained
ex-vivo from optical imaging. With this imaging technique, optical fluo-
rescence data are recorded with high spatial and temporal resolution on
a large healthy porcine heart. A model of the myocardium is built from
the MR images of the same heart, which also integrates the myocardial
fibre orientation measured with DTI. We then present the first quantita-
tive adjustment of a personalised volumetric model of the myocardium.

1 Introduction

In order to provide a better understanding of the mechanisms involved in cardiac
arrhytmias, a variety of mathematical models have been developped for several
decades to numerically simulate the cardiac electrophysiology at different scales.
There are three main categories of such models. Ionic models [1] of the cardiac elec-
trical activity describe the variation of ion concentrations across the membrane
of cardiac cells. They may include a large number of variables and parameters.
Their relative complexity usually leads to large computation times, but they can
be precisely validated at the cell level. Far more simple are the Eikonal-based mod-
els [2], which only describe the time at which a depolarisation wave reaches a given
point. At an intermediate level of complexity, we chose to use phenomenological
models based on the transmembrane potential but without the different ion con-
centrations. They are based on PDEs that can describe with very few variables
the coupled depolarisation and repolarisation processes.

This paper tackles the important issue of creating personalised electrophys-
iology models of the heart. Estimating the parameters of a model in order to
decrease the error between the simulated variables and the observed ones is typ-
ically an inverse problem. Authors [3] focused recently on parameter estimation
of the 63 variables Beeler-Reuter model at the cell level, but ionic models are not
well suited for macroscopic model inversion due to the high number of param-
eters and variables to estimate. Theoretical results were recently demonstrated
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on the estimation of the bidomain model parameters and anisotropy, but only
on a 2D surface, and with synthetic data [4]. On the other hand, the estimation
of apparent electrical conductivity has been reported from clinical or experimen-
tal data based on Eikonal [5] and phenomenological models [6]. Although those
pioneering works have reported good agreement between simulation and obser-
vations, they are somewhat limited since they only consider the depolarisation
propagation on a surface and in some case [6] without taking into account the
fibre orientation.

The objective of our work is to create a volumetric personalised electrophys-
iology model of the myocardium that takes into account the fibre orientation.
Our approach relies on a tetrahedral mesh of the myocardium and estimates re-
gionally two parameters in order to fit both the depolarisation and repolarisation
isochrone maps. The parameter estimation is based on a calibration stage that
takes advantage of existing analytical relationships in 1D between parameters
and data. Furthermore, we rely on state of the art optical fluorescence imag-
ing techniques to acquire ex-vivo isochrone maps on a pig heart. After applying
different signal processing algorithms, dense maps can be retrieved. We then
describe the creation of a computational personalised electrophysiology model
from anatomical MR images, fibre orientation being extracted from subject spe-
cific Diffusion Tensor Imaging. Finally, we show the results of the estimation and
discuss about the relevance of a synthetic model of fibre orientations.

2 Simulation of the Transmembrane Potential

The contraction of the heart muscle, the myocardium, is triggered by the depo-
larisation of the transmembrane potential. After depolarisation, a plateau phase
begins during which the contraction develops ; this is the action potential du-
ration (apd). The transmembrane potential then returns to a non-excited state
(step called repolarisation). We use a phenomenological reaction-diffusion type
model designed by Aliev-Panfilov [7], based on the transmembrane potential, to
describe this propagation. It also takes into account the restitution phenomenon,
i.e. the relation between heart rate and action potential duration. However, since
we simulate and observe only one single cardiac cycle, a simplified repolarization
equation, which neglects the description of the restitution curve, is used:

{
∂tu = div(D∇u) + ku(1 − u)(u − a) − uz
∂tz = −ε(ku(u − a − 1) + z) (1)

In this formulation, u is a normalised transmembrane potential, and z is a vari-
able modelling the repolarisation. The diffusion term is controlled by the diffu-
sion tensor D which is similar to a physical conductivity. In the main direction
of the tensor, this pseudo-conductivity is set to d which is one of the parameters
we adjust, and to d/2.52 in the orthogonal directions [8]. Parameter k controls
the repolarization, a the reaction phenomenon and ε the coupling between the
transmembrane potential and the repolarization variable. This system is solved
over a volumetric tetrahedral mesh of the left and right ventricles using the finite
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elements method. The excitation is generated by imposing a potential on a small
set of vertices for a few milliseconds. The time integration of the system is done
with an explicit Euler scheme.

3 Data Acquisition, Processing, and Fusion

Optical Imaging. It is very challenging to acquire quantitative data that pre-
cisely reveals in vivo physiology. However, useful data can still be extracted from
electrical or, as it is the case here, optical recordings. They consist of the instants
when the depolarisation (and the repolarisation) occurs at specific locations of
the heart. These data, called activation times, are enough to estimate the speed
of the depolarisation front, and thus to adjust the pseudo-conductivity d, and
to calibrate the parameter a regarding the action potential duration, i.e. the
difference between repolarisation and depolarisation times.

In this paper we performed the adjustments using optical recordings obtained
in a healthy porcine heart. Large hearts are preferred for this work as they are
close in size to human hearts. The explanted hearts were attached to a Lan-
gendorff perfusion system which permits to maintain the electrophysiological
integrity of the hearts over 1-2 hours. The fluorescence dye (reflecting directly
the changes of transmembrane potential) and the electromechanical uncoupler
were injected into the perfusion line (more details are given in [9]). The hearts
were paced with an electrode near the apex for 5 ms. The fluorescence signals are
captured with high temporal (270 fps) and spatial (<1 mm) resolution, using a
pair of CCD cameras (BrainVision, Jp). The signals giving the action potential
waves at each pixel (Fig. 2a) were then filtered and further analysed to get a
consistent map of activation times. The signal is scaled for each pixel between its
baseline value and its maximum, cropping under the baseline which we got from
segmenting the values into two clusters: the baseline being defined as the mean
value of the lowest cluster. The scaled recording was then blurred by convolution
with a 3D Gaussian, isotropic through space but wider in time (Fig. 2b). The de-
polarisation time is computed with the first derivative of each pixel signal, which
presents a large peak when the depolarisation occurs. The repolarisation time is
detected when the signal decreases 90% from its maximal value after depolari-
sation. Finally, the time maps for each cycle are reconstructed, stored as images
and rectified based on the cameras calibration and stereoscopic parameters.

Optical and MR Data Fusion. At the end of the optical image acquisition,
markers were put on the surfaces of the hearts, imaged with the CCD cameras,
and the pig hearts scanned with a 1.5T Signa GE MR scanner. It can provide a
detailed anatomical description of both the geometry and the fibre orientation
(Fig. 1a,b). The surfaces of the hearts were created using classical segmenta-
tion algorithms (thresholding, mathematical morphology, isosurface extraction)
and volumetric meshes were generated with a meshing software (GHS3D, devel-
oped at INRIA) resulting in tetrahedral geometries of approximatively 75 000
elements, with fibre orientation (Fig. 1c). Several hearts were imaged this way.
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(a) (b) (c)

Fig. 1. MRI Data: (a) slice of the 3D volume used to create the myocardial mesh, (b)
DTI fibre tracking, (c) generated volumetric mesh with assigned fibres (lateral views)

(a) (b) (c)

Fig. 2. Activation times measurement: (a) raw signal (anterolateral view) (b)
isochrones computed from filtered signal on stereoscopic surface, (c) projection of the
depolarisation times onto the MR derived mesh using registration (stereoscopic surface
in transparency)

However, due to the complexity of the overall process, the full adjustment process
was only done on one dataset.

The optical images recorded by the 2 CCD cameras were used to reconstruct
the 3D surface of the heart using stereoscopy. Moreover, several opaque markers
were glued onto the epicardium to provide a way to register the optical images
with the MR images. We estimated a rigid transformation between the markers’
optical and MR coordinates by minimizing the least-square difference. Each pixel
of the optical recording corresponds to a vertex on the grid mesh which results
from the stereoscopic reconstruction of the surface of the pig heart (further
details can be found in [10]). Therefore the depolarisation front was spatially
reconstructed, discretised on the mesh. We then projected these data onto the
surface of the registered volumetric mesh from MR Imaging (results at Fig. 2c).

4 Parameter Estimation

Preparations. Setting constant parameters on the whole mesh would not allow
us to take into account the local variations of the conduction velocity we observe.
The left ventricle is therefore divided into 17 zones as defined by the American
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Heart Association and a similar division into 9 zones is applied to the right
ventricle.

From the one dimensional analysis of the Aliev and Panfilov model, it can be
shown that planar waves are solutions, and it provides a relationship between the
conduction velocity c and the first equation parameters [2] : c =

√
2kd (0.5 − a).

The same analysis was made for the relation between a and the action potential
duration (apd), which gives: apd = (a − 1)2 /4a. Again, this formula is only the
restriction to one dimension since in the case of a three dimensional propagation,
the curvature of the diffusion front affects its velocity. However this relation still
tells us that the diffusion speed depends on several parameters and provides a
probable relationship.

It seems more appropriate to first adjust the parameter a from the action
potential duration, since it does not depend on any other parameter, and then
adjust the pseudo-conductivity parameter which would reflect the differences in
conduction velocity in the tissue. In the Aliev-Panfilov model, d and k are the
main parameters that affect this propagation speed. The d parameter represents
the diffusion properties of the myocardial tissue whereas k accounts for the re-
action of the ionic channels. Both can represent the variations of the electrical
velocity of the tissue. As we only have one measure to adjust this speed, the
depolarisation time, we chose to locally adjust the value of the parameter d,
which represents this pseudo-conductivity, while keeping k globally constant.
Due to the imaging and registration errors, the activation times could present
local variations. To avoid the amplification of this noise by the spatial deriva-
tives of these depolarisation times, we smoothed the local speed computation
by averaging it over a neighbouring area, weighted by the Euclidean distance
between the vertices and the point where the speed is computed.

Calibration. The calibration method involves simulating several propagations
on the mesh using a range of values for d (resp. a), and to look at the corre-
sponding speeds (resp. action potential duration). Then a function is fitted in the
least square sense to these points in order to extract an analytical relationship
between d and c (resp. a and apd), selected from the one dimensional analysis:

c(d) = α
√

d + β and apd(a) =
γa2 + δa + μ

a
(2)

We added a constant β to the relationship between d and c in order to better fit
the numerical simulations. The idea of the calibration is also to take into account
the numerical diffusion and discretisation errors in the calibration function.

This approximation is determined by computing the median conduction veloc-
ity (resp. apd) of each zone for each value of the parameter d (resp. a) throughout
a range of values. Then we minimise the least square difference to estimate the
function parameters. Once this relationship is estimated, we can use it to ini-
tialise the value of each parameter di (resp. ai) for each zone, using the mean
conduction velocity of each zone c̄i (resp. the mean action potential duration

¯apdi) computed with the measured activation times:
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di =
(

c̄i − β

α

)2

and ai =

( ¯apdi − δ
)

±
√( ¯apdi − δ

)2 − 4γμ

2γ
(3)

Regarding the apd, since there are usually two solutions, we choose the one
within the range of acceptable values for parameter a.

Iterative adjustment. After the initialisation of the chosen parameter, we
iteratively improve the model fitting, with a simple gradient descent algorithm.
We minimise the following criteria on each zone: J(di) = (c̄i−ĉ(di))2 and J(ai) =
( ¯apdi − ˆapd(ai))2 where ĉ(di) is the median value of the simulated speed on the
given zone using the parameter di ( ˆapd(ai) defined alike). By minimising the
differences between the simulated and measured depolarisation speeds for each
zone instead of using the depolarisation times, we adjust all zones at the same
time and thus considerably reduce the number of simulations to compute the
gradient descent algorithm. Indeed, we can simplify the problem by assuming
that the conduction velocity (and the action potential duration) of a zone is not
strongly influenced by their neighbouring velocities.

5 Results

Action potential duration. Even if the initial value for a was rather close to
the measured values, the mean error on apd was still 44.6 ms (≈15% of APD)
(Fig. 3b) before the adjustment process, 28.1 ms (≈9%) after calibration, and
21.5 ms (≈7%) after adjustment (Fig. 3c). The histograms of errors (Fig. 3a)
clearly show this decrease. We find a shorter action potential duration on the
right ventricle, as described in the literature.

Depolarisation times. Before calibrating the model, the mean absolute error
on depolarisation times was 30.6 ms (≈17% of the depolarisation duration)

(a) (b) (c)

Fig. 3. (a) Histogram of errors on action potential duration across vertices (abscissa :
error values in ms) and map of the error (b) before and (c) after adjustment (times
in ms, anterolateral views)
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(a) (b) (c)

Fig. 4. (a) Histogram of errors on depolarisation time across vertices (abscissa : error
values in ms) and map of the error (b) before and (c) after adjustment (times in ms,
anterolateral views)

(a) (c) (d)

Fig. 5. Values of parameters after adjustment (a) of parameter a (c) of pseudo-
conductivity d with measured fibre directions, (d) of pseudo-conductivity d with syn-
thetic model of fibres (anterolateral views)

(Fig. 4b). After the initial step of calibration, it decreased to 12.0 ms (≈7%) and
the gradient descent algorithm further reduced it to 10.0 ms (≈5.5%) (Fig. 4c).
With an error nearly divided by three, the calibration clearly improved the model
accuracy and proved itself to be more useful than just an initialisation step of
the iterative adjustment.

As in-vivo DTI is not yet available, we tested the relevance of a synthetic
model of the fibre orientation, for clinical applications. The generation of syn-
thetic fibres is based on the assumption that the elevation angle of the fibres
on the endocardium and the epicardium is constant (+90◦ and −60◦ respec-
tively, to match the measured fibres), and that it varies linearly in between. Al-
though the initial error on depolarisation times was higher than before (37.9 ms,
≈21% of the depolarisation duration), it decreased at nearly the same level than
the previous adjustment final result with 10.7 ms (≈6%), showing that in this
healthy case, the synthetic fibres provide a good alternative. Moreover, we can
see with the comparison of estimated pseudo-conductivity maps with natural
and synthetic fibres (Fig. 5c and 5d) that synthetic fibres provide a smoother
variation.
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6 Conclusion

In this work we have verified that phenomenological models having a small num-
ber of parameters are well suited for personalisation, while keeping their ability
to match the main characteristics of the action potential propagation: duration,
speed, anisotropy. The processing of the activation times gives good results and
the stereoscopic reconstruction and registration are accurate enough to convert
the optical measurements into a smooth dataset of epicardial activation times.
This leads to an estimation of parameters which considerably decreases the final
error between model predictions and experimental measurements. Finally, the
relevance of a synthetic anisotropy model was demonstrated. In the future, a
multi-resolution scheme with an automatic recursive zone splitting should help
the parameter optimisation process in convergence and provide a better segmen-
tation of the locations where the conductivity varies significantly.
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