
UNIVERSITY OF NICE - SOPHIA ANTIPOLIS

DOCTORAL SCHOOL STIC
SCIENCES ET TECHNOLOGIES DE L'INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

PhD of Science

of the University of Nice - Sophia Antipolis

Specialty : Automatisme, Traitement du Signal et

des Images

Defended by

Marco Lorenzi

Deformation based morphometry of the brain

for the development of surrogate markers in

Alzheimer's disease

Thesis Advisor: Xavier Pennec

prepared at INRIA Sophia Antipolis, Asclepios research group
defended on December 20th, 2012

Reviewers : Olivier Colliot - CNRS - ICM

Sebastien Ourselin - University College London

Daniel Rueckert - Imperial College London

Advisors : Xavier Pennec - INRIA Asclepios

Nicholas Ayache - INRIA Asclepios

Jury President: Giovanni B. Frisoni - IRCCS San Giovanni di Dio Fatebenefratelli





Acknowledgments

I would like �rst to thank my thesis advisor, Xavier Pennec. His invaluable guidance
was fundamental for the success of this project, and his creativity and passion for
research will be always an important source of inspiration for my work. I would
also to gratefully acknowledge Nicholas Ayache for his precious advises, and for the
enthusiasm and positivity that he can always transmit in our meetings. I wish to
express my deepest gratitude to Giovanni Frisoni, who trusted and strongly sup-
ported me since my �rst steps in this �eld. This project is also the result of his
openness and enthusiasm.

A sincere thank to the jury members Olivier Colliot, Daniel Rueckert and Se-
bastien Ourselin, who reviewed this manuscript and provided me important insights
for the future development of my work.

I would also like to take the opportunity to thank Marc Niethammer, Bjoern
Menze and Stephen Marsland, for the insteresting discussions and time spent to-
gether during their visit to Asclepios team, and I'm greateful to Isabelle Strobant
and to the administrave o�ce of IRCCS Fatebenefratelli for the kind help in orga-
nizing the PhD project.

This PhD was a wonderful opportunity to share time and experiences with col-
leagues and friends from Asclepios and LENITEM teams. I'm greateful to all of
them, in particular to Tommaso Mansi, who took care of me during my �rst times
at Asclepios; Christof Seiler, for showing me how easily days can be longer than 24h;
Vikash Gupta, for hosting and feeding me in the moment of need; Martina Boc-
chetta, for all the things I learnt from her. I would also to specially thank Rossana
Ganzola, Federico Spadoni, Moira Marizzoni, Alberto Redol�, Chiara Barattieri,
Hervé Lombaert, Maxime Sermesant, Vincent Garcia, Stephan Schmidt and An-
drew Sweet.

I would like �nally to thank my mother and my father for their continuous
support and in�uence, and Barbara, for being my closest supporter and for under-
standing me despite the sometimes di�cult moments. Thank you!





Table of Contents

1 Introduction 1

1.1 Alzheimer's Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Computational Anatomy for Research and Therapy in AD . . . . . . 4
1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . 8
1.4 List of Publications and Awards . . . . . . . . . . . . . . . . . . . . . 11

I Theory & Algorithms for Evaluating and Analyzing the Mor-
phological changes in MRIs 15

2 A Stable and Robust Framework for Measuring Morphological

Changes Through Non-rigid Registration. 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 LCC-Demons: Symmetric Unbiased Di�eomorphic Registration . . . 22
2.3 Stable and Consistent Measures of Brain Changes: from Voxel to

Regional Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Measuring the Longitudinal Changes in Alzheimer's Disease . . . . . 30
2.6 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . 33
2.A Optimization of the LCC-Demons Correspondence . . . . . . . . . . 34

3 Ladders for the parallel transport of deformations in time series

of images 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Ladders for the Parallel Transport of Tangent Vectors. . . . . . . . . 45
3.3 Application to Images . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Experiments on Synthetic and Real Data . . . . . . . . . . . . . . . . 52
3.5 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . 56

4 Geodesics, parallel transport & one-parameter subgroups for dif-

feomorphic image registration 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Di�erential Geometry on Lie Group . . . . . . . . . . . . . . . . . . . 62
4.3 A Glimpse of Lie Group Theory in In�nite Dimension . . . . . . . . 68
4.4 Practical Di�erences between Metric and Group Geodesics in Regis-

tration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Cartan Parallel Transport along Group Geodesics in Practice . . . . 78
4.6 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . 86



iv Table of Contents

II Modeling the Longitudinal Atrophy Progression in the Brain:
from Normal Aging to AD 89

5 Longitudinal Analysis of Deformation Trajectories: Modeling the

Di�erential Atrophy in Clinical Populations. 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Modeling Changes in Time Series of Images with the SVF Framework 93

5.3 E�ects of Aβ1−42 Positivity on Healthy Aging . . . . . . . . . . . . . 96

5.4 Results and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . 98

III Discovery and Quanti�cation of the Longitudinal Atrohpy 99

6 Regional �ux analysis of longitudinal atrophy in Alzheimer's dis-

ease. 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Helmholtz Decomposition for Stationary Velocity Fields . . . . . . . 103

6.3 Flux-based Analysis of Longitudinal Trajectories . . . . . . . . . . . 104

6.4 Apparent Gain and Loss of Matter in Alzheimer's Disease Through
Regional Flux Quanti�cation . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . 108

7 Flux analysis for the reliable measurement of the longitudinal at-

rophy in Alzheimer's disease 111

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Vector Field Divergence to Quantify the Observed Atrophy . . . . . 113

7.3 Measurement of the Hippocampal and Ventricular Longitudinal
Changes in AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Longitudinal Atrophy on the ADNI Dataset . . . . . . . . . . . . . . 116

7.5 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . 117

IV Disentangling the Normal Aging from the Pathological AD
progression 119

8 Quantifying the Pathological Atrophy After Detection and Re-

moval of the Normal Aging. 121

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.2 Projecting the Brain Anatomy on the Healthy Aging Trajectory . . 123

8.3 Virtual Aging and AD Speci�c Atrophy on the ADNI Dataset . . . . 126

8.4 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . 128



Table of Contents v

9 Conclusions and Perspectives 131

9.1 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3 Perspectives and Future Applications . . . . . . . . . . . . . . . . . . 133

V Appendix 137

Appendix A Log-Demons Spatio-Temporal Registration 139

A.A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.B Spatio-Temporal regularization in the log-Demons . . . . . . . . . . . 139
A.C Preliminar Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.D Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix B Locally weighted non-rigid registration 143

B.A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.B Locally weighted log-Demons registration . . . . . . . . . . . . . . . 144
B.C Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.D Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . 145

Appendix C Enrichment through biomarkers in clinical trials of

Alzheimer's drugs in patients with mild cognitive impairment 147

C.A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.B Patient Enrollment through Screening with the AD Biomarkers . . . 148
C.C Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix D Modelling power for change in hippocampal atrophy

with di�erential rates of subject removal 153

D.A The PHARMA-COG european project . . . . . . . . . . . . . . . . . 153
D.B Calibrating the Enrollment Ratio Between Aβ42+ and Aβ42- . . . . 154
D.C Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 157





Chapter 1

Introduction

Contents

1.1 Alzheimer's Disease . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 AD Mechanisms and Treatments . . . . . . . . . . . . . . . . 2

1.1.2 The Role of MRI in the Study of AD . . . . . . . . . . . . . . 2

1.2 Computational Anatomy for Research and Therapy in AD 4

1.2.1 Non-Rigid Registration: discoverying the AD dynamics . . . 4

1.2.2 Non-Rigid Registration: quantifying the AD e�ects. . . . . . 6

1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . 8

1.4 List of Publications and Awards . . . . . . . . . . . . . . . . . 11

1.1 Alzheimer's Disease

Alzheimer's disease (AD) is a neurodegenerative pathology of the brain, and is the
most common form of dementia. This disease is diagnosed typically in elderly peo-
ple, but early appearance of symptoms may happen before the age of 65, especially
in presence of speci�c genetic factors (familial AD). Even though AD is a progressive
disease and may develop di�erently in individuals, a set of common symptoms can
be identi�ed at the earlier stages like memory and functionality loss, mood alter-
ations, and a general di�culty in carrying out everyday activities. As the disease
progresses, the impairment in memory, communication and mobility worsens, and
the individuals gradually become totally dependent on the caregivers. The world-
wide prevalence of AD in the world is 26.6 millions and it was estimated that, based
on the current United Nations projections, it might quadruple by the year 2050,
leading to a �looming epidemic� [Brookmeyer et al., 2007]. The estimation is a con-
sequence of the global aging of the world's population. At the present moment there
is neither cure nor preventive measures for this pathology [Daviglus et al., 2010]. It
becomes therefore evident the burden on the society in terms of enormous social
and economical costs [Demokis, 2007], and even mild therapeutic advancement in
slowing down the pathological progression would result in signi�cant bene�ts for
patients, caregivers, and more generally on the healthcare system.
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Figure 1.1: High resolution T1 MRIs of A) an healthy elder (005_S_0602) and B)
an AD subjects (005_S_0221) of the ADNI database.

1.1.1 AD Mechanisms and Treatments

AD is characterized by the co-occurrence of di�erent phenomena, starting from the
deposition of amyloid plaques and neuro�brillary tangles, to the progressive synap-
tic, neuronal and axonal damage. These �ndings reported by several independent
scienti�c studies led recently to the formulation of the so called �amyloid cascade
hypothesis� [Jack et al., 2010a], in which the authors proposed a temporal model
for the progression of the neurodegenerative biomarkers in AD. According to this
model, the pathology is initiated by the accumulation of amyloid deposits in the
brain, which can occur decades before the development of the clinical symptoms.
The amyloid deposition induces a cascade of pathological processes which lead to
the endpoint of stereotypical pattern of neuronal loss in the temporal and cortical
areas (Figure 1.1). Above a certain threshold of structural damage, the amnestic
symptoms progressively increase from the initial appearance of memory disturbance,
which characterizes the clinical intermediate stage commonly de�ned as amnestic
mild cognitive impairment (MCI), to the widespread cognitive de�cits in multiple
domains (Figure 1.2).

The recent failure of AD anti-amyloid drugs in showing a protective e�ect against
neurodegeneration [Palmer, 2011] led to the current rediscussion of the amyloid
cascade model [Fjell and Walhovd, 2012]. This pointed also the attention to the
evaluation of the treatments in the presymptomatic and even prodromal stages of the
disease, when the e�ectiveness of the drug can be maximised and the pathology is not
yet in the more advanced and probably irrecoverable stages [Reiman et al., 2010].

1.1.2 The Role of MRI in the Study of AD

Structural atrophy of the whole brain characterizes the transition from MCI to AD
and it was shown to strongly correlate with cognitive performance and neuropsycho-
logical scores [Jack et al., 2003]. As can be noted in Figure 1.2, the brain atrophy
appears at the early stages of the disease and increases progressively with the disease
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Figure 1.2: Hypothetical model of Alzheimer's disease based on the �amyloid cascade
hypothesis� (from [Jack et al., 2010a]).

evolution until reaching a plateau level. Most importantly, the structural atrophy
is more sensitive to the progression from pre-clinical to pathological stages than
amyloid markers which reach the plateau earlier.

In light of these observations, the brain atrophy detectable from magnetic res-
onance imaging (MRI) was included as an AD marker in the diagnostic criteria
of Alzheimer's disease [Dubois et al., 2007], and is a potential surrogate outcome
measure for the monitoring of the disease progression in phase II and III clinical
trials. Indeed, increasing evidence indicates that structural markers are more pre-
cise and stable than the standard cognitive and functional neuropsychological scales
[Fox et al., 2000, Jack et al., 2004].

A valid marker of disease progression should provide low variability and high
precision in tracking the atrophy in order to guarantee the highest statistical power
in detecting treatment e�ects, and therefore to allow shorter trial durations with
smaller groups of patients. Several markers of AD based on structural MRI have
been proposed and are currently under study [Frisoni et al., 2010]. The most ac-
cepted and established are the atrophy detectable on high-resolution T1 weighted
MRI, assessed in the whole brain, or in sensitive regions like the hippocampi, tem-
poral lobes, or ventricles (Figure 1.1). At the clinical level, qualitative scales of
the temporal atrophy have been developed for the classi�cation of the pathological
stages [DeCarli et al., 2007], while volumetric measures were historically computed
through manual tracing of the anatomical structures. Manual measurements are
however time consuming, require trained operators and are characterized by large
inter-subject variability. This poses the problem of the reliable estimation and com-
parison of atrophy measures in large multicentric studies.
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1.2 Computational Anatomy for Research and Therapy

in AD

AD is a complex pathology whose aetiology is unknown. In absence of a de�nitive
pathophysiological model, large studies are currently ongoing for providing more
insights on the biology and evolution of the disease. As a result, we are already
witnessing the increase of multicentric and longitudinal studies, with the associated
large amount of medical data to consistently process and analyze. The need of
automatic methods for the serial analysis of medical images, in particular MRIs,
is therefore evident for helping the research in understanding and quantifying the
pathology across its temporal stages.

An important contribution to the recent understandings of AD and to the tech-
nical developments on the atrophy measurements came indeed from �Computa-
tional Anatomy�, the discipline of modeling and analysing the structure of organs
through mathematical and computational methods, which is now playing a cen-
tral role in both research and therapeutic �elds. Computational anatomy is the
toolkit for virtually �dissecting� medical images: processing, analysing and quan-
tifying the digital data. Non-rigid registration is one of the main instruments
for the morphological analysis of brain structures. Non rigid-registration models
the structural di�erences between pairs of images as local spatial transformations
which, based on opportune similarity criteria, match homologous anatomical regions
[Holden, 2008, Modersitzki, 2004]. This way, we can describe a given anatomy with
respect to a reference one, and derive from the spatial transformation the features
of interest which can be used to model and quantify the anatomical changes.

1.2.1 Non-Rigid Registration: discoverying the AD dynamics

Since the late 90's of the past century computational methods for the statistical
analysis of brain MRI were proposed for group-wise (cross-sectional) and longitu-

dinal studies of clinical populations. These methods provided for the �rst time
statistical atlases of the spatial distribution of atrophy in AD, and highlighted
temporal and spatial dynamics of the pathology. These methods mostly rely on
non-rigid registration of the structural images to a pre-de�ned anatomical template
[Ashburner et al., 1998].

Deformation based morphometry for cross-sectional analysis.

A classical approach for morphological studies is the so-called �deformation based
morphometry�, which is based on the analysis of the deformations estimated by
non-rigid registration. In particular, the Jacobian determinant (or Jacobian) |∇ϕ|
of a deformation ϕ quanti�es the associated local volume change, and is widely
used for the quanti�cation of the atrophy. The Jacobian is densely computed
in the image at the voxel level and locally describes the volume change with re-
spect to the anatomical reference, thus the matter growth and loss associated to
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Figure 1.3: Voxel based morphometry. Areas of statistically signi�cant grey
matter loss in AD patients as compared to a reference healthy group (from
[Frisoni et al., 2009])

the deformation at the speci�c location. In tensor based morphometry (TBM),
the Jacobian determinant scalar �elds are compared between clinical groups by
means of voxel-by-voxel statistical models, for instance for testing the di�erence
in mean atrophy between patients and control groups. Maps of coe�cients and
p-values are then thresholded and analyzed to identify the anatomical areas of
signi�cant di�erence [Chung et al., 2001, Gaser et al., 2001, Riddle et al., 2004]. A
similar approach is used in voxel based morphometry (VBM), where the proba-
bilistic segmentations of the gray and white matter tissues are compared voxel-
wise (Figure 1.3). The intensities of the probabilistic masks are usually scaled
by the Jacobian determinant of the suject-to-template transformation, in order
to account for the transport of the tissue masks in the common reference space
[Ashburner and Friston, 2000, Ashburner and Friston, 2005] .

Deformation based morphometry for longitudinal analysis.

In spite of the relatively straightforward application of deformation based mor-
phometry in cross-sectional studies, the longitudinal setting was less investigated:
the problem of modeling and comparing dynamic quantities, such as the changes
measured in time series of images, is a more complex issue. As in the cross sec-
tional setting, it was proposed to analyze the Jacobian determinant scalar �elds
associated to the longitudinal progressions estimated by the deformation �elds
[Fox et al., 2001, Scahill et al., 2002]. However, the Jacobian determinant is only
a summary descriptor of the longitudinal deformations, which are characterized by
complex and subtle dynamics and should then be compared on a multivariate basis
to obtain more precise assessments and greater statistical signi�cance. This requires
to consistently transport the full deformations in a common reference.

When transporting we should ideally preserve the geometrical properties of the
initial trajectory while adapting to the new coordinate system. Therefore, we are
interested in the behavior of the transported dynamics, for instance regarding the
ability to preserve the original amount of expansion/contraction in homologous re-
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gions.
A preliminary approach consists in performing the longitudinal analysis after the

subject-to-template normalization [Chetelat et al., 2005, Thompson et al., 2003]. A
key issue here is the di�erent nature of the changes occurring at the intra-subject
level, which re�ects the biological phenomena of interest, and the changes across
di�erent subjects, which are usually large and not related to any biological process.
In fact, the inter-subject variability is a scale of magnitude higher than the more
subtle longitudinal subject-speci�c variations. To provide a more sensitive quanti�-
cation of the longitudinal dynamics, the intra-subject changes should be modeled
independently from the subject-to-template normalization, and only successively
transported in the common reference for statistical analysis.

This is the approach adopted in [Qiu et al., 2008b], where the authors described
the group-wise longitudinal shape evolution of the hippocampus in healthy aging and
AD. The longitudinal atrophy trajectories were modeled with the �large deforma-
tion di�eomorphic metric mapping� (LDDMM) di�eomorphic registration frame-
work, and were normalized to a common reference by �parallel transport� of the
deformation vectors. The extension of such approach to a whole brain model of the
longitudinal atrophy in AD is however di�cult, due to the high computational cost
of the LDDMM framework.

1.2.2 Non-Rigid Registration: quantifying the AD e�ects.

The methods described above are qualitative, i.e. aim to describe the anatomical
di�erences without quantifying the observed changes. Hypothesis testing on voxel-
by-voxel statistical models is a powerful instrument for exploratory studies, but is
usually not robust for the reliable quanti�cation of atrophy. For example, voxel-by-
voxel statistical analysis are prone to the multiple comparisons problem which leads
to type I errors. In fact, when multiple independent statistical tests are performed,
the probability of false positives increases with the number of tests, and can be
unacceptably high for the analysis on hundreds of thousands of voxels in a standard
MRI, which must therefore be corrected with statistical techniques like Bonferroni
or False Discovery Rate [Benjamini and Hochberg, 1995].

Structural brain imaging is an important surrogate measure in therapeutic tri-
als, and novel techniques for the accurate quanti�cation of the atrophy in AD are
under active development. In fact, automated frameworks for the volume measure-
ment and for the quanti�cation of the longitudinal changes are potentially reliable,
inexpensive, simple to perform and can be easily applied in multicentric trials.

The more natural approach for the volume measurement of anatomical struc-
tures is by segmentation. For instance, several automatic approaches were proposed
for the whole brain [FreeBorough and Fox, 1997, Smith, 2002, Iglesias et al., 2011]
and hippocampal segmentation [Crum et al., 2001, Fischl et al., 2002,
Carmichael et al., 2005, van der Lijn et al., 2008, Chupin et al., 2009b,
Lötjönen et al., 2011]. In the longitudinal setting segmentation measures are
used to de�ne ratio of volume change as in the �boundary shift integral�
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[FreeBorough and Fox, 1997, Barnes et al., 2007], which quanti�es the volume
changes by computing the shift of the boundaries of the follow-up segmentations of
the anatomical structure. This measure is currently employed in clinical trials.

Hippocampal segmentation has now reached good reliability, and seems mature
for meeting the rigid qualitative standards required in the therapeutic �eld. This is
essentially due to the good de�nition of the boundary of the structure on high res-
olution MRI which easies the automatic identi�cation of the hippocampal surface.
However, AD is not completely described by the atrophy in the hyppocampus and
is characterized by a more complex pattern of structural loss all over the brain. Un-
fortunately other structures involved in the atrophy process, like the amygdalae and
the enthorinal cortex, are more di�cult to be visually or automatically identi�ed in
the MRI, and therefore are currently not monitored in therapeutic trials. This issue,
which is purely technique, might lead to the inability to detect the more subtle drugs
e�ects in the exquisitely local topography of progressive brain damage: the failure
in the recent trials on AD to show signi�cant treatment e�ects on the hippocampal
volume changes led to question whether a more general atrophy analysis would have
been able to detect possible bene�ts [Raschetti et al., 2007].

Deformation based morphometry for quantitative purposes

Deformation based morphometry might address this issue since it describes the atro-
phy process through spatially dense deformation �elds, and thus provides anatomical
quanti�cations which range from the local (voxel) to the regional level. Importantly,
the estimated anatomical changes are independent from the ability to clearly delin-
eate anatomical boundaries.

Non-rigid registration was used mainly to quantify average volume changes by
integration of the Jacobian determinant on selected regions [Aljabar et al., 2008,
Camara et al., 2008, Boyes et al., 2006, Gaser et al., 2001]. Moreover, the deforma-
tion �elds provide several anatomical measures which might go beyond the classical
average volume change [Chung et al., 2001]. For example, the mathematical coun-
terpart of the boundary shift integral is the �ux of the deformation across the
boundaries of the region. However, these measures were seldom investigated partly
due to the numerical complexity and the lack of robustness of the evaluation. As an
example, computing the �ux of the deformation across the boundaries of a region
requires the computation of vector normals to surfaces, which normally leads to
large approximation errors.

In spite of its wide use in research, non-rigid registration is barely employed
for the longitudinal atrophy quanti�cation in clinical trials. This is partly due to
the higher technical requirements asked in the clinical context in terms of accuracy,
robustness to the biases a�ecting the medical images, and stability of the measures
over time. The failing in controlling these factors inevitably leads to a decreased
sensibility of the atrophy measures, and thus to the potential failing or increase in
cost of the trial.

Recently, [Fox et al., 2012] identi�ed a set of �quality criteria� that an imaging
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tool should satisfy in order to �nd application in the clinical setting:

• Biological plausibility. The algorithm should provide atrophy measurements
consistent with the known pathophysiology.

• Symmetry. The atrophy quanti�ed from A to B should be consistent with the
one quanti�ed from B to A.

• Transitivity. The atrophy quanti�ed from A to C should be equivalent to the
cumulative one from A to B and B to C.

• Comparison with the �state of art�. The atrophy measurements should be val-
idated on shared data and compared to those obtained from more established
algorithms.

• Reproducibility on back-to-back images. The group average on same days scans
should be zero.

• Statistical validation. The accuracy of the measurements should be evaluated
by sample size analysis based on the di�erential progression between AD and
normal aging.

More validation e�orts are therefore required to de�ne a reliable imaging tool
based on non-rigid registration which can be employed in both research and clinical
settings.

1.3 Objectives and Contributions

The current research scenario for AD shows an increasing need for e�cient, reli-
able and stable computational methods for the analysis of MRI. The problem is
challenging and involves various aspects: the analysis over the 3 dimensional brain
volume should be consistently integrated in the longitudinal dimension, while the
exploration of the AD patterns of neurodegeneration should be followed by robust
numerical quanti�cation. Therefore, the new emerging challenge is the development
of general computational frameworks whose elements could consistently interact to
address all the above requirements.

The present PhD thesis aims to build a solid and reliable toolkit of computational
instruments based on non-rigid registration for the consistent analysis of longitudi-
nal MRIs, with the duplice purpose to provide the research with computationally
e�cient instruments for explorative longitudinal studies, and to de�ne precise and
stable quanti�cation methods, to be e�ectively applied in the clinical domain.

This thesis is founded on the estimation of morphological changes by non-
rigid registration parameterized by stationary velocity �elds [Arsigny et al., 2006,
Vercauteren et al., 2008]. When used with medical images, the non-rigid registra-
tion must be robust to the intensity biases and provide consistent measures of the
anatomical changes. Computational e�ciency is also a key factor for the successful
employment in the practical context.
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In chapter 2 we propose the LCC-Demons, a novel registration framework based
on stationary velocity �elds and built upon the log-Demons algorithm. The pro-
posed framework is designed to target the above requisites. It allows the consistent
evaluation of spatial changes as either average volume changes or boundary shift, by
stable computation of the Jacobian determinant of the deformation. Moreover, the
LCC-Demons robustly detects the anatomical changes in presence of a�ne biases on
the intensities, is computationally e�cient (around 20 minutes for registering high
resolution T1 MRI images on an AMD Opteron dual core 2000Mhz without any spe-
ci�c GPU parallel optimization), and is comparable to the state-of-art methods for
both inter-subject registration and intra-subject assessment of longitudinal changes.
The chapter was submitted as a journal paper to NeuroImage [Lorenzi et al., 2012b].

Once we have an e�cient and robust way to estimate longitudinal anatomical
deformations in time series of a given patient, we address the problem of compar-
ing the trajectories for di�erent patients in a common reference. This is a central
topic for the development of atlases for the longitudinal evolution of physiological
processes in organs, like brain atrophy. So far a consensus on the methodology
is not yet reached, and there are not publicly available instruments. In chapter 3
we propose an e�cient and numerically stable computational scheme for the parallel
transport of di�eomorphic deformation trajectories parametrized by tangent vectors.
The scheme is based on the �Schild's Ladder�, a method for transporting tangent
vector �elds in manifold with an a�ne connection that was introduced in Gravita-
tion & Relativity in the 70ies. Here the method is applied to the estimation of a
whole brain dynamic model of the longitudinal changes in AD. The chapter is based
on the article [Lorenzi et al., 2011b] presented at the 22nd Information Processing
on Medical Imaging conference (IPMI) in 2011. The article was awarded with the
honorable mention (runner-up) for the prestigious Erbsmann prize.

Since our Schild's Ladder theoretically requires the use of geodesics, we investi-
gate in chapter 4 the relationship between the one-parameter subgroups parameter-
ized by SVFs and geodesics. We review the basic properties of the �nite dimensional
Lie group and de�ned the Cartan connections, for which the one-parameter sub-
groups are geodesics, and we show that the parallel transport can be computed
straightforwardly. Di�eomorphic image registration requires to generalize these
properties in the in�nite dimensional case, and this is theoretically not always pos-
sible. Our experiments put here into evidence the central role played by the discrete
approximation and the numerical implementation, which may hide part of the theo-
retical issues. The same conclusion emerges when comparing the stationary velocity
�eld setting to the LDDMM one. In case of longitudinal deformations, the settings
provides similar and compatible results. The chapter is in press as a journal paper on
International Journal of Computer Vision (IJCV) [Lorenzi and Pennec, 2012], and
is based on the material presented at the 3rd Mathematical Foundation of Computa-
tional Anatomy workshop, hosted at MICCAI in 2011 [Lorenzi and Pennec, 2011].

We turn now in the second part of the manuscript, in which the previous method-
ological contributions are applied for de�ning novel instruments for the explorative
analysis of group-wise longitudinal changes, and for the robust and precise quanti�-
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cation of subject-speci�c regional atrophy rates.
We propose in chapter 5 a generative framework based on the robust and consis-

tent registration of time series of MRI to de�ne subject speci�c deformation trends,
which are then parallel transported in a reference template space to compute group-
wise exploratory statistics of longitudinal deformations. This hierarchical formu-
lation is here applied for testing the e�ects of abnormal CSF Aβ42 levels in the
structural evolution of the brain in healthy elderly subjects. The method pro-
vided a voxel-by-voxel spatio-temporal model of the accelerated atrophy trajectory
in subjects positive to Aβ42 with respect to the negative ones, which was statisti-
cally assessed by multivariate analysis on the trajectory components. The chapter
was presented at the 14th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) [Lorenzi et al., 2011a].

After the introduction of the explorative framework for the analysis of group-
wise anatomical changes, we focus now on the robust quanti�cation of the regional
atrophy. The anatomical quanti�cation of the longitudinal changes in AD is usu-
ally performed in selected apriori regions where the pathology is known and which
are easier to identify (for instance hippocampus and ventricles). In chapter 6 we
propose a novel approach for the atrophy assessment with a more complete, but
yet statistically powered, description of the longitudinal changes. The approach
uni�es explorative longitudinal analysis and robust atrophy quanti�cation. The pres-
sure potential associated to the irrotational component of the SVF describing the
longitudinal AD trajectory is used to discover the sinks and sources of the atrophy
process, which represent respectively the areas of maximal matter loss and CSF
expansion. These areas provide a data driven atlas of the AD evolution, that we
used for the subject-speci�c probabilistic analysis of the longitudinal atrophy. The
chapter was accepted as an oral communication at the 15th International Confer-
ence on Medical Image Computing and Computer Assisted Intervention (MICCAI)
[Lorenzi et al., 2012d].

After showing how to estimate powered atrophy measurements on regions iden-
ti�ed by the pressure potential, in chapter 7 we de�ne an e�ective pipeline for
validating the proposed method against state-of-art methods for the longitudinal
measurements of hippocampal atrophy and ventricular enlargement. Di�erently
from the previuos section, the atrophy is here quanti�ed on apriori regions. The
proposed pipeline provides biologically plausible atrophy measures which are con-
sistent in time, and statistically powered. The pipeline was employed for the
MICCAI challenge �Atrophy measurement biomarkers using structural MRI for
Alzheimer's disease: a challenge to assess measurement reliability and bias 2012�
[Lorenzi et al., 2012a].

Finally, in chapter 8 we provide a glimps of the potential of the longitudinal
modeling in understanding the dynamics of pathologies and highlight new research
direction. We propose here to analyse the brain atrophy in AD by modeling the
anatomical changes as the contribution of an healthy aging component plus a patho-
logical one which is AD speci�c. This is achieved by projecting the observed brain
anatomy on the trajectory of healthy aging modeled with the instruments presented
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in the previous sections. The experimental results show that AD is characterized
by accelerated aging plus speci�c atrophy changes which are highly discriminative
from the healthy condition. This chapter was presented at the MICCAI Workshop
on Novel Imaging Biomarkers for Alzheimer's Disease and Related Disorders 2012
[Lorenzi et al., 2012e].
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Journal articles

• [Lorenzi et al., 2012b] M. Lorenzi, N. Ayache, X. Pennec. LCC-Demons: a
robust and accurate di�eomorphic registration algorithm. Submitted to Neu-

roImage. Chapter 2.

• [Lorenzi et al., 2011b] M. Lorenzi, N. Ayache, X. Pennec. Parallel transport
of deformations in time series of images: Schild's and Pole ladders. to be

submitted. Chapter 3.

• [Lorenzi and Pennec, 2012] M. Lorenzi, X. Pennec. Geodesics, parallel trans-
port & one-parameter subgroups for di�eomorphic image registration. to

appear in International Journal of Computer Vision. Chapter 4.

• [Lorenzi et al., 2010c] M. Lorenzi, N. Donohue, D. Paternicò, C. Scarpazza,
S. Ostrowitzki, O. Blin, E. Irving, G.B. Frisoni. Enrichment through biomark-
ers in clinical trials of Alzheimer's drugs in patients with mild cognitive im-
pairment. Neurobiology of Aging, 31(8), 1443-1451, 2010. Summarized in
Appendix C.

• R. Rossi, M. Pievani,M. Lorenzi, M. Boccardi, R. Beneduce, S. Bignotti, G.
Borsci, M. Cotelli, P. Giannakopoulos, L.R. Magni, L. Rillosi, S. Rosini, G.
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bipolar disorders. Psychiatry Research: Neuroimaging, in Press, 2012.

Selective Peer-Reviewed Conference Papers

• [Lorenzi et al., 2011b] M. Lorenzi, N. Ayache, X. Pennec. Schild's Ladder for
the parallel transport of deformations in time series of images Proceedings

in Information Processing on Medical Imaging - IPMI, 463�474, 2011 (Oral
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• [Lorenzi et al., 2011a] M. Lorenzi, N. Ayache, G.B. Frisoni, X. Pennec. Map-
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hierarchical modeling based on stationary velocity �elds Proceedings in Medical

Image Computing and Computer Assisted Intervention - MICCAI, 663�670,
2011 (Acceptance rate: 252 out of 781 papers = 32.3%). Chapter 5.
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• [Lorenzi et al., 2012d] M. Lorenzi, N. Ayache, X. Pennec. Regional �ux anal-
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tangling the normal aging from the pathological Alzheimer's disease progres-
sion on cross-sectional structural MR images. NIBAD Workshop - MICCAI,
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• [Lorenzi et al., 2012a] M. Lorenzi, G.B. frisoni, N. Ayache, X. Pennec. Prob-
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• M. Lorenzi, N. Donohue, D. Paternicò, C. Scarpazza, S. Ostrowitzki, O. Blin,
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Alzheimer's drugs in patients with mild cognitive impairment. International
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Computer Vision.
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This chapter has been submitted as a journal article to NeuroImage. It describes
the LCC-Demons framework, and shows that it is an e�cient and robust non-rigid
registration algorithm for general medical images, and in particular for the spa-
tially consistent measurement of anatomical changes. The framework is tested on
synthetic and real data, in both inter- and intra-subject registration setting.

Non-rigid registration is a key instrument for computational anatomy to study the

morphology of organs and tissues. However, in order to be an e�ective instrument

for the clinical practice, registration algorithms must be computationally e�cient,

accurate and most importantly robust to the multiple biases a�ecting medical im-

ages. In this work we propose a fast and robust registration framework based on

the log-Demons di�eomorphic registration algorithm. The transformation is param-

eterized by stationary velocity �elds (SVFs), and the similarity metric implements

a symmetric local correlation coe�cient (LCC). Moreover, we show how the SVF

setting provides a stable and consistent numerical scheme for the computation of

the Jacobian determinant and the �ux of the deformation across the boundaries

of a given region. Thus, it provides a robust evaluation of spatial changes. We

tested the LCC-Demons in the inter-subject registration setting, by comparing with

state of art registration algorithms on public available datasets, and in the intra-
subject longitudinal registration problem, for the statistically powered measurements

of the longitudinal atrophy in Alzheimer's disease. Experimental results show that

LCC-Demons is a generic, �exible, e�cient and robust algorithm for the accurate

non-rigid registration of images, which can �nd several applications in the �eld of

medical imaging. Without any additional optimization, it solves equally well in-

tra & inter-subject registration problems, and compares favorably to the state of art

methods.

2.1 Introduction

In the recent past, computational anatomy acquired an increasing weight in the
analysis of medical data and several methods have been developed to study or-
gans in the cross-sectional and longitudinal settings. The cross-sectional approach
evaluates the geometrical di�erences between subjects and highlights the morpho-
logical di�erences between clinical groups. The longitudinal perspective evaluates
the changes in time from serial data of the same subject acting as his own control,
and is more useful in detecting the subtle changes related to biological processes.
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The key instrument of computational anatomy is non-rigid registration, which
allows to retrieve morphological di�erences as deformation �elds. A great variety
of registration techniques have been proposed in medical imaging, depending on
the practical application and the theoretical requirements. However, in order to
de�ne a reliable image processing tool, we can identify a set of requirements to be
satis�ed: robustness to bias, theoretical solidity coupled with numerical e�ciency,
and consistency of the anatomical measures.

2.1.1 Similarity Measures to Robustly Detect the Anatomical Dif-
ferences

In non-rigid registration the deformation is found by optimizing a similarity mea-
sure which quanti�es the amount of di�erences between two images. Thus, the
quality of the retrieved deformations greatly depends on the choice of this metric.
A classical similarity measure is the sum of squared di�erences of the intensities,
which is completely driven by the global intensity di�erences [Bajcsy et al., 1993,
Stefanescu, 2005]. Despite the simple numerical implementation, this metric is
highly sensitive to the intensity biases which a�ect the medical images. For this
reason, more complex similarity criterion able to account for the bias have been
proposed. For instance the (normalized) correlation criteria assumes a global a�ne
relationship between the intensities in the images, to account for global multiplica-
tive and additive bias [Dong and Boyer, 1995, Collins et al., 1995], while the (nor-
malized) mutual information does not require any parametric assumption on the
relationship between the intensities, and is based on the global joint intensity his-
togram [Wells et al., 1996, Studholme et al., 1996, Maes et al., 1997]. The robust-
ness of NMI comes at the price of the computation of the histogram, and thus of
complex optimization schemes.

Importantly, all the above criteria are global, i.e. they assume a uniform
bias distribution over the image space. However in the medical images the
bias is frequently locally varying, and in this case a global similarity measure
might lead to wrong estimations of the deformations. By assuming that the
information in the image is locally su�cient to estimate the intensity bias, in
[Cachier and Pennec, 2000, Cachier et al., 2003] the authors proposed a local im-
plementation of the correlation criteria. Interestingly, such a framework led to an
e�cient optimization scheme based on Gaussian convolutions and computed through
the classical Demons registration close form solution.

The local correlation coe�cient (or local cross correlation) was later
used in several successful registration algorithms as a good trade-o� be-
tween the very constrained SSD and the very loose Mutual Information
[Hermosillo and Faugeras, 2004, Jolly et al., 2010, Avants et al., 2008].
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2.1.2 Di�eomorphic Registration: Mathematical Formulation and
Numerical E�ciency

The new-generation non-rigid registration algorithms perform di�eomorphic
registration by parameterizing the deformations by the �ow of time vary-
ing or stationary tangent velocity �elds. The use of di�eomorphisms pro-
vides a rich mathematical setting for elegant and grounded methods for at-
las building [Joshi et al., 2004a], group-wise [Bossa et al., 2007], and longitudi-
nal statistical analysis of deformations [Avants et al., 2007, Lorenzi et al., 2011a,
Davis et al., 2007, Durrleman et al., 2012].

Di�eomorphic registration was introduced with the large deformation di�eomor-
phic metric mapping setting (LDDMM) [Trouvé, 1998], which parameterizes the
deformations with time varying velocity �elds, and in [Avants et al., 2008] a robust
implementation of the LDDMM based on the local cross correlation criteria was
proposed. However, the LDDMM has high computational cost which might prevent
the intensive application on large dataset, or on high resolution data.

In order to �nd an optimal compromise between accuracy and computational
e�ciency, it was proposed in [Arsigny et al., 2006] to parameterize di�eomor-
phic transformations with stationary velocity �elds (SVF). The framework was
used in di�erent registration settings [Vercauteren et al., 2008, Bossa et al., 2007,
Ashburner, 2007a, Modat et al., 2011], and was applied to several clini-
cal problems [Sweet and Pennec, 2010, Mansi et al., 2011a, Lorenzi et al., 2011a,
Seiler et al., 2011a, McLeod et al., 2012, Siless et al., 2012]. In light of these re-
sults, the SVF registration might represent a powerful clinical instrument for the
evaluation of the morphological changes in organs, due to its high �exibility and e�-
ciency. However, most of the standard SVF based algorithms such as the log-Demons
[Vercauteren et al., 2008] are based on the sum of squared di�erences criteria (SSD),
which is not robust to the intensity bias a�ecting the medical images and might limit
the applicability of such a framework in the clinical context.

2.1.3 Consistet Measures of Spatial Changes from Local to Re-
gional Scale

In order to provide a useful measure of anatomical changes for clinically oriented
applications, a registration framework should be able to consistently quantify the
changes at di�erent spatial scales.

Classically, non-rigid registration was used to provide local measures of
change at the �ner scale (voxels, meshes) to be used in group-wise statis-
tical analyses of morphological di�erences. Among the many techniques we
can �nd the voxel compression maps (VCM) [Fox et al., 2001], the voxel/tensor-
based morphometry based on the Jacobian determinant of the deformation
(VBM,TBM) [Ashburner and Friston, 2000, Riddle et al., 2004], the RAVENS
maps [Resnik et al., 2000], and the cortical pattern analysis [Thompson et al., 2003].
However, measures at the voxel level are sensitive to biases and very variable across
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subjects.
For this reason, global measures of regional changes are more commonly used

in clinical practice, to quantify regional volumes on selected anatomical structures.
These measures are usually quanti�ed by segmentation: for instance, the boundary
shift of anatomical regions [FreeBorough and Fox, 1997] is currently used to evaluate
the longitudinal volume changes in time series of images [Leung et al., 2009] .

Global measures of average volume change can be estimated from local measures
by integration of the Jacobian determinant of the deformation in selected regions
[Boyes et al., 2006, Camara et al., 2008]. However, the local measure of volume
change given by the Jacobian determinant represents only part of the information
represented by the vector �eld. More importantly, the computation of the Jaco-
bian matrix requires the computation of the image derivatives which are practically
computed by �nite di�erences on the image grid, and which are highly sensitive to
the approximation introduced by the discretization. Finally, experimental evidence
showed that the logarithmic transformation of the Jacobian determinant might be
more appropriated in morphometric studies, since it provides non-skewed quantities
[Leow et al., 2007]. As a drawback, the log-Jacobian determinant does not represent
anymore the volume change, and thus lacks of a precise biological interpretation.

Other quanti�cations of spatial changes might be then considered: as suggested
in [Chung et al., 2001], the �ux of the deformation across the boundary of a region
is a measure of global morphological change that can be used for growth and longi-
tudinal volume change analyses. However, since the �ux requires the computation
of the vector's normal to the surface, the use of this measure was very limited in
the past due to the high sensitivity to segmentation errors.

2.1.4 Paper Organization

The aim of the present work is to propose an e�ective symmetric di�eomorphic

registration framework based on SVFs, which could be at the same time robust to
the intensity biases and numerically e�cient. Such a framework should provide
consistent measures of spatial changes from the local to the regional level, which
require numerically stable methods to compute the Jacobian determinant and the
�ux of the deformation across surfaces.

In Section 2.2 we introduce the symmetric LCC-Demons, a registration frame-
work based on the log-Demons which implements the symmetric local Correlation
Criteria (LCC) as a similarity measure. In Section 2.3 we derive from the resulting
SVF a spatially robust and consistent evaluation of the morphological changes from
the voxel to the regional level. In fact we show that the SVF framework provides
both stable voxel-by-voxel estimations of the Jacobian determinant, and consistent
measures of regional changes given by the �ux of the deformation across surfaces,
which is obtained by the integration of the log-Jacobian determinant. The presented
method is validated in section 2.4.3 by comparing our algorithm with state of the art
registration algorithms for the accuracy in inter-subject registration, and in section
2.5 for the longitudinal atrophy measurements in Alzheimer's disease. The resulting
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longitudinal atrophy measures are compared to the ones obtained by the BSI algo-
rithm [FreeBorough and Fox, 1997], a validated measure of brain atrophy currently
employed in the clinical setting.

2.2 LCC-Demons: Symmetric Unbiased Di�eomorphic

Registration

2.2.1 The log-Demons Algorithm: a Brief Review.

The log-Demons algorithm estimates the di�eomorphic transformation φ which min-
imizes the intensity di�erence between a �xed image I and a moving image J
[Vercauteren et al., 2008]. The deformation φ belongs to the subset of di�eomor-
phisms generated by the �ow of SVFs. Such a deformation is parameterized through
the Lie group exponential of a SVF v, exp(v), de�ned by:

∂φ(x, t)
∂t

= v(φ(x, t)), (2.1)

with initial condition φ(x, 0) = id. This ODE actually de�nes a one parameter
subgroup, φt(x) = φ(x, t) since φs+t(x) = φ(x, s) ◦ φ(x, t) = φ(x, s+ t). The trans-
formation is obtained at the parameter value t = 1, i.e. φ(x) = φ(x, 1). The use of
SVFs simpli�es the LDDMM formulation and leads to a good compromise between
theory and e�ciency for computationally tractable registrations. For example, the
exponential operation is e�ciently implemented in the log-Demon's algorithm by
taking advantage of the �scaling and squaring� property of the one-parameter sub-
groups exp(v) = exp(v/2)◦exp(v/2) [Arsigny et al., 2006]. This allows to compute
the �nal parameterization as the recursive composition of successive exponentials
(Algorithm 1).

Algorithm 1 Scaling and Squaring for the Lie group exponential.

1. Scaling step.
Choose N so that 2−Nv is �small�.

2. Compute a �rst approximation of φ0 ← exp(2−Nv) ≈ id+ 2−Nv
3. Squaring step.

For k = 1 to N do φk ← φk−1 ◦ φk−1

In the log-Demons framework the registration of the images F and G is achieved
through the alternate minimization of the following energy, which is optimized with
respect to the transformation SVF v, and to the auxiliary correspondence �eld
parameterized by a SVF vx [Vercauteren et al., 2008]:

E(v,vx, I, J) =
1
σ2
i

‖F −G ◦ exp(vx)‖2L2

+
1
σ2
x

‖ log(exp(−v) ◦ exp(vx))‖2L2
+

1
σ2
T

Reg(v). (2.2)
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The coupling term 1
σ2
x
‖ log(exp(−v) ◦ exp(vx))‖2L2

is reformulated thanks to the
BCH formula for the composition of exponentials [Bossa et al., 2007]: log(exp(−v)◦
exp(vx)) = BCH(−v,vx) = δv, and in the log-Demons we usually consider the
zeroth order approximation δv = −v + vx. The minimization of the above energy
is alternatively operated with respect to the two variables v and vx in two steps:

• Minimization step. Given v, the energy

ESSD(v, δv, F,G) =
1
σ2
i

‖F −G ◦ exp(v) ◦ exp(δv)‖2L2
+

1
σ2
x

‖δv‖2L2
, (2.3)

is optimized for δv, and hence for vx = BCH(v, δv) to �nd an un-regularized
correspondence vx that matches the images F and G. The Gauss-Newton
optimization leads to a closed form solution for the update δv, which is then
e�ciently composed with v thanks to the BCH formula.

• Regularisation step. Given vx, the functional

Ereg(v,vx) =
1
σ2
x

‖ exp(−v) ◦ exp(vx)‖2L2
+

1
σ2
T

Reg(v) (2.4)

is optimized with respect to v. Following [Mansi et al., 2010], we obtain a
closed form by convolution for the regularization step. When the criterion
Reg is conveniently chosen, the optimal v is obtained in the Fourier domain
leading to the Gaussian smoothing v = Gσ ∗vx. which leads to an elastic-like
regularization of the velocity �eld vx. In addition to this, the standard log-
Demons registration implements also a �uid-like regularization of the update
�eld Gσf ∗ δv, which corresponds to choice of a convenient metric on the space
of SVFs.

2.2.2 Symmetric Forces in the log-Demons

In the log-Demons algorithm the correspondence vx is unbiased with respect to the
choice of �xed and moving image. In fact it is symmetrically computed by minimiz-
ing the energy Eoldsym = 1

2‖F−G◦exp(v)‖2+‖F ◦exp(−v)−G‖2. The symmetrization
comes straightforwardly from the SVF parameterization of the deformations, and
is optimized by averaging the solutions given by the two separate terms. However
the strategy requires the separated optimization of both correspondence terms, and
might be computationally costly in case of similarity terms more complex than the
standard SSD implemented in the log-Demons.

In this paper we propose to symmetrize a given criteria by optimizing in the
half-way space, reached by resampling both �xed and moving images. This can
be easily formulated within the SVF framework by considering F ◦ exp(−v

2 ) and
G ◦ exp(v

2 ).
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For instance, the classic SSD criteria can be symmetrized in:

ESSDsym (v, F,G) = ‖F ◦ exp(−v
2 )−G ◦ exp(v

2 )‖2L2
.

In this case, the Jacobian of the criteria is

J =
1
2

(
∇F ◦ exp(−v

2
) +∇G ◦ exp(

v
2

)
)
,

which interestingly is consistent with the one derived for the Demons symmetric
update rule proposed in [Vercauteren, 2008].

2.2.3 Symmetric LCC in the log-Demons

In the standard log-Demons algorithm the correspondence �eld is given by the
minimization of the sum of squared di�erence (SSD) between the intensities of
the two images, which is not robust to the local intensity biases. In order to
avoid mistaking spurious intensity variations for morphological di�erences, following
[Cachier et al., 2003] we propose to adapt to the log-Demons framework to the local
correlation coe�cient (LCC). Let F =

∫
Ω Gσ ∗ F0(x) dx be the local mean image.

The LCC is de�ned as:

ρ(F,G) =
FG√
F 2G2

.

Let consider the symmetric resampling F ′ = F ◦ exp(−v
2 ) and G′ = G◦ exp(v

2 ), and
denote

ρ(v, F,G) = ρ(F ′, G′) =
F ◦ exp

(
−v

2

)
G ◦ exp

(
v
2

)√[
F ◦ exp

(
−v

2

)]2 [
G ◦ exp

(
v
2

)]2 .
If we replace the SSD in formula (2.3) by the squared LCC, we obtain the new
correspondence energy

ELCCsym (δv, F ′, G′) =
1
σ2
i

ρ2(δv, F ′, G′) +
1
σ2
x

‖δv‖2L2
. (2.5)

It can be shown (see 2.A) that the optimization of (2.5) with respect to a symmetric
update of F ′ and G′ can be computed with a closed form formula:

δv = − 2Λ

‖Λ‖2 + 4
ρ2

σ2
i
σ2
x

.

This way the original log-Demons structure and e�ciency are preserved.
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2.3 Stable and Consistent Measures of Brain Changes:

from Voxel to Regional Level

The quanti�cation of the amount of warping φ applied at each voxel by the dense
deformation �eld is usually locally derived from the Jacobian matrix J = ∇φ of the
deformation in terms of determinant, log-determinant, trace, and the strain tensor
JJT . A global index of change can be extracted from the local information by:

• Integration of the Jacobian Determinant on the region of interest. This is an
average measure of volume change.

• Evaluation of the �ux of the deformation �eld across the surface enclosing
the region, i.e. the amount of vectors �owing through the surface during the
registration procedure. This value represents the shift of the boundaries of
the surface required to match the homologous points during the registration
process.

If the �ux on a speci�c surface area is known, we can derive the ratio of vol-
ume change by comparing the volume enclosed by the shifted surface relative
to the original one. However, the direct computation of the �ux of a defor-
mation is usually highly sensitive to the segmentation of the boundaries of the
surface. This limitation prevented the use of the vector �ux in favour of the
more robust Jacobian determinant integration, while surrogate measures of the
boundary shift were proposed based on the comparison of regional segmentations
[FreeBorough and Fox, 1997, Smith et al., 2002].

2.3.1 Flux Across Surfaces From the log-Jacobian Integration

We now build on [Mansi et al., 2010] to show how to consistently derive local and
global anatomical measures within the log-Demons framework. From the formula
(2.1), the instantaneous variation of the Jacobian determinant of the deformation
can be expressed as:

∂det(∇φ(x, t))
∂t

= det(∇φ(x, t)) tr
(
∇φ(x, t)−1∂(∇φ(x, t)

∂t

)
.

By inverting the order of temporal and spatial derivatives within the trace, and by
applying the chain rule we get [Mansi et al., 2010]:

∂det(∇φ(x, t))
∂t

= det(∇φ(x, t)) (∇.v(x) ◦ φ(x, t)) .

Now, given that φ(x, 0) = id, we have log(det(∇φ(x, 0))) = 0, and we obtain the
solution log(det(∇φ(x, t))) =

∫ t
0 ∇ · v|φ(x,h) dh. In particular,

log(det(∇φ(x, 1))) =
∫ 1

0
∇ · v|φ(x,h) dh. (2.6)



26

Chapter 2. A Stable and Robust Framework for Measuring

Morphological Changes Through Non-rigid Registration.

The above formula states that, under the log-Demons framework, the log-Jacobian
determinant of φ(x) = φ(x, 1) is the integral of the divergence of the velocity �eld
along the path described by the exponential.
Assuming now that Ω is a volume in the domain of the vector �eld φ(x), we can
integrate (2.6) to obtain:∫∫∫

Ω
log(det(∇φ(x, 1)))dΩ =

∫ 1

0

(∫∫∫
Ω
∇ · v|φ(x,h) dΩ

)
dh.

(2.7)

We recall now the Divergence (or Ostrogradsky's) theorem, which states that for a
volume Ω immersed in a vector �eld v the following relationship holds:∫∫∫

Ω
(∇ · v) dΩ =

∮
∂Ω

v · n d∂Ω,

where the second part of the equality represents the �ux of the vector �elds through
the surface ∂Ω. Applying the Divergence Theorem to (2.7) �nally gives:∫∫∫

Ω
log(det(∇φ(x, 1)))dΩ =

∫ 1

0
�ux∂Ω(v|φ(x,h)) dh (2.8)

Thus, the integration over the volume of interest of the log-Jacobian determinant of
the deformation is equivalent to integrating the �ux of the velocity �eld across the
corresponding surface, along the path described by the exponential map.

Formula (2.8) consistently computes the �ow of the vector �eld during the evo-
lution described by the SVF parameterization, and measures the �ux of a vector
�eld over a surface (right side of (2.8)) by scalar integration of the log-Jacobian de-
terminant in the enclosed volume (left side of (2.8)). Moving from the surface to the
volume integration simpli�es and robusti�es the measure of the �ux by attenuating
the segmentation errors (and relative erroneous boundary detection), and allows to
deal with uncertainties in the measures, for instance by integration on probabilistic
masks. The di�erence between the Jacobian and the log-Jacobian analysis becomes
clear: the former quanti�es the volume changes, while the latter the shift of the
boundaries (given by the average regional log-Jacobian determinant).

2.3.2 A New Numerical Scheme for Computing the Jacobian

The computation of the Jacobian determinant ‖∇φ‖ is usually performed by spatial
di�erentiation of the transformation using �nite di�erences (Algorithm 2).

However, the di�erentiation by �nite di�erences is usually highly sensitive to
the spatial noise, and completely depends on the discrete sampling which might
create instabilities in case of large deformations, thus leading to incorrect Jacobian
determinant estimation. For instance the sampling of the deformation �eld in the
image grid space might introduce an unequal distribution of the vectors around
a sink, and therefore introduce spurious folding e�ects to �nally produce negative
Jacobian estimations.
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Algorithm 2 Classical computation of the Jacobian determinant by �nite di�er-
ences.
Given a discrete sampling φ of the transformation over the
image grid space {xi}:

1. Compute the Jacobian matrix J via �nite di�erences, for instance
with the forward scheme:

Jφk,l(x) = φk(x+hel)−φk(x)
h , h scalar.

2. Compute the determinant of J with the preferred numerical method.

The following framework provides a stable and consistent computation of the
Jacobian determinant according to the scaling and squaring method for the Lie group
exponential. In fact, the (log-)Jacobian can be reliably estimated by �nite di�erences
on the scaled velocity �eld v

2N
, and then recursively computed by the chain rule

combined to the additive property of the one-parameter subgroups (Algorithm 3).

Algorithm 3 Log-Jacobian determinant by scaling and squaring.

Given a deformation φ = exp(v) :
1. Scaling step.

Choose N so that 2−Nv is �small�
2. Compute a �rst approximation:
φ0 = exp(2−Nv) ≈ id+ 2−Nv .
LJ0 = log (J(φ0))
≈ log

(
1 +∇ · ( v

2N
)
)
≈ ∇ · ( v

2N
).

3. Squaring step.
For k = 1 to N do
φk = φk−1 ◦ φk−1,

LJk = log(J(φk)) = LJk−1 ◦ φk−1 + LJk−1.

The presented scheme evaluates the Jacobian determinant accordingly to the
exponential path and is consistent with the de�nition of di�eomorphisms parame-
terized by the one-parameter subgroup. Moreover, the log-Jacobian determinant is
de�ned in terms of the divergence of the velocity and, by de�nition, the value of the
corresponding Jacobian determinant always remains strictly positive.

2.4 Experiments

2.4.1 Jacobian Determinant: Scaling and Squaring vs Finite Dif-
ferences

We consider here a practical example with a pair of longitudinal brain images from
the ADNI dataset. As can be seen in the detail of Figure 2.1, even after bias
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Figure 2.1: Jacobian determinant computation in the SVF setting. Upper row:
detail from a pair of anatomical �xed and moving brain images. The SSD criteria
of the log-Demons models the general increase of the intensities by estimating a
contracting deformation �eld from the boundaries to the center of the image. Bottom
row: corresponding Jacobian determinant maps estimated by the iterative scaling
and squaring formula on the SVF (left), and by the standard �nite di�erences on
the �nal deformation �eld (right). The �nite di�erences lead to negative values for
the Jacobian determinant.

correction [Tustison et al., 2010] and histogram equalization, a persistent di�erence
between the two images on the white matter intensities is still appreciable. The
intensity shift in the white matter is detected by the SSD criteria of the log-Demons
as an anatomical di�erence which generates a sink at the center of the area. This
highly localized large deformation leads �nally to negative Jacobian determinants
when estimated with the standard �nite di�erences. On the contrary, the Jacobian
determinant computed by scaling and squaring is always positive and thus consistent
with the log-Demons di�eomorphic transformation.

2.4.2 Robustness to the Intensity Bias: a Controlled Example

We �rst tested the robustness of the LCC-Demons to the intensity biases on a
controlled experiment. We created a realistic simulated anatomical deformation
based on the deformation �eld that matched the baseline scan (I0) of a patient to
its 1-year follow-up of, computed using the log-Demons algorithm. The ventricular
expansion was extracted by masking the corresponding SVF v with a cubic box
enclosing the ventricles. The deformations in the remaining areas of the brain were
imposed to be negligible random noise. The resulting deformation �eld ϕ = Exp(v)
was used to warp the baseline scan I0 to generate the longitudinal image with
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Figure 2.2: Synthetic experiment. A) Left: baseline and simulated follow-up ven-
tricles expansion. Right: synthetic additive and multiplicative bias. Bottom rows:
bias e�ect on the log-Jacobian determinant maps for the deformations estimated
by the Demons algorithm with B) LCC and C) SSD similarity criteria. The LCC
estimation remains consistent independently from the biases introduced.

increased ventricular expansions. This pair of images was then used as reference to
test the robustness of the detection of the longitudinal changes in the ventricular
reference region to the bias.

For this purpose, the intensities of the follow-up image were corrupted by intro-
ducing spatially smooth random additive (±5% of the mean baseline intensities) and
multiplicative noise (range [0.9-1.1]). The changes between baseline and generated
follow-up were evaluated with the LCC-Demons and the standard log-Demons as
average log-Jacobian determinant values measured in the ventricles mask. The reg-
ularization parameters were set for both methods as σfluid = 0.5, and σelastic = 1.5,
while the LCC smoothing parameters was σLCC = 2. An histogram matching of the
image intensities was applied prior to the standard log-Demons registration.

As can be seen in Figure 2.2, the LCC-Demons estimation remains stable re-
gardless to the level of noise, while the standard log-Demons appears to be highly
sensitive. This is re�ected by the regional integration of the log-Jacobian map in
the ventricles mask: the SSD criteria leads to unstable evaluations while the LCC
measures remain consistent.

2.4.3 Registration Accuracy: Evaluation on Public Datasets

In [Klein et al., 2009] the authors benchmarked several registration algorithms on
a collection of publicly available brain images, to compare the registration perfor-
mance on the matching of a set of manually labeled anatomical regions. This work
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represents a valuable source of information for the comparison of new registration
methods, since the detailed description of the registration results is freely available1.
Interestingly, the authors found that the performance of the registration algorithms
was little a�ected by the choice of subject population, labeling protocol, and type
of overlap measure.

In order to test the LCC-Demons we replicated the registration pipeline proposed
by [Klein et al., 2009] on the data considered by the authors. In particular, the
pipeline was de�ned by non rigid registration of all the possible pairs of linearly
aligned images in the dataset, after an initial a�ne registration to the MNI reference
space, and was applied to the CUMC12, MGH10, LPBA40 and IBSR12 datasets.
The registration parameters for the LCC-Demons were: σLCC = 2, σelastic = 1.5
and σfluid = 0.5, with a multi resolution scheme of 30x20x10 iterations (coarser to
�ner).

The registration accuracy between each source S and target T was evaluated by
the measures of target and union overlap, de�ned for a speci�c anatomical region r
respectively as

TOr =
|Sr ∩ Tr|
|Tr|

and MOr =
|Sr ∩ Tr|
|Sr|+ |Tr|

,

where | · | is the regional volume.
In Figure 2.4 we can observe the performance on the CUMC12 dataset in terms

of resulting mean target overlap on the 130 labeled regions. The results produced
by the LCC-Demons registration are in line with those provided by the state-of-art
algorithms, and in particular are consistent with the original ones obtained with
the classical Demons registration. For instance in the CUMC12 dataset the LCC-
Demons perform signi�cantly better than most of the compared methods, except
ART, IRTK, SyN, and SPM Dartel. All the reported mean di�erences were signi�-
cant to the standard paired t-test. When tested on the other datasets (Figure 2.5,
2.6, and 2.7), the only algorithms that consistently provided better overlaps were
ART, IRTK, and SyN.

We stress that the registration test was here blindly performed with default
parameters of the LCC-Demons algorithm, without any dataset speci�c optimization
of the parameters.

The average registration time on the tested data was of 21 minutes (± 1.7) on a
Xeon platform 2.66Ghz quad core, 4Gb RAM.

2.5 Measuring the Longitudinal Changes in Alzheimer's

Disease

2.5.1 Experimental Data.

Data used in the preparation of this article were obtained from the Alzheimer's Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was

1http://www.mindboggle.info/papers/evaluation_NeuroImage2009.php
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launched in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Adminis-
tration (FDA), private pharmaceutical companies and non-pro�t organizations, as
a $60 million, 5-year public-private partnership. The Principal Investigator of this
initiative is Michael W. Weiner, MD, VA Medical Center and University of Cali-
fornia - San Francisco. ADNI is the result of e�orts of many coinvestigators from
a broad range of academic institutions and private corporations, and subjects were
recruited from over 50 sites across the U.S. and Canada. For up-to-date information,
see www.adni-info.org.

2.5.2 Longitudinal Pre-processing and Registration.

The baseline and one year follow-up brain images were collected from the ADNI
dataset for a group of 200 healthy subjects and 141 patients a�ected by Alzheimer's
disease. For each subject, the follow-up images were rigidly aligned to the baseline
and the longitudinal changes were evaluated by registration with the LCC-Demons
algorithm (smoothing sigma for the criteria σLCC = 2,σelastic = 1.5, and σfluid =
0.5).

2.5.3 Mask De�nition for Regional Measures.

In standard deformation based morphometry, the amount of regional brain atro-
phy is usually quanti�ed by the scalar integration of the average Jacobian de-
terminant map on a pre-de�ned region of interest (ROI). However, depending on
the deformation model, the vector �eld which encodes the transformation can dif-
fuse through the regional boundaries according to the regularization scheme. In
this case, the integration of vector-based quantities (like the Jacobian determi-
nant) on anatomical regions might not be consistently de�ned and might lead to
wrong estimations of the anatomical changes. In order to evaluate the anatomi-
cal changes consistently with the deformation model, we propose here to adapt the
given anatomical region in order to maximise the vector �ux across the boundaries.
In [Vasilevskiy and Siddiqi, 2002] it was shown that, given a vector �eld v and a
surface S, the maximal �ux of v across S is obtained by evolving the region along
the direction

∂S

∂t
= (∇ · v)n (2.9)

Thus, given an initial brain mask and a longitudinal deformation, we can continu-
ously deform the mask in order to maximise the �ux of the longitudinal deformation
through its boundaries, i.e. adapt the mask to the areas of signi�cant longitudinal
changes.

In our experiments we computed the gray-white matter tissue mask with an auto-
mated procedure based on the FSL package tools for the automatic brain extraction
and the tissue class segmentation [Smith, 2002, Patenaude et al., 2011]. The esti-
mated mask was then �owed along the longitudinal deformation according to (2.9)
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Figure 2.3: Deforming a volumetric mask in order to maximise the �ux across the
boundaries. From left: reference image, associated brain mask, and the deformed
mask which maximises the �ux of the longitudinal deformation. The last picture
shows the log-Jacobian determinant map of deformation. It can be seen that the
deformed mask is adapted to the areas of maximum expansion.

as M i+1 = M i ◦ ∂S∂t (15 iterations) and then used for the longitudinal quanti�cation
(Figure 2.3).

The whole brain changes were de�ned by the weighted Jacobian determinant,
which represents the average volume change within the probabilistic mask, and by
the weighted log-Jacobian determinant, which represents the expected �ux of the
deformation through the region's boundaries. If we approximate the region with a
sphere S1 having the same volume, we can compute the �ux-derived volume change

by considering a radial �eld acting on the sphere S1 and having the same �ux. We
obtain then a volume change index by comparing the volume of the resulting shifted
sphere S2 relatively to S1.

For sake of comparison the measurements were compared to the KNBSI2 atro-
phy index [Leung et al., 2009] obtained using our initial brain masks on the same
processed data.

2.5.4 Longitudinal Atrophy Estimation.

The average measures for the one-year whole brain changes estimated by the LCC
Demons are shown in Table 2.1. The volume changes measured by the Jacobian
determinant integration are consistent with those derived from the �ux and are
respectively of 1.8% per year for the AD group and 1% per year for the healthy
subjects. The proposed results are consistent with the KNBSI estimations (last col-
umn), obtained on the same data. The sample size analysis provided similar results,
with the lowest score given by the �ux associated to the deformation (552 subjects).
We specify that the KNBSI algorithm was applied here using a di�erent processing
protocol than the one proposed in [Leung et al., 2009]. In particular, the a�ne reg-
istration employed here was not symmetric, and there was no manual intervention in

2KNBSI is available at http://sourceforge.net/projects/bsintegral/
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the segmentation of the brain masks. Therefore, the suboptimal processing protocol
might explain the worse results in terms of sample size analysis when compared to
those reported by the authors. Even though a detailed comparison of the processing
procedures is out of the scope of this work, we notice that the methods performed
similarly when applied to the same data.

Group LCC-Demons KNBSI
Jacobian Flux Flux derived % change % change

Ctrls 1.011 (0.0102) 0.252 (0.233) 1.09 (1.02) 1.069 (0.925)
AD 1.0186 (0.011) 0.409 (0.239) 1.81 (1.06) 1.714 (0.989)
Sample size (95% CI) 619 (305,1154) 552 (309,1260) 544 (315,1255) 590 (332,1328)

Table 2.1: Longitudinal whole brain changes in Alzheimer's disease and healthy ag-
ing measured by the LCC-Demons as the average Jacobian determinant, �ux across
the surface, and �ux derived volume change (standard deviation on parenthesis).
Last column: KNBSI atrophy rates obtained on the same data. Bottom row: esti-
mated sample size associated to the measures for detecting a 25% change in the AD
trend when controlled to normal aging (80% power, p<0.05 [Fox et al., 2000]).

2.6 Conclusions and Perspectives

In this work we proposed an e�cient, accurate and robust registration framework for
the estimation and quanti�cation of anatomical changes in medical images. We �rst
introduced the LCC-Demons, a di�eomorphic registration algorithm robust to in-
tensity biases, which extends the standard log-Demons algorithm by preserving the
simple numerical implementation and the related computational e�ciency. Second,
we provided a new numerical scheme for the computation of the Jacobian determi-
nant of a deformation parameterized by a stationary velocity �eld, which prevents
the numerical inaccuracies induced by the �nite di�erences, and is consistent with
the di�eomorphic parameterization. Finally, we explained the theoretical di�erence
between log-Jacobian and Jacobian analysis of deformation �elds, by showing that
the surface integral of the �ux of a vector �eld is the regional integration of log-
Jacobian determinant associated to the deformations. This contribution shows the
complementary information provided by the Jacobian and the log-Jacobian deter-
minant, and their di�erent meaning when used as index of anatomical changes in
morphometric studies.

The proposed methods were extensively tested on large publicly available dataset
in both inter and intra-subject registration settings, and the results were com-
parable with those obtained by the most referenced methods. To conclude, the
LCC-Demons is a candidate instrument for both research and clinically oriented
purposes, as already showed in scienti�c works based on the presented method
[Lorenzi et al., 2012a, Lorenzi et al., 2012e, Lorenzi et al., 2012d].
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2.A Optimization of the LCC-Demons Correspondence

In this section we derive the update formula for the optimization of the LCC sym-
metric correspondence (2.5).

ELCCsym (δv, F,G) =
1
σ2
i

ρ2(δv, F,G) +
1
σ2
x

‖δv‖2L2
. (2.10)

The symmetric LCC correspondence considers the symmetric resampling of the im-
ages, and is optimized with respect to the symmetric composition by the update
�eld exp( δv2 ). We have the following Taylor expansion:

F
δv
2 = F ◦ exp(−δv

2
) = F −∇F T · δv

2
+O(‖δv‖2),

and

G
δv
2 = G ◦ exp(

δv
2

) = G+∇GT · δv
2

+O(‖δv‖2).

The updated factors of the denominator of the local correlation coe�cient(
Gσ ∗ ([F

δv
2 ]2)

)− 1
2
, and

(
Gσ ∗ ([G

δv
2 ]2)

)− 1
2
can be approximated by(

Gσ ∗ ([F
δv
2 ]2)

)− 1
2 ' 1√

Gσ ∗ (F 2)
+

Gσ ∗ (F∇F T · δv)

2 (Gσ ∗ (F 2))
3
2

+O(‖δv‖2),



2.A. Optimization of the LCC-Demons Correspondence 35

and (
Gσ ∗ ([Gδv]2)

)− 1
2 ' 1√

Gσ ∗ (G2)
− Gσ ∗ (G∇GT · δv)

2 (Gσ ∗ (G2))
3
2

+O(‖δv‖2),

and the expansion for the LCC term can be written as

ρδv ' ρ+
1
2
Gσ ∗ (F∇GT · δv −G∇F T · δv)√

Gσ ∗ (F 2)Gσ ∗ (G2)

+
ρ

2

(
Gσ ∗ (F∇F T · δv)

Gσ ∗ (F 2)
− Gσ ∗ (G∇GT · δv)

Gσ ∗ (G2)

)
+O(‖δv‖2).

With the assumption of a su�ciently smooth update �eld such that for each image
I, Gσ ∗ (∇IT · δv) ' Gσ ∗ (∇IT ) · δv, we �nally obtain:

ρδv ' ρ+
ρ

2

(Gσ ∗ (F∇GT )
Gσ ∗ (FG)

− Gσ ∗ (G∇F T )
Gσ ∗ (FG)

+
Gσ ∗ (F∇F T )

Gσ ∗ (F 2)
− Gσ ∗ (G∇GT )

Gσ ∗ (G2)

)
δv +O(‖δv‖2)

= ρ+
ρ

2
Λδv +O(‖δv‖2).

The approximated squared LCC is therefore

(ρδv)2 '
(
ρ+

ρ

2
Λδv

)2
= ρ2(1 +

1
2

Λδv +
1
4
δvTΛTΛδv),

whose gradient and Hessian are respectively D((ρδv)2) = ρ2

2 Λ, and H((ρδv)2) =
ρ2

4 ΛTΛ. To optimal of 5.1 is then given by the equation:(
H((ρδv)2) +

σ2
i

σ2
x

Id
)
δv = −D((ρδv)2),

whose solution is

δv = − 2Λ

‖Λ‖2 + 4
ρ2

σ2
i
σ2
x

,

thanks to the Sherman Morrison formula [Vercauteren, 2008].
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In Chapter 2 we introduced the tool for measuring the anatomical changes in
cross-sectional and longitudinal studies. This chapter provides a computational
method for transporting the estimated longitudinal atrophy trajectories along inter-
subject deformations. It will be soon submitted to the SIAM Journal on Imaging
Sciences (SIIMS) and is based on the conference paper [Lorenzi et al., 2011b].

Based on:
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[Lorenzi et al., 2011b] M. Lorenzi, N. Ayache, X. Pennec. Schild's Ladder for
the parallel transport of deformations in time series of images Proceedings in

Information Processing on Medical Imaging - IPMI, 463�474, 2011.

Additional material available in [Lorenzi et al., 2012c].
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Follow-up imaging studies require the evaluation of the anatomical changes over

time for speci�c clinical groups. The longitudinal changes for a speci�c subject can be

evaluated through the non-rigid registration of successive anatomical images. How-

ever, to perform a longitudinal group-wise analysis, the subject-speci�c longitudinal

trajectories of anatomical points need to be transported in a common reference frame.

In this work, we propose an e�ective method based on the Schild's Ladder for trans-

porting longitudinal deformations in time series of images in a common space using

di�eomorphic registration. We illustrate the computational advantages and demon-

strate the numerical accuracy of this very simple method by comparing with standard

methods of transport on simulated images with progressing brain atrophy. Finally,

its application to the clinical problem of the measurement of the longitudinal pro-

gression in Alzheimer's disease suggests that an important gain in sensitivity could

be expected on group-wise comparisons.

3.1 Introduction

One of the main objectives in the �eld of computational anatomy concerns the
modeling of the dynamics occurring in speci�c clinical groups. This is motivated by
the need to generalize the characteristics observed in the single patients, through
group-wise statistics. The aim of the Template-based analysis is therefore to describe
the subject-speci�c characteristics in a normalized reference frame by transporting
the individual geometries in a common space. Di�erent normalization methods
can be used for static observations, depending on the complexity of the feature of
interest: resampling for scalar values, reorientation for vectors, and more advanced
methods for tensors, like Preservation of the Principal Directions (PPD) or the
Finite Strain (FS) [Alexander et al., 2001].

3.1.1 Transport of Longitudinal Trajectories

The problem of modeling dynamic quantities, such as the changes measured in
time series of images, is a more complex issue. Ideally, when transporting from
a subject to the template space, we should preserve the geometrical properties of
the initial trajectory while adapting to the new coordinate system. Therefore, we
are interested in the behaviour of the transported dynamics, especially regarding
the ability to preserve the original amount of expansion/contraction in homologous
regions. A key issue is the di�erent nature of the changes occurring at the intra-
subject level, which re�ects the biological phenomena of interest, and the changes
across di�erent subjects. In fact, the inter-subject variability is a scale of magnitude
higher than the more subtle subject-speci�c variations: the way we mix these two
levels has a deep impact on the sensitivity of the resulting normalized measures.
Thus, in order to preserve and accurately quantify the dynamics in the template
space, a rigorous and reliable procedure need to be de�ned.

Di�erent approaches for the transport of measures of change have been proposed,
depending on the type of measure of change that is considered (time series of Jaco-
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bian images, the time-varying initial momentum, displacement �elds as a function
of time, etc.). A simple method of transport consists in reorienting the longitudinal
inter-subject displacement vector �eld by the Jacobian matrix of the subject-to-
template mapping. A drawback of this method, as stated before, is that the longi-
tudinal deformation is fully combined to the inter-subject one. The method proposed
by [Rao et al., 2004] uses the transformation conjugation (change of coordinate sys-
tem) from the group theory in order to compose the longitudinal inter-subject de-
formation with the subject-to-template one. As pointed out in [Bossa et al., 2010],
this practice could potentially introduce variations in the transported deformation
and relies on the inverse consistency of the estimated deformations, which can raise
problems for large deformations. The parallel transport of relational measures was
introduced in [Younes, 2007a] in the context of the Large Deformation Di�eomorphic
Metric Mapping (LDDMM) [Miller et al., 2002]. The notion of parallel transport
proposed here consists in translating a vector along a geodesic while preserving the
parallelism according to the space geometry. This framework allows to transport
the geodesic di�eomorphic registration for both point supported data and images,
and it was applied to study the hippocampal shape changes in Alzheimer's disease
[Qiu et al., 2008a, Qiu et al., 2009] . Although it represents a rigorous implemen-
tation of the parallel transport it is limited to the transport along geodesics of the
right invariant metric on di�eomorphisms, and it comes to the price of a computa-
tionally intense scheme. This is a limitation which could prevent the application to
large datasets with multiple time series of images, which are now becoming more
easily available to the imaging community (for example the ADNI).

In tensor based morphometry, the transport is used to normalize in a common
reference frame the degree of changes in speci�c regions, such as the hippocampal
volume loss in the brain. For this purpose, it is also possible to directly normalize
the measures of change by interpolating the Jacobian determinant scalar map of the
intra-subject longitudinal change into the template reference [Bossa et al., 2010].
However, the Jacobian determinant represents only one of the several features of
interest in morphometric studies (like full Jacobian matrices, tensors or the �ux
[Chung et al., 2001], [Lorenzi et al., 2010a]). Moreover, transporting the original
deformation trajectory allows multivariate group analysis like evaluation of mean
deformations, PCA, etc.

The aim of the present paper is to propose an e�ective computational method for
the parallel transport of longitudinal trajectories of deformations. After introducing
in Section 2 the �Schild's Ladder�, a general parallel transport technique de�ned in
the past century in the �eld of general relativity, we propose the �Pole Ladder�, an
optimized transport scheme for the e�cient transport of longitudinal trajectories of
deformations vectors along any piecewise geodesic. The e�ectiveness of the scheme
is tested in both synthetic and real data, with an application to the modeling of the
longitudinal progression of atrophy in Alzheimer's disease.
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3.2 Ladders for the Parallel Transport of Tangent Vec-

tors.

3.2.1 The Schild's Ladder

The Schild's Ladder was introduced in the last century in the �eld of the general
relativity after the physicist Alfred Schild [KSchild, 1970, Misner et al., 1973]. It
provides a straightforward method to compute a �rst order approximation of the
parallel transport of a vector along a curve using geodesics only, and without
requiring the knowledge of the tangent structure of the space. Let M a manifold
and C a curve parametrized by the parameter τ with ∂C

∂τ |T0 = u, and A ∈ TP0M , a
tangent vector on the curve at the point P0 = C(0). Let P1 be a point on the curve
relatively close to P0, i.e. separated by a su�ciently small parameter value τ .

The Schild's Ladder computes the parallel transport of A along the curve C as
follows:

1. De�ne a curve on the manifold parametrized by a parameter σ passing through
the point P0 with tangent vector ∂

∂σ |P0 = A. Chose a point P2 on the curve
separated by P0 by the value of the parameters σ. The values of the parameters
σ and τ should be chosen in order to construct the Schild's Ladder within a
single coordinate neighborhood.

2. Let l be the geodesic connecting P2 = l(0) and P1 = l(λ), we chose the
�middle point� P3 = l(λ/2). Now, let us de�ne the geodesic r connecting the
starting point P0 and P3 parametrized by ρ such that P3 = r(ρ). Extending
the geodesic at the parameter 2ρ we reach the point P4. We can now pick a
curve connecting P1 and P4. The vector A′ tangent to the curve at the point
P1 is the parallel translation of A along C.

3. If the distance between the points P0 and P1 is large, the above construction
can be iterated for a su�cient number of small steps.

The geometrical approximation of the Schild's ladder resides in the assumption
that all the geometrical information of the space are encoded by the geodesics.
Although the geodesics on the manifold are not su�cient to recover all the infor-
mation about the space properties, such as the connection, it has been shown that
the Schild's Ladder describes the parallel transport with respect to the symmetric
part of the connection of the space [Kheyfets et al., 2000]. An intuitive proof is
that the construction of the above diagram is commutative and can be symmetrized
with respect to the points P1 and P2. If the original connection is symmetric, then
this procedure provides a correct linear approximation of the parallel transport of
vectors.
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Figure 3.1: The Schild' ladder parallel transports a vector A along the curve C by
iterative construction of geodesic parallelograms.

3.2.2 The Pole Ladder

We propose here a di�erent construction for the parallel transport of vectors on
geodesics parallelograms. If the curve C is geodesic, then it can be itself one of
the diagonals and the Schild's ladder can therefore be adapted by requiring the
computation of only one new diagonal of the parallelogram. We de�ne in this way
a di�erent ladder scheme, that we call here �Pole ladder�.

We shall prove that the Pole ladder is actually a parallel transport. By consid-
ering the diagram in Figure 3.2, if C has parameter µ then the geodesic equation
for the transport of the tangent vector vp along C is ∂vP

∂µ + Γkijv
i
PvjP = 0. In a

su�ciently small neighborhood the relationships can be linearized to give

vkP = vkM + Γkijv
i
PvjP ,

and

xkM = xkP0
+ vkM + Γkijv

i
PvjP .

In the same way we have xkM = xkP1
+ ukM + Γkiju

i
PujP .

Therefore
A = xkP1

− xkP0
= ukM − vkM + Γkijα

ij

with αij = (viP − uiP )(vjP − ujP ) = AiAj . Since vkM = (xQ0 − xM )k and ukM =
(xQ1 − xM )k we �nally have

A′k = −
(
Ak + ΓkijA

iAj
)
.

3.3 Application to Images

Let Ii (i = 1 . . . n) be a time series of images with the baseline I0 as reference.
Consider a template image T0, the aim of the procedure is to compute the image Ti
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Figure 3.2: The Pole ladder parallel transports the vector A along the geodesic
C. Di�erently from the Schild's ladder it requires to compute only one diagonal
geodesic.

in order to de�ne the transport of the sequence I0, . . . , Ii in the reference of T0. In
the sequel, we focus on the transport of a single image I1.

To apply the ladders in the context of the images, we de�ne the paths in the
space of images by action from the space of di�eomorphism. Let I = {f : R3 → R}
the image space and let us de�ne the action ∗ : M × I→ I given by (ϕ, I) 7→ ϕ∗I =
I ◦ ϕ−1, where M is the space of the di�eomorphisms. If the distance between two
images in the image space is de�ned in terms of di�eomorphisms [Younes, 2007a],
then the geodesics in the image space are de�ned by the action of the geodesic paths
in the space of the di�eomorphisms.

3.3.1 Schild's Ladder for Images

The Schild's Ladder can be naturally translated in the image context (Algorithm
4), by requiring the computation of the two diagonal geodesics l and r (Subsection
3.2.1).

Algorithm 4 Schild's ladder for the transport of a longitudinal deformation.

1. Compute the geodesic l(λ) in the space I connecting I1 and T0

such that l(0) = I1, and l(1) = T0.
2. De�ne the half-space image l(1/2) = I 1

2
.

3. Compute the geodesic r(ρ) connecting I0 and I 1
2

such that r(0) = I0 and r(1) = I 1
2
.

4. De�ne the transported follow-up image as T1 = r(2) = h(2) ∗ I0.
5. The transported deformation is given by registering the images T0 and T1.
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Figure 3.3: Geometrical schemes in the Schild's ladder and in the Pole ladder. By
using the curve C as diagonal, the Pole ladder requires half times the number of
geodesics needed by the Schild's ladder.

3.3.2 Pole Ladder for Images

The Pole ladder is similar to the Schild's one, with the di�erence of explicitly using as
a diagonal the geodesic C which connects I0 and T0. This is an interesting property
since, given C, it requires the computation of only one additional geodesic, thus the
transport of time series of images is based on the same baseline-to-reference curve
C (Figure 3.3).

Algorithm 5 Pole ladder for the transport of a longitudinal deformation.

1. Compute the geodesic C(µ) in the space I connecting I0 and T0

such that C(0) = I0 and C(1) = T ′0.
2. De�ne the half-space image C(1/2) = I ′1

2

.

3. Compute the geodesic g(η) connecting I1 and I ′1
2

such that g(0) = I1 and g(1) = I ′1
2

.

4. De�ne the transported follow-up image as T ′1 = g(2)
5. Compute the path p(t) such that p(0) = T0 and p(1) = T ′1.

The transported deformation is given by registering p(0) = T0 to p(−1).

For this reason, while in [Lorenzi et al., 2011b] we proposed an e�cient imple-
mentation of the Schild's ladder, the following section focuses on the similar imple-
mentation of the Pole ladder for the transport of deformation trajectories.

3.3.3 E�ective Pole Ladder by Using One Parameter Subgroups

Despite its straightforward formulation, the application of the Pole ladder to the im-
age space requires multiple evaluations of geodesics in the space of di�eomorphisms
and a consequent high cost in terms of computation time and resources.
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Moreover, it assumes an exact matching, which is bound to lead to important
numerical problems. For instance, the de�nition of I 1

2
using the forward deforma-

tion on I0 or the backward from T0 lead to very di�erent results. We propose to
reformulate the above scheme in a computationally e�cient and numerically stable
framework using only transformations.

We use the setting of the SVFs (SVF) di�eomorphic registration as provided for
example by the log-Demons [Vercauteren et al., 2008], or the LCCDemons (Chapter
2) algorithms. In particular we base the ladder on the path de�ned by the Lie group
exponential of vectors. The fact that the one-parameter subgroup is a geodesic will
be justi�ed in the next chapter. We note that the SVF is a valid approximation of a
small step of a time-varying velocity �eld di�eomorphism. Given a pairs of images
Ii, i ∈ {0, 1}, the SVF framework parametrizes the di�eomorphism ϕ required to
match the reference I0 to the moving image I1 by a SVF u. The velocity �eld
u is an element of the Lie Algebra G of the Lie group of di�eomorphisms M ,
i.e. an element of the tangent space at the identity TidM . The di�eomorphism ϕ

belongs to the one parameter subgroup generated by u and is parametrized by the
Lie group exponential operator ϕ = exp(u). We can therefore de�ne the paths in
the space of the di�eomorphisms from the one parameter subgroup parametrization
l(λ) = exp(λ · u) and by consequence the paths in the image space.

However, the ladders in the image space requires a number of interpolations and
exponentiations, which could introduce biases due to the numerical approximations.
Moreover the registration is constrained to be smooth and it is therefore impossible
to reach a perfect match of corresponding intensities in the registered images. We
however take advantage of the symmetry of the construction in order to be robust
to the changes introduced by the registration.

1. Let I1 = exp(u) ∗ I0.

2. Compute v = argminv∈GE (T0 ◦ exp(−v/2), I0 ◦ exp(v/2)), where E is a
generic registration energy functional to be minimized.

The half space image I 1
2
can be de�ned in terms of v/2 as exp(−v/2) ∗ T0 or

exp(v/2) ∗ I0. While from the theoretical point of view the two images are
identical, the choice of one of them, or even their mean, introduces a bias in
the construction. The de�nition of the half step image can be bypassed by
relying on the symmetric construction of the parallelogram (Figure 3.4).

3. The transformation from I1 to I 1
2
is ρ = exp(v/2)◦exp(−u) and the symmetry

leads to

exp (Π(u)) = exp(v/2) ◦ exp(u) ◦ exp(−v/2).

The transport of the deformation ϕ = exp(u) can be therefore obtained through
the conjugate action operated by the deformation parametrized by v/2.

Since the direct computation of the conjugate by composition is potentially
biased by the discrete approximation, we propose two di�erent schemes to correctly
evaluate the transport directly in the Lie Algebra.
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Figure 3.4: Pole Ladder with the one parameter subgroups. The transport
exp(Π(u)) is the deformation exp(v/2) ◦ exp(u) ◦ exp(−v/2)

3.3.4 BCH Formula for the Conjugate Action

The Baker Campbell Hausdor� (BCH) formula was introduced in the SVF di�eo-
morphic registration in [Bossa et al., 2007] and provides an explicit way to com-
pose di�eomorphisms by operating in the associated Lie Algebra. More speci�-
cally, if v, u are SVFs, then exp(v) ◦ exp(u) = exp(w) with w = BCH(v, u) =
v + u + 1

2 [v, u] + 1
12 [v, [v, u]] − 1

12 [u, [v, u]] + . . .. In particular, for small u, the
computation can be truncated to any order to obtain a valid approximation for
the composition of di�eomorphisms. Applying the truncate BCH to the conjugate
action leads to

ΠBCH(u) ' u+ [v/2, u] +
1
2

[v/2, [v/2, u]]. (3.1)

In fact, let consider the following second order truncation of the BCH formula

BCH((v/2, u) ' v/2 + u+
1
2

[v/2, u] +
1
12

[v/2, [v/2, u]]− 1
12

[u, [v/2, u]].

The composition

ΠBCH(u) = BCH (v/2, BCH(u,−v/2))

writes as

Π(u)v = v/2 +BCH(u,−v/2)︸ ︷︷ ︸
A

+
1
2

[v/2, BCH(u,−v/2)]︸ ︷︷ ︸
B

+
1
12

[v/2, [v/2, BCH(u,−v/2)]︸ ︷︷ ︸
C

− 1
12

[BCH(u,−v/2), [v/2, BCH(u,−v/2)]]︸ ︷︷ ︸
D

.
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The second order truncation of the four terms is:

A ' u+
1
2

[u,−v/2] +
1
12

[u, [u,−v/2]]− 1
12

[−v/2, [u,−v/2]]

B ' 1
2

[v/2, u] +
1
4

[v/2, [u,−v/2]]

C ' 1
12

[v/2, [v/2, u]]

D ' − 1
12

[u, [v/2, u]] +
1
12

[v/2, [v/2, u]]

From the additive and anticommutative properties of the Lie bracket, adding the
four terms leads to (3.1).

To provide a su�ciently small vector for the computation of the conjugate we
can take advantage of the properties of the one-parameter subgroups to observe that

exp(v) ◦ exp(u) ◦ exp(−v) =

= exp(
v

n
) ◦ . . . ◦ exp(

v

n
) ◦ exp(u) ◦ exp(− v

n
) ◦ . . . ◦ exp(− v

n
)

The conjugation can then be iteratively computed in the following way:

1. �nd n such that v/n is small.

2. compute w = u+ [ vn , u] + 1
2 [ vn , [

v
n , u]]

3. Let u = w

4. Iterate the above construction (n steps).

Using the BCH formula allows to perform the transport directly in the Lie al-
gebra and avoids exponentiation and the interpolations, thus reducing the bias in-
troduced by the numerical approximations. Moreover, this methods preserves the
original �Ladder� formulation, operated along the path described by exp(tv). How-
ever, it requires a number of iterations to be computed.

3.3.5 Conjugate Action from the Exponential Map

We can provide an alternative and direct formula to compute the transport by
conjugate action from the de�nition of the exponential:

exp(u) = lim
n→∞

(
Id +

u

n

)n
.

We can then write:

exp(Πconj(u)) = lim
n→∞

(
exp(v/2) ◦

(
Id +

u

n

)
◦ exp(−v/2)

)n
.
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Let y = exp(−v/2)(x) and φ(x) = exp(v/2)(x), then

exp(Πconj(u)) = lim
n→∞

(
φ

(
y +

u(y)
n

))n
=

= lim
n→∞

(
Id +

1
n

(
D(φ(y))|φ−1(x) · u ◦ φ−1(x) + o(‖u‖2)

))n
.

By the de�nition of the exponential map, we obtain then a �rst order approximation
for the transported vector given by

Πconj(u) = D (exp(v/2)) |exp(−v/2) · u ◦ exp(−v/2).

We note that D (exp(v/2)) |exp(−v/2) = D (exp(−v/2))−1. This method provides
a closed form formula which enables to compute the transport by reorienting the
�eld u ◦ exp(−v/2) by the matrix �eld D (exp(v/2)) resampled by exp(−v/2), or
equivalently, by the matrix �eld D (exp(−v/2))−1. The second formula requires
however the inversion of a matrix which is an operation potentially more unstable.
In the following, the transport Πconj(u) is evaluated through the resampling by
linear interpolation of the matrix D (exp(v/2)).

From a theoretical point of view the results obtained from the two methods are
equivalent in the continuous domain

Πconj(u) = u+D(v/2) · u−Du · v/2 +O(‖v‖2) ' ΠBCH(u)

3.4 Experiments on Synthetic and Real Data

3.4.1 Comparison of Di�erent Transport Methods

We created a series of realistic simulated deformations based on the deformation
�eld that matches the baseline scan (I0) of a patient from the ADNI dataset to the
1-year follow-up of the same patient, computed using the LCC-Demons Algorithm
(Chapter 2). The ventricular expansion was extracted by masking the corresponding
SVF v for a mask including the ventricles. The deformations in the remaining areas
of the brain were imposed to be negligible multivariate Gaussian noise. The SVF
v was then increasingly scaled (vi = fiv, with fi = 0.5, 1, 2, 3) and the resulting
deformations �elds ϕi = exp(vi) were used to warp the baseline scan I0 to generate
a longitudinal progression of serial images Ii with increasing ventricular expansions.

The longitudinal progression was then transported in a new reference space given
by the images of �ve other patients (target space T k0 , k = 1, . . . , 5) along the defor-
mation ψkT using di�erent methods:

• Schild's and Pole Ladders (BCH scheme),

• Conjugate Action: AdψkT (ϕi) = ψ
k(−1)
T ◦ ϕi ◦ ψkT ,
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SVF Transformation Scalar Measure
(u) (ϕ = exp(u)) (J, log J)

Interpolation of Scalar No No Yes
Conjugate Action No Yes Yes
Schild's Ladder Yes Yes Yes
Pole Ladder Yes Yes Yes
Reorientation Yes Yes Yes

Table 3.1: Di�erent methods of transport and transported features. From the SVF
we can infer transformations from which we can extract scalar measures, while the
reverse is not possible.

• reorientation of the SVF vi by the Jacobian Matrix of the deformation ψkT :
JψkT

vi.

As summarized in Table 3.1, not all the methods operate on the same features and
a direct comparison is not always possible. To test the accuracy of the transport,
the di�erent methods were quantitatively compared on the scalar measures repre-
senting the amount of change induced in the ventricles. The ventricles masks were
segmented for I0 and T k0 using a semi-automated method [Yushkevich et al., 2006].
The analyzed features were the average Jacobian and log-Jacobian determinant of
the transported deformation, representing respectively the average volume change
of the ventricles and the �ux of the deformation across the ventricles boundaries
(boundary shift) (Chapter 2).

Figure 3.5: Transport of time series of images. Top row: original longitudinal
trajectory for the ventricular expansion at the di�erent scaling factors. Bottom
row: transported longitudinal sequence in the target space.

3.4.2 Results

In Figure 3.5, we see an example of synthetic time series of images transported by the
Schild's Ladder. The series is consistent with the original trajectory of ventricular
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expansion while adapting to the new reference.
Figure 3.6 compares the log-Jacobian scalar image derived from the di�erent

methods for a sample subject. The Conjugate method and the Reorientation led to
more noisy maps, while for the Pole and Schild's Ladder (BCH scheme) the resulting
Jacobian map adapts to the new reference space while remaining su�ciently smooth,
coherently with the simple scalar interpolation in the target space of the original
log-Jacobian map.

Figure 3.6: Log-Jacobian maps of the transported deformation �eld from the source
space I0 to a patient's target space. Left: log-Jacobian map corresponding to the
synthetic intra-subject deformation ϕ1 in the source space. Right: log-Jacobian
maps of the deformation in the target space transported thanks to: Pole Ladder,
Schils's Ladder, Reorientation, Conjugation, and scalar interpolation of the origi-
nal log-Jacobian map. Schild's and Pole ladders provide stable results which are
consistent with the simple scalar transport.

Table 3.2 shows the amount of changes measured with the di�erent methods.
We note that the Pole Ladder provides in most of the cases results similar to those
obtained by the simple scalar interpolation, and generally very close to the ones
measured in the original reference.

3.4.3 One Year Follow-up Changes on Alzheimer's Disease

Images corresponding to the baseline I0 and the one-year follow-up I1 scans were
selected for 135 subjects a�ected by Alzheimer's disease from the ADNI database.
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Jacobian determinant
Scaling factor 0.5 1 2 3

Source Space 1.052 1.074 1.091 1.106
Schild's Ladder (BCH) 1.062 (.8e-2) 1.094 (1e-2) 1.119 (1.3e-2) 1.13 (1.8e-2)
Pole Ladder (BCH) 1.052 (1e-2) 1.063 (1.2e-2) 1.075 (1.3e-2) 1.086 (1.3e-2)
Reorientation 1.038 (.6e-2) 1.039 (1e-2) 1.033 (1.5e-2) 1.02 (2.1e-2)
Conjugate Action 1.026 (.2e-2) 1.038 (.3e-2) 1.049 (.4e-2) 1.063 (.4e-2)
Scalar Interpolation 1.054 (.59e-2) 1.077 (1.12e-2) 1.092 (1.7e-2) 1.100 (2.4e-2)

log Jacobian determinant
Scaling factor 0.5 1 2 3

Source Space .419 .63 .834 1.03
Schild's Ladder (BCH) .49 (5e-2) .8 (6.1e-2) 1.14 (5.4e-2) 1.47 (5.7e-2)
Pole Ladder (BCH) .37 (9.4e-2) .56 (14e-2) .75 (18e-2) .93 (23e-2)
Reorientation .5 (8.9e-2) .76 (13e-2) 1.02 (19e-2) 1.26 (21e-2)
Conjugate Action .21 (0.5e-2) .32 (1.2e-2) .43 (2e-2) .38 (29e-2)
Scalar Interpolation .44 (9.5e-2) .66 (17e-2) .86 (26e-2) 1.03 (36e-2)

Table 3.2: Average measures (standard deviation) of ventricular changes associated
to the initial longitudinal deformations in the source space (�rst row), and to the
deformations transported with the di�erent methods in the target spaces. The Pole
Ladder performs similarly to the scalar interpolation while transporting in addition
the full SVF.

For each subject i, the pairs of scans were rigidly aligned. The baseline was linearly
registered to a reference template and the parameters of the transformation were
applied to Ii1. Finally, for each subject, the longitudinal changes were measured by
non-rigid registration using the LCC-Demons algorithm.

The resulting deformation �elds ϕi = exp(vi) were transported with the Pole
Ladder (BCH scheme) in the template reference along the subject-to-template de-
formation. The group-wise longitudinal progression was modeled as the mean of
the transported SVFs vi. The areas of signi�cant longitudinal changes were investi-
gated by one-sample t-test on the group of log-Jacobian scalar maps corresponding
to the transported deformations, in order to detect the areas of measured expan-
sion/contraction signi�cantly di�erent from zero.

For sake of comparison, the one sample t-statistic was tested on the subject
speci�c longitudinal log-Jacobian scalar maps transported into the template space
along the subject-to-template deformation.

3.4.4 Results

Figure 3.7 shows a detail from the mean SVF from the transported one-year longi-
tudinal trajectories. The �eld �ows outward from the ventricles to indicate a pro-
nounced enlargement. Moreover, we notice an expansion in the temporal horns of the
ventricles as well as a consistent contracting �ow in the temporal areas. The same
e�ect can be statistically quanti�ed by evaluating the areas where the log-Jacobian
maps are statistically di�erent from zero. The areas of signi�cant expansion are
located around the ventricles and spread in the CSF areas, while a signi�cant con-
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traction is appreciable in the temporal lobes, hippocampi, parahippocampal gyrus
and in the posterior cingulate. The statistical result is in agreement with the one
provided by the simple scalar interpolation of the longitudinal subject speci�c log-
Jacobian maps. In fact we do not experience any substantial loss of localisation
power by transporting SVFs instead of scalar log-Jacobian maps. However by par-
allel transporting we preserve also the multidimensional information of the SVFs
that, as experienced in chapter 5, potentially leads to more powerful voxel-by-voxel
comparisons than the ones obtained with univariate tests on scalars.

Figure 3.7: One year structural changes for 135 Alzheimer's patients. A) Mean of
the longitudinal SVFs transported in the template space with the Pole Ladder. We
notice the lateral expansion of the ventricles and the contraction in the temporal
areas. B) T-statistic for the correspondent log-Jacobian values signi�cantly di�erent
from 0 (p < 0.001 FDR corrected). C) T-statistic for longitudinal log-Jacobian scalar
maps resampled from the subject to the template space. Blue color: signi�cant
expansion, Red color: signi�cant contraction.

3.5 Conclusions and Perspectives

In this study we proposed a novel framework for the transport of longitudinal de-
formations in a reference space from time series of images. The mathematical for-
mulation was combined with an e�ective computational scheme in order to provide
a reliable and numerically stable solution for the transport of vector �elds. The



3.5. Conclusions and Perspectives 57

availability of multivariate features in a common space could provide novel informa-
tion for the understanding of biological processes. Moreover, although designed for
transporting vector quantities, the method showed also good results in transporting
scalar measures, by preserving smoothness of the corresponding spatial maps and
providing accurate numerical evaluations. This is an interesting feature which could
increase the power in TBM-like group-wise statistical analysis as well as opening the
way to reliable multivariate group-wise analysis. The high spatial resolution of the
statistical results on the experiment on the real data suggests a high precision of the
procedure in transporting the di�erent subject-speci�c trajectories. As a perspec-
tive, the association of the proposed transport methods with speci�c frameworks
for the estimation of longitudinal trajectories might allow to consistently model the
longitudinal changes in clinical populations by including multiple time points, and
to compare the progression of di�erent clinical groups on a multidimensional basis
(Chapters 5, 6).
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The methods introduced in chapter 3 rely on the rich mathematical setting of the
di�eomorphic registration. Here we investigate the theoretical background of di�eo-
morphic registration and its practical translation to the image registration context.
This chapter was accepted for publication on IJCV [Lorenzi and Pennec, 2012].

Computational anatomy aims at developing models to understand the anatom-

ical variability of organs and tissues. A widely used and validated instrument for

comparing the anatomy in medical images is non-linear di�eomorphic registration

which is based on a rich mathematical background. For instance, the �large defor-

mation di�eomorphic metric mapping� (LDDMM) framework de�nes a Riemannian

setting by providing a right invariant metric on the tangent spaces, and solves the

registration problem by computing geodesics parametrized by time-varying velocity

�elds. A simpler alternative based on Stationary Velocity Fields (SVF) has been

proposed, using the one-parameter subgroups from Lie groups theory. In spite of its

better computational e�ciency, the geometrical setting of the SVF is more vague,

especially regarding the relationship between one-parameter subgroups and geodesics.

In this work, we detail the properties of �nite dimensional Lie groups that highlight

the geometric foundations of one-parameter subgroups. We show that one can de�ne

a proper underlying geometric structure (an a�ne manifold) based on the canon-

ical Cartan connections, for which one-parameter subgroups and their translations

are geodesics. This geometric structure is perfectly compatible with all the group

operations (left, right composition and inversion), contrarily to left- (or right-) in-

variant Riemannian metrics. Moreover, we derive closed-form expressions for the

parallel transport. Then, we investigate the generalization of such properties to in-

�nite dimensional Lie groups. We suggest that some of the theoretical objections

might actually be ruled out by the practical implementation of both the LDDMM and

the SVF frameworks for image registration. This leads us to a more practical study

comparing the parameterization (initial velocity �eld) of metric and Cartan geodesics

in the speci�c optimization context of longitudinal and inter-subject image registra-

tion.Our experimental results suggests that stationarity is a good approximation for

longitudinal deformations, while metric geodesics notably di�er from stationary ones

for inter-subject registration, which involves much larger and non-physical deforma-

tions. Then, we turn to the practical comparison of �ve parallel transport techniques

along one-parameter subgroups. Our results point out the fundamental role played

by the numerical implementation, which may hide the theoretical di�erences between

the di�erent schemes. Interestingly, even if the parallel transport generally depend

on the path used, an experiment comparing the Cartan parallel transport along the

one-parameter subgroup and the LDDMM (metric) geodesics from inter-subject reg-

istration suggests that our parallel transport methods are not so sensitive to the
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path.

4.1 Introduction

One of the main objectives of computational anatomy is to develop suitable sta-
tistical models on several subjects for the study of the anatomical variability of
organs and tissues. In particular, longitudinal observations from time series of im-
ages are an important source of information for understanding the developmental
processes and the dynamics of pathologies. Thus, a reliable method for comparing
di�erent longitudinal trajectories is required, in order to develop population-based
longitudinal models.

Non-rigid registration is an instrument for the detection of anatomical changes
on medical images, and it has been widely applied on di�erent clinical contexts
for the de�nition of population-based anatomical atlases [Thompson et al., 2003,
Mansi et al., 2011b, Durrleman et al., 2011]. However, in case of longitudinal data,
the optimal method for comparing deformation trajectories across di�erent subjects
is still unknown. In fact, the methods for integrating the subtle inter-subject changes
into the group-wise analysis have an important impact on the accuracy and reliabil-
ity of the subsequent statistical results. The aim is to preserve as much as possible
the biological informations carried on by the di�erent subjects, while allowing a
precise comparison in a common geometrical space.

Among the di�erent techniques proposed for the comparison of longitudinal tra-
jectories [Rao et al., 2004, Bossa et al., 2010, Durrleman et al., 2009], the parallel

transport represents a promising method which relies on a solid mathematical back-
ground. Basically, it consists in transporting the in�nitesimal deformation vector
across di�erent points by preserving its properties with respect to the space geom-
etry, such as the parallelism.

Parallel transport has been introduced in medical imaging within the LDDMM
setting [Younes, 2007b, Younes et al., 2008]. LDDMM solves the image registration
problem by using a Riemannian framework in which the deformations are para-
metrized as di�eomorphisms living in a suitable space, once provided an opportune
right-invariant metric [Miller et al., 2002]. The registration problem is solved by
computing the deformation that best matches the images with a penalization on the
energy of the trajectory in the space of di�eomorphisms. The solution is given by the
endpoint of a geodesic parametrized by a time-varying velocity �eld. This endpoint
can also be parametrized by the Riemannian exponential map of the initial velocity
�eld (or its metric dual, the momentum). The setting allows the computation of
the parallel transport along geodesics at the cost of a computationally intensive
scheme, and this limitation often prevents the application on high resolution images
or large datasets. Moreover, this assumes that both longitudinal deformations and
inter-subject transformations live in the same space of di�eomorphisms, which may
have very di�erent characteristics.

A simpli�ed solution to the di�eomorphic registration problem was introduced
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with the stationary velocity �eld (SVF) setting [Arsigny et al., 2006]. In this case,
the di�eomorphisms are one-parameter subgroups parameterized by stationary ve-
locity �elds through the Lie group exponential. This restriction allows an e�-
cient numerical scheme for the computation of the deformation but it does ap-
parently not rely on any geometric assumption on the underlying space. This
implies that some important mathematical properties are not guaranteed, for in-
stance whether the one-parameter subgroups are still geodesics or if the space is
complete. In spite of this lack of knowledge, the framework was found very ef-
�cient and reliable in many application in di�erent contexts [Mansi et al., 2011a,
Lorenzi et al., 2011a, Seiler et al., 2011b]. For instance, a framework based on the
Schild's Ladder has been proposed for the evaluation of the parallel transport with
the SVF in [Lorenzi et al., 2011b].

In this paper we investigate the relationship between Lie groups and a�ne ge-
ometry and we highlight many interesting properties that provide the SVF setting
with part of the geometrical solidity required. In Section 4.2 we present the rele-
vant properties of the �nite dimensional Lie groups and the relationship with the
Riemannian setting for the de�nition of the geodesics and the parallel transport.
Section 4.3 is dedicated to a discussion on the extension of the Lie group theory in
the in�nite dimensional case. In Section 4.4, we study the di�erences between the
registration based on the one-parameter subgroups and on the Riemannian metric
on speci�c registration problems. Finally, Section 4.5 focuses on the evaluation of
Cartan's parallel transport of deformation vectors in the image registration context.

4.2 Di�erential Geometry on Lie Group

This section references the conceptual basis for the de�nition of the parallel transport
along the one-parameter subgroups. Many details on di�erential geometry an Lie
groups can be found in classical books like [Gallot et al., 1993, do Carmo, 1992,
Helgason, 1978]. However, most results of this section are more easily found in the
more modern (and quite comprehensive) presentation of di�erential geometry and
Lie groups of Postnikov [Postnikov, 2001].

4.2.1 Basics of Lie Groups

A Lie group G is a smooth manifold provided with an identity element id, a smooth
associative composition rule (g, h) ∈ G×G 7→ gh ∈ G and a smooth inversion rule
g 7→ g−1 which are both compatible with the di�erential manifold structure. As
such, we have a tangent space TgG at each point g ∈ G. A vector �eld X is a
smooth function that maps a tangent vector X|g to each point g of the manifold.
The set of vector �elds (the tangent bundle) is denoted TG. Vector �elds can be
viewed as the directional (or Lie) derivative of a scalar function φ along the vector
�eld at each point: ∂Xφ|g = ∂φ(g+tX|g)

dt . Composing directional derivatives ∂X∂Yφ
leads in general to a second order derivation. However, we can remove the second
order terms by subtracting ∂Y∂Xφ (this can be checked by writing these expression
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in a local coordinate system). We obtain the Lie bracket that acts as an internal
multiplication in the algebra of vector �elds:

[X,Y](φ) = ∂X∂Yφ− ∂Y∂Xφ.

Given a group element a ∈ G, we call left translation La the composition with
the �xed element a on the left: La : g ∈ G 7→ ag ∈ G. The di�erential DLa of the
left translation maps the tangent space TgG to the tangent space TagG. We say that
a vector �eld X ∈ T (G) is left invariant if it remains unchanged under the action of
the left translation: DLaXg = X|ag. The sub-algebra of left-invariant vector �elds
is closed under the Lie bracket and is called the Lie algebra g of the Lie group. Since
a left-invariant vector �eld is uniquely determined by its value at identity through
the one-to-one map X̃|g = DLgX, the Lie algebra can be identi�ed to the tangent
space at the identity TidG. One should notice that any smooth vector �eld can be
written as a linear combination of left-invariant vector �elds with smooth functional

coe�cients.
Left-invariant vector �elds are complete in the sense that their �ow ϕt is de�ned

for all time. Moreover, this �ow is such that ϕt(g) = gϕt(id) by left invariance. The
map X 7→ ϕ1(id) of g into G is called Lie group exponential and denoted by exp. In
particular, the group exponential de�nes the one-parameter subgroup associated to
the vector X and has the following properties:

• ϕt(id) = exp(tX), for each t ∈ R;

• exp((t+ s)X) = exp(tX)exp(sX), for each t, s ∈ R.

In �nite dimension, it can be shown that the Lie group exponential is a di�eomor-
phism from a neighborhood of 0 in g to a neighborhood of id in G.

For each tangent vector X ∈ g, the one parameter subgroup exp(tX) is a curve
that starts from identity with this tangent vector. One could question if this curve
could be seen as a geodesic like in Riemannian manifolds. To answer this question,
we �rst need to de�ne what are geodesics. In a Euclidean space, straight lines are
curves which have the same tangent vector at all times. In a manifold, tangent
vectors at di�erent times belong to di�erent tangent spaces. When one wants to
compare tangent vectors at di�erent points, one needs to de�ne a speci�c mapping
between their tangent spaces: this is the notion of parallel transport. There is
generally no way to de�ne globally a linear operator Πh

g : TgG → ThG which is
consistent with composition (i.e. Πh

g ◦ Πg
f = Πh

f ). However, specifying the parallel
transport for in�nitesimal displacements allows integrating along a path, thus re-
sulting into a parallel transport that depend on the path. This speci�cation of the
parallel transport for in�nitesimal displacements is called the (a�ne) connection.

4.2.2 A�ne Connection Spaces

An a�ne connection on G is an operator which assigns to each X ∈ T (G) a linear
mapping ∇X : T (G) → T (G) such that, for each vector �eld X,Y ∈ T (G), and
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smooth function f, g ∈ C∞(G,R)

∇fX+gY = f∇X + g∇Y (Linearity); (4.1)

∇X(fY) = f∇X(Y) + (Xf)Y (Leibniz rule). (4.2)

The a�ne connection is therefore a derivation on the tangent space which in-
�nitesimally maps tangent vectors from one tangent plane to another. Once the
manifold provided with a connection, it is possible to generalize to the manifolds
the notion of �straight lines�: a vector �eld X is parallel transported along a curve
γ(t) if ∇γ̇(t)X = 0 for each t. Thus, a path γ(t) on G is said to be straight or
geodesic if ∇γ̇ γ̇ = 0.

In a local coordinate system, the geodesic equation is a second order di�erential
equation. Thus, given a point p ∈ G and a vector X ∈ TpG, there exist a unique
geodesic γ(t, p,X) such that at the instant t = 0 passes through p with velocity
X [Postnikov, 2001]. We de�ne therefore the A�ne exponential as the application
exp : G× T (G)→ G given by expp(X) = γ(1, p,X).

If, as in the Euclidean case, we want to associate to the straight lines the property
of minimizing the distance between points, we need to provide the group G with a
Riemannian manifold structure, i.e. with a metric operator g on the tangent space.
In this case there is a unique connection, called Levi-Civita connection, which, for
each X,Y,Z ∈ T (G):

• Preserves the metric, i.e. the parallel transport along any curve connecting f
to g is an isometry:

g(X,Y)g = g(Πf
gX,Π

f
gY)f .

• Is torsion free:

∇XY −∇YX = [X,Y],

thus the parallel transport is symmetric with respect to the Lie bracket.

By choosing the Levi-Civita connection of a given Riemannian metric, the a�ne
geodesics are the length minimizing paths (i.e. classical Riemannian geodesics).
However, given a general a�ne connection, there may not exist any Riemannian
metric for which a�ne geodesics are length minimizing.

4.2.3 From A�ne Geodesic to One-Parameter Subgroups

Given an a�ne connection ∇ and a vector X on TidG, we can therefore de�ne two
curves on G passing through id and having X as tangent vector, one given by the Lie
group exponential exp and the other given by the a�ne exponential expid. When
do they coincide?

The connection ∇ on G is left-invariant if, for each left translation La (a ∈ G)
and any vector �elds X and Y, we have ∇DLaX(DLaY) = DLa∇X(Y). Using two
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left invariant vector �elds X̃, Ỹ ∈ g generated by the tangent vectors X,Y ∈ TidG,
we see that ∇X̃Ỹ is itself a left-invariant vector �eld generated by its value at
identity. Since a connection is completely determined by its action on the left-
invariant vector �elds (we can recover the connection on arbitrary vector �elds
using Eq. (4.1,4.2) from their decomposition on the Lie Algebra), we conclude that
each left-invariant connection ∇ is uniquely determined by a product α (symmetric
bilinear operator) on TidG through

α(X,Y ) = ∇X̃Ỹ
∣∣∣
id
.

Notice that such a product can be uniquely decomposed into a commuta-
tive part α′ = 1

2 (α(X,Y ) + α(Y,X)) and a skew symmetric part α′′ =
1
2 (α(X,Y )− α(Y,X)). The symmetric part speci�es the geodesics (i.e. the par-
allel transport of a vector along its own direction) while the skew-symmetric part
speci�es the torsion which governs the parallel transport of a vector along a dif-
ferent direction (the rotation around the direction of the curve if we have a metric
connection with torsion).

Following [Postnikov, 2001], a left-invariant connection ∇ on a Lie group G is a
Cartan connection if, for any tangent vector X at the identity, the one-parameter
subgroups and the a�ne geodesics coincide, i.e. exp(tX) = exp(t, id,X). We can
see that a Cartan connection satis�es α(X,X) = 0 or, equivalently, is purely skew-
symmetric.

The one-dimensional family of connections generated by α(X,Y ) = λ[X,Y ] obvi-
ously satisfy this skew-symmetry condition. Moreover, the connections of this family
are also invariant by right translation [Pennec and Arsigny, 2012], thus invariant by
inversion also since they are already left invariant. This make them particularly
interesting since they are fully compatible with all the group operations.

Among this family, three connections have special curvature or sym-
metric properties and are called the canonical Cartan-Schouten connections
[Cartan and Schouten, 1926]. The zero curvature connections given by λ = 0, 1
(with torsion T = −[X̃, Ỹ] and T = [X̃, Ỹ] respectively on left invariant vec-
tor �elds) are called left and right Cartan connections. The choice of λ = 1/2
leads to average the left and right Cartan connections. It is called the symmetric

(or mean) Cartan connection. It is torsion-free, but has curvature R(X̃, Ỹ)Z̃ =
−1

4

[
[X̃, Ỹ], Z̃

]
.

As a summary, the three canonical Cartan connections of a Lie group are (for
two left-invariant vector �elds):

∇X̃Ỹ = 0 Left (Torsion, Flat);

∇X̃Ỹ =
1
2

[
X̃, Ỹ

]
Symmetric (Torsion-Free, Curved);

∇X̃Ỹ =
[
X̃, Ỹ

]
Right (Torsion, Flat).

Since the three canonical Cartan connections only di�er by torsion, they share
the same a�ne geodesics which are the left and right translations of one parameter
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subgroups. In the following, we call them group geodesics. However, the parallel
transport of general vectors along these group geodesics is speci�c to each connection
as we will see below.

4.2.4 Left and Right Invariant Riemannian Metrics on Lie Groups

Given a metric < X,Y > on the tangent space at identity of a group, one can prop-
agate this metric to all tangent spaces using left (resp. right) translation to obtain
a left- (resp. right-) invariant Riemannian metric on the group. In the left-invariant
case we have < DLaX,DLaY >a=< X,Y > and one can show [Kolev, 2007] that
the Levi-Civita connection is the left-invariant connection generated by the product

α(X,Y ) =
1
2

[X,Y ]− 1
2

(ad∗(X,Y ) + ad∗(Y,X)),

if the operator ad∗ verifying < ad∗(Y,X), Z >=< [X,Z], Y > for all X,Y, Z ∈ g is
well de�ned. A similar formula can be established for right-invariant metrics using
the algebra of right-invariant vector �elds.

We clearly see that this left-invariant Levi-Civita connection has a symmetric
part which make it di�er from the Cartan symmetric connection α(X,Y ) = 1

2 [X,Y ].
In fact, the quantity ad∗(X,X) speci�es the rate at which a left invariant geodesic
and a one parameter subgroup starting from the identity with the same tangent
vector X deviates from each-other. More generally, the condition ad∗(X,X) = 0 for
all X ∈ g turns out to be a necessary and su�cient condition to have a bi-invariant
metric [Postnikov, 2001]. It is important to notice that geodesics of the left- and
right-invariant metrics di�er in general as there do not exists bi-invariant metrics
even for simple groups like the Euclidean motions [Pennec and Arsigny, 2012]. How-
ever, right invariant geodesics can be obtained from the left invariant one through
inversion: if φ(t) is a left invariant geodesic joining identity to the transformation
φ1, then φ−1(t) is a right-invariant geodesic joining identity to φ−1

1 .

4.2.5 Parallel Transport on Cartan Connections

For the left Cartan connection, the unique �elds that are covariantly constant are the
left-invariant vector �elds, and the parallel transport is induced by the di�erential
of the left translation [Postnikov, 2001], i.e. ΠL : TpG→ TqG is de�ned as

ΠL(X) = DLqp−1X. (4.3)

One can see that the parallel transport is actually independent of the path, which is
due to the fact that the curvature is null: we are in a space with absolute parallelism.
Similarly, the right-invariant vector �elds are covariantly constant with respect to
the right invariant connection only. As above, the parallel transport is given by the
di�erential of the right translation

ΠR(X) = DRp−1qX, (4.4)
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Figure 4.1: The Schild's Ladder. Given a curve C, the vector A on P0 is transported
to P1 in two steps: 1) compute the geodesic connecting P2 and P1 and de�ne the
mid-point P3, 2) compute the geodesic from P0 to P3 and prolongate twice to reach
P4. The tangent vectorA′ to the curve connecting P1 and P4 is the parallel transport
of A.

and we have an absolute parallelism as well.

Finally, the parallel transport for the symmetric Cartan connection is given by
the in�nitesimal alternation of the left and right transports. However, as there is
curvature, it depends on the path: it can be shown [Helgason, 1978] that the parallel
transport of X along the geodesic exp(tY ) is:

ΠS(X) = DLexp( 1
2
Y )DRexp( 1

2
Y )X. (4.5)

4.2.6 The Schild's Ladder: a Parallel Transport Scheme for Sym-
metric Connections

A more general method for parallel transport was introduced in [Misner et al., 1973]
after Schild's similar constructions [KSchild, 1970]. The Schild's Ladder in�nitesi-
mally transports a vector along a given curve through the construction of geodesic
parallelograms (Figure 4.1). Since this scheme relies only on geodesics, it is only
valid for symmetric connections with no torsion [Kheyfets et al., 2000], in which
case it provides a �rst order approximation of the parallel transport. Although the
Schild's Ladder was known in gravitation theory for 40 years, it was apparently not
used in practice as a computational tool before it was turned into an algorithm for
the parallel transport of deformation vectors in [Lorenzi et al., 2011b].
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4.3 A Glimpse of Lie Group Theory in In�nite Dimen-

sion

In the previous Section, we derived the equivalence of one-parameter subgroups and
the a�ne geodesics of the canonical Cartan connections in a �nite dimensional Lie
group. In order to use such a framework for di�eomorphisms, we have to generalize
the theory to in�nite dimensions. However, de�ning in�nite dimensional Lie groups
is raising much more di�culties. This is in fact the reason why Lie himself restricted
to �nite dimensions. The theory was developed since the 70ies and is now an active
�eld of research. We refer the reader to the recent books [Khesin and Wendt, 2009,
Younes, 2010] for more details on this theory and to [Schmid, 2004] for a good
overview of the problems and applications.

4.3.1 In�nite Dimensional Lie Groups

The basic construction scheme is to consider an in�nite dimensional manifold en-
dowed with smooth group operations. Such a Lie group is locally di�eomorphic to
an in�nite-dimensional vector space which can be a Fréchet space (a locally convex
space which is complete with respect to a translation invariant distance), a Banach
space (where the distance comes from a norm) or a Hilbert space (where the norm
is derived from a scalar product). We talk about Fréchet, Banach or Hilbert Lie
groups, respectively. Extending di�erential calculus from Rn to Banach and Hilbert
spaces is straightforward, but this is not so simple for Fréchet spaces. In particular,
the dual of a Fréchet space need not be Fréchet, which means that some extra care
must be taken when de�ning di�erential forms. Moreover, some important theorems
such as the inverse function theorem hold for Banach spaces but not necessarily for
Fréchet spaces.

For instance, the set Di�k(M) of Ck di�eomorphisms of a compact manifold
M is a Banach manifold and the set of Sobolev Hs di�eomorphisms Di�s(M) is
a Hilbert manifold (if s > dimM/2). However, these are no-classical "Lie groups"
since one looses derivatives when di�erentiating the composition and inversion maps.
To obtain the complete smoothness of the composition and inversion maps, one has
to go to in�nity, but the Banach structure is lost in the process [Schmid, 2004, p.12]
and we are left with Di�∞(M) being only a Fréchet Lie group. Some additional
structure can be obtained by considering the sequence of Di�k(M) spaces as a
succession of dense inclusions as k goes to in�nity: this the Inverse Limit of Banach
(ILB)-Lie group setting. Likewise, the succession of dense inclusions of Sobolev Hs

di�eomorphisms give rise to the Inverse Limit of Hilbert (ILH)-Lie group setting.

4.3.2 General Groups of Di�eomorphisms

As the di�eomorphisms groups considered are Fréchet but not Banach, the usual set-
ting of in�nite dimensional Lie groups is the general framework of Fréchet manifolds.
This implies that many of the important properties which are true in �nite dimension
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do not hold any more for general in�nite dimensional Lie groups [Schmid, 2010].

First, there is no implicit or inverse function theorem (except Nash-Moser type
theorems.) This implies for instance that the log-map (the inverse of the exponential
map) may not be smooth even if the di�erential of the exponential map is the
identity.

Second, the exponential map is not in general a di�eomorphism from a neigh-
borhood of zero in the Lie algebra onto a neighborhood of the identity in the group.
This means that it cannot be used as a local chart to work on the manifold. For
instance in Di�s(M), in every neighborhood of the identity there exists di�eomor-
phisms which are not the exponential of an Hs vector �eld. A classical example
of the non-surjectivity of the exponential map is the following function in Di�(S1)
[Milnor, 1984]:

fn,ε(θ) = θ + π/n+ ε sin2(nθ). (4.6)

This function can be chosen as close as we want to the identity by opportunely
dimensioning ε and θ. However, it can be shown that it cannot be reached by
any one-parameter subgroup, and therefore the Lie group exponential is not a local
di�eomorphisms of Di�(S1).

This example is quite instructive and shows that this theoretical problem might
actually be a very practical advantage: the norm of the k-th derivative of fn,ε is
exploding when k is going to in�nity, which shows that we would rather want to
exclude this type of di�eomorphisms from the group under consideration.

4.3.3 Theoretical Background of Di�eomorphic Image Registra-
tion

In the Large Deformation Di�eomoprhic Metric Mapping (LDDMM) framework
[Younes, 2010], a di�erent construction is leading to a more restricted subgroup of
di�eomorphisms which is more rational from the computational point of view. One
�rst chooses a Hilbert norm on the Lie Algebra which turn it into an admissible
Hilbert space. Admissible means that it can be embedded into the space of vec-
tor �elds which are bounded and vanishing at in�nity, as well as all the �rst order
derivatives. Typically, this is a Sobolev norm of a su�ciently high order. Then,
one restricts to the subgroup of di�eomorphisms generated by the �ow of integrable
sequences of such vector �elds for a �nite time. To provide this group with a Rie-
mannian structure, a right invariant metric is chosen. The reason for choosing right
translation is that it is simply a composition which does not involve a di�erential
operator as for the left translation. On can show that the group provided with this
right-invariant metric is a complete metric space: the choice of the norm on the
Lie algebra is specifying the subgroup of di�eomorphisms which are reachable, i.e.
which are at a �nite distance.
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4.3.4 The Stationary Velocity Fields (SVF) framework

In [Arsigny et al., 2006], Arsigny proposed to parameterize deformations by the ex-
ponential (i.e. the �ow) of stationary velocity �elds [Arsigny et al., 2006]. The
fact that the �ow in an autonomous ODE allows us to generalize e�cient algo-
rithms such as the scaling and squaring algorithm: given an initial approximation
exp(δY ) = id + δY , the exponential of a SVF Y can be e�ciently and simply
computed by recursive compositions:

exp(Y ) = exp
(
Y

2

)
◦ exp

(
Y

2

)
=
(
exp

(
Y

2n

))2n

.

A second algorithm is at the heart of the e�ciency of the optimization algorithms
with SVFs: the Baker-Campbell-Hausdor� (BCH) formula [Bossa et al., 2007] tells
us how to approximate the log of the composition:

BCH(X, δY ) = log(exp(X) ◦ exp(δY ))

= X + δY +
1
2

[X, δY ] +
1
12

[X, [X, δY ]] + . . . .

In order to have a well-posed space of deformations, we need to specify on
which space is modeled the Lie algebra, as previously. This is the role of the
regularization term of the SVF registration algorithms [Vercauteren et al., 2008,
Hernandez et al., 2009] or of the spline parameterization of the SVF in
[Ashburner, 2007b, Modat et al., 2011]: this restricts the Lie algebra to the sub-
algebra of su�ciently regular velocity �elds. The subgroup of di�eomorphisms con-
sidered is then generated by the �ow of these stationary velocity �elds and their �nite
composition. So far, the theoretical framework is very similar to the LDDMM setting
and we can see that the di�eomorphisms generated by the one-parameter subgroups
(the exponential of SVFs) all belong to the group considered in the LDDMM setting,
provided that we model the Lie algebra on the same admissible Hilbert space. As in
�nite dimension, the a�ne geodesics of the Cartan connections (group geodesics) are
metric-free (the Hilbert metric is only used to specify the space on which is modeled
the Lie Algebra) and generally di�er from the Riemannian geodesics of LDDMM.

When modeling the Lie algebra on a reproducing kernel Hilbert space (RKHS)
with a real analytic kernel (typically a Gaussian Kernel), the Lie algebra is stable
under the bracket, which is necessary for the classical Lie group theory. If we could
show that the adjoint operator is uniformly bounded with a su�ciently small bound,
then we would expect the BCH series to be convergent. Having such a BCH-Lie
group would already be su�cient to justify the optimization steps performed in the
SVF registration framework.

However, it is well known that the subgroup of di�eomorphisms generated by
this Lie algebra is signi�cantly larger than what is covered by the group exponential.
Indeed, although our a�ne connection space is geodesically complete (all geodesics
can be continued for all time without hitting a boundary), there is no Hopf-Rinow
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theorem which state that any two points can be joined by a geodesic (metric com-
pleteness). Thus, in general, not all the elements of the group G may be reached by
the one-parameter subgroups. An example in �nite dimension is given by SL(2).

However, this might not necessarily results into a problem in the image registra-
tion context since we are not interested in recovering �all� the possible di�eomor-
phisms, but only those which lead to admissible anatomical transformations. For
instance, the di�eomorphism on the circle de�ned above at Eq. (4.6) cannot be
reached by any one-parameter subgroup of S1. However, since

lim
k→∞

‖fn,ε‖Hk →∞,

this function is not well behaved from the regularity point of view, which is a critical
feature when dealing with image registration.

In practice, we have a spatial discretization of the SVF (and of the deformations)
on a grid, and the temporal discretization of the time varying velocity �elds by a
�xed number of time steps. This intrinsically limits the frequency of the deforma-
tion below a kind of "Nyquist� threshold, which prevents these di�eomorphisms to
be reached anyway both by the SVF and by the �discrete" LDDMM frameworks.
Therefore, it seems more importance to understand the impact of using stationary
velocity �elds in registration from the practical point of view, than from the the-
oretical point of view, because we will have in �ne to deal with the unavoidable
numerical implementation and relative approximation issues.

4.4 Practical Di�erences between Metric and Group

Geodesics in Registration

In this Section, we investigate the practical di�erences between metric and group
geodesics, by applying the SVF and LDDMM image registration settings on com-
mon data. In this case, we are interested in the di�erences between the estimated
di�eomorphisms and the related tangent parametrization.

We investigate two di�erent scenarios: longitudinal and inter-subject registration
problems. In the former case the registration aims at retrieving the small di�erences
occurring on the same subject after two subsequent imaging session, most likely due
to precise biological processes. In the latter case, the di�erences are given by the
large variability among di�erent subjects, with potential structural and topological
changes. In this case, even if there might not exist real one-to-one correspondences,
the di�eomorphic constraint is important in term of smoothness and reliability of
the represented deformation. In the following the SVF and LDDMM settings will
be provided by the log-Demons and the AtlasWerk registration algorithms.

4.4.1 Log-Demons

The symmetric log-domain di�eomorphic Demons (or log-Demons)
[Vercauteren et al., 2008] estimates a di�eomorphic deformation parametrized
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by a SVF. The log-Demons alternates the estimation of unconstrained correspon-
dences (encoded through the exponential of a SVF vc) that optimize the image
similarity measure, and the estimation of the transformation parameters (a SVF
v) that best explains the correspondence �eld using a penalized least-squares
approach. The regularity criterion is an in�nite order di�erential quadratic forms
(Qk) of the velocity �eld [Cachier and Ayache, 2004],

Reg(v) = ‖vc − v‖2 +
∞∑
k=1

Qk(v)
σ2k
t

' ‖vc − v‖2 +
σ2

2
‖∇v‖2 +

σ4

4
‖∇2v‖2 + . . . ,

where we chose σ2
t = 2/σ2 so that the optimum is explicitly obtained through a

Gaussian convolution of smoothing parameter σ [Mansi et al., 2011a]. The Lie group
exponential is e�ciently implemented by the scaling and squaring computational
scheme. An additional (so-called �uid) regularization step is often performed when
updating the correspondences in addition to the above elastic-like penalization.

In the following experiments we used the regularization parameters σfluid = 0.5
and σel = 1.5, maximum update step length σx = 2 voxels, with a multi-resolution
scheme of 100 and 50 iterations at coarser and �ner level respectively. This choice
leads to a reasonable compromise between image matching and smoothness of the
deformation in both longitudinal and inter-subject settings, as already tested in
several previous experiments. The average computational time for the registration
of a couple of brain images (image resolution 182x218x182, voxel size 1x1x1) is 25
minutes on a AMD Opteron dual core 2000Mhz.

4.4.2 AtlasWerks

The AtlasWerks suite [Atlaswerks, 2007] is an implemention of the Large Defor-
mation Di�eomorphic Metric Mapping (LDDMM) framework. The algorithm mini-
mizes the sum of an image similarity metric and an elastic regularization term which
measures the energy of the trajectory deforming one image into the other. This
formulation ensures that the optimum trajectory is a geodesic evolution equation,
which means that the path is completely de�ned by the initial tangent vector or,
equivalently, by the initial momentum [Joshi and Miller, 2000, Joshi et al., 2004b].
The energy of the geodesic is measured by the norm of the initial vector ‖v0‖2 =
‖Lv0‖2L2

(or equivalently by its integral along the geodesic path). The di�erential
operator L = γ − α∇2 − β∇(∇·) is controlled by three parameters α, β and γ re-
sponsible respectively for the smoothness and the compressibility of the deformation,
and trade-o� between matching and regularity terms. This energy corresponds to a
Sobolev H2 norm on the Lie Algebra, which is weaker than the one imposed by the
log-Demons regularization: roughly, the normalized weight α/γ of the �rst order
term could be compared to the weight σ2/2 of the log-Demons while β/γ should
be compare to zero. The same comparison is also valid for the second order term.
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Figure 4.2: Intra-subject registration. Tangent representation for the intra-subject
longitudinal deformation estimated by A) the SVF, and B) the LDDMM (initial
tangent vector v(0)) settings. C,C') LDDMM time varying velocity �eld v(ti) at
time points ti = 0.4 and 0.8, and D) associated magnitude measured by the L2

norm.

Higher order terms are not penalized by AtlasWerks while they are increasingly
penalized with the log-Demons.

The AtlasWerks suite requires to set-up di�erent registration parameters and, in
order to obtain results compatible with those given by the Demons registration, we
�nally chose the ones which lead to the maximum SSD similarity with the Demons
results (not shown). Therefore, the following experiments were performed by setting
the �uid registration parameters as follow: α = 1.5, β = 0.01,γ = 3 and σ = 15, with
a multi-resolution scheme of 100 and 50 iterations and the geodesic path computed
on 5 time points. These parameters seems of the same order than the log-Demons
one (α/γ = 0.5 versus σ2/2 = 1, β/γ = 0.003 versus 0). In the following experiments
on brain images the average computational time was of 150 minutes.
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Figure 4.3: Deformation trajectory for the inter-subject warp estimated by the
LDDMM (top sequence), and the SVF (bottom sequence).

4.4.3 Longitudinal Registration

We chose the one year follow-up brain images from 5 subjects a�ected by Alzheimer's
disease from a clinical study presented elsewhere [Galluzzi et al., 2009]. The MR
images were acquired with a 1.0 Tesla Philips Gyroscan. The T1-weighted scan was
acquired in the sagittal plane with a gradient echo techniques as follows: TR= 20
ms, TE= 5 ms, �ip angle= 30◦, �eld of view= 220 mm, acquisition matrix= 256x256,
slice thickness= 1.3 mm. After a standard preprocessing pipeline consisting in a�ne
registration and histogram matching, the images were di�eomorphically registered
with the LDDMM and the SVF algorithms.

In Figure 4.2, top row, we can see an example of the di�erent tangent representa-
tions for the estimated deformations. The two methods retrieve similar deformation
patterns, both mapping to the cortical areas, hippocampus and white matter.

In this example related to small longitudinal changes, the time-varying repre-
sentation does not exhibit relevant changes in time concerning the direction of the
deformation vectors (Figure 4.2, row C,C'), and the magnitude (Table 4.2), here
evaluated as the L2 norm of the velocity �elds. In fact, as shown in Figure 4.2, row
D, and in Table 4.2, the variation of the time-varying velocity �elds are minimal in
terms of location and magnitude of the forces.

In Table 4.1 we can see that both Demons and LDDMM provide similar results
for the matching in terms of the SSD. Interestingly, the similarity between the
deformed images obtained with the two registration methods is higher than the
similarity of the deformed images with the target. This example suggests that, in
the small deformation setting, both stationary and time-varying parameterizations
lead to similar results, and that the LDDMM velocity �eld stays barely constant
during the evolution.
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4.4.4 Inter-subject Registration

In this experiment, the two methods were employed to register a set of 10 T1 brain
scans from the LPBA40 dataset of the Laboratory of Neuro Imaging (LONI) at
UCLA1[Shattuck et al., 2008]. A reference subject was chosen among the dataset,
and the other brain images underwent a�ne registration and histogram matching
prior to non-rigid registration with the SVF and the LDDMM frameworks.

In Figure 4.4 we can observe an example of the estimated tangent representation
of the deformations. Contrarily to the intra-subject case, the variation in orientation
and magnitude of the time-varying velocity �elds is here more pronounced (rows C-
C', D), and the same result is quanti�ed by the increased non-stationarity of the
LDDMM velocities (Table 4.2). Moreover, the velocity �eld appears more localized

1http://www.loni.ucla.edu/Atlases/LPBA40

Figure 4.4: Inter-subject registration. Tangent representation for the inter-subject
deformation estimated by A) the SVF, and B) the LDDMM (initial tangent vector
v(0)) settings. C,C') LDDMM time varying velocity �eld v(ti) at time points ti = 0.4
and 0.8, and D) associated magnitude measured by the L2 norm. We notice the
variation in magnitude and location of the time varying velocity.
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than for the SVF. This could come from the regularization of the higher di�erential
terms in the log-Demons for the SVF. However, we also know that the optimal
momentum for LDDMM has to be aligned with the gradient of the image and is
thus localized on the edges. This second reason is probably more important although
it remains to be quanti�ed.

Table 4.3 (�rst row) shows the average L2 distance between the displacement
�elds obtained with the two di�erent frameworks. As already described before,
the SVF and LDDMM displacements are closer in the longitudinal setting than
in inter-subject. Figure 4.3 shows the estimated evolution from the source to the
target image under the two registration settings. As can be seen for instance for the
deformation on the ventricles, the two methods perform here di�erently. However,
as in the experiments on the longitudinal registration, the two methods provide
similar results in terms of resulting SSD (Table 4.1).

Clearly these experiments do not aim to provide comparisons in terms of accu-
racy and precision which notably depend on the opportune tuning of the registration
parameters. However it is interesting to notice the very similar result for the in-
tensity matching in spite of the rather di�erent parameterizations estimated by the
two methods.

Table 4.1: Average SSD (standard deviation) for the di�erent tests in the lon-
gitudinal and the inter-subject registration settings. The SVF method performs
very similarly to the LDDMM, as also shown by the low SSD between the result-
ing warped images (Row 2). Moreover, the exponential given by the �scaling and
squaring� numerical scheme of the initial LDDMM tangent vector generally provides
lower matchings with the target images, tough the resulting warped images are still
consistent with the LDDMM ones, especially in the longitudinal setting (Rows 4-5).

Longitudinal Inter-Subject
SVF-Target 256(37) 355(39)
SVF-LDDMM 139(102) 122(70)
LDDMM-Target 284(90) 372(35)

ScSq-LDDMM 162(105) 368(62)
ScSq-Target 514(111) 950(98)

4.4.5 Lie Group vs Riemannian Exponential of the Same Initial
Vector Field

Finally, we investigated the practical di�erences between the Lie group exponential
and the Riemannian one, by comparing the relative results in terms of vector �eld
exponentiation. For this purpose, the Lie group exponential implemented by the
scaling and squaring algorithm was applied on the initial vector �eld v(0) provided
by the LDDMM, and the resulting warped image was compared to the LDDMM
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Table 4.2: Evaluation of the non-stationarity of the LDDMM velocity �elds. Av-

erage (standard deviation) change in the L2 norm
R
Ω ‖v(0)−v(t)‖2

L2R
Ω ‖v(0)‖2

L2
for the sampled

LDDMM time varying velocity �elds in the inter-subject and longitudinal settings.
As qualitatively shown in Figure 4.2 and 4.4, the LDDM evolution is more stationary
in the longitudinal setting.

Relative distance from v(0)
Longitudinal setting Inter-Subject setting

v(0.2) 0.026 (0.020) 0.007 (0.013)
v(0.4) 0.077 (0.088 ) 0.046 (0.027)
v(0.6) 0.13 (0.125) 0.283 (0.213)
v(0.8) 0.208 (0.160) 1.6 (1.23)

Table 4.3: Di�erences between LDDM and SVF displacements. Relative average L2

distance (standard deviation)
R
Ω ‖ϕLDDMM−ϕSV F ‖2L2R

Ω ‖ϕLDDMM |2L2
between the displacement �elds

obtained in the di�erent settings: inter-subject vs longitudinal registration, and Lie
group vs Riemannian exponentials on the LDDMM initial tangent vector. As for the
SSD on the resampled images (Table 4.1), the SVF method performs more similarly
to the LDDMM in the longitudinal setting. Moreover, in this setting the �scaling
and squaring� Lie group exponential is closer to the Riemannian one.

Longitudinal Inter-Subject
SVF-LDDMM 674 (4.66) 5692 (1322)

ScSq-LDDMM 1.93 (1.63) 39.3 (58.8)

one, which is obtained from the geodesic evolution equation.
Figure 4.5 shows the result for both intra and inter-subject registration. In the

longitudinal case (top row), the Lie group exponential generates results close to
the LDDMM ones, as shown by the low intensity di�erences between the respective
warped images. This is con�rmed at the group level (Table 4.1), where the average
SSD between the two exponential methods is lower than the one resulting from the
LDDMM registration (162 vs 284), even though the Lie group exponential led to
increased average intensity mismatch with respect to the target(514). In the inter-
subject case the di�erences are more pronounced (Figure 4.5, bottom row): the Lie
group exponential of the initial tangent vector produces a deformation that di�ers
from the the original LDDMM one (for instance in the ventricles and around the
cortex). This is re�ected at the group level by the resulting similarities (Table 4.1),
where the average SSD between the exponential methods is comparable to the one
of the inter-subject registration LDDMMM-Target (368 vs 372), and the mismatch
Lie Group Exponential-Target is sensitively higher (950). The result is con�rmed
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Figure 4.5: Lie group exponential (scaling and squaring) applied to the LDDMM
initial vector for the intra and the inter-subject registration. From left to right:
Target image, A) resulting warped source image with the scaling and squaring, B)
warped source imaged with the LDDMM, and di�erences between C1) LDDMM
and Scaling and Squaring warped images, C2) LDDMM warped and target images
and C3) scaling and squaring warped and target images. We note that although
the scaling and squaring provides worse matching with respect to the target, the
resulting warped image is still close to the LDDMM one.

when considering the relative di�erence between the L2 norm of the displacements
given by two exponentials (Table 4.3).

This experiment is a supporting argument for the stationary nature of the longi-
tudinal deformations, where the scaling and squaring of the tangent vector lead to a
satisfactory description of the morphological changes. Thus, for small deformations,
the metric geodesics seems to correspond to the one-parameter subgroups. A rather
di�erent scenario is given by the inter-subject registration problem, where the evolu-
tion of the momentum for the geodesic evolution cannot be neglected and produces
a di�erent representation of the deformation from the one from the one-parameter
subgroup.

4.5 Cartan Parallel Transport along Group Geodesics in

Practice

In group of di�eomorphisms, the left and right translations are respectively
Lg exp(X) = g ◦ exp(X), and Rg exp(X) = exp(X) ◦ g. Their �rst order Taylor
expansion leads to

DLg(X) = Dg ·X DRg(X) = X ◦ g,

where Dg(x) = ∂g(x)/∂x is the usual Jacobian matrix. We can therefore provide an
explicit closed form formula for the parallel transport with respect to the canonical
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Cartan connections. In particular, if X is a vector �eld to be transported along the
one-parameter subgroup exp(tY ) we have:

ΠL
Y (X) = Dexp(Y ) ·X, (4.7)

ΠR
Y (X) = X ◦ exp(Y ), (4.8)

ΠS
Y (X) = Dexp(

Y

2
) ·
(
X ◦ exp(

Y

2
)
)
. (4.9)

4.5.1 Computing the Jacobian of the Deformation

From the computational point of view, we notice that among the three transport
methods, ΠR requires the simple resampling of the velocity �eld by the transforma-
tion, while both ΠL and ΠS involve the computation of the Jacobian matrix of the
exponential. The presence of these �rst order di�erential terms is raising numerical
accuracy problems when the Jacobian matrix is computed by �nite di�erences of
the displacement �eld sampled on the image grid. In the case of large deformations,
the displacement �eld is undergoing high frequency changes and its sampling in the
�nite di�erence scheme is notably error prone.

We can alleviate this numerical problem by taking advantage of the proper-
ties of the one-parameter subgroups. Rather than computing directly the Jacobian
Dexp(Y ) using �nite di�erences on the �nal displacement �eld, we can derive a
recursive scheme from the following property:

exp
(
nY

N

)
= exp

(
(n− 1)Y

N

)
◦ exp

(
Y

N

)
Starting from the approximation Dexp(Y/N) ' Id + 1

NDY for a suitable scaling
factor N , we have the recursive formula (for n = 2 to N):

Dexp
(
nY

N

)
= Dexp

(
(n− 1)Y

N

)∣∣∣∣
exp( YN )

·Dexp
(
Y

N

)
(4.10)

Thanks to this recursive scheme, the Jacobian is computed by �nite di�erences on
a low frequency displacement �eld, which sampling does not raise numerical issues,
and the matrix valued image of Jacobian matrices is recursively resampled and
multiplied along the one-parameter subgroup. Thus, the scheme avoids the sampling
of a high frequency �eld, at the cost of multiple interpolations. Here, interpolating
derivatives (Jacobian matrices) instead of displacements is giving a very important
gain in numerical accuracy. Although the smoothness of the interpolation scheme
(trilinear, spline, etc.) may be thought of as having an important impact on the
�nal computational accuracy, we use simple trilinear interpolation in the sequel.

4.5.2 Schild's Ladder Implementation for SVF

The Schild's Ladder scheme was introduced in the SVF setting in
[Lorenzi et al., 2011b] to parallel transport longitudinal trajectories along inter-
subject deformations. When applied to the symmetric Cartan connection, we can
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take advantage of the symmetry properties of the parallelogram to replace the
computation of the geodesics with the composition of group exponentials, and the
initial tangent vector of the resulting geodesic can be e�ciently approximated with
the BCH formula. This leads to a computationally e�cient and numerically stable
method where the parallel transport of a vector X along the trajectory exp (tY ) is

ΠY
Schild(X) = X + t[Y,X] +

t2

2
[Y, [Y,X]] +O(t3),

with [Y,X] = DY ·X−DX ·Y . Notice that here we take the spatial gradient of the
SVFs Y and X while the previous transport schemes di�erentiate the exponential
exp(Y ). This might make an important numerical di�erence.

4.5.3 Synthetic Experiment on a Simpli�ed Geometry

Morphometric studies often investigate pathological phenomena described by the
loss of matter, which is modeled by compressible deformations and quanti�ed by
scalar indices of volume change, such as the Jacobian determinant or its logarithm.
Therefore it is important to preserve these measures when normalizing to a reference
space in group-wise studies of deformation trajectories. In this section we propose a
simple example aimed at testing the ability of the proposed Cartan parallel transport
techniques to preserve the atrophy trajectory simulated on a simpli�ed geometry.

A synthetic progression of longitudinal atrophy was simulated on a 3D gray
matter sphere S0 enclosing a white/black matter region. The atrophy was simulated
by decreasing the gray layer thickness on four subsequent time points to generate the
sequence Si, i = 1 . . . 4 (Figure 4.7). The longitudinal trajectories of deformation
�elds exp(Xi) were then evaluated by registering the images to the baseline with

Figure 4.6: Synthetic example: Intra and inter-subject variations from the sphere
source space to the ellipsoid target space with related deformations.
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Table 4.4: Average measures of changes on the gray matter layer. Top-row (Source
Space): changes measured on the reference sphere at each time point 1−4. Bottom-
rows: changes measured from the transported longitudinal deformations on the
ellipsoid. For the conjugate action it was not possible to compute the L2 Norm of
the associated stationary velocity �eld, since it acts on deformation �elds.

L2 Norm log Jacobian
1 2 3 4 1 2 3 4

Source Space 2.97 9.85 22.68 44.62 -4.77 -9.54 -14.76 -19.14
ΠL 3.02 9.57 22.14 42.32 -5 -9.82 -14.88 -20.43
ΠR 2.94 10 22.81 44.58 -4.70 -9.36 -14.51 -19.18
ΠS 3.3 11.17 25.7 50.37 -5.74 -11.2 -17.13 -23.65
Schild's Ladder 3.65 10.74 24.3 51.49 -4.83 -9.86 -14.65 -19.11

Conjugate / / / / -2.6 -5.5 -9.18 -13.93

Jacobian Elastic energy
1 2 3 4 1 2 3 4

Source Space 0.68 0.47 0.35 0.37 3.47 3.93 4.5 5.23
ΠL 0.69 0.51 0.43 0.45 3.51 4.01 4.67 5.53
ΠR 0.69 0.49 0.36 0.37 3.49 3.9 4.44 5.15

ΠS 0.67 0.50 0.42 0.48 3.58 4.2 4.99 6.05
Schild's Ladder 0.71 0.51 0.45 0.49 3.57 4.14 4.84 6.21
Conjugate 0.8 0.63 0.47 0.32 3.43 3.83 4.36 5.04

the log-Demons algorithm [Vercauteren et al., 2008]. The sequence of deformations
exp(Xi) was then transported on a target ellipsoidal geometry E0 along the inter-
subject deformation exp(Y ) such that exp(Y )∗S0 = E0 (Figure 4.6). The transport
methods that we tested were:

• Right Cartan connection (right translation) ΠR;

• Left Cartan connection (left translation) ΠL and Cartan symmetric connection
ΠS implemented with the recursive scheme;

• Conjugate action
Conj(exp(Xi)) = exp(Y )exp(Xi)exp(Y )−1;

• the Schild's Ladder, which operates along the �diagonal� inter-subject defor-
mations exp(Y i) such that exp(Y i) ∗ Si = E0 (Figure 4.6)

The methods were quantitatively assessed by evaluating the features of interest
in the ellipsoidal gray layer: the average L2 norm of the transported SVF, the Ja-
cobian determinant, log-Jacobian determinant and elastic energy of the associated
deformation �elds. Since we are interested in preserving the interesting features of
the transported trajectories, the transported quantities were compared to the origi-
nal values in the reference sphere space. Moreover, the stability of the methods was
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tested by checking the scalar spatial maps associated to the features (this involves
resampling).

Table 4.4 shows the accuracy of the transport methods in the preservation of
the measure of changes in the gray matter layer. Among the di�erent methods, the
transport ΠR was the most accurate in preserving the average measures, while the
Schild's Ladder performed better on the log-Jacobian.

From the inspection of the related scalar log-Jacobian maps (Figure 4.7), the
transport ΠL is the less stable and leads to noisy maps. Moreover, we notice that
the areas of expansions does not �t the boundary of the ellipsoid. On the other
hand, the transport ΠR leads to smooth maps of changes, consistent with the target
geometry, while the transport ΠS lies �in between�, as one could reasonably expect.
The Schild's Ladder leads to smooth maps as well, although the inner spherical shape
seems corrupted for higher deformations. This could explain the lower performance
on the quantitative measurements for the time points 3 and 4. Finally, the log-
Jacobian maps associated to the conjugate actions are smooth but fail to preserve
the target ellipsoidal geometry, especially for the higher deformations.

4.5.4 Real Longitudinal Changes in Alzheimer's Disease

In this section the parallel transports ΠL,ΠR, ΠS , and the Schild's Ladder were ap-
plied to an example of real longitudinal brain atrophy. Baseline and follow-up scans
from a subject a�ected by Alzheimer's disease were registered with the Symmetric
log-Demons algorithm. Further details on the image acquisition protocol are given
in section 4.4.3. The longitudinal atrophy encoded by the SVF was then transported
along the inter-subject registration on a di�erent reference anatomical space (Figure
4.8).

As in the synthetic experiment, all the above methods provide results that are
consistent with the original trajectory. As already seen in the synthetic case, the
transport ΠL seems to introduce some noise which lead to increased velocities (for
instance in the posterior cingulate and on the left side of the cortex), which indicates
that numerical issues still play a central role. Interestingly, we notice in the posterior
part of the ventricles in the source space a rotational movement pointing to the
medial axis of the brain which is captured by ΠL, ΠS , and by the Schild's Ladder, but
which seems missing in ΠR. This observation suggests that the simple resampling
of the vector �eld might provide only a partial representation of the deformation,
and is potentially missing some features of interest for a subsequent analysis.

4.5.5 Cartan Parallel Transport Along Metric vs Group Geodesics

Finally, we investigate the di�erences in transporting a longitudinal trajectory along
di�erent paths, namely the LDDMM metric geodesics and the one-parameter sub-
groups that best register two images. We restrict our study to the parallel transport
of the Cartan connections. The LDDMM parallel transport could be computed by
the equations of Jacobi �elds [Younes, 2007b] or could be approximated using the
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Figure 4.7: Top row: Spherical source and ellipsoidal target geometrical references.
From top to bottom: Longitudinal atrophy sequence in the spherical space, asso-
ciated log-Jacobian determinant scalar maps, and log-Jacobian determinant maps
associated to the di�erent methods of transport.
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Figure 4.8: Parallel transport of longitudinal atrophy. Longitudinal ventricular
expansion in the source space and related parallel transport given by the di�erent
methods.

Schild's ladder algorithm by explicitly computing metric geodesics at each step of
the ladder. However, the computational complexity is much worse because the sim-
pli�cations used for the group exponential with the BCH in [Lorenzi et al., 2011b]
are not valid any more for Riemannian geodesics. Thus, we focus here on the com-
parison of the di�erent type of Cartan parallel transport along group and metric
geodesics without comparing LDDMM versus Cartan parallel transports.

From the geometrical point of view, parallel transporting a vector along di�er-
ent trajectories generally leads to di�erent parallel vectors (Figure 4.9). However,
the similarity of the deformation trajectories evaluated by di�erent methods could
lead to according results. Moreover, the practical application to the image registra-
tion might hide the e�ect of these theoretical issues. Evaluating the impact of the
choice of the trajectory is therefore of interest to understand the e�ect of di�erent
parameterizations and to generalize the transport schemes to diverse registration
settings.

We use here the Synthetic example of the Paragraph 4.5.3. The spherical source
space was registered to the target ellipse with the Demons and the AtlasWerks
methods. The related tangent parameterization de�ne two di�erent paths in the
space of di�eomorphisms, respectively the one-parameter subgroup associated to
the SVF, and the metric geodesic associated to the time varying velocity �eld v(t).
In the LDDMM case, the time-varying trajectory is sampled in time to give a series
of n stationary vectors vi = v(ti), i = 1, . . . , n, and the �nal deformation ϕ is
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generated from the composition:

ϕ = exp(
vn−1

n
) ◦ exp(

vn−2

n
) . . . ◦ exp(

v0

n
)

Therefore we decompose here the time varying process into successive stationary
ones, in order to apply the same methods derived from the Lie group theory. Thus,
the parallel transport methods illustrated in the previous section can be applied on
each trajectory vi to iteratively transport a longitudinal trajectory along the metric
geodesic.

Figure 4.10 shows the resulting vectors transported from the sphere to the ellipse
space along the SVF one-parameter subgroup and the LDDMM metric geodesic:
transporting along the di�erent paths does not seems to introduce relevant di�er-
ences. We notice that the right transport ΠR and the Schild's Ladder provide the
most consistent and robust results. The left (ΠL) and the symmetric (ΠS) trans-
ports appear to be more sensitive to the very high Jacobian matrix variations of
the LDDMM trajectory, though they are still consistent with respect to the de-
formation pattern. The �concentration� of the transported vector �eld at the high
momentum places along the LDDMM trajectory could be interesting for statistical
studies but might also disperse more easily the information even in case of very
small inter-subject matching errors.

This very simple experiment shows that the SVF tools can also be used in
di�erent settings such as with LDDMM, where geodesics can be approximated by
a sequence of stationary approximations. Moreover, the similarity of the transport
on the di�erent paths suggests that the parallel transport is more in�uenced by the
type of parallel transport than by the inter-subject registration method. It would
be quite interesting to verify if this still holds for the LDDMM transport. In all
cases, the numerics behind the parallel transport scheme seems to be a key issue.

Figure 4.9: The parallel transport of the vector v closely depends on the chosen
trajectory, and generally transporting along di�erent curves lead to di�erent parallel
vectors.
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Figure 4.10: Parallel transport of the longitudinal trajectory on the sphere to the
ellipse target space along the trajectories de�ned by the SVF one-parameters sub-
group and the LDDMM metric geodesic. The Schild's Ladder and the Right Cartan
connection lead to the more consistent results in term of the resulting transported
vectors.

4.6 Conclusions and Perspectives

This study investigates the theoretical background which underlies di�eomorphic
registration based on stationary velocity �elds. We illustrate the use of Lie group
concepts to derive e�ective and e�cient solutions for computational anatomy. We
showed that the one-parameter subgroups (and their left and right translations) are
geodesics of the a family of connections called Cartan connections. This mathemat-
ical setting is completely consistent with the Lie group operations (left and right
composition, inversion) and leads to a closed form solution for the parallel trans-
port. Moreover, the geodesics of the Cartan connections are "metric-free", and the
parallel transport is not related to the preservation of metric properties. This a�ne
geometric mathematical setting di�ers from invariant Riemannian manifolds used
for instance in LDDMM, for which the choice of left or right invariance, as well as
the choice of the metric, lead to di�erent geodesics. Among the three canonical
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(right, left and symmetric) Cartan connections, the transport with the right one
was the smoother, due to the simple computational requirements. However, this
connection is related to a speci�c geometry where the group is �at (no curvature),
but has torsion. From a theoretical point of view, it is widely accepted in other
domains (e.g. general relativity and gravitation) that working with a symmetric
connection is preferable than working in a space with torsion. However, we believe
that it would worth verifying by experiments on real data that the symmetric Car-
tan connection indeed leads to a better description of the groupwise anatomy than
non-symmetric ones. Such test could be performed on disease classi�cation exper-
iments for instance, where the statistical power of the separation would designate
the optimal parallel transport method.

The experimental results highlight also the trade-o� between the choice of proper
mathematical constructions and the related numerical implementation issues. For
instance, the left and symmetric Cartan transports could bene�t from more robust
numerical schemes for the computation of the di�erential quantities like the Jacobian
matrix, which could lead to more stable and accurate results. On the registration
side, our experiments showed that the SVF and LDDMM settings performed very
similarly in the longitudinal case. This result suggests that, when dealing with
small deformations, stationary and time varying parametrization lead to negligible
discrepancies. Moreover, even in case of the inter-subject registration, the di�er-
ent parametrization performed similarly for the resulting intensity matching. It
seems therefore that the choice of the admissible transformations is decisively cir-
cumscribed by the smoothness constraints and by the numerical implementation,
which limit the set of possible anatomical deformations that can be retrieved by a
registration algorithm.

We should note that the above conclusions come from a precise choice of the
registration parameters (�uid/elastic regularization, incompressibility, . . .), and we
cannot exclude that a di�erent tuning might lead to a di�erent scenario. However,
the choice made here was motivated by the search of an optimal compromise between
registration accuracy and smoothness of the deformations and, among the several
con�gurations tested, the proposed was the most suitable one. Moreover, given
the lack of a ground truth for the inter-subject registration problem, the reliable
comparison of di�erent registration techniques can be assessed only by statistical
measures on large datasets, which goes beyond the scope of the presented study.
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This chapter builds upon the previous methodological contributions to de�ne a
hierarchical framework for the group-wise analysis of time series of images. It was
presented as a conference paper in [Lorenzi et al., 2011a]. The registration algorithm
proposed here is a preliminar implementation of the local correlation criteria in the
log-Demons as proposed in Pascal Cachier's PhD thesis [Cachier, 2002].

Mapping the e�ects of di�erent clinical conditions on the evolution of the brain

structural changes is of central interest in the �eld of neuroimaging. A reliable de-

scription of the cross-sectional longitudinal changes requires the consistent integra-

tion of intra and inter-subject variability in order to detect the subtle modi�cations in

populations. In computational anatomy, the changes in the brain are often measured
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by deformation �elds obtained through non rigid registration, and the stationary ve-

locity �eld (SVF) parametrization provides a computationally e�cient registration

scheme. The aim of this study is to extend this framework into an e�cient and ro-

bust multilevel one for accurately modeling the longitudinal changes in populations.

This setting is used to investigate the subtle e�ects of the positivity of the CSF

Aβ1−42 levels on brain atrophy in healthy aging. Thanks to the higher sensitivity of

our framework, we obtain statistically signi�cant results that highlight the relation-

ship between brain damage and positivity to the marker of Alzheimer's disease and

suggest the presence of a presymptomatic pattern of the disease progression.

5.1 Introduction

The ability to map the di�erent areas involved in the neurodegenerative processes is
of primary importance for the formulation of new clinical hypotheses on the patho-
logical mechanisms. Moreover, the availability of a longitudinal model of the disease
progression would provide a reliable standard for diagnostic purposes. The problem
is particularly relevant in the �eld of Alzheimer's disease (AD) which is character-
ized by the progressive abnormal con�guration of the biochemical, functional and
structural markers in the brain which may occur up to decades before the clinical
assessment [Frisoni et al., 2010]. Among the earliest potential markers, the patho-
logical con�guration of the CSF Aβ1−42 was shown to be associated with a general
increased predisposition to clinical conversion to AD. It is therefore of great interest
to model the subtle di�erential evolution from normal aging of the brain changes in
subjects who are not a�ected by the disease but present lower Aβ1−42 levels. For
this purpose, robust, sensitive, accurate and reproducible modeling techniques are
required.
The non-rigid registration is a candidate instrument to quantify the structural di�er-
ences between brain images and the new generation registration algorithms provide
di�eomorphic registration [Vercauteren et al., 2008, Miller et al., 2002]. Among
them, the log-Demons algorithm provides an accurate and computationally e�-
cient approach, by using stationary velocity �elds (SVF) as parametrization of the
deformations.
The analysis of longitudinal data requires to go one step further and to integrate
the temporal dimension into the registration procedure. The main complexity of
the problem lies in the di�erent levels of variation introduced by the di�erent
nature of the small intra (longitudinal) and large inter-subject (cross-sectional)
changes: the measurements from time series of a speci�c subject must be nor-
malized into a comprehensive spatio-temporal atlas. Although di�erent approaches
have been proposed in the past for the group-wise analysis of longitudinal dataset
[Avants et al., 2007, Younes et al., 2008], a consensus on the optimal strategy to
handle the di�erent levels of information is still missing, for instance for the choice
of the di�erent metrics for intra and inter subject normalization.
We believe that the reliable quanti�cation of the group-wise longitudinal changes
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should independently address the di�erent sources of variability with proper meth-
ods, and consistently integrate the di�erent levels into a general framework. In
previous works the SVF setting was shown to provide:

1. An e�cient pairwise-registration scheme with log-Demons
[Vercauteren et al., 2008];

2. A straightforward way to model the subject-speci�c deformation trend
from time series with a spatio/temporal regularization procedure
[Lorenzi et al., 2010a];

3. A stable way to transport the subject-speci�c trends in the atlas geom-
etry using the parallel transport given by the Schild's Ladder procedure
[Lorenzi et al., 2011b].

The goal of this paper is 1) to combine these previous contributions in a robust,
e�cient and precise tool for modeling group-wise deformation, and 2) to use the
framework to analyze and model the subtle e�ects of the CSF Aβ1−42 levels on
longitudinal brain atrophy in healthy elders.

5.2 Modeling Changes in Time Series of Images with the

SVF Framework

We assume that the subject speci�c evolutions are random realizations of an underly-
ing ideal population trend. The hierarchical generative model is therefore composed
of the following levels:

1. We model the population trend as the deformation µG(t) of a template T0

over time. The (spatially normalized) deformation trend of subject K in the
template space is assumed to be a random realization of a Gaussian process
µK(t) = µG(t) + εK . It is the goal of step 4 to estimate the population trend
µG(t) from the spatially normalized subject's longitudinal trends.

2. To account for the spatial variability of the anatomy across the population,
the subjects speci�c coordinate system is de�ned by a spatial changes of co-
ordinates φK(−1) from the template to the subject. The subject speci�c defor-
mation trend vK(t) is then modeled as the parallel transport of the spatially
normalized subject's longitudinal trend µK(t) along the template-to-subject
spatial change of coordinates φK(−1). Step 3 is taking care of solving the
reverse problem in a discrete time setting.

3. Subject speci�c longitudinal trends are then sampled in time (modeling the
discrete acquisition times) and a deformation noise accounting for the in�u-
ence of random confounding factors (hydratation, vasodilation, etc) is added
independently at each time point to obtain the subject-speci�c deformation
vKi = vK(ti) + εi at time point ti. Step 2 aims at solving the inverse problem.
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4. Last but not least, the subject time series of images is generated by deforming
the subject baseline image IK0 with an acquisition noise on intensities: IKi =
exp(vKi ) ∗ IK0 + εIi . Step 1 is solving the inverse problem using non-linear
registration.

Let us now address the inverse problem: estimating the population trend from
the time series of patient images. We detail below step by step the solution we
propose to solve each level of the generative model (in the reverse order).

5.2.1 Step 1: Robust Pairwise Registration with the og-Demons
Algorithm

For each subject K, the longitudinal changes along the time series of images IKi ,
i = 0, . . . , n acquired at time t0 = 0, . . . , tn, are evaluated by non rigid registration
with respect to the reference time point, here the baseline IK0 .
The log-Demons algorithm aims at matching the images I0 and Ii by looking for the
deformation ϕ which maximises their similarity. The deformation ϕ belongs to the
one-parameter subgroup generated by an optimal vector �eld v, and the parametri-
sation is de�ned by the group exponential map ϕ = exp(v) [Arsigny et al., 2006].
In the standard log-Demons algorithm the �unregularized� correspondence �eld vx

is given by the minimization of the sum of squared di�erences (SSD) between the in-
tensities of the two images, which is not robust to the intensity biases. In order not to
mistake spurious intensity variations for morphological di�erences, we �rst propose
to resort to the local correlation coe�cient, introduced in [Cachier et al., 2003]:

E(I0, Ii,vx,v) = min(a,b)

∫
GσS ∗ ‖(a(x) · I0(x) + b(x))− Ii(x) ◦ exp(vx)(x)‖2+

+
1
σ2
x

‖ log(exp(−v)(x) ◦ exp(vx)(x))‖2L2
(5.1)

The spatially varying coe�cients a(x), b(x) account for the additive and multiplica-
tive biases for the intensities. Moreover the bias estimation is local, thanks to the
Gaussian weights on the error norm. In practice, the standard correspondence en-
ergy of the log-Demons is replaced by E(I0, Ii,vx,v), while preserving the remaining
structure of the algorithm. As proposed in [Cachier et al., 2003], the minimization
of (5.1) is operated through a two step procedure: a �rst step evaluates the optimal
scaling factors a and b voxel-wise, that are then reintroduced for the optimization of
vx through a Gauss-Newton scheme. Experiments on both synthetic and real data
showed that the local similarity criteria allows to robustly compute deformations
in presence of bias and generally provides smoother estimation of the anatomical
di�erences (data not shown due to space constraints). The important robustness
improvements came at the price of a reasonable increase of the computational time
(around 25 minutes on a Pentium Intel Core Duo 2.4Ghz for registering images with
resolution 182x182x218, voxel size 1x1x1) .
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5.2.2 Step 2: Modeling the Subject Speci�c Longitudinal Trends

In order to obtain smoother estimations of the subject speci�c trajectory and to
reduce the intra-subject variability given by possible confounding factors, the Step
2 consists in introducing a temporal correlation into the estimated serial deforma-
tions through a 4D registration scheme [Lorenzi et al., 2010a]. The procedure is
particularly indicated here, since we are going to investigate the subtle morpholog-
ical changes occurring in the brain of cognitively healthy subjects, and we do not
expect to model sharp variations or sudden modi�cation of the longitudinal series.
The subject speci�c trend v̄K(t) = L(vKi , ti, t) is estimated with a linear model in
time from the time series of static velocity �elds vKi evaluated in the Step 1 for the
pairs IK0 , I

K
i . We note that given the small number of time points (around 4 for

the ADNI dataset), and the basic assumption of mild brain changes, a linear SVF
model (which is a non-linear deformation model) represents a reasonable choice for
the present analysis. The 4D registration integrates the v̄K(t) in a new registration
step in order to provide a temporal prior for �nally estimate the spatio-temporal
regularized sequence of the static velocity �elds v

′K
i .

The solution at each time point ti is represented by the weighted average between
the temporal prior v̄K(ti) and the spatial correspondence vx provided by the simi-
larity measure. Previous experiments showed that the 2:1 trade-o� between spatial
and temporal weights de�nes su�ciently smooth trajectories while not biasing the
changes towards a completely linear model.

5.2.3 Step 3: Transporting the Subjects Trajectories in the Atlas
Geometry.

In order to compare the longitudinal trajectories between the di�erent subjects and
to perform statistical analysis, we need to transport the series of velocity �elds v

′K
i in

a common reference. For this purpose, we base the transport on the Schild's Ladder
method [Lorenzi et al., 2011b]. The method relies on the technique introduced in the
�eld of theoretical physics for computing the parallel transport of tangent vectors
on a general manifold without requiring the knowledge of the global geometrical
properties of the space. It is based on the construction of a �geodesic parallelogram�
for transporting vectors along any curve (and not just the geodesics of a speci�c
choice of metric)1. More precisely, the parallel transport of the trajectory v

′K
i

from Step 2 along the curve φK = exp(tuK) connecting IK0 and T0 is the �eld
v∗Ki = ΠφK (v

′K
i ) ' v

′K
i + [uK ,v

′K
i ] + 1

2 [uK , [uK ,v
′K
i ]] + o(t3).

5.2.4 Step 4: Longitudinal Group-wise Modeling

The transported time series of SVF v∗Ki = ΠφK (v
′K
i ) belonging to di�erent subjects

can now be easily compared in the reference space T0. In order to develop a group-
wise model for the trajectories, we propose here a random e�ect analysis based
on the longitudinal transported trends. Let µK(t) = L(v∗Ki , ti, t) be the spatially

1In the case of SVF, the geodesic parallelogram is based on the one-parameter subgroups whicht

are the geodesics of the Cartan connections [Postnikov, 2001].
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normalized subject trend modeled in the reference space with a linear model in
time2. The di�erent subject trends µK(t) characterize the trajectories across the
populations and by comparing them it is possible to provide a description of the
group-wise evolutions. In the following, the di�erent evolutions across the groups
(say + and -) will be statistically assessed on the group-wise mean deformation
trends µ+(t) and µ−(t). However, the visual di�erences between the trends will be
illustrated by applying the longitudinal evolutions to the template image: T+(t) =
exp(µ+(t)) ∗ T0 and T−(t) = exp(µ−(t)) ∗ T0.

5.3 E�ects of Aβ1−42 Positivity on Healthy Aging

The T1 weighted longitudinal scans (baseline, 6, 12, 24 and 36 months) were se-
lected for 98 healthy subjects from the ADNI dataset [Mueller et al., 2005]. Two
subgroups were then de�ned based on the positivity to the Aβ1−42 marker de�ned
by values below the threshold of 192 pg/ml and resulted in 41 subjects Aβ1−42

positives and 57 negatives (Aβ+
1−42 and Aβ−1−42). The two groups were similar at

baseline for gender (% of women: 45 % for Aβ+
1−42 , 51 % for Aβ−1−42), age (75±5,

75±5) and education (15.8±3.17, 15.5±2.7). For each subject, the time series of
images were aligned through an unbiased procedure consisting on the iterative rigid
registration to the median image computed voxel-wise. The �nal median image was
linearly registered to the MNI132 template and the a�ne transformation was then
applied to the series.
The 4D registration algorithm was applied to the longitudinal series of each subject,
with σS = 10mm for the local similarity criteria, σfluid = 0.5mm and σelastic = 1mm
for the regularization. The Schild's Ladder was used to transport the longitudinal
trajectories from the subject to an unbiased population-based Template T , com-
puted as in [Guimond et al., 2000] (Inter-subject registrations were also computed
with the log-demons algorithm).

The mean trends µ− of the Aβ−1−42 and µ+ of the Aβ+
1−42 groups were com-

puted from the estimated subject-speci�c trends. Their di�erence was assessed on a
voxel-by-voxel basis by a multivariate analysis based on the Hotelling's two-sample
T 2 statistic (Figure 5.2C). The statistical signi�cance was assessed after correction
for multiple comparisons by means of permutation test (1000 permutations). More-
over, the trends allowed to compute the mean evolutions for the Template space
and to qualitatively assess the di�erential progression between the two groups (Fig-
ure 5.2A/B). Finally, a region of interest (ROI) based analysis was performed on
the average log-Jacobian values of the estimated trajectories in selected areas of the
Template space, segmented through an automated procedure(Ventricles, Hippocam-
pus, Amygdalae, Caudate and Thalamus) [Patenaude et al., 2011].

2We notice that the model �tted in the log-domain does not imply a linear trend for the

parametrized deformations.
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Figure 5.1: Average SVF from baseline for the Aβ−1−42 (left) and Aβ+
1−42 (right)

groups. For both groups the average forces increase longitudinally, but we can
notice an acceleration for the changes across the hippocampus and the temporal
regions for the Aβ+

1−42 group.

5.4 Results and Perspectives

Figure 5.1 shows the average SVF estimated for the two groups from baseline. Al-
though the two groups show a similar pattern for the ventricular expansion, the
Aβ+

1−42 shows an increased �ow of vectors across the temporal regions and hip-
pocampus. Figure 5.2A highlights the modeled longitudinal changes from baseline
for the Aβ−1−42 group. The aging e�ect can be appreciated in the ventricular expan-
sion and in the spread cortical changes. The additional changes due to the positivity
to the marker Aβ1−42 are displayed in Figure 5.2B. The positivity to Aβ1−42 is char-
acterized by an increased longitudinal changes located in the temporal areas and
by the ventricles expansion. We notice that the average progression built from the
estimated SVF allowed to generate not only a summary of the observation, but also
to extrapolate the expected evolution 2 years after the end of the study. The mul-
tivariate statistical assessment of the di�erences between the evolution of the two
groups is shown in Figure 5.2C. It involves hippocampi, ventricles and the tempo-
ral regions. Interestingly, the voxel-by-voxel statistical analysis on the associated
log-Jacobian scalar maps showed similar patterns but failed to reach the statistical
signi�cance after the correction for multiple comparisons. This suggests a higher
sensitivity of the analysis when performed on the multivariate SVF v rather than on
scalar higher order quantities such det(∇v). Supplementary material can be found
in http://www.inria.fr/sophia/members/Marco.Lorenzi/SVF_Framework. The re-
gional di�erences were con�rmed by the ROI based analysis, where signi�cant dif-
ferences for the volume change/year were found in the ventricles (3.84% for Aβ−1−42,
6.72% for Aβ+

1−42, p=0.009) and in the hippocampus (0.14%, 0.24%, p= 0.014 )
while no signi�cant di�erences were detected in the other regions.
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Figure 5.2: Modeled longitudinal annual % intensity changes for the Aβ−1−42 group
with respect to the baseline, and for B) the Aβ+

1−42 group with respect to the Aβ
−
1−42

longitudinal progression. In C) are shown the areas of statistically signi�cant dif-
ference between the trends of the Aβ−1−42 and the Aβ+

1−42 groups (colors: signi�cant
p-values, p<0.05 corrected). Supplementary bottom row: modeled additional loss
with respect to the Aβ−1−42 progression for an AD group from the ADNI dataset.
We can notice the analogies between the Aβ+

1−42 trend and the real pathological
evolution.

5.5 Conclusions and Perspectives

The present work introduces a consistent and e�ective framework for the analysis
of longitudinal data of 3D MRI images. As result, it allowed to model the sub-
tle changes which di�erentiate the longitudinal evolution of healthy people with
abnormal Aβ1−42 level from those in the normal range, and which is represented
by increased ventricular expansion and spread matter loss in the temporal regions
[Fjell et al., 2010, Schott et al., 2010, Tosun et al., 2010]). The resulting trajecto-
ries incorporate a wide range of informations (velocities, deformations, volume
changes, . . . ) which could provide new insights for the understanding of the bi-
ological phenomenas, like modeling and describing the pathological evolutions (such
as in Figure 5.2). For instance, the extrapolation result is an appealing feature in
epidemiology as it enables previsions that could motivate clinical hypothesis, as in
the presented work. Moreover, the soundness of the extrapolated data indicate the
stability and the robustness of the proposed method.
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This chapter was presented as conference paper in [Lorenzi et al., 2012d]. Here
we introduce a novel framework for the consistent extraction of longitudinal atrophy
patterns and the statistically powered quanti�cation of anatomical changes based
on the Helmholtz decomposition of vector �elds.

The longitudinal analysis of the brain morphology in Alzheimer's disease(AD)

is fundamental for understanding and quantifying the dynamics of the pathology.

This study provides a new measure of the brain longitudinal changes based on the

Helmholtz decomposition of deformation �elds. We used the scalar pressure map as-

sociated to the irrotational component in order to identify a consistent group-wise set

of areas of maximal volume change. The atrophy was then quanti�ed in these areas

for each subject by the probabilistic integration of the �ux of the longitudinal defor-

mations across the boundaries. The presented framework uni�es voxel-based and re-

gional approaches, and robustly describes the longitudinal atrophy at group level as a
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spatial process governed by consistently de�ned regions. Our experiments showed that

the resulting regional �ux analysis is able to detect the di�erential atrophy patterns

across populations, and leads to precise and statistically powered quanti�cations of
the longitudinal changes in AD, even in mild/premorbid cases.

6.1 Introduction

The longitudinal analysis of the brain morphology in Alzheimer's disease(AD) is
fundamental for understanding and quantifying the dynamics of the pathology. The
analysis of time series of MR images has been based on two di�erent paradigms:
hypothesis free and regional analysis. In the former case, the longitudinal atrophy
is modeled at �ne scales on the whole brain such as in the voxel/tensor based mor-
phometry and cortical thickness analysis [Fox et al., 2001, Thompson et al., 2003].
These methods are useful for exploratory purposes, but usually lack robustness for a
reliable quanti�cation of the changes at the subject level, due to the high variability
of the measurements and the multiple comparison problems. On the other hand, the
regional analysis is focused on the detection of signi�cant changes on regions which
are usually identi�ed thanks to segmentation. For instance, the boundary shift
integral identi�es the longitudinal atrophy as the shift of the segmented bound-
aries [FreeBorough and Fox, 1997], and led to powered measure for the longitudinal
hippocampal changes in Alzheimer [Leung et al., 2010]. However, this kind of ap-
proaches relies on strong a priori hypotheses on the localization of the dynamics
of interest, and might fail to detect more complex patterns of changes which are
likely to underly the evolution of the pathology. Providing a longitudinal measure
which could at the same time identify, consistently localize, and reliably quantify the
longitudinal changes is crucial for understanding the dynamics of the pathological
evolution and to provide stable measures for the clinical setting.

Non rigid registration encodes the morphological changes between pairs of lon-
gitudinal MRIs as deformation �elds. It has been employed for both whole brain
exploratory analysis and regional quanti�cation, for instance through the Jacobian
determinant analysis. However, the regional quanti�cation still relies on prior seg-
mentation, and is still sensitive to the biases, for instance for the numerical deriva-
tive required for computing the Jacobian. The deformation �elds implicitly encode
the spatial location of relevant atrophy processes, and novel analysis techniques
are required to consistently extract and analyze these features. It has been pro-
posed in [Hansen et al., 2009] to parametrize the deformations by irrotational and
divergence-free components, according to the Helmholtz decomposition of vector
�elds. If we assume that the atrophy can be completely described by a change of
volume, then it is completely encoded by the irrotational part, while the divergence-
free one only accounts for the tissue reorganization. Thus, the maximal/minimal
locations of the irrotational potential de�ne the centers of expanding and contract-
ing regions, and may represent a promising measure for morphometric studies. A
di�erent measure of volume change associated to the deformation �eld is the �ux
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across surfaces [Chung et al., 2001], which is the mathematical formulation of the
boundary shift. However �ux-based analysis has been seldom used in morphometric
studies, due to the complexity of reliably integrate vector normals on probabilistic
segmentations of the surface boundaries.

In this study we propose the regional �ux analysis, a new approach for the study
of morphological changes based on the Helmholtz decomposition of vector �elds. In
Section 1 we introduce the Helmholtz theorem, and the relationship between pressure
and �ux of deformations. These measure are used in Section 2 to consistently
de�ne through a hierarchical model the subspace of regions involved in the atrophy
processes . These regions are then used at the subject level for the probabilistic
�ux integration. Finally, the framework is applied in Section 3 on a large sample of
longitudinal observation from the ADNI dataset [Mueller et al., 2005], to describe

and quantify the pathological changes at di�erent clinical stages, from premorbid,
to early and late Alzheimer stages.

6.2 Helmholtz Decomposition for Stationary Velocity

Fields

The present work is based on the registration based on stationary velocity �elds
(SVF), which has been already applied for the longitudinal analysis of deforma-
tions [Lorenzi et al., 2011a], and for which an implementation of the LCCDemons
algorithm was already proposed (Chapter 2).

6.2.1 Pressure Potential and Flux Through a Region

The Helmholtz theorem states that, given a vector �eld v de�ned on R3 which
vanishes when approaching to in�nity, it can be uniquely factored as the sum of an
irrotational and a divergence free component, v = ∇p + ∇ × A. The irrotational
component∇p is the gradient of a scalar pressure (potential) �eld p. Since∇×∇p =
0, the component encodes the information concerning the volume change. On the
other hand the divergence-free component is by de�nition such that ∇ · ∇ ×A = 0
and therefore it describes the rotational part of the velocity. Finally, the �ux of a
stationary velocity �eld across a given surface ∂V is given by the Divergence (or
Ostrogradsky's) theorem, and can be rewritten as

∮
∂V v·n dS =

∫
V ∇·v dV . Recently

the Helmholtz decomposition has been introduced in the Demons registration in
order to estimate incompressible deformations [Mansi et al., 2010]. Here we propose
to use it on the contrary for the analysis of the compressible part, which encodes the
observed matter loss as a smooth compression/expansion process. In such a model,
the associated divergence quanti�es the apparent anatomical changes as the �ux of
the estimated vector �eld across surfaces.
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Figure 6.1: Helmholtz decomposition of a longitudinal trajectory in Alzheimer's
disease, and pressure potential and divergence maps associated to the irrotational
component. The divergence describes the critical areas of local expansion and con-
traction.

6.2.2 Topology of Pressure Fields

Theoretically, one could partition the whole space into critical areas of positive
and negative divergence, each of them containing a critical point of local maxi-
mal/minimal pressure (Figure 6.1). From the divergence theorem, the �ux across
the boundaries of these areas is either �owing inward or outward. The saddle points
for the pressure are on the boundaries of those regions, and identify a change in the
�ow.

The analysis of the critical points of a pressure map can be addressed by the
Morse-Smale theory as a topological problem, leading to a complex of regions,
boundaries, edges and vertices. Although intriguing, the application of such con-
cepts to the medical imaging is still di�cult, due to the missing statistical version
of the Morse theory. In order to obtain a tractable approach to the problem, we
propose to �rst focus on the de�nition of a consistent subset of critical regions across
subjects, to robustly describe the atrophy processes at group level as a spatial pro-
cess governed by key areas. This is a �rst step towards a topology de�nition and
provides a sparse description of the deformation.

6.3 Flux-based Analysis of Longitudinal Trajectories

The goal of this section is to estimate the group-wise set of critical regions, from
the locations of maximal/minimal pressure. These regions are then used to evaluate
the �ux of the longitudinal deformations at the subject level.
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6.3.1 Group-wise Pressure Potential from Longitudinal SVFs

Consider the longitudinal observations from a group of subjects composed of baseline
Ii0 and follow-up Ii1 brain scans. For each subject i, the log-Demons non rigid
registration of the pair Ii0, I

i
1 estimates the longitudinal trajectory of changes as

a di�eomorphism parametrized by stationary velocity �eld exp(vi), such that Ii0 ◦
exp(vi) ' Ii1. The SVF vi can then be decomposed according to the Helmholtz
theorem in order to identify the corresponding pressure map pi.

One interest in this decomposition is that the transport of each atrophy tra-
jectory ϕi = exp(vi) = exp(∇pi) through a subject-to-template deformation
ψi can be obtained by simple scalar interpolation of the pressure �eld ϕTi =
exp(vTi ) = exp(∇(pi ◦ ψi)), rather than parallel transporting vector quantities,
ϕTi = exp(Πψi(vi)), which generally leads to computationally intensive and po-
tentially more unstable operations.

The pressure maps in the template space pi ◦ ψi are integral quantities, and
might di�er by an arbitrary constant. However, an average pressure map can still
be consistently de�ned either as p = pi ◦ ψ, or as the pressure map p associated to
v = vTi = ∇(pi ◦ ψi).1

6.3.2 Probabilistic Estimation of Group-wise Critical Regions

Let {xk} be the set of critical points, maxima and minima, of p. These points de�ne
the critical areas Tk of local expansion and contraction, i.e. of positive and negative
divergence. Then, the probability of a point x to belong to a critical region depends
on the proximity to the region Tk, and on the observed divergence. We can express
this through the Bayes rule:

P (x ∈ Tk|∇ · v(x) = d) =
P (∇ · v(x) = d|x ∈ Tk)P (x ∈ Tk)

P (∇ · v(x) = d)
(6.1)

Since the denominator is a normalizing factor, in the following only the numerator
is considered. The �ux of the subject speci�c deformations exp(vi) through the
regions Tk can be easily estimated with (6.1) through a hierarchical model. At the
�rst level, based on spatial priors for the location of the critical points, we can
estimate a group-wise con�dence map for the critical regions:

• Given a set of critical points {xk}, de�ne the spatial priors P (x ∈ Tk) =
exp((x− xk)2/(2σ2))

• De�ne a group-wise prior F±i (x) for the critical areas as the group-wise average
of the binary masks of positive/negative divergence
F+
i =

{
x ∈ Ω|∇ · vTi (x) > 0

}
, and F−i =

{
x ∈ Ω|∇ · vTi (x) < 0

}
.

• From formula (6.1), de�ne the con�dence maps for the critical areas P±k (x) =
P (∇ · vTi (x) = d|x ∈ Tk)P (x ∈ Tk) = F±(x) exp((x− xk)2/(2σ2).

1In fact, if p′i = pi ◦ψi + ci, with ci constant, then p = pi ◦ ψi + c leads to v = ∇p = ∇(pi ◦ ψi)
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Figure 6.2: Critical points associated to the Alzheimer's average pressure map.

Finally, the group-wise con�dence maps are reintroduced in (6.1) for the second
level analysis :

• Transport the con�dence maps P±k in the subject space to obtain P±k,i = P±k ◦
ψ−1

• Apply (6.1) by considering P (x ∈ Tk) = P±k,i, and F
±
i ◦ψ

−1
i as likelihood term.

6.3.3 Probabilistic Integration of the Regional Flux

The con�dence maps in the subject space can then be used as weights for the
integration of the divergence across the space Ω thanks to the Divergence theorem,
to provide a measure of the subject speci�c �ux across the critical regions Tk. The
weighted integration of the divergence implicitly de�nes the critical regions in a
maximum a posteriori approach through the posterior (6.1), therefore automatically
accounting for the registration biases in the anatomical localization (e.g. due to the
regularization).

6.4 Apparent Gain and Loss of Matter in Alzheimer's

Disease Through Regional Flux Quanti�cation

Baseline and one year follow-up brain scans of 200 healthy controls, 150 MCI, and
142 AD patients from the ADNI dataset were linearly aligned and non-rigidly regis-
tered with the log-Demons. The pressure maps pi corresponding to the intra-subject
longitudinal trajectories exp(vi) were transported into a previously de�ned anatom-
ical reference along the subject-to-template deformations ψi.

The set of local maxima and minima for the pressure in AD has been de�ned
from the mean pressure map associated to the longitudinal deformations of 20 ran-
domly selected AD patients. Of these sparse sets of points, 9 local minima and 6
local maxima have been manually labeled to de�ne the set {xk} of critical points.
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Figure 6.3: Average regional �ux for AD, MCI, healthy controls, and healthy Aβ+

and Aβ− subgroups. E1 to E9: expanding regions. C1 to C6: contracting regions.

The spatial priors Tk were de�ned through in�ation (4 voxels neighborhood) and
right/left symmetry (Figure 6.2).

The hierarchical model of Section 6.3 was used for the regional probabilistic
integration of the �ux for the remaining patients and the healthy controls. Moreover,
the healthy population was strati�ed depending on the positivity to the CSF Aβ42

marker (<192 pg/ml), and the �ux analysis was performed to detect the e�ect of
the positivity on the atrophy progression.

Figure 6.3 summarizes the group-wise regional �ux. As we can see, the �ux is
higher for the ADs and MCIs with respect to the controls. Interestingly, the MCIs
have larger �ux than the ADs in some regions, which might indicate greater struc-
tural longitudinal changes at the early stages of the disease, or underline di�erent
aspects of the heterogeneous MCI condition. The subgroup of healthy subject pos-
itive to the Aβ42 marker consistently show increased �ux when compared to the
negative, which is signi�cant for several regions, and might suggest a possible e�ect
of the Aβ42 marker on the future development of AD.

A power analysis based on the regional �ux was performed to de�ne the sample
size required by an hypothetical 1-year clinical trial to detect a 25% di�erence of the
progression of the measure with 80% power when considering the group alone, or
by comparing with normal aging [Leung et al., 2010]. The regional measurements
provided di�erent sample size estimations (Table 6.1), to summarize the lowest
sample size for the AD group was provided by the �ux across C5 (hippocampus):
38 (95% CI [33,44]) by considering the AD alone, and 203 [145,307] when controlling
by normal aging. For the MCI group, the lowest sample size was given by the region
E4 (mid-temporal pole): 54 [47,63] for the group alone and 307 [192,567] when
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Figure 6.4: LDA coe�cients associated to the most discriminant critical regions
for the longitudinal atrophy of the AD and MCI groups wrt normal aging. Among
these regions, 6 of the 8 are common to both AD and MCI, and are indicated by
the common colors.

controlled for normal aging.
Finally a linear discriminant analysis was performed to de�ne the combination

of such regions which maximises the �ux di�erences for respectively AD and MCI
vs healthy subjects. The analysis was carried out through a 2-folds cross-validation,
with 1000 iterations (Figure 6.4). An additional power analysis was performed
during the cross validation, to test the e�ectiveness of the LDA combination of the
regional �ux as a clinical measure. The average sample size (and average 95% CI)
required for the LDA score when controlling for normal aging was 164 [106,290] for
the AD group, and 277 [166,555] for the MCI.

6.5 Conclusions and Perspectives

We proposed to decompose the longitudinal trajectories according to the Helmholtz
theorem, in order to analyze the atrophy processes through the pressure potential
map and the associated �ux. This new approach studies the temporal dynamics
as a topological problem, and opens the path to new analysis methods based on
graph and complex theory. The proposed work provided precise and statistically
powered quanti�cations of the group-wise regional atrophy processes. Moreover
the presented method describes and compares the patterns of dynamic changes
between clinical populations, and might thus lead to potentially new anatomical
�ndings, such as di�erential atrophy trajectories at di�erent disease stages.
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Table 6.1: Sample size analysis. Estimated sample size (mean(95%CI)) to detect a
25% di�erence of the progression of the regional �ux with 80% power when consider-
ing the group alone (columns 1 and 3), or by controlling for normal aging (columns
2 and 4). Last row: average sample size (average 95%CI) from the LDA analysis,
when considering the score given by the combination of the regional �ux. The stan-
dard formula is sample size= (u + v)2(2σ)2/(∆µ)2, with u = 0.841 (80% power),
v = 1.95 (5% signi�cance level), ∆µ is the annualized percentage rate of atrophy,
and σ is the standard deviation of the patients group.

AD alone AD (+CT) MCI alone MCI (+CT)

Expansions
E1 122 (96,160) 1067 (515,3395) 78(66,93) 366(239,628)
E2 169 (128,232) 1532 (633,7765) 170(133,225) 1323(614,4682)
E3 111 (88,143) 730 (382,1906) 208(159,285) 1574(729,5597))
E4 179 (135,250) 5920 (1119,8811) 54(47,63) 307(193,567)
E5 119 (94,156) 15502(1833,18816) 151(120,197) 1358(652,4376)
E6 125 (99,166) 361 (239,610) 88(73,107) 475(299,870)
E7 121 (96,159) 948 (466,2886) 208(159,285) 475(299,871)
E9 104 (83,133) 317 (211,528) 166(130,220) 972(524,2391)

Contractions
C1 95 (77,121) 4802 (1182,9850) 207(158,283) 1629(778,5317)
C2 50 (43,60) 1006 (481,3280) 112(91,140) 1033(561,2500))
C3 41 (36,48) 808 (386,2635) 143(114,184) 1758(805,6427)
C4 66 (55,80) 462 (284,880) 58(50,68) 347(234,564)
C5 38 (33,44) 203 (145,307) 60(51,70) 348(238,558)
C6 54 (46,64) 266 (180,431) 180(140,241)) 1232(648,239)

LDA 164 (106,290) 277 (166,555)
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This chapter details the methodological framework presented to the MICCAI
Challenge �Atrophy Measurement Biomarkers Using Structural MRI for Alzheimer's
Disease� [Lorenzi et al., 2012a]. It extends the �ux analysis of Chapter 6 to the
longitudinal analysis of the hippocampal atrophy and of the ventricular enlargment.

7.1 Introduction

Alzheimer's disease (AD) is a neurodegenerative pathology of the brain, charac-
terized by a co-occurrence of di�erent phenomena, starting from the deposition of
amyloid plaques and neuro�brillary tangles, to the development of functional loss, to
�nally cause the cell death [Jack et al., 2010b]. Among these pathological changes,
the cerebral atrophy measured through magnetic resonance (MR) is usually identi-
�ed as the �footprint� of the disease which may become dramatic in the latest stages,
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but which it has been shown to start before the clinical conversion to AD, already at
early and premorbid stages [Ridha et al., 2006]. As a consequence, the monitoring
of the brain structure has been included in the list of recommended diagnostic crite-
ria [Dubois et al., 2007], and the volume changes of key areas like the hippocampus
are now employed as surrogated biomarker in clinical trials. The MR imaging is thus
a fundamental instrument for the clinical practice, which is also cheaper and more
feasible then other imaging modalities. Therefore, the development of robust tools
for the analysis of MRIs is now a central �eld of research in the medical imaging.

7.1.1 Consistent quanti�cation of longitudinal atrophy for clinical
applications

Among the di�erent techniques for the quanti�cation of the brain structural
changes we can identify segmentation based approaches (like the Boundary Shift
Integral (BSI) [FreeBorough and Fox, 1997] or SIENA [Smith et al., 2002]), and
non-rigid registration based ones (for instance voxel compression maps (VCM)
[Fox et al., 2001], RAVENS maps [Resnik et al., 2000] and cortical pattern match-
ing (CPM) [Thompson et al., 2003]). Non-rigid registration is a powerful instrument
which found application in several research context, since it provides a rich descrip-
tion of the atrophy process which ranges from the local (voxel) to the regional level.
However, in spite of its large employment in research, non-rigid registration is not
very di�use in the clinical setting, for example for the longitudinal atrophy quanti�-
cation in clinical trials. This is partly due to the higher technical requirements asked
in the clinical context in terms of accuracy, robustness to the biases a�ecting the
medical images, and stability of the measures over time. The failing in controlling
these factors inevitably leads to the decreased sensibility of the atrophy measures,
and thus to the potential failing or increase in cost of the trial.

The scenario was recently pointed in [Fox et al., 2012]. This interesting paper
identi�es a set of �quality criteria� that an imaging tool should satisfy in order to
�nd application in the clinical setting:

• Biological plausibility. The algorithm should provide atrophy measurements
consistent with the known pathophysiology.

• Symmetry. The atrophy quanti�ed from A to B should be consistent with the
one quanti�ed from B to A.

• Transitivity. The atrophy quanti�ed from A to C should be equivalent to the
cumulative one from A to B and B to C.

• Comparison with the �state of art�. The atrophy measurements should be val-
idated on shared data and compared to those obtained from more established
algorithms.

• Reproducibility on back-to-back images. The group average on same days scans
should be zero.
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• Statistical validation. The accuracy of the measurements should be evaluated
by sample size analysis based on the di�erential progression between AD and
normal aging.

In Chapter 6 we proposed the regional �ux analysis of the one-year changes in
AD, based on non-rigid registration of follow-up images. The framework automati-
cally de�nes a set of consistent group-wise atrophy regions for AD, which are then
used to provide powered measurements of the longitudinal structural changes. In
light of these encouraging results, it is therefore interesting to assess the reliability of
the �ux analysis on the above mentioned �quality criteria�, and to benchmark it on
public data with respect to validated methods. However, since the �ux analysis pro-
posed in Chapter 6 does not rely on prior hypothesis on the location of the regional
atrophy, a di�erent approach should be introduced for the atrophy quanti�cation in
apriori regions.

Aim of this work is to provide a framework based on the �ux analysis for the
quanti�cation of the longitudinal atrophy in the hippocampi and ventricles. After
recalling the basic concepts of the �ux analysis of deformation �elds we detail in
Section 7.3 the proposed framework for the quanti�cation of the regional longitudinal
atrophy. Finally, in Section 7.4 we validate the framework by testing the above
criteria on the ADNI longitudinal images (baseline, 12, and 24 months) from a
group of healthy subjects and AD patients.

7.2 Vector Field Divergence to Quantify the Observed

Atrophy

We recall here the basic concept introduced in the previous chapter.

Let consider the longitudinal changes between a pair of follow-up brain im-
ages estimated by the LCCDemons non-rigid registration. The associated di�eo-
morphism ϕ = exp(v) densely represents the local atrophy as a complementary
compression/expansion process across adjacent areas. The compression models the
shrinking of the anatomical structures due to the observed matter loss, while the
expansion is a complementary process which indicates growth, for instance of the
CSF areas in the ventricles, or in the sulci surrounding the gray matter. These pro-
cesses are induced by the estimated deformation �eld and can be quanti�ed by the
�ux of the vectors across the boundary of the regions: the inward (resp. outward)
�ow across a surface induces the compression (resp. expansion), which quanti�es
the atrophy (resp. growth).

The �ux is is the mathematical formulation of the boundary shift, and is identi-
�ed by the divergence ∇ · v associated to the �eld v (Figure 7.1). In fact, from the
Divergence (or Ostrogradsky's) theorem, the integral of the divergence of a vector
�eld in a given region is the �ux of the vector �eld across the boundaries of the re-
gion. The rate of volume change of the region is then the integral of the divergence
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over the volume: ∫
Ω∇.v dω∫

Ω dω
=

∫
∂Ω v · n ds
V ol(Ω)

,

We �nally note that the areas of maximal/minimal divergence automatically identify
the spatial locations of expansion/compression, i.e. involved in the process of matter
loss[Lorenzi et al., 2012d]. In the following, the divergence associated to the pair-
wise deformations is used to localize the areas of relevant longitudinal atrophy and
to quantify the associated rate of volume change.

7.3 Measurement of the Hippocampal and Ventricular

Longitudinal Changes in AD

Given a sequence of follow-up images Ii (i = 0, . . . , N) for a given subject, the
proposed framework is composed by the following steps.

7.3.1 Alignment of the Sequence to the Template Space

In this step (Processing Step 1) the images are aligned and normalized to a
pre-de�ned anatomical template estimated from a group of healthy elderly sub-
jects of the ADNI cohort. The alignment to the Template space is needed for
the subsequent propagation of the anatomical regions through non-rigid regis-
tration. The global a�ne transformation is estimated by the FLIRT software
[Jenkinson and Smith, 2001]. The resampling is performed by linear interpolation
on the intensities.

We notice that all the images undergo only one interpolation, and are therefore
consistently processed in order to not introduce biases on the intensities due to
asymmetric resamplings [Yushkevich et al., 2010].

Figure 7.1: Divergence associated to a vector �eld. Left: vector �eld of a longitudi-
nal deformation in Alzheimer's disease. Ventricles and temporal lobes are the region
of higher �ux (vector �ow) from the CSF areas to the gray/white matter ones. Right:
Divergence associated to the vector �eld. The areas of maximal/minimal divergence
(ventricles, temporal lobes) are those of higher volume change.
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Processing Step 6 Consistent alignment of the time series.

Given a sequence of follow-up images Ii (i = 0, . . . , N):
1. Estimate the �9 parameters a�ne� global transformation to the baseline
Ai : I0 ' Ii ◦Ai (i = 0, . . . , N).

2. Skull strip the baseline I0 (ROBEX software [Iglesias et al., 2011]).
Mask the Ii (i = 0, . . . , N) with the estimated brain mask to get IMi .

3. Re�ne the initial transformation.
Estimate the �9 parameters a�ne� global transformation
AMi : IM0 ' IMi ◦AMi (i = 0, . . . , N).

4. Register the baseline IM0 to the template space T .
Estimate the 12 parameters global a�ne transformation AT0 : T ' I0 ◦AT0 .

5. Compute the aligned time series ITi = Ii ◦
(
AT0 ◦AMi ◦Ai

)
.

7.3.2 De�nition of Consistent Spatial Regions of Atrophy

Prior group-wise regions for the quanti�cation of the hippocampal and ventricu-
lar longitudinal changes were de�ned in the template space T . The regions were
estimated from a mixture of anatomical segmentation and of prior information of
the longitudinal AD atrophy. The longitudinal atrophy in AD was estimated from
a group of AD patients from the ADNI dataset [Lorenzi et al., 2011a], and is here
quanti�ed by the divergence of the modeled average longitudinal progression (Figure
7.2A'). The regions were de�ned as follow:

• Region of ventricular expansion Rv. The prior region of ventricular expansion
was decomposed in two complementary parts Rv = Rv−∪Rv+ (Figure 7.2A) of
respectively compression and expansion (red and yellow in the �gure). These
areas are de�ned by the maximal and minimal average divergence (Figure
7.2A') within a prede�ned ventricle mask (Figure 7.2A�, blue).

• Region of hippocampal atrophy Rh. The prior region of longitudinal hip-
pocampal atrophy was decomposed in two complementary parts Rh = Rh− ∪
Rh+ of respectively hippocampal atrophy and temporal horn expansion. The
�rst one (Rh−) is the anatomical mask of the hippocampi computed by seg-
mentation propagation in the template space of the automatically segmented
ADNI subject-speci�c hippocampal masks [Patenaude et al., 2011] (Figure
7.2A, green). The resulting probabilistic hippocampal mask is the area for the
quanti�cation of the longitudinal matter loss. The second one (Rh+) is de�ned
similarly for the ventricles from the locations of maximal average divergence in
the hippocampal mask (Figure 7.2A� red), and encodes the expansion of the
temporal horn which is complementary to the hippocampal atrophy (Figure
7.2A purple).

The subject speci�c regional longitudinal changes are computed by following the
Processing Step 7.
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Figure 7.2: Prior region of longitudinal atrophy in AD. A) Prior anatomical areas for
the hippocampal (purple and green), and ventricular (yellow and red) expansion and
contraction. A') Average divergence map for the longitudinal atrophy in AD (from
[Lorenzi et al., 2011a]). A�) Ventricular and hippocampal mask for the extraction
of the maximal/minimal divergence areas.

Processing Step 7 Quanti�cation of subject-speci�c regional atrophy.

Given the sequence of aligned follow-up images ITi (i = 0, . . . , N):
1. Non linearly register the follow-up images to the baseline with the

LCC-Demons algorithm. Estimate vi such that IT0 ' ITi ◦ exp(vi).
2. Compute the average longitudinal divergence map D = ∇.vi.
3. Transport the prior regions Rh and Rv in the subject space through the

subject-to-template deformation to de�ne Rsv and R
s
h.

4. Restrict the hippocampal region to the subject speci�c areas of compression/expansion:
Rsh− ∩ {x|D(x) < 0},
Rsh+ ∩ {x|D(x) > 0}.

5. De�ne the atrophy rate at the time point i as the algebraic sum of the average divergence
Di in the compression and expansion areas of the resulting ventricular and
hippocampal regions.

7.4 Longitudinal Atrophy on the ADNI Dataset

The presented method was applied for the quanti�cation of the longitudinal hip-
pocampal atrophy in a sample of 96 AD subjects and 160 healthy controls from the
ADNI dataset. Images of 0, 12, and 24 months were aligned according to the Step 6
and the longitudinal atrophy was evaluated as in Step 7 to test the following quality
criteria:

• Consistency with the clinical condition. As indicated by Table 7.1 the AD
group has signi�cantly higher ventricular expansion and hippocampal at-
rophy for all the considered intervals (p < 0.001, standard t-test). The
estimated atrophy rates are consistent with those reported in literature
[Frisoni et al., 2010, Schott et al., 2010, Leung et al., 2010].

• Symmetry. The longitudinal atrophy measure is perfectly symmetric, due to
the symmetry of the registration algorithm. Therefore the absolute changes
measured from A to B are equal (with opposite sign) to those from B to A.
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Hippocampi Ventricles
Ctrls AD Ctrls AD

[0-12] 2.38 (1.64) 5.28 (2.38) 1.89 (2.09) 4.03 (2.79)
[0-24] 3.52 (2.04) 10.09 (4.5) 3.56 (2.82) 8.9 (5.32)
[12-24] 1.19 (1.4) 4.89 (2.94) 1.72 (2.19) 4.9 (3.3)

Table 7.1: Estimated percentage atrophy rates (SD) in the ventricular and hip-
pocampal regions for the pairs T12-T0, T24-T0, and T24-T12.

• Linearity over two years. Table 7.2, �rst row, shows the estimated mean and
standard deviation for the ratio of the estimated atrophy between 2- and 1-year
atrophy rate. The ratios are never signi�cantly di�erent from the reference
value of 2.

• Transitivity. Table 7.2, second row, shows the compatibility in time of the
atrophy measures computed as the error between the measure from A to C and
the cumulative one from A to B and B to C. As indicated, the transitivity error
is never signi�cantly di�erent from 0, even though it is close to signi�cance for
the hippocampal atrophy in AD. We notice that this error is however small
relatively to the atrophy rate at 24 months (about 1%).

Hippocampi Ventricles
Ctrls AD Ctrls AD

[0-24]/[0-12] 1.77 (1.19) 1.98(0.67) 1.48 (5.65) 2.65 (3.96)
p 0.44 0.8 0.39 0.11

[0-12]+[12-24]-[0-24] 0.04 (0.3) 0.09 (0.5) 0.05 (0.61) 0.08 (0.75)
p 0.1 0.08 0.28 0.3

Table 7.2: Linearity and transitivity of the estimated atrophy rates. First row:
mean (SD) of the ratio 2-years over 1-year atrophy. The p-value indicates the
signi�cance of the di�erence relative to the reference value of 2. Second row: mean
(sd) of the transitivity error. The p-value indicates the signi�cance of the di�erence
relative to 0 (paired t-test).

• Sample size analysis. Based on the reported atrophy rates, we estimated
the sample size required to detect a 25% di�erence in the AD longitudinal
progression relative to the normal aging (80% power, 0.05 signi�cance). The
sample size (Table 7.3) are in line with those reported in the previous studies
[Leung et al., 2010, Schott et al., 2010].

7.5 Conclusions and Perspectives

We presented a framework based on the �ux analysis of vector �elds for the quanti�-
cation of the longitudinal hippocampal and ventricular changes in AD. The frame-
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[0-12] [0-24]
Hippocampi 169 (119,255) 117 (89,162)
Ventricles 426 (249,880) 249 (168,410)

Table 7.3: Sample size analysis provided by the estimated atrophy rates. Average
sample size (95% CI) to detect a 25% di�erence in the AD progression relative to
the normal aging with 80% power and signi�cance level of p = 0.05.

work estimates the longitudinal changes by non-rigid registration performed by the
LCC-Demons, a robust and symmetric non-rigid registration algorithm, and quanti-
�es the atrophy by integration of the �ux of the vector �elds on consistently de�ned
group-wise regions. Experimental results indicate accurate and consistent quanti�-
cation of the longitudinal atrophy, which lead to statistically powered results. The
proposed method does not rely on the segmentation of the anatomical structures,
but is based on the propagation of prior regions of longitudinal atrophy de�ned in
a template space. Thus it can be easily adapted for the atrophy quanti�cation in
di�erent areas, identi�ed in a general way. For instance, the ventricular region used
in this work was de�ned from the divergence estimated in a previous study. Such
a region is consistent with the registration framework and represents the expected
areas of longitudinal atrophy and CSF expansion. Being able to easily de�ne more
general regions might be of relevant importance in a clinical trial setting, since it
allows the investigation of the drug e�cacy on more complex atrophy patterns than
the one provided by the single measurement from a speci�c region, and might �nally
lead to more accurate and powered quanti�cations.
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Longitudinal models have interesting applications in the cross sectional setting.
This chapter was presented in [Lorenzi et al., 2012e] and introduces the projection
of brain anatomies on a spatio temporal atlas of the healthy aging, in order to
separately analyse accelerated aging and abnormal pathology-speci�c atrophy.

The morphology observed in the brain of patients a�ected by Alzheimer's disease

(AD) is the contribution of di�erent biological processes such as the normal aging and

the AD-speci�c pathological matter loss. The ability to di�erentiate these comple-

mentary biological factors is fundamental in order to reliably evaluate the pathological

AD-related structural changes, especially at the earliest phase of the disease, at pro-

dromal and pre-clinical stages. We propose a method based on non rigid-registration

to estimate the di�erent contributions of these complementary factors, and to iden-

tify the brain structural changes which are speci�c for the pathological component.

The experimental results provide a description of the anatomical changes observed
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across the AD time span: normal aging, normal aging at risk, conversion to MCI

and latest AD stages. More advanced AD stages are associated to �virtually older�

brains, and to increased speci�c morphological changes that are not related to the

normal aging. These results provide new insights that can lead to new understand-

ings of the AD dynamics, and to novel techniques for the modeling and the early

detection of the disease.

8.1 Introduction

The objective of computational anatomy applied to neurodegenerative diseases such
as Alzheimer's disease (AD) is the understanding of the pathological changes af-
fecting the brain morphology. This is particularly relevant for monitoring the
disease evolution in clinical trials and for diagnostic purposes [Frisoni et al., 2010,
Scahill et al., 2002].

However, the morphology of the brain a�ected by AD is not completely related
to the disease, especially in asymptomatic and prodromal stages, and is the conse-
quence of speci�c biological processes:

• Age related anatomical changes. It is well known that the healthy aging is
characterized by the progressive deterioration of the brain structural integrity
[Long et al., 2012] which involves essentially hippocampal loss and ventricular
enlargement.

• Disease related anatomical changes. AD involves a speci�c pathological pro-
cess which was demonstrated to be complementary to the healthy aging
[Nelson et al., 2011, Barnes, 2011], and to produce patterns of neurodegenera-
tion in speci�c areas which cannot be ascribed to any kind of global accelerated
aging process [Frisoni et al., 2010].

If we could independently model these physiological changes it would then be
possible to describe a given anatomy as the contribution of distinct and comple-
mentary factors, each of them representing a precise biological process. Such de-
composition would be extremely interesting not only for the improvement of the
understanding of the disease, by removing sources of variability not related to the
pathology, but also for clinically oriented purposes, such as the early diagnosis and
the development of drugs aimed to target the disease speci�c component.

However, such a decomposition comes with a number of issues that must be
dealt with. For instance, it is important to notice that, although induced by com-
pletely di�erent biological mechanisms, aging and AD often map to common areas,
and the correct identi�cation of the respective contributions may be di�cult, es-
pecially in morphometric studies. Moreover it is plausible that these phenomena
are not completely independent, and might interact in a kind of positive �feed-
back� process. Thus, the increase of the speci�c changes leads to an accelerated
global aging process in the long term. This hypothesis is supported by recent stud-
ies on the estimation of aging indices based on the structural MRI of the brain
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[Franke et al., 2010, Davatzikos et al., 2009]. For instance, in [Franke et al., 2010]
the authors showed a strong correlation between the predicted age and the biological
one, but estimated a gap of +10 years for subjects with AD.

The reliable estimation of the aging component is also relevant for modeling the
evolution of the disease and for the subsequent statistical analysis. For example,
when comparing the longitudinal observations from di�erent clinical groups at dif-
ferent aging stages it is crucial to correctly position the observations on the time
axis. This is not an evident task, since the disease appears at di�erent ages, and
biologically older brains might have greater structural integrity than younger ones
a�ected by the pathology. For this purpose it is very important to de�ne a�virtual�
aging stage relative to a reference anatomical evolution.

The objective of this work is to introduce a framework for the identi�cation
and the disentanglement of the biological processes due to aging and pathological
changes. In particular, by following the model which relates the development of
AD to the abnormal processing of beta-amyloid (Aβ) peptide [Jack et al., 2010b],
we investigate the atrophy patterns in healthy subjects positive to the CSF Aβ42
marker, in MCI converters to AD, and �nally in AD. The method is based on the
di�eomorphic non rigid-registration and is detailed in Section 8.2. In Section 8.3
we show that such framework provides an accurate description of the anatomical
changes across the AD stages, which can �nd e�ective applications in the modeling
of the disease and for diagnostic purposes.

8.2 Projecting the Brain Anatomy on the Healthy Aging

Trajectory

Given a subject k, we model the brain anatomy Ik observed in a magnetic resonance
image (MRI) by non-rigid registration to a pre-de�ned reference anatomical space T .
If we parameterize the subject-to-template deformation φk by a stationary velocity
�elds (SVFs) wk such that φk = exp(wk), the observed anatomical structure is then
described by the SVF wk, which is a tangent vector �eld in the deformation space.

By taking advantage of the log-Euclidean nature of the SVF, we assume that
wk is the contribution of the normal aging plus a complementary component: wk =
wkage + wkspecific.

The proposed framework analyzes these di�erent components by describing the
observed anatomy in separate modeling steps which respectively address:

1. Identi�cation and extraction of the aging component wage by estimation of a
�virtual age� with respect to a reference evolution for the normal aging.

2. Identi�cation and analysis of the remaining speci�c component wspecific. The
speci�c component describes the cross-sectional changes which cannot be at-
tributed to the aging, and which encode the pathological atrophy.

Each modeling step is separately addressed in the following sections.
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Figure 8.1: An observed anatomy can be described in terms of an aging factor plus
a subject speci�c component not related to the healthy aging.

8.2.1 The �Virtual Age� with Respect to a Model of Healthy Aging

We want to di�erentiate the morphological patterns in the image Ik due to the
normal aging from those related to di�erent biological processes.

We consider a model of the healthy aging de�ned in a reference anatomical
space T. As proposed in [Lorenzi et al., 2011a] we assume that the aging process
is stationary and linearly evolving according to the SVF µ0, so that the aging is
de�ned as the trajectory µ(t) = tµ0.

Theoretically, given a longitudinal evolution exp(µ(t)) for the healthy aging in a
reference anatomy T , we want to project the subject's anatomy Ik on the �closest�
point of the trajectory T◦exp(µ(t)) in order to determine its progression stage tk with
respect to the evolution. De�ning exp(wk) as the subject-to-template deformation,
and given a metric <,> on the tangent space, the projection of the image Ik in the
trajectory T ◦ exp(µ) is given by the decomposition of the vector into orthogonal
components wk = wkage + wkspecific = tkµ0 + νk. In the present work the projection
is based on the standard L2 metric.

In such decomposition the time point tk de�nes a �virtual age� index of the
subject k with respect to the model µ, while the vector �eld νk encodes the mor-
phological changes which cannot be related to the aging process (Figure 8.1). The
time point tk de�nes the projection on the longitudinal evolution µ(t) and is given
by the whole brain average of the voxel-by-voxel (L2) projections: tk = <wk,µ0>(x)

||µ0||2(x)

.

Once tk is determined, the speci�c vector component is simply computed voxel-wise
as νk = wk − tkµ0.

By estimating the time point tk on the whole brain we make a precise assumption
on the aging process, which is here de�ned globally. Therefore, the accelerated aging
is constrained with respect to the model tµ0, and any local departure from it (for
instance in some speci�c regions), is interpreted as a specific morphological change,
independent from aging. On the contrary, by considering only regional projections
on speci�c areas (for instance hippocampi or ventricles) we may mistake speci�c
patterns of neurodegeneration as global accelerated aging, and thus introduce a bias



8.2. Projecting the Brain Anatomy on the Healthy Aging Trajectory125

in the decomposition.

8.2.2 Identi�cation and Analysis of the Speci�c Component

The removal of the factor tkµ0 allows to directly compare across subjects the re-
maining component wkspecific = νk, which encodes the variability that cannot be
attributed to the normal aging. In this section, we investigate the ability of such
component to correctly encode the information inherent the pathology, in order to
reliably discriminate between di�erent clinical populations.

8.2.3 Divergence Associated to the Speci�c Components

We are interested in the analysis of the speci�c matter loss which characterizes
di�erent clinical groups. The di�eomorphic constraint of the non-rigid registration
encodes the morphological changes as a complementary compression/expansion pro-
cess across adjacent areas. The compression models the shrinking of the anatomical
structures due to the observed matter loss, while the expansion is a complementary
process which indicates growth, for instance of the CSF areas in the ventricles or
in the sulci surrounding the gray matter. These processes are induced by the esti-
mated deformation �elds and can be quanti�ed by the �ux of the vectors across the
boundary of the regions: the inward (resp. outward) �ow across a surface induces
the compression (resp. expansion) which quanti�es the atrophy (resp. growth).

The compression/expansion processes are identi�ed by the divergence ∇ · νk
associated to the vector component νk. We recall that from the Divergence (or
Ostrogradsky's) theorem, the integral of the divergence of a vector �eld in a given
region is the �ux of the vector �eld across the boundaries of the region, and that the
�ux is the mathematical formulation of the boundary shift [Lorenzi et al., 2012d].
Since the regional divergence is the �ux across regions, it measures the percentage
matter loss.

8.2.4 Discriminative analysis on the speci�c component

In the present analysis we tested the ability of the divergence maps ∇ · νk to dis-
criminate between a set of patients P and a control group C.

We computed the voxel-by-voxel e�ect size map for the group-wise divergence
ES = (mean(∇ · νP )−mean(∇ · νC)) /sd(∇·νP ) which quanti�es the magnitude of
the di�erences between patients and control populations. We chose a set of regions
relevant for AD (hippocampi, medial temporal lobes (MTL), posterior cingulate
(PC), and ventricles) where we identi�ed the voxels of maximal positive and negative
e�ect size. These voxels were then in�ated and symmetrized in order to de�ne a set
of regions for the discriminative analysis (Fisher's discriminant analysis) of the �ux
associated to the speci�c component. The discriminative analysis was performed by
leave-one-out cross validation to test the correct group classi�cation.
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8.3 Virtual Aging and AD Speci�c Atrophy on the

ADNI Dataset

We chose the ADNI structural MRIs for 57 healthy subjects with normal levels
of CSF Aβ42 (> 192 pg/ml, group Aβ-), 41 healthy subjects with abnormal lev-
els (group Aβ+), 86 subjects with mild cognitive impairment who consequently
converted to AD (group MCIconv), 110 MCI subjects who remained stable during
the observation period (group MCIstable), and 134 AD patients (group AD). De-
mographical as well clinical information are based on the ADNI data updated to
March 2012, with a follow-up period of 3 years from baseline.

Previous studies showed that healthy elders with pathological CSF Aβ42
levels (> 192pg/ml) have a more pronounced brain atrophy progression
[Lorenzi et al., 2011a, Fjell et al., 2010, Tosun et al., 2010], which might be a
marker of pre-symptomatic stage of AD. Therefore we de�ned the healthy aging
progression by considering only the Aβ- group as reference healthy population. The
longitudinal observations (from baseline to 3 years) for the Aβ- group were used
to model the reference healthy evolution µ0 [Lorenzi et al., 2011a] normalized to an
anatomical reference T estimated from the ADNI healthy population.

In order to unbias the analysis with respect to the healthy ( Aβ+) population,
we centered the SVFs by subtracting the average subject-to-Template SVF of the
Aβ- group.

The unbiased SVF were then analyzed by following the proposed framework, to
show that advanced AD stages are associated with accelerated aging plus a disease
speci�c anatomical pattern. The e�ectiveness of the disease speci�c component
in encoding information relevant to the pathology was tested by performing two
di�erent discriminative analysis on the classi�cation between AD vs healthy, and
MCIconv vs MCIstable.

8.3.1 Estimated virtual aging

The normal aging modeled for the Aβ- group is shown in Figure 8.2 (left), and is
characterized mainly by the ventricular enlargement and by atrophy in the temporal
areas. The estimated virtual age is signi�cantly correlated with the biological one for
all the considered groups (minimum Pearson's r for theMCIconv (0.3) and maximum
for the MCIstable (0.54), p < 0.005) . However, even though the considered groups
did not signi�cantly di�er for age, the virtual age increases as the clinical condition
gets closer to AD. In fact, as shown in Figure 8.2, Aβ+, MCIconv, and AD are
increasingly virtually older when compared to the healthy Aβ- (p-values in the
boxes). Interestingly, MCIconv are signi�cantly older than MCIstable (p=0.035), to
indicate a possible accelerated aging process induced by the ongoing AD.
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Figure 8.2: Left: Normal aging modeled for the group of Aβ- healthy subjects.
Right: Average virtual age estimated for the clinical groups with respect to the
normal aging. The estimated virtual ages describe statistically signi�cant older
brains (standard t-test, p-value in the boxes) with respect to the healthy Aβ- for all
the considered groups. Interestingly, MCI converters are �virtually older� than the
MCI stables (p < 0.0392).

8.3.2 Analysis of the speci�c component

Figure 8.3 shows the average speci�c deformation components νk associated to the
di�erent groups once centered with respect to the healthy population. The morpho-
logical changes speci�c for the healthy Aβ+ are mild, while the changes speci�c for
the MCI converters are more pronounced and map to the frontal cortex, ventricles,
temporal poles, entorhinal cortex and hippocampi. The same pattern is appreciable
for the AD patients.

In Figure 8.3, second row, we notice that the change in the clinical condition
(from Aβ+, to MCIconv and AD) is associated with larger and more intense diver-
gence patterns (i.e. �ux across regions). For each anatomical region we can identify
the associated location of high positive divergence (growth of the CSF regions), and
the correspondent area of high negative divergence (brain atrophy), which indicate
more intense expansion/compression mapping mainly to ventricles, temporal poles
and hippocampi.

Figure 8.4 shows the e�ect size between the divergence maps of respectively
MCI converters vs stable, and AD vs healthy controls. As expected, the e�ect size
between AD and healthy controls is higher than the one between MCI converters
and stables, to indicate the larger variability in the MCI group.

Finally, Table 8.1 shows the regional and pooled prediction accuracy in the
discriminative analysis between AD vs Ctrls, and MCIconv vs MCIstable. The fair
classi�cation results (91% sensitivity, 84% speci�city for AD vs Ctrls, and 67%,
63% for MCIconv vs MCIstable) indicate the ability of the speci�c pathological
component to encode information relevant for the disease condition and the clinical
group. The provided predictions are signi�cantly better than those given by pure
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Figure 8.3: First row: average speci�c deformation component not related to nor-
mal aging. MCI converters and AD patients show the more pronounced pattern of
morphological changes mapping mainly to ventricles, temporal poles, entorhinal cor-
tex and hippocampi. Second row: percentage matter loss measured by the average
divergence maps extracted from the speci�c component.

Figure 8.4: E�ect size associated to the divergence maps of the speci�c components.

chance (p < 0.001, McNemar's Chi-Square test), and are in line with those available
in the literature on the ADNI dataset [Chupin et al., 2009a, Cuingnet et al., 2011,
Chincarini et al., 2011, Wolz et al., 2011].

8.4 Conclusions and Perspectives

We proposed a method to decompose the brain atrophy into complementary com-
ponents: aging and AD speci�c. These components identify di�erent clinical stages,
and are compatible with the hypothesis that points to the positivity to the CSF
Aβ42 as a presymptomatic marker of AD in the healthy stages. We showed that



8.4. Conclusions and Perspectives 129

AD vs Ctrls MCIconv vs MCIStable
Sens Spec PPV NPV Sens Spec PPV NPV

All features 91 84 85 90 54 54 54 54
MTL (-) 86 81 85 82 53 51 52 52
MTL (+) 73 77 76 74 57 57 57 57
Hippocampi (-) 77 71 75 73 55 47 51 51
Hippocampi (+) 77 63 73 67 67 63 64 65
Ventricles (+) 65 69 68 66 61 43 52 52
Ventricles (-) 68 69 69 68 58 56 57 57
PC (-) 58 59 59 59 58 58 58 58
PC (+) 59 50 54 54 47 74 64 58

Table 8.1: Regional classi�cation accuracy for the leave-one-out discrimination. The
analyzed features are the positive and negative �ux (+ and -) of the speci�c com-
ponent across the regions of interest.

more advanced AD stages (from Aβ+ to MCI converters, and �nally to AD) are
associated to both "virtually older" brains, and to increased speci�c morphological
changes not related to the normal aging.

Di�erent MRI-based indices of brain aging were proposed in the past
[Franke et al., 2010, Davatzikos et al., 2009]. Our model integrates these ap-
proaches into a richer description of the AD process. In fact we showed that AD is
not only represented by accelerated brain aging, but is also composed by a speci�c
and complementary quote of atrophy. While con�rming the results from the other
studies, our method points to a completely di�erent conclusion. Since AD is not
only an accelerated aging process, the design of disease speci�c modifying drugs
which do not have impact on the natural normal aging is then justi�ed.

To conclude, our approach provide new insights which may help the under-
standings of the AD dynamics, and which might promote the development of novel
diagnostic techniques for the early detection of the disease.
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9.1 Scope of the Thesis

The study of Alzheimer's disease poses several challenges in terms of modeling and
development of computational methods for the e�ective analysis of imaging data. In
this thesis we presented a computational framework for the analysis of longitudinal
T1 brain MRIs which satis�es precise research and clinical needs in term of e�ciency,
reliability and robustness. We built upon state-of-art methods for designing a toolkit
that could �nd application in both image processing and clinical research �elds.

The proposed instruments are computationally e�cient and can be reliably ap-
plied to medical images. For instance, the LCC-Demons was designed for dealing
with the acquisition biases, is fully automated and computationally cheap. All the
proposed tools rely on open source software and can be easily shared and deployed
on di�erent systems.

The toolkit was designed to �nd application in the clinical research on
Alzheimer's disease. The proposed methods were mainly tested on large and publicly
available data, so we could benchmark and compare the results with the available
literature and state of art methods.

Finally, the last part of the thesis was dedicated to the translation to the clinical
domain. We de�ned �exible and robust measures of cerebral atrophy, with explicit
clinically oriented purpose. Particular attention was given to the de�nition of plau-
sible measures which could be compared with the standard ones used in clinic, as
percentage volume changes, and that could be easily interpreted from the biological
point of view, such as the virtual age relative to aging models.
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9.2 Contributions

In chapter 2, we proposed the LCC-Demons registration framework. This tool was
extensively tested and applied on di�erent settings, and showed good results in terms
of robustness, reliability, and e�ciency. It might thus represent a valuable instru-
ment for the analysis of large dataset from multicentric studies. We are currently
preparing a future release of the software, similarly to the Symmetric Log-Demons1.
Moreover, we are currently working on the ITK implementation of the stationary
velocity �eld class, which will include the methods described in this work for the
stable computation of the Jacobian matrix and determinant, and for the parallel
transport.

The parallel transport of longitudinal trajectories is currently a topic of active
research and several questions are still open. However, the material presented in
chapter 3 initiated the investigation of the parallel transport on a new basis, by
digging into the geometrical properties which one can endow on a manifold by
moving forward with respect to the classical Riemannian setting proposed with
LDDMM. Di�erent applications of the Pole Ladder are currently under study, for
instance for the group-wise modeling the cardiac cycle, which intrinsically involves
longitudinal and inter-subject analysis.

We showed in chapter 4 that the Lie group theory o�ers a rich geometrical setting
for the de�nition of geodesics and transport methods. The Cartan-Shouten a�ne
connection space setting o�ers new perspectives with respect to the Riemannian ap-
proach built upon the Levi-Civita connection, and might promote the investigation
of novel a�ne connections for parallel transporting vectors, for instance by requiring
the preservation of speci�c motion properties. From the practical point of view, the
proposed parallel transport are already a valuable tool for the longitudinal analysis
of follow-up images. For instance, in chapter 5 we experienced the increased accu-
racy in analysing the transported longitudinal trajectories rather than the standard
Jacobian determinant scalar values.

The hierarchical model presented in chapter 5 is now a fully operative computa-
tional tool, and is implemented on grid-based research infrastructures (NeuGRID2

and NeuroLog3). The aim is to perform validation studies on large data on dataset
di�erent from ADNI, in order to re�ne and generalize the preliminary �ndings illus-
trated in the present thesis. Moreover, the proposed framework is fully generalizable
and might �nd important applications for the de�nition of spatio-temporal atlases
in di�erent domains, like cardiac imaging or brain development in childhood.

In chapters 6 and 7 we introduced the regional �ux analysis, a novel approach
for the exploration and quanti�cation of longitudinal morphological changes encoded
by deformation �elds. The proposed method showed good reliability and accuracy.
Chapter 6 proposes a novel setting for the analysis of SVF deformations, which
relies on the study of the associated topological properties using the Helmholtz

1http://www.insight-journal.org/browse/publication/644
2http://www.neugrid.eu
3http://neurolog.i3s.unice.fr/
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decomposition. The volume changes encoded by the deformation �eld are completely
characterized by a pressure potential and novel mathematical instruments can be
used to quantify and compare pathological patterns of this new geometrical object.
As a scalar function, the pressure can be studied by the Morse Smale theory. Morse
Smale studies the topological properties of a function by analyzing the underlying
complex de�ned by the critical points, i.e. the local maxima, minima and saddle
points, and the cells de�ned by the �ow from maximum to minimum. In our case
Morse Smale theory might provide a novel description of the atrophy through the
analysis of the properties of the corresponding complex, like the persistence of the
atrophy pattern at di�erent spatial scales and the e�ciency of the underlying graph.

From the clinical point of view, further investigations of the �ux associated to
the pressure potential might provide powerful instruments for the monitoring of
the Alzheimer's evolution in the brain, especially at the earliest stages. In fact the
�exibility of the method proposed in Chapter 7 can be used to evaluate the atrophy
in brain areas which are usually more di�cult to segment, for instance amigdalae,
parahippocampi or the posterior cingulate, and to combine these measures to de�ne
a more precise and robust index of neurodegeneration.

Finally, the work introduced in chapter 8 describes the morphological changes
in the brain by combining longitudinal and cross-sectional analysis. This model
reduces the complexity of the subject-to-template deformation by identifying bi-
ologically meaningful components: virtual aging and disease speci�c atrophy. The
information carried by these complementary parts have precise clinical meaning and
might be of relevant interest for diagnostic purposes. In fact the virtual aging could
be seen as an index of the structural �brain reserve�, i.e. of the resilience of the brain
to the pathological e�ects, while the speci�c component evaluates the pathological
structural damage. These components characterize the morphological pattern of a
given brain, and provide informative and quantitative diagnostic indices. The trans-
lation of the proposed computational model to clinic requires important validation
e�orts, and we are currently planning to deepen and further investigate the validity
of such a model.

9.3 Perspectives and Future Applications

The work proposed in this thesis is already an e�ective instrument for the analysis
of longitudinal brain structural images in AD. Moreover, due to their generality and
reusability, we believe that the proposed tools could �nd further application for the
study of di�erent imaging modalities, and in di�erent domains.

9.3.1 Multimodal longitudinal Atlas of AD

This thesis focused on the modeling of the structural changes in the brain a�ected
by Alzheimer's. This is only a preliminary contribution towards the development
of a comprehensive model of the disease, which should be based on biochemical,
functional, and neuropsychological data, in addition to the pure modeling of the
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brain atrophy. From the imaging point of view, the proposed longitudinal framework
can be extended to a multimodal/multiscale model of amyloid deposition, metabolic
and connectivity changes, and gray and white matter atrophy.

For instance, we might consider the multichannel registration of paired MRI and
di�usion weighted images (DWI) [Siless et al., 2012], in order to include information
about the white matter disruption which is not detectable in T1 MRIs. The tools
for the longitudinal statistical analysis and quanti�cation detailed in chapters 4 and
6, as well as the spatio-temporal registration framework proposed in appendix A,
can be straightforwardly extended in case of T1+DWI multimodal registration, and
provide a more complete description of the longitudinal anatomical changes.

A more complex extension of the model would account for the brain functional
activity, for instance mapped by 18F-FDG PET imaging, and for the amyoid depo-
sition detected by 11C-PIB PET (�gure 9.1).

Figure 9.1: Hypometabolism and cortical amyloid deposition across the time span
of AD [Lowe et al., 2009]. Group-wise average for the 18F-FDG PET (top) and the
11C-PIB (bottom) images.

The model would enable the testing of speci�c hypothesis for the disease evo-
lution, such as the amyloid cascade hypothesis [Jack et al., 2010a], and might be
extremely valuable for the understanding of the disease mechanisms. In this case,
the framework of chapter 8 might be used to temporally align di�erent patients ac-
cording to the aging stage, and to subsequently model the biochemical and metabolic
changes in time. However, the consistent integration of di�erent modalities is chal-
lenging, due to the di�erent nature of the acquisition, the partial volume e�ects,
and most importantly to the lack of a valid apriori model of interaction between the
di�erent biomarkers.
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9.3.2 Spatio-temporal Model of the Cardiac Cycle

Cardiac imaging is a very active �eld of research where non-rigid registration is
used for the modeling of the cardiac motion. When registering the frames of the
cardiac sequence we want to capture the properties of the heart cycle, which can
be analyzed for disease diagnosis or therapy guidance. For instance, the group-
wise estimation of a cardiac atlas �nds several applications which include statistical
analysis among populations, segmentation of heart structures, disease detection and
motion characterization. The problem requires the estimation of the anatomical
motion in time through serial observation from di�erent patients, and is therefore
purely 4-dimensional.

Recently the log-Demons algorithm was adapted to the estimation of patient
speci�c incompressible cardiac motion [Mansi et al., 2011a], which can thus be de-
scribed by SVFs.

Figure 9.2: Example of incompressible log-Demons based cardiac registration from
[McLeod et al., 2012]. Top row: Three views of the reference frame (end diastole)
with segmented mask over-laid in green. Bottom row: Same views of peak systole
with the segmented reference mask deformed by the computed deformation �eld.

If we want to develop a group-wise atlas for the heart cycle we need then to
transport the longitudinal SVF on a common anatomical reference, and we can
thus apply the tools proposed in this thesis. However, the cardiac motion has a
completely di�erent nature than the longitudinal anatomical changes in the brain,
and is usually magnitude higher. This would require to adapt the proposed transport
techniques to this novel context.

9.3.3 Modeling the mass e�ect in brain tumors

Non-rigid registration �nds di�erent applications in brain tumor modeling. For
instance, if we are interested in analyzing the longitudinal changes in the brain
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structure or function, non-rigid registration accounts for brain tissue deformation
due to tumor growth (mass e�ect) [Stretton et al., 2011]. The mass e�ect itself is
a very important index of the tumor evolution, since it causes brain damage and
blockage of �uid and can be potentially life-threatening, whether a brain tumor is
benign or malignant. Monitoring the longitudinal mass e�ect is therefore important
when following patients in time.

In Appendix B we proposed a regularization scheme for the log-Demons algo-
rithm for registering brain images in presence of tumor, by penalizing the estimation
of the deformation in low weight regions (Figure 9.3).

Figure 9.3: Mass e�ect analysis. A,B) Two-years follow-up sequence of T1 MRIs for
a low-grade glioma patient , C) divergence scalar map associated to the longitudinal
deformation, D) prior mask for the tumor.

In �gure 9.3 we notice the high divergence areas locate in the ventricles, to
indicate the swelling due to the tumor growth. We can therefore use the framework
proposed in Chapter 6 and 7 to e�ectively discover and quantify the volume changes
induced by the mass e�ect, in order to monitor the tumor growth and evaluate
indirect treatment e�ects. Contrarily to the Alzheimer's case, we do not have here
any prior hypotheses about the location of these changes, and we require a kind of
completely automated method to identify consistent and persistent areas of change
across multiple time points. As previously observed, Morse Smale theory could help
in identifying persistent relationship between local maxima and minima pressure
points, and therefore highlight meaningful dynamics of the mass e�ect.
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Appendix A

Log-Demons Spatio-Temporal

Registration

This chapter is based on the MICCAI workshop paper [Lorenzi et al., 2010b], and
introduces the 4D registration method which is employed in the hierarchical model
proposed in [Lorenzi et al., 2011a].

A.A Introduction

The consistent evaluation of changes across serial images is a fundamental require-
ment to gain in stability and robustness of the measurements, as well as in higher
accuracy in detecting biological phenomena like pathological trends. The registra-
tion of time series image-data plays a central role in many �eld of research, like
cardiac imaging [Peyrat et al., 2008] or motion analysis [Ren et al., 2009]. In the
�eld of neuroimaging, a 4D registration procedure for serial images was introduced
in [Shen and Davatzikos, 2004], where a subject-speci�c 4D template is warped to
match the sequence of serial images. The study introduced the idea of Gaussian
smoothing along a multidimensional neighborhood, to impose spatial and temporal
constraints on the resulting 4-dimensional deformation �eld. In [Avants et al., 2007]
it was proposed the consistent longitudinal intra-subject di�eomorphic registration
with the LDDMM framework. In the study, the di�eomorphisms matching the
baseline image to the related serial scans were sampled in a standardized time range
to produce a subject-speci�c description of the temporal trajectory of the brain
changes. Another method was presented in [Davis et al., 2007] to perform a regres-
sion of the brain shapes as a function of age. Still based on LDDMM, a complete
framework for the consistent 4-dimensional registration of shapes was presented in
[Durrleman et al., 2009]. However, the high complexity and the important compu-
tational requirements often limit or even prevent the use in the practical context,
especially for the analysis on volumetric images in longitudinal dataset, due to the
increasing number of registrations required.

We propose here a framework based on the log-Demons registration for the
temporally consistent di�eomorphic registration of serial MRI data.

A.B Spatio-Temporal regularization in the log-Demons

The framework is based on the log-Demons registration scheme detailed in Chapter
2.
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The longitudinal perspective in the registration process increases the dimen-
sionality of the registration and adds a new level of estimation along the temporal
dimension. To consistently register a temporal series of images Ii, i = 0 . . . n, we
propose a hierarchical approach from the statistical multilevel modeling:

• First level of inference. We estimate the deformations φi = exp(vi) , i =
1 . . . n, to match each image Ii to the baseline I0.

• Second level of inference. The sequence of vi is used to model in the log-domain
a subject-speci�c temporal trajectory v̄(t).

• Hierarchical estimation. The trajectory v̄(t) is then reintroduced in the �rst
level as a prior term to drive the re-estimation of the deformations at each
time point.

The introduction of the new prior term v̄(t) in the log-Demons can be done at the
regularization level (Section 2.2.1), to constrain the solution for the optimal SVF v:

Ereg(v) =
1
σ2
x

‖ exp(−v) ◦ exp(vx)‖2L2
+

1
σ2
t

‖v − v̄(t)‖2L2
+

1
σ2
T

Reg(v)(A.1)

It can be easily shown that the optimization of the above formula leads to the
following optimal solution for the log-Demons regularization:

v = Gσ ∗
(
σ2
t vx + σ2

xv̄(t)
σ2
t + σ2

x

)
(A.2)

We notice that the solution is still obtained through Gaussian convolution and is
therefore compatible with the log-Demons structure. The optimal SVF v is the
weighted average between the �eld correspondence �eld vx and the temporal prior
v̄(t). The parameters σx and σt determine the trade-o� between spatial and the
temporal information. With this approach, the estimated deformation takes into
account the global temporal evolution while remaining consistent with the classi-
cal log-Demons registration framework. It has been previously proposed to per-
form longitudinal registration through regularization of the 4D deformation �eld
in a 4-dimensional neighborhood, i.e. by minimization of the temporal gradient
[Shen and Davatzikos, 2004]. That is actually a special case of the presented frame-
work, where the prior v̄(t) is estimated through kernel regression from the sequence
of the vi.

A.C Preliminar Experiments

The above registration was tested on the longitudinal images acquired for a sample
ADNI MCI subject. The deformation trajectory vi with respect to the baseline
image was computed with the log-Demons, and the temporal evolution v̄(t) was
estimated through a linear model in time. The �tted v̄(t) was then used to constrain
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Figure A.1: Flux-derived brain volume change in time for a speci�c subject without
temporal regularization (black dots) and with di�erent trade-o� σt

σx
for the temporal

constraint (coloured lines). The amount of the weight on the temporal constraint
lead to a more linear

the new estimation of the deformations, and di�erent regularization weights for the
trade-o� between spatial ad temporal informations were tested: σt

σx
= 0.5, 1, 2, 3, 4.

Figure A.1 illustrates the e�ects of the temporal regularization on the measure-
ments of the longitudinal brain volume changes. It can be noticed that the increase
of the weight on the temporal constraint leads to a more linear (regular in time)
estimation of the progression.

A.D Conclusion and Perspectives

We showed that the log-Demons algorithm can be easily extended into a 4D registra-
tion framework by introducing at the regularization level a prior term representing
a temporal model of the longitudinal trajectory. The presented framework increases
the regularity in time of the longitudinal measures, and thus reduces the intra-
subject variability. This is an important feature which might for instance increase
the power of a longitudinal clinical trial. Due to the limited number of longitudinal
observations the preliminary results were obtained through a linear model in time
for the SVFs. Even though a linear progression could not track faithfully the real
underlying biological process, this �rst order approximation led to reliable results
in the spatio-dimensional registration.

Further studies are needed to de�ne the optimal trade-o� between spatial and
temporal weights in terms of registration accuracy, stability of the longitudinal mea-
sures and increased statistical power.





Appendix B

Locally weighted non-rigid

registration

This chapter describes a preliminar work on the introduction of local con�dence
weights in the log-Demons algorithm, in order to account for missing correspon-
dences in the image registration. Such a method updates the one proposed by
[Lamecker and Pennec, 2010], and provided better results when tested in the PhD
work of Erin Stretton in Asclepios team1, for the longitudinal modeling of tumor
growth in brain images.

B.A Introduction

Non-rigid registration �nds di�erent applications in brain tumor modeling. For
instance, if we are interested in analyzing the longitudinal changes in the brain
structure or function, non-rigid registration accounts for brain tissue deformation
due to tumor growth (mass e�ect) [Stretton et al., 2011].

From the technical point of view, the registration of longitudinal brain tumor
images needs to account for the intensity changes due to the edema and bleedings
caused by the tumor growth on the surrounding healthy tissues. This intensity shift
is a potential bias for the estimation of the deformation �eld, and should be explicitly
modeled in the registration. If we are interested in modeling the mass e�ect, we want
to exclude the tumor areas in order to not a�ect the motion detection in the remain-
ing part of the brain. From the registration point of view this requires to specify local
con�dence weights to model the areas where the correspondence is missing, and thus
the estimated deformation is ureliable. In [Stefanescu et al., 2004] it was proposed
to impose a di�usive regularization governed by a spatially varying local con�dence
parameter, where the pathological regions are modeled with low or zero con�dence.
This method leads however to a highly non-trivial mathematical optimization prob-
lem. A more e�cient solution was proposed by [Lamecker and Pennec, 2010], where
the Symmetric log-Demons was adapted in order to perform di�erential regulariza-
tion on binary masks. However, the alternate optimization scheme of the log-Demons
is broken and the proposed solution is not consistent anymore with the original reg-
ularization framework.

We show in this chapter how to derive a log-Demons based weighted regular-
ization consistently with the mathematical formulation of the algorithm, and which
preserves the original computational structure.

1https://sites.google.com/site/erinstrettonweb/
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B.B Locally weighted log-Demons registration

We propose here to adapt the log-Demons regularization in order to account for local
weights in the estimation of the optimal deformation. Let consider the regularization
energy 2.4:

Ereg(v) =
1
σ2
x

‖ log(exp(vx) ◦ exp(−v))‖2L2
+

1
σT

Reg(v). (B.1)

The weights can be introduced as a probability mask w(x) which multiplies
the coupling term. In this way, we require to the optimal v to be close to the
correspondence vx in the high con�dence areas (w(x) close to 1), while in the areas
of low con�dence we enforce only the regularity imposed by the term Reg(v).

The regularity term Reg(v) can be explicitly written as sum of in�nite or-
der isotropic di�erential quadratic forms Qk(v) = αk∂i1...ikvik+1

∂i1...ikvik+1
+

βk∂i1...ikvik+1
∂ik+1i2...ikvi1 [Cachier and Ayache, 2004]. ∂i1...ik denotes the compo-

sition of spatial derivatives, while αk ≥ 0 and βk ≥ −αk are scalar coe�cients
which ensure the positiveness of the di�erential quadratic form. We obtain

Ereg(v) =
w

σ2
x

‖ log(exp(vx) ◦ exp(−v))‖2L2
+

1
σT

∫ ∞∑
k=1

Qk(v).

In order to preserve the shape of the impulse response [Cachier and Ayache, 2004],
we consider the weight σT as a parameter of the regularizer which depends on the
order k of the quadratic forms

Ereg(v) =
w

σ2
x

‖ log(exp(vx) ◦ exp(−v))‖2L2
+
∫ ∞∑

k=1

Qk(v)
σ2k
T

.

By considering the zeroth-order approximation for the BCH formula, and by opti-
mizing with respect to v we obtain

v + (w − 1) v + σ2
x

∞∑
k=1

(−1)k

σ2k
T

[
αk∆kv + βk∆k−1∇∇Tv

]
= w vx.

For sake of simplicity, as shown in [Mansi et al., 2011a] we choose αk = 1
σ2
xk!

and
βk = 0 in order to constrain the regularization to standard Gaussian �ltering. By
applying the Fourier transform F , the above equation becomes

exp(
ξT ξ

σ2
T

)ṽ + F(w − 1) ∗ ṽ = F(w vx),

with ξ = F(x), and ṽ = F(v). We thus have

ṽ + exp(
ξT ξ

σ2
T

) [F(w − 1) ∗ ṽ] = F(w vx).
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By assuming the exponential function exp( ξ
T ξ
σ2
T

) locally constant (i.e. su�ciently

smooth with respect to F(w − 1)), the equation becomes

ṽ +
[
exp(

ξT ξ

σ2
T

)F(w − 1)
]
∗ ṽ = F(w vx). (B.2)

Transforming back to the real domain we obtain

v +Gσ ∗ (w − 1) · v = Gσ ∗ (w vx),

and thus

v =
Gσ ∗ (w vx)

1 +Gσ ∗ (w − 1)
=

Gσ ∗ (w vx)
Gσ ∗ (w)

B.C Preliminary Results

The proposed weighted regularization was used to register a follow-up brain tumor
image of a low-glioma patient to the baseline. The data was kindly provided by
Bjöern Menze (Computer Vision Laboratory, ETH Zurich) on behalf of Prof. Marc-
André Weber (Department of Diagnostic and Interventional Radiology, Heidelberg
University).

Figure B.1: Mass e�ect analysis. A,B) Two-years follow-up sequence of T1 MRIs for
a low-grade glioma patient , C) divergence scalar map associated to the longitudinal
deformation, D) prior mask for the tumor of the follow-up image. We notice that
the divergence in the tumor area is null.

In �gure B.1 it is shown that the divergence associated to the longitudinal defor-
mation is null inside the tumor mask. By comparison we notice the high divergence
areas located in the ventricles, to indicate the swelling due to the tumor growth.

B.D Conclusion and perspectives

We showed that, when adding in the log-Damons spatially smoothly varying weights
for the local con�dence of the registration, the optimal solution is the weighted
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convolution of the correspondence �eld. Interestingly the present solution does
not alter the classical optimization scheme of the log-Demons, and thus preserves
the computational e�ciency. The framework found a preliminar application in the
registration of follow-up brain tumor images, in which the tumor is masked in order
to reliably detect the mass e�ect. The method can �nd di�erent applications from
the proposed one, for all the cases in which there exist no one-to-one correspondence
between pairs of images. Further validation of the method is however still required
from both quantitative and qualitative points of view. Finally, the relationship
between mask smoothness and regularization strength emerged in equation B.2 is
another important aspect that deserves future further investigation.



Appendix C

Enrichment through biomarkers in

clinical trials of Alzheimer's drugs

in patients with mild cognitive

impairment

This chapter resumes the journal paper [Lorenzi et al., 2010c] that was written in
collaboration with the LENITEM team directed by Dr. Giovanni Frisoni, and that
was �nalized during the �rst part of my PhD.

The design of a clinical trial is the �rst and critical step for reliably testing
the e�ectiveness of treatments. In this work we investigated di�erent enrollment
strategies for an hypothetical clinical trial based on the screening through di�erent
AD makers.

C.A Introduction

It is widely believed that MCI patients with abnormal brain structure, metabolism,
or biochemical marker pro�le are more likely to develop AD than the parent MCI
population. A proposal for new diagnostic criteria has been developed that could
allow diagnosis of AD at the MCI stage based on atrophy of medial temporal lobe
structures (among which the hippocampus) on structural magnetic resonance imag-
ing (MRI), hypometabolism in the temporoparietal cortex on 18F-FDG PET, low
Aβ42 or high tau or phospho-tau in the CSF, and positivity on amyloid imaging
with tracers such as 11C-PIB [Dubois et al., 2007] . A corollary of this is that AD
markers might be employed in clinical trials of MCI patients to screen out non-
AD MCI cases and select a population of MCI enriched with truly AD cases to be
randomized.

Of course, the ideal marker is one with 100% sensitivity and speci�city, which
would support screening out of all non AD and screening in all AD cases. However,
this is hardly a realistic scenario. In a clinical trial scenario, a good marker will be
one which maximises the proportion of AD cases which are screened positive and
included, i.e. the true positive rate, and minimizes the proportion of AD cases which
are screened negative and excluded, i.e. the false negative rate.
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C.B Patient Enrollment through Screening with the AD

Biomarkers

405 MCI patients (143 converters and 262 non converters to AD within 2 years)
of ADNI were used. Markers for enrichment were hippocampal atrophy on MR,
temporoparietal hypometabolism on FDG PET, CSF biomarkers (Aβ42, tau, and
phospho-tau), and cortical amyloid deposition (11C-PIB PET). Two separate en-
richment strategy were tested aimed respectively to A) maximize the proportion
of MCI converters screened-in, and B) minimize the proportion of MCI convert-
ers screened-out. Figure C.1 shows that the distribution of markers was roughly
bell-shaped for all markers in the three groups of healthy elderly controls, MCI
converters, and MCI non converters.

Figure C.2 shows that with enrichment strategy A, increasingly restrictive
thresholds (from none to the 99th percentile of the distribution of healthy elderly
controls) generally lead to select a monotonously increasingly enriched proportion of
future converters among those screened in, except in the case of CSF markers where
the correspondence of the distribution curves of MCI converters and non convert-
ers led to a monotonous increase. The highest proportion of future converters was
achieved by hippocampal volume thresholded at the �rst percentile of the healthy
elders distribution, and by 11C-PIB PET thresholded at the 95th percentile, in-
creasing from 36% with no threshold to 59 and 60%, respectively. However, this
enrichment was obtained at the expense of a marked increase of screened out rate,
up to 77% and 84% of those MCI enrolled.

The Figure shows also the thresholds found with enrichment strategy B. The
lowest proportion of screened out converters was achieved by ADAS-cog (7.5%) and
11C-PIB PET (9%) at the 58th and 85th percentile respectively. For CSF biomark-
ers, the proportion of screened-out MCI converters was monotonously decreasing
with decreasing marker values, thus preventing to identify an optimal threshold.

C.C Conclusions

Screening through imaging and biological markers can lead to a signi�cant enrich-
ment of groups of MCI patients enrolled in clinical trials of AD drugs with �true AD
cases�, i.e. patients who will convert in the following months. A key point is the
role of the screening thresholds: in a hypothetical clinical trial, the balance between
enrichment of screened-in and loss of screened-out patients should be viewed in the
light of 1) the gain of power and the relative decreased costs brought about by en-
richment, and 2) the increased costs brought about by the exclusion of screened-out
patients.
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Figure C.1: MCI non converters and MCI converters among screened-in and
screened-out at increasingly restrictive thresholds of Alzheimer's disease markers.
Red, green, and black lines denote the distributions of MCI converters, MCI non
converters, and healthy elderly controls. Thresholds refer to the distribution of the
marker values in healthy elders.
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Figure C.2: MCI non converters and MCI converters among screened-in and
screened-out at increasingly restrictive thresholds of Alzheimer's disease markers.
Thresholds refer to the distribution of the marker values in healthy elders. The
percentages of all screened-out and all screened-in refer to the whole group of MCI
patients, while the percentages of converters and non converters refer to screened-in
and screened-out. Cells with thick margins denote the threshold associated with the
highest percentage of converters among screened-in (enrichment strategy A), while
grey cells denote those associated with the lowest percentage of converters among
screened-out (enrichment strategy B).
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Appendix D

Modelling power for change in

hippocampal atrophy with

di�erential rates of subject

removal

We have seen in the previous chapter the critical importance of the enrollment
strategy for the outcome of a clinical trial. This chapter resumes the report on
the statistical analysis performed within the PHARMA-COG clinical project, for
the study of the optimal enrollment strategy for a longitudinal trial on MCI, based
on the distribution of the Aβ42 marker among the subjects at the baseline. The
statistical analysis was supervised by Dr. David R. Willé (GlaxoSmithKline).

D.A The PHARMA-COG european project

The PHARMA-COG consortium1 consists of 30 public (Univeristies, Research Cen-
tres, Hospitals) and private partners (SMEs and EFPIA members), as well as a
patients' Association Alzheimer Europe, coming from 10 di�erent EU Members
states.

Workpackage 5 of PharmaCog (Identi�cation of biomarkers sensitive to disease
progression: Clinical Studies - European ADNI) is about the development of markers
to track the progression of the disease in humans that are homologous to those used
in animal models. WP5 uses as core markers those harmonized in the context of
the North American ADNI and expands them with speci�c structural, functional,
microstructural, molecular, central, and peripheral markers.

The study plans to enroll 150 MCI patients and to compare the evolution of a set
of AD markers between those MCI with low levels (<192 pg/ml) of CSF Amyloid
β42 (Aβ42+) and those with high levels of CSF Amyloid β42 (Aβ42-) for a 3-year
follow-up. Conversion to AD determines the exclusion of the subject from the trial,
and thus contributes to the loss of sample size. The rationale of this design is based
on the amyloid cascade hypothesis, suggesting that brain amyloidosis is the initiating
event in AD, and increase of brain amyloid deposits is re�ected by a reduction of
Aβ42 levels in the CSF. Most current clinical trials are on anti-amyloid drugs and
some of these target MCI patients who are selected based on brain amyloidosis, i.e.

1http://www.alzheimer-europe.org/Research/PharmaCog
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on CSF Aβ42 levels. In a clinical trial-like population (ADNI1-like), the proportion
of those with brain amyloidosis based on CSF analysis is about 2/3.

D.B Calibrating the Enrollment Ratio Between Aβ42+

and Aβ42-

The study is powered on the power to detect a di�erence in the rate of hippocampal
atrophy between CSF Aβ42+ and CSF Aβ42- subjects over the study period. Since
changes in hyppocampal volume are calculated at the end of the study at year three,
and the expected rates of conversion between the two Aβ42 groups di�er, we ask,
for this primary endpoint:

• What is the power of the study at the three years, for given total sample and
looked for e�ect size?

• What is the optimal ratio of Aβ42+ and Aβ42- at the start of the trial to
maximise this power? Moreover, what is the cost in terms of loss of power if
another starting ratio is selected?

The answers to these questions depended on the e�ect of the Aβ42 ratio on the
total population attrition. Since Aβ42+ cases are more likely to convert to AD, this
increases as the ratio of Aβ42+ to Aβ42- at recruitment also increases.

Our analysis is based upon a collection of MCI data from the ADNI dataset.
The population analyzed was composed by 195 MCI subjects followed during a three
years follow-up study with longitudinal clinical and MR assessment. The mean age
of the group was of 67.6 years with a standard deviation of 15.4. In the group, 146
subjects (74.8% of the population) were Aβ42+.

At subject-by-subject level, a strong linear trend was observed for the hippocam-
pal atrophy over time which formed the basis of our model (Figure D.1).

The corresponding rates were compared between the two Aβ42 loading groups,
and used as the basis of a t-test. This, mathematically equivalent to a full random
coe�cient mixed model for suitable choices of error covariance structure, provided
a simpler and more tractable framework for power calculation. Instantaneous rates
of MCI to AD conversion (0.066 and 0.187 years for respectively Aβ42- and +)
where then estimated from the observed three year conversion probabilities (0.43
and 0.18), and used to model the decline in each study population combined with
an additional 10% attrition loss (rate of 0.105) due to other causes.

The optimal starting population was shown to be enriched for Aβ42+ by a ratio
of 1.19:1. Every moderate deviation from this only had a minor e�ect on overall
power. Starting from initial starting ratio of 2:1 only resulted in a loss of power
equivalent to running a study with 141 instead of 150 subjects.

Figure D.2 summarizes the predicted overall power to be expected at year three
taking into account not only the change in the relative sizes of the Aβ42 population
over the study period, but also their fall in absolute value.
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Figure D.1: Hippocampal volume progression for a sample of MCI subjects of the
ADNI dataset.

Figure D.2: Power analysis based on the initial ratio of Aβ42+ over Aβ42- for one
and two sided hypothesis (left and right pictures respectively).

This shows that the study is able to pick up reference change of 2.64 (that
observed in the ADNI study) with an 80% power with a one-sided tests but falls
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short of this objective if the more conventional two-sided approach is used. This is
interesting because whereas it is not statistically indicated (the always decreasing
volumes making the one-sided framework here a valid statistical construct) this will
not be the case for most other biomarkers or combinations of biomarkers.

D.C Conclusions

Power analysis shows that the change of power is minimal between ratios 1:1 and
2:1 (CSF Aβ42+ to CSF Aβ42-). The ADNI data indicate that patients who are
CSF Aβ42+ are 2/3 of the total (ratio 2:1). Although there is no indication in the
literature what the proportion of Aβ42+ might be, it is reasonable to assume that it
lies between 1/2 and 2/3, corresponding to ratios between 1:1 and 2:1. Interestingly,
when removals in addition to MCI to AD conversion are taken into account, the
study is powered only when using a one-sided test, which exploits the fact that the
brain atrophy always increases.



Bibliography

[Alexander et al., 2001] Alexander, D., Pierpaoli, C., Basser, P., and Gee, J. (2001).
Spatial transformations of di�usion tensor magnetic resonance images. IEEE

Transactions on Medical Imaging, 20(11). (Cited on page 43.)

[Aljabar et al., 2008] Aljabar, P., Bhatia, K., Murgasova, M., Hajnal, J., Board-
man, J., Srinivasan, L., Rutherford, M., Dyet, L., Edwards, A., and Rueckert, D.
(2008). Assessment of brain growth in early childhood using deformation-based
morphometry. NeuroImage, 39(1):348�358. (Cited on page 7.)

[Arsigny et al., 2006] Arsigny, V., Commowick, O., Pennec, X., and Ayache, N.
(2006). A Log-Euclidean framework for statistics on di�eomorphisms. In Medi-

cal Image Computing and Computer-Assisted Intervention - MICCAI, volume 9,
pages 924�931. (Cited on pages 8, 20, 22, 62, 70 and 94.)

[Ashburner, 2007a] Ashburner, J. (2007a). A fast di�eomorphic image registration
algorithm. NeuroImage, 38(1):95�113. (Cited on page 20.)

[Ashburner, 2007b] Ashburner, J. (2007b). A fast di�eomorphic image registration
algorithm. NeuroImage, 38(1):95 � 113. (Cited on page 70.)

[Ashburner and Friston, 2000] Ashburner, J. and Friston, K. (2000). Voxel-based
morphometry � the methods. NeuroImage, 11:805�821. (Cited on pages 5 and 20.)

[Ashburner and Friston, 2005] Ashburner, J. and Friston, K. (2005). Uni�ed seg-
mentation. NeuroImage, 26:839�851. (Cited on page 5.)

[Ashburner et al., 1998] Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I.,
Price, C., and Friston, K. (1998). Identifying global anatomical di�erences:
Deformation-based morphometry. Human Brain Mapping, 6(5):348�357. (Cited
on page 4.)

[Atlaswerks, 2007] Atlaswerks (2007). AtlasWerks: A set of high-performance tools
for di�eomorphic 3D image registration and atlas building. Scienti�c Computing
and Imaging Institute (SCI). (Cited on page 72.)

[Avants et al., 2007] Avants, B., Anderson, C., Grossman, M., and Gee, J. (2007).
Spatiotemporal normalization for longitudinal analysis of gray matter atrophy
in frontotemporal dementia. In Proceedings of Medical Image Computing and

Computer Assisted Intervention (MICCAI), volume 10, pages 303�310. (Cited on
pages 20, 92 and 139.)

[Avants et al., 2008] Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C.
(2008). Symmetric di�eomorphic image registration with cross-correlation: eval-
uating automated labeling of elderly and neurodegenerative brain. Medical Image

Analysis, 12(1):26�41. (Cited on pages 19 and 20.)



158 Bibliography

[Bajcsy et al., 1993] Bajcsy, R., Gee, J. C., and Reivich, M. (1993). Elastically
deforming 3d atlas to match anatomical brain images. Journal of Computer

Assisted Tomography, 17(2):225�36. (Cited on page 19.)

[Barnes, 2011] Barnes, C. (2011). Secrets of aging: What does a normally aging
brain look like? Biol Rep., 3(22). (Cited on page 122.)

[Barnes et al., 2007] Barnes, J., Boyes, R. G., Lewis, E. B., Schott, J. M., Frost,
C., Scahill, R. I., and Fox, N. C. (2007). Automatic calculation of hippocampal
atrophy rates using a hippocampal template and the boundary shift integral.
Neurobiol Aging, 28(11):1657�63. (Cited on page 7.)

[Benjamini and Hochberg, 1995] Benjamini, Y. and Hochberg, Y. (1995). Control-
ling the False Discovery Rate: A Practical and Powerful Approach to Multi-
ple Testing. Journal of the Royal Statistical Society. Series B (Methodological),
57(1):289�300. (Cited on page 6.)

[Bossa et al., 2007] Bossa, M., Hernandez, M., and Olmos, S. (2007). Contributions
to 3D di�eomorphic atlas estimation: Application to brain images. In Medical

Image Computing and Computer-Assisted Intervention - MICCAI, volume 10,
pages 667�674. (Cited on pages 20, 23, 50 and 70.)

[Bossa et al., 2010] Bossa, M., Zacur, E., and Olmos, S. (2010). On changing co-
ordinate systems for longitudinal tensor-based morphometry. Spatio Temporal

Image Analysis Workshop (STIA), 2010. (Cited on pages 44 and 61.)

[Boyes et al., 2006] Boyes, Rueckert, Aljabar, et al. (2006). Cerebral atrophy mea-
surements using Jacobian integration: Comparison with the boundary shift inte-
gral. NeuroImage, 32. (Cited on pages 7 and 21.)

[Brookmeyer et al., 2007] Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and
Arrighi, H. (2007). Forecasting the global burden of Alzheimer's disease.
Alzheimers Dement, 3(3):186�191. (Cited on page 1.)

[Cachier, 2002] Cachier, P. (2002). Recalage non rigide d'images madicales volu-
miques, contributions aux approches imconiques et geometriques. PhD thesis.
(Cited on page 91.)

[Cachier and Ayache, 2004] Cachier, P. and Ayache, N. (2004). Isotropic energies,
�lters and splines for vectorial regularization. J. of Math. Imaging and Vision,
20:251�265. (Cited on pages 72 and 144.)

[Cachier et al., 2003] Cachier, P., Bardinet, E., Dormont, D., Pennec, X., and Ay-
ache, N. (2003). Iconic feature based nonrigid registration: The pasha algorithm.
Computer Vision and Image Understanding, 89(2-3):272�298. Special Issue on
Nonrigid Registration. (Cited on pages 19, 24 and 94.)



Bibliography 159

[Cachier and Pennec, 2000] Cachier, P. and Pennec, X. (2000). Non-rigid registra-
tion by gradient descent on a gaussian-windowed similarity measure using con-
volutions. In Proceedings of the IEEE Workshop on Mathematical Methods in

Biomedical Image Analysis, MMBIA '00, pages 182�, Washington, DC, USA.
IEEE Computer Society. (Cited on page 19.)

[Camara et al., 2008] Camara, O., Schnabel, J., Ridgway, G., et al. (2008). Accu-
racy assessment of global and local atrophy measurement techniques with realistic
simulated longitudinal Alzheimer's disease images. NeuroImage, 42. (Cited on
pages 7 and 21.)

[Carmichael et al., 2005] Carmichael, O. T., Aizenstein, H. A., Davis, S. W., Becker,
J. T., Thompson, P. M., Meltzer, C. C., and Liu, Y. (2005). Atlas-based hip-
pocampus segmentation in Alzheimer's disease and mild cognitive impairment.
Neuroimage, 27(4):979�990. (Cited on page 6.)

[Cartan and Schouten, 1926] Cartan, E. and Schouten, J. (1926). On the geometry
of the group-manifold of simple and semi-simple groups. Proc. Akad. Wekensch,

Amsterdam, 29:803�815. (Cited on page 65.)

[Chetelat et al., 2005] Chetelat, G., Landeau, B., Eustache, F., Mezenge, F., Vi-
ader, F., de la Sayette, V., Desgranges, B., and Baron, J.-C. (2005). Using
voxel-based morphometry to map the structural changes associated with rapid
conversion in MCI: a longitudinal MRI study. Neuroimage, 27(4):934�46. (Cited
on page 6.)

[Chincarini et al., 2011] Chincarini, A., Bosco, P., Calvini, P., et al. (2011). Lo-
cal MRI analysis approach in the diagnosis of early and prodromal Alzheimer's
disease. NeuroImage, 58(2):469�480. (Cited on page 128.)

[Chung et al., 2001] Chung, M., Worsley, K., Paus, T., et al. (2001). A uni�ed
statistical approach to deformation-based morphometry. NeuroImage. (Cited on
pages 5, 7, 21, 44 and 103.)

[Chupin et al., 2009a] Chupin, M., Gérardin, E., Cuingnet, R., Boutet, C.,
Lemieux, L., Lehéricy, S., Benali, H., Garnero, L., Colliot, O., and Alzheimer's
Disease Neuroimaging Initiative (2009a). Fully automatic hippocampus segmen-
tation and classi�cation in Alzheimer's disease and mild cognitive impairment
applied on data from ADNI. Hippocampus, 19(6):579�587. (Cited on page 128.)

[Chupin et al., 2009b] Chupin, M., Hammers, A., Liu, R. S. N., Colliot, O., Burdett,
J., Bardinet, E., Duncan, J. S., Garnero, L., and Lemieux, L. (2009b). Automatic
segmentation of the hippocampus and the amygdala driven by hybrid constraints:
Method and validation. NeuroImage, 46(3):749�761. (Cited on page 6.)

[Collins et al., 1995] Collins, L. D., Holmes, C. J., Peters, T. M., and Evans, A. C.
(1995). Automatic 3-D model-based neuroanatomical segmentation. Human

Brain Mapping, 3(3):190�208. (Cited on page 19.)



160 Bibliography

[Crum et al., 2001] Crum, W. R., Scahill, R. I., and Fox, N. C. (2001). Automated
hippocampal segmentation by regional �uid registration of serial MRI: validation
and application in Alzheimer's disease. Neuroimage, 13(5):847�855. (Cited on
page 6.)

[Cuingnet et al., 2011] Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G.,
Lehèricy, S., Habert, M., Chupin, M., Benali, H., and Colliot, O. (2011). Au-
tomatic classi�cation of patients with Alzheimer's disease from structural MRI:
a comparison of ten methods using the ADNI database. NeuroImage, 56(2):766�
781. (Cited on page 128.)

[Davatzikos et al., 2009] Davatzikos, C., Xu, F., An, Y., Fan, Y., and Resnik, S.
(2009). Longitudinal progression of Alzheimer's-like patterns of atrophy in normal
older adults: the SPARE-AD index. Brain, 132(8):2026�2035. (Cited on pages 123
and 129.)

[Daviglus et al., 2010] Daviglus, M., Bell, C., Berrettini, W., et al. (2010). Na-
tional institutes of health state-of-the-science conference statement: Preventing
Alzheimer disease and cognitive decline. Ann Intern Med, 153(3):176�181. (Cited
on page 1.)

[Davis et al., 2007] Davis, B., Fletcher, P., Bullit, E., and Joshi, S. (2007). Popu-
lation shape regression from random design data. ICCV, 4:375�405. (Cited on
pages 20 and 139.)

[DeCarli et al., 2007] DeCarli, C., Frisoni, G., Clark, C., et al. (2007). Qualitative
estimates of medial temporal atrophy as a predictor of progression from mild
cognitive impairment to dementia. Arch Neurol, 64(1):108�115. (Cited on page 3.)

[Demokis, 2007] Demokis, G. (2007). Disability in Alzheimer's disease: causes, con-
sequences, and economic considerations. J Health Hum Serv Adm, 30(3):292�305.
(Cited on page 1.)

[do Carmo, 1992] do Carmo, M. (1992). Riemannian Geometry. Mathematics.
Birkhäuser, Boston, Basel, Berlin. (Cited on page 62.)

[Dong and Boyer, 1995] Dong, L. and Boyer, A. L. (1995). An image correlation
procedure for digitally reconstructed radiographs and electronic portal images.
International Journal of Radiation Oncology*Biology*Physics, 33(5):1053 � 1060.
(Cited on page 19.)

[Dubois et al., 2007] Dubois, B., Feldman, H., Jacova, C., et al. (2007). Research
criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA
criteria. Lancet Neurol, 6:734�746. (Cited on pages 3, 112 and 147.)

[Durrleman et al., 2011] Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., and
Ayache, N. (2011). Registration, atlas estimation and variability analysis of white



Bibliography 161

matter �ber bundles modeled as currents. NeuroImage, 55(3):1073�1090. (Cited
on page 61.)

[Durrleman et al., 2012] Durrleman, S., Pennec, X., Trouvé, A., Ayache, N., and
Braga, J. (2012). Comparison of the endocranial ontogenies between chimpanzees
and bonobos via temporal regression and spatiotemporal registration. Journal of
Human Evolution, 62(1):74 � 88. (Cited on page 20.)

[Durrleman et al., 2009] Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., and Ay-
ache, N. (2009). Spatiotemporal atlas estimation for developmental delay detec-
tion in longitudinal datasets. InMedical Image Computing and Computer-Assisted

Intervention - MICCAI, volume 12, pages 297�304. (Cited on pages 61 and 139.)

[Fischl et al., 2002] Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M.,
Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S.,
Montillo, A., Makris, N., Rosen, B., and Dale, A. M. (2002). Whole brain seg-
mentation: automated labeling of neuroanatomical structures in the human brain.
Neuron, 33(3):341�355. (Cited on page 6.)

[Fjell and Walhovd, 2012] Fjell, A. and Walhovd, K. (2012). Neuroimaging results
impose new views on Alzheimer's disease-the role of amyloid revised. Mol Neu-

robiol, 45(1):153�172. (Cited on page 2.)

[Fjell et al., 2010] Fjell, A., Walhovd, K., Notestine, C., and et al. (2010). Brain
atrophy in healthy aging is related to csf levels of Ab1-42. Cereb. Cortex, 20-9.
(Cited on pages 98 and 126.)

[Fox et al., 2000] Fox, N., Cousens, S., Scahill, R., Harvey, R., and Rossor, M.
(2000). Using serial registered brain magnetic resonance imaging to measure
disease progression in Alzheimer disease: power calculations and estimates of
sample size to detect treatment e�ects. Arch Neurol, 57(3):339�344. (Cited on
pages 3 and 33.)

[Fox et al., 2001] Fox, N., Crum, W., Schaill, R., Stevens, J., Janssen, J., and Ross-
nor, M. (2001). Imaging of onset and progression of alzheimer's disease with voxel
compression mapping of serial magnetic resonance images. Lancet, 358:201�205.
(Cited on pages 5, 20, 102 and 112.)

[Fox et al., 2012] Fox, N., Ridgway, G., and Schott, J. (2012). Algorithms, atro-
phy and Alzheimer's disease: Cautionary tales for clinical trials. NeuroImage,
57(1):15�18. (Cited on pages 7 and 112.)

[Franke et al., 2010] Franke, K., Ziegler, G., Klöppel, S., and Gaser, C. (2010).
Estimating the age of healthy subjects from T1-weighted MRI scans using kernel
methods: Exploring the in�uence of various parameters. NeuroImage, 50(3):883�
892. (Cited on pages 123 and 129.)



162 Bibliography

[FreeBorough and Fox, 1997] FreeBorough, P. and Fox, N. (1997). The boundary
shift integral: An accurate and robust measure of cerebral volume changes from
registered repeat mri. IEEE Transaction on Medical Imaging, 16(5). (Cited on
pages 6, 7, 21, 22, 25, 102 and 112.)

[Frisoni et al., 2010] Frisoni, G., Fox, N., Jr, C. J., Scheltens, P., and Thompson, P.
(2010). The clinical use of structural MRI in alzheimer disease. Nat Rev Neurol,
6:67�77. (Cited on pages 3, 92, 116 and 122.)

[Frisoni et al., 2009] Frisoni, G. B., Lorenzi, M., Caroli, A., Kemppainen, N., Na-
gren, K., and Rinne, J. O. (2009). In vivo mapping of amyloid toxicity in alzheimer
disease. Neurology, 72(17):1504�11. (Cited on page 5.)

[Gallot et al., 1993] Gallot, S., Hulin, D., and Lafontaine, J. (1993). Riemannian

Geometry. Springer Verlag, 2nd edition edition. (Cited on page 62.)

[Galluzzi et al., 2009] Galluzzi, S., Testa, C., Boccardi, M., Bresciani, L., Benussi,
L., Ghidoni, R., Beltramello, A., Bonetti, M., Bono, G., amd G. Magnani amd
G. Minonzio, A. F., Piovan, E., Binetti, G., and Frisoni., G. (2009). The Italian
Brain Normative Archive of structural MR scans: norms for medial temporal
atrophy and white matter lesions. Aging Clin Exp Res., 21(4-5):264�5. (Cited on
page 74.)

[Gaser et al., 2001] Gaser, C., Nenadic, I., Buchsbaum, B. R., Hazlett, E. A., and
Buchsbaum, M. S. (2001). Deformation-based morphometry and its relation to
conventional volumetry of brain lateral ventricles in mri. NeuroImage, pages
1140�1145. (Cited on pages 5 and 7.)

[Guimond et al., 2000] Guimond, A., Meunier, J., and Thirion., J. (2000). Average
brain models: A convergence study. Computer Vision and Image Understanding,
77-2. (Cited on page 96.)

[Hansen et al., 2009] Hansen, M. S., Larsen, R., and Christensen, N. V. (2009).
Curl-gradient image warping - introducing deformation potentials for medical
image registration using Helmholtz decomposition. In VISAPP 2009, volume 1,
pages 179�185. (Cited on page 102.)

[Helgason, 1978] Helgason, S. (1978). Di�erential Geometry, Lie groups, and Sym-

metric Spaces. Academic Press. (Cited on pages 62 and 67.)

[Hermosillo and Faugeras, 2004] Hermosillo, G. and Faugeras, O. D. (2004). Well-
posedness of two nonrigid multimodal image registration methods. SIAM Journal

of Applied Mathematics, 64(5):1550�1587. (Cited on page 19.)

[Hernandez et al., 2009] Hernandez, M., Bossa, M., and Olmos, S. (2009). Regis-
tration of anatomical images using paths of di�eomorphisms parameterized with
stationary vector �eld �ows. International Journal of Computer Vision, 85:291�
306. (Cited on page 70.)



Bibliography 163

[Holden, 2008] Holden, M. (2008). A review of geometric transformations for non-
rigid body registration. IEEE Trans Med Imaging, 27(1):111�128. (Cited on
page 4.)

[Iglesias et al., 2011] Iglesias, J., C.Liu, Thompson, P., and Tu, Z. (2011). Robust
brain extraction across datasets and comparison with publicly available methods.
IEEE Trans. Med. Imaging, 30(9):1617�1634. (Cited on pages 6 and 115.)

[Jack et al., 2010a] Jack, C., Knopman, D., Jagust, W., et al. (2010a). Hypothetical
model of dynamic biomarkers of the Alzheimer's pathological cascade . Lancet

Neurol, 9(1):119�128. (Cited on pages 2, 3 and 134.)

[Jack et al., 2010b] Jack, C., Knopman, D., Jagust, W., Shaw, L., Aisen, P., Weiner,
M., Petersen, R., and Trojanowski, J. (2010b). Hypothetical model of dynamic
biomarkers of the Alzheimer's pathological cascade. Lancet Neurol, 9(1):119�128.
(Cited on pages 111 and 123.)

[Jack et al., 2004] Jack, C., Shiung, M., Gunter, J., et al. (2004). Comparison of
di�erent MRI brain atrophy rate measures with clinical disease progression in
AD. Neurology, 62(4):591�600. (Cited on page 3.)

[Jack et al., 2003] Jack, C., Slomkowski, M., Gracon, S., et al. (2003). MRI as
a biomarker of disease progression in a therapeutic trial of milameline for AD.
Neurology, 60(2):253�260. (Cited on page 2.)

[Jenkinson and Smith, 2001] Jenkinson, M. and Smith, S. (2001). A global opti-
misation method for robust a�ne registration of brain images. Medical Image

Analysis, 5(2):143�156. (Cited on page 114.)

[Jolly et al., 2010] Jolly, M.-P., Guetter, C., and Guehring, J. (2010). Cardiac seg-
mentation in MR cine data using inverse consistent deformable registration. In
ISBI, pages 484�487. (Cited on page 19.)

[Joshi et al., 2004a] Joshi, S., Davis, B., Jomier, B. M., and B, G. G. (2004a). Un-
biased di�eomorphic atlas construction for computational anatomy. Neuroimage,
23:151�160. (Cited on page 20.)

[Joshi et al., 2004b] Joshi, S., Davis, B., Jomier, M., and Gerig, G. (2004b). Unbi-
ased di�eomorphic atlas construction for computational anatomy. NeuroImage,
pages S151�S160. (Cited on page 72.)

[Joshi and Miller, 2000] Joshi, S. and Miller, M. (2000). Landmark matching via
large deformation di�eomorphisms. IEEE Transactions on Image Processing,
9(8):1357�1370. (Cited on page 72.)

[Khesin and Wendt, 2009] Khesin, B. A. and Wendt, R. (2009). The Geometry

of In�nite Dimensional Lie groups, volume 51 of Ergebnisse der Mathematik

und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.
Springer Verlag. (Cited on page 68.)



164 Bibliography

[Kheyfets et al., 2000] Kheyfets, A., Miller, W., and Newton, G. (2000). Schild's
Ladder parallel transport for an arbitrary connection. International Journal of

Theoretical Physics, 39(12):41�56. (Cited on pages 45 and 67.)

[Klein et al., 2009] Klein, A., Andersson, J., Ardekani, B., and et al. (2009). Eval-
uation of 14 nonlinear deformation algorithms applied to human brain mri regis-
tration. NeuroImage, 46(3):786�802. (Cited on pages 29 and 30.)

[Kolev, 2007] Kolev, B. (2007). Groupes de lie et mécanique. http://www.cmi.univ-
mrs.fr/ kolev/. Notes of a Master course in 2006-2007 at Université de Provence.
(Cited on page 66.)

[KSchild, 1970] KSchild, A. (1970). Tearing geometry to pieces: More on conformal
geometry. unpublished lecture at Jan. 19 1970 Princeton Univesity relativity
seminar. (Cited on pages 45 and 67.)

[Lamecker and Pennec, 2010] Lamecker, H. and Pennec, X. (2010). Atlas to image-
with-tumor registration based on demons and deformation inpainting. In Proc.

MICCAI Workshop on Computational Imaging Biomarkers for Tumors - From

Qualitative to Quantitative (CIBT'2010), Beijing. (Cited on page 143.)

[Leow et al., 2007] Leow, A., Yanovsky, I., Chiang, M., Lee, A., et al. (2007). Statis-
tical properties of jacobian maps and the realization of unbiased large-deformation
nonlinear image registration. TMI, 26(6):822�832. (Cited on page 21.)

[Leung et al., 2010] Leung, K., Barnes, J., Ridgway, G., et al. (2010). Automated
cross-sectional and longitudinal hippocampal volume measurement in mild cogni-
tive impairment and alzheimer's disease. NeuroImage, 51(4):1345 � 1359. (Cited
on pages 102, 107, 116 and 117.)

[Leung et al., 2009] Leung, K. K., Clarkson, M. J., Bartlett, J. W., Clegg, S., Jack,
C. R., Weiner, M. W., Fox, N. C., and Ourselin, S. (2009). Robust atrophy rate
measurement in Alzheimer's disease using multi-site serial MRI: 2 tissue-speci�c
intensity normalization and parameter selection. NeuroImage, 59. (Cited on
pages 21 and 32.)

[Long et al., 2012] Long, X., Liao, W., Liang, D., Qiu, B., and Zhang, L. (2012).
Healthy aging: An automatic analysis of global and regional morphological alter-
ations of human brain. Acad Radiol., 14. (Cited on page 122.)

[Lorenzi et al., 2010a] Lorenzi, M., Ayache, N., Frisoni, G., and Pennec, X. (2010a).
4D registration of serials brain's MR images: A robust measure of changes ap-
plyed to Alzheimer's disease. Spatio Temporal Image Analysis Workshop (STIA),

MICCAI. (Cited on pages 44, 93 and 95.)

[Lorenzi et al., 2012a] Lorenzi, M., Ayache, N., Frisoni, G., and Pennec, X. (2012a).
Disentangling the normal aging from the pathological alzheimer's disease pro-
gression on cross-sectional structural mr images. In Virtual Physiological Human

European Conference. London. (Cited on pages 10, 12, 33 and 111.)



Bibliography 165

[Lorenzi et al., 2010b] Lorenzi, M., Ayache, N., Frisoni, G. B., and Pennec, X.
(2010b). 4D registration of serial brain's MR images: a robust measure of changes
applied to Alzheimer's disease . In Spatio-Temporal Image Analysis workshop,

MICCAI. (Cited on pages 12 and 139.)

[Lorenzi et al., 2011a] Lorenzi, M., Ayache, N., Frisoni, G. B., and Pennec, X.
(2011a). Mapping the e�ects of Aβ1−42 levels on the longitudinal changes in
healthy aging: hierarchical modeling based on stationary velocity �elds. In MIC-

CAI, LNCS, pages 663�670. Springer. (Cited on pages 10, 11, 20, 62, 91, 103,
115, 116, 124, 126 and 139.)

[Lorenzi et al., 2011b] Lorenzi, M., Ayache, N., and Pennec, X. (2011b). Schild's
Ladder for the parallel transport of deformations in time series of images. In
Information Processing in Medical Imaging - IPMI, volume 22, pages 463�474.
(Cited on pages 9, 11, 41, 42, 48, 62, 67, 79, 84, 93 and 95.)

[Lorenzi et al., 2012b] Lorenzi, M., Ayache, N., and Pennec, X. (2012b). LCC-
Demons: a robust and accurate di�eomorphic registration algorithm. Submitted
to Medical Image Analysis. (Cited on pages 9 and 11.)

[Lorenzi et al., 2012c] Lorenzi, M., Ayache, N., and Pennec, X. (2012c). Parallel
transport of deformations in time series of images: Schild's and Pole ladders. In
preparation. (Cited on page 42.)

[Lorenzi et al., 2012d] Lorenzi, M., Ayache, N., and Pennec, X. (2012d). Regional
�ux analysis of longitudinal atrophy in alzheimer's disease. In MICCAI, LNCS.
Springer. (Cited on pages 10, 12, 33, 101, 114 and 125.)

[Lorenzi et al., 2012e] Lorenzi, M., Ayache, N., Pennec, X., and Frisoni, G. (2012e).
Disentangling the normal aging from the pathological alzheimer's disease pro-
gression on cross-sectional structural mr images. In NIBAD Workshop, MICCAI.
(Cited on pages 11, 12, 33 and 121.)

[Lorenzi et al., 2010c] Lorenzi, M., Donohue, N., Paternicò, D., Scarpazza, C., Os-
trowitzki, S., Blin, O., Irving, E., and Frisoni, G. (2010c). Enrichment through
biomarkers in clinical trials of alzheimerâ��s drugs in patients with mild cogni-
tive impairment. Neurobiology of Aging, 31(8):1443 � 1451. (Cited on pages 11,
12 and 147.)

[Lorenzi and Pennec, 2011] Lorenzi, M. and Pennec, X. (2011). Geodesics, parallel
transport & one-parameter subgroups for di�eomorphic image registration. In
Mathematical foundations of computational anatomy - MICCAI workshop. (Cited
on pages 9 and 12.)

[Lorenzi and Pennec, 2012] Lorenzi, M. and Pennec, X. (2012). Geodesics, parallel
transport & one-parameter subgroups for di�eomorphic image registration. Sub-
mitted to International Journal of Computer Vision - IJCV. (Cited on pages 9,
11 and 60.)



166 Bibliography

[Lötjönen et al., 2011] Lötjönen, J., Wolz, R., Koikkalainen, J., Julkunen, V., Thur-
fjell, L., Lundqvist, R., Waldemar, G., Soininen, H., and Rueckert, D. (2011).
Fast and robust extraction of hippocampus from mr images for diagnostics of
alzheimer's disease. NeuroImage, 56(1):185�196. (Cited on page 6.)

[Lowe et al., 2009] Lowe, V. J., Kemp, B. J., Jack, C. R., Senjem, M., Weigand, S.,
Shiung, M., Smith, G., Knopman, D., Boeve, B., Mullan, B., and Petersen, R. C.
(2009). Comparison of 18F-FDG and PiB PET in cognitive impairment. J Nucl

Med, 50(6):878�86. (Cited on page 134.)

[Maes et al., 1997] Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and
Suetens, P. (1997). Multimodality image registration by maximization of mutual
information. IEEE Trans. Med. Imaging, pages 187�198. (Cited on page 19.)

[Mansi et al., 2010] Mansi, T., Pennec, X., Sermesant, M., Delingette, H., and Ay-
ache, N. (2010). Logdemons revisited: Consistent regularisation and incompress-
ibility constraint for soft tissue tracking in medical images. In Proceedings of

Medical Image Computing and Computer Assisted Intervention (MICCAI), vol-
ume 13, pages 652�659. (Cited on pages 23, 25 and 103.)

[Mansi et al., 2011a] Mansi, T., Pennec, X., Sermesant, M., Delingette, H., and
Ayache, N. (2011a). iLogDemons: A Demons-based registration algorithm for
tracking incompressible elastic biological tissues. International Journal of Com-
puter Vision, 92(1):92�111. (Cited on pages 20, 62, 72, 135 and 144.)

[Mansi et al., 2011b] Mansi, T., Voigt, I., Leonardi, B., Pennec, X., Durrleman,
S., Sermesant, M., Delingette, H., Taylor, A., Boudjemline, Y., Pongiglione, G.,
and Ayache, N. (2011b). A statistical model for quanti�cation and prediction of
cardiac remodelling: Application to tetralogy of fallot. IEEE Transactions on

Medical Images, 30(9):1605�1616. (Cited on page 61.)

[McLeod et al., 2012] McLeod, K., Seiler, C., Sermesant, M., and Pennec, X. (2012).
A near-incompressible poly-a�ne motion model for cardiac function analysis.
Proc. of MICCAI Workshop on Statistical Atlases and Computational Models of

the Heart: Mapping Structure and Function (STACOM2012). (Cited on pages 20
and 135.)

[Miller et al., 2002] Miller, M., Trouvé, A., and Younes, L. (2002). On the metrics
and euler-lagrange equations of computational anatomy. Annu. Rev. Biomed.

Rev., 4:375�405. (Cited on pages 44, 61 and 92.)

[Milnor, 1984] Milnor, J. (1984). Remarks on in�nite-dimensional Lie groups. In
Relativity, Groups and Topology, pages 1009�1057. Les Houches. (Cited on
page 69.)

[Misner et al., 1973] Misner, C. W., Thorne, K. S., and Wheeler, J. (1973). Gravi-
tation. W.H. Freeman and Compagny. (Cited on pages 45 and 67.)



Bibliography 167

[Modat et al., 2011] Modat, M., Ridgway, G., Daga, P., Cardoso, M., Hawkes, D.,
Ashburner, J., and Ourselin, S. (2011). Log-euclidean free-form deformation. In
Proc. of SPIE Medical Imaging 2011. SPIE. (Cited on pages 20 and 70.)

[Modersitzki, 2004] Modersitzki, J. (2004). Numerical Methods for Image Registra-

tion. Oxford University Press. (Cited on page 4.)

[Mueller et al., 2005] Mueller, S., Weiner, M., Thal, L., and et al. (2005). The
Alzheimer's disease neuroimaging initiative. Neuroimaging Clin., 15:869�877.
(Cited on pages 96 and 103.)

[Nelson et al., 2011] Nelson, P. T., Head, E., Schmitt, F., Davis, P., et al. (2011).
Alzheimerâ��s disease is not �brain aging�: neuropathological, genetic, and
epidemiological human studies. Acta Neuropathol., 121(5):571�587. (Cited on
page 122.)

[Palmer, 2011] Palmer, A. (2011). Neuroprotective therapeutics for Alzheimer's
disease: progress and prospects. Trends Pharmacol Sci, 32(3):141�147. (Cited on
page 2.)

[Patenaude et al., 2011] Patenaude, B., Smith, S., Kennedy, D., and Jenkinson,
M. (2011). A bayesian model of shape and appearance for subcortical brain.
NeuroImage, 56(3):907�922. (Cited on pages 31, 96 and 115.)

[Pennec and Arsigny, 2012] Pennec, X. and Arsigny, V. (2012). Exponential
Barycenters of the Canonical Cartan Connection and Invariant Means on Lie
Groups. In Barbaresco, F., Mishra, A., and Nielsen, F., editors, Matrix Informa-

tion Geometry. Springer. (Cited on pages 65 and 66.)

[Peyrat et al., 2008] Peyrat, J., Delingette, H., Sermesant, M., and Pennec, X.
(2008). Registration of 4D time-series of cardiac images with multichannel dif-
feomorphic demons. In Proceedings of Medical Image Computing and Computer

Assisted Intervention (MICCAI), volume 11, pages 972�979. (Cited on page 139.)

[Postnikov, 2001] Postnikov, M. M. (2001). Geometry VI: Riemannian Geometry.
Encyclopedia of mathematical science. Springer. (Cited on pages 62, 64, 65, 66
and 95.)

[Qiu et al., 2009] Qiu, A., Albert, M., Younes, L., and Miller, M. (2009). Time se-
quence di�eomorphic metric mapping and parallel transport track time-dependent
shape changes. Neuroimage, 45(1). (Cited on page 44.)

[Qiu et al., 2008a] Qiu, A., Younes, L., Miller, M., and Csernansky, J. (2008a).
Parallel transport in di�eomorphisms distinguish the time-dependent pattern
of hippocampal surface deformation due to healthy aging and dementia of the
Alzheimer's type. Neuroimage, 40(1). (Cited on page 44.)



168 Bibliography

[Qiu et al., 2008b] Qiu, A., Younes, L., Miller, M. I., and Csernansky, J. G. (2008b).
Parallel transport in di�eomorphisms distinguishes the time-dependent pattern of
hippocampal surface deformation due to healthy aging and the dementia of the
Alzheimer's type. Neuroimage, 40(1):68�76. (Cited on page 6.)

[Rao et al., 2004] Rao, A., Chandrashekara, R., Sanchez-Hortiz, G., Mohiaddin, R.,
aljabar, P., Hajnal, J., Puri, B., and Rueckert, D. (2004). Spatial trasformation
of motion and deformation �elds using nonrigid registration. IEEE Transactions

on Medical Imaging, 23(9). (Cited on pages 44 and 61.)

[Raschetti et al., 2007] Raschetti, R., Albanese, E., Vanacore, N., and Maggini, M.
(2007). Cholinesterase inhibitors in mild cognitive impairment: A systematic
review of randomised trials. PLoS Med, 4(11):e338. (Cited on page 7.)

[Reiman et al., 2010] Reiman, E., Langbaum, J., and Tariot, P. (2010). Alzheimer's
prevention initiative: a proposal to evaluate presymptomatic treatments as
quickly as possible. Biomark Med, 4(1):3�14. (Cited on page 2.)

[Ren et al., 2009] Ren, W., Singh, S., Singh, M., and Zhu, Y. (2009). State-of-the-
art on spatio-temporal information-based video retrieval. Pattern Recognition,
42:267�282. (Cited on page 139.)

[Resnik et al., 2000] Resnik, S., Goldszal, A., C., Davatzikos, Golski, S., Kraut, M.,
Metter, E., Bryan, R., and Zonderman, A. (2000). One year age changes in MRI
brain volumes in older adults. Cerebral Cortex, 10:464�472. (Cited on pages 20
and 112.)

[Riddle et al., 2004] Riddle, W. R., Li, R., Fitzpatrick, J. M., DonLevy, S. C.,
Dawant, B. M., and Price, R. R. (2004). Characterizing changes in MR im-
ages with color-coded Jacobians. Magn Reson Imaging, 22(6):769�777. (Cited on
pages 5 and 20.)

[Ridha et al., 2006] Ridha, B., Barnes, J., Bartlett, J., Godbolt, A., Pepple, T.,
Rossor, M., and Fox, N. (2006). Tracking atrophy progression in familial
alzheimer's disease: a serial MRI study. Lancet Neurol, 5:828�834. (Cited on
page 112.)

[Scahill et al., 2002] Scahill, R., Schott, J., Stevens, J., Rossor, M., and Fox, N.
(2002). Mapping the evolution of regional atrophy in alzheimer's disease: unbiased
analysis of �uid-registered serial MRI. Proc Natl Acad Sci, 99:4703�4707. (Cited
on pages 5 and 122.)

[Schmid, 2004] Schmid, R. (2004). In�nite dimensional lie groups with applica-
tions to mathematical physics. J. Geometry and Symmetry in Physics, 1:1â��67.
(Cited on page 68.)



Bibliography 169

[Schmid, 2010] Schmid, R. (2010). In�nite-Dimensional Lie Groups and Algebras
in Mathematical Physics. Advances in Mathematical Physics, 2010:1�36. (Cited
on page 69.)

[Schott et al., 2010] Schott, J. M., Bartlett, J., Fox, N., Barnes, J., and the
Alzheimer's Disease Neuroimaging Initiative Investigators (2010). Increased brain
atrophy rates in cognitively normal older adults with low cerebrospinal �uid Ab1-
42. Annals of Neurology, 68-6. (Cited on pages 98, 116 and 117.)

[Seiler et al., 2011a] Seiler, C., Pennec, X., and Reyes, M. (2011a). Geometry-aware
multiscale image registration via obbtree-based polya�ne log-demons. In Proceed-
ings of Medical Image Computing and Computer Assisted Intervention (MICCAI),
pages 631�638, Berlin, Heidelberg. Springer-Verlag. (Cited on page 20.)

[Seiler et al., 2011b] Seiler, C., Pennec, X., and Reyes, M. (2011b). Geometry-Aware
Multiscale Image Registration Via OBBTree-Based Polya�ne Log-Demons. In
Medical Image Computing and Computer-Assisted Intervention - MICCAI, vol-
ume 14, pages 631�638. (Cited on page 62.)

[Shattuck et al., 2008] Shattuck, D., Mirza, M., Adisetiyo, V., Hojatkashani, C.,
Salamon, G., Narr, K., Poldrack, R., Bilder, R., and Toga, A. (2008). Con-
struction of a 3D probabilistic atlas of human cortical structures. NeuroImage,
39(3):1064�1080. (Cited on page 75.)

[Shen and Davatzikos, 2004] Shen, D. and Davatzikos, C. (2004). Measuring tem-
poral morphological changes robustly in brain MR via 4-dimensional template
warping. NeuroImage, 21:1508�1517. (Cited on pages 139 and 140.)

[Siless et al., 2012] Siless, V., Glaunés, J., Guevara, P., Mangin, J.-F., Poupon,
C., Bihan, D., Thirion, B., and Fillard, P. (2012). Joint T1 and brain �ber Log-
Demons registration using currents to model geometry. In Ayache, N., Delingette,
H., Golland, P., and Mori, K., editors, Medical Image Computing and Computer-

Assisted Intervention, MICCAI 2012, volume 7511 of Lecture Notes in Computer

Science, pages 57�65. Springer Berlin Heidelberg. (Cited on pages 20 and 134.)

[Smith, 2002] Smith, S. (2002). Fast robust automated brain extraction. Human

Brain Mapping, 17(3). (Cited on pages 6 and 31.)

[Smith et al., 2002] Smith, S., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P.,
Federico, A., and Stefano, N. D. (2002). Accurate, robust, and automated lon-
gitudinal and cross-sectional brain change analysis. NeuroImage, 17. (Cited on
pages 25 and 112.)

[Stefanescu, 2005] Stefanescu, R. (2005). Parallel nonlinear registration of medical
images with a priori information on anatomy and pathology. PhD thesis. (Cited
on page 19.)



170 Bibliography

[Stefanescu et al., 2004] Stefanescu, R., Commowick, O., Malandain, G., Bondiau,
P.-Y., Ayache, N., and Pennec, X. (2004). Non-rigid atlas to subject registration
with pathologies for conformal brain radiotherapy. In In MICCAI, pages 704�711.
Springer Verlag. (Cited on page 143.)

[Stretton et al., 2011] Stretton, E., Mandonnet, E., Geremia, E., Menze, B. H.,
Delingette, H., and Ayache, N. (2011). Predicting the location of glioma re-
currence after a resection surgery. In Proceedings of 2nd International MICCAI

Workshop on Spatiotemporal Image Analysis for Longitudinal and Time-Series

Image Data (STIA'12), LNCS, Nice. Springer. (Cited on pages 136 and 143.)

[Studholme et al., 1996] Studholme, C., Hill, D., and Hawkes, D. (1996). Auto-
mated 3-d registration of mr and ct images of the head. Medical Image Analysis,
1(2):163�175. (Cited on page 19.)

[Sweet and Pennec, 2010] Sweet, A. and Pennec, X. (2010). Log-domain di�eo-
morphic registration of di�usion tensor images. Proc. of WBIR: Workshop on

Biomedical Image Registration. (Cited on page 20.)

[Thompson et al., 2003] Thompson, P., Ayashi, K., Zubicaray, G., Janke, A., Rose,
S., Semple, J., Herman, D., Hong, M., Dittmer, S., Dodrell, D., and Toga, A.
(2003). Dynamics of gray matter loss in Alzheimer's disease. The Journal of

Neuroscience, 23:994�1005. (Cited on pages 6, 20, 61, 102 and 112.)

[Tosun et al., 2010] Tosun, D., Schu�, N., Truran-Sacrey, D., and et al. (2010).
Relations between brain tissue loss, csf biomarkers, and the apoe genetic pro�le:
a longitudinal MRI study. Neurobiol Aging, 31-8. (Cited on pages 98 and 126.)

[Trouvé, 1998] Trouvé, A. (1998). Di�eomorphisms groups and pattern matching
in image analysis. Int. J. Comput. Vision, 28(3):213�221. (Cited on page 20.)

[Tustison et al., 2010] Tustison, N., Avants, B., Cook, P., Zheng, Y., Egan, A.,
Yushkevich, P., and Gee, J. (2010). N4ITK: Improved N3 bias correction. IEEE
Transaction in Medical Imaging, 19. (Cited on page 28.)

[van der Lijn et al., 2008] van der Lijn, F., den Heijer, T., Breteler, M. M. B., and
Niessen, W. J. (2008). Hippocampus segmentation in MR images using atlas
registration, voxel classi�cation, and graph cuts. NeuroImage, 43:708�720. (Cited
on page 6.)

[Vasilevskiy and Siddiqi, 2002] Vasilevskiy, A. and Siddiqi, K. (2002). Flux maxi-
mizing geometric �ows. IEEE Trans. Pattern Anal. Mach. Intell., 24(12):1565�
1578. (Cited on page 31.)

[Vercauteren, 2008] Vercauteren, T. (2008). Image Registration and Mosaicing for

Dynamic In Vivo Fibered Confocal Microscopy. Phd thesis, École Nationale
Supérieure des Mines de Paris. (Cited on pages 24 and 35.)



Bibliography 171

[Vercauteren et al., 2008] Vercauteren, T., Pennec, X., Perchant, A., and Ayache,
N. (2008). Symmetric Log-domain di�eomorphic registration: A Demons-based
approach. In Proceedings of Medical Image Computing and Computer Assisted

Intervention (MICCAI), volume 5241, pages 754�761. (Cited on pages 8, 20, 22,
49, 70, 71, 81, 92 and 93.)

[Wells et al., 1996] Wells, W., Viola, P., Atsumi, H., Nakajima, S., and Kikinis, R.
(1996). Multi-modal volume registration by maximization of mutual information.
Medical Image Analysis, 1(1):35�51. (Cited on page 19.)

[Wolz et al., 2011] Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang,
D. P., Rueckert, D., Soininen, H., and Löjönen, J. (2011). Multi-method analysis
of mri images in early diagnostics of Alzheimer's disease. PLoS One, 6(10):e25446.
(Cited on page 128.)

[Younes, 2007a] Younes, L. (2007a). Jacobi �elds in groups of di�eomorphisms and
applications. Q. Appl. Math. (Cited on pages 44 and 47.)

[Younes, 2007b] Younes, L. (2007b). Jacobi �elds in groups of di�eomorphisms and
applications. Q. Appl. Math, pages 113�134. (Cited on pages 61 and 82.)

[Younes, 2010] Younes, L. (2010). Shapes and di�eomorphisms. Number 171 in
Applied Mathematical Sciences. Sprimger. (Cited on pages 68 and 69.)

[Younes et al., 2008] Younes, L., Qiu, A., Winslow, R., and Miller, M. (2008).
Transport of relational structures in groups of di�eomorphisms. J Math Imaging

Vis, 32(1). (Cited on pages 61 and 92.)

[Yushkevich et al., 2010] Yushkevich, P., Avants, B., Das, S., J.Pluta, Altinay,
M., and Craige, C. (2010). Bias in estimation of hippocampal atrophy using
deformation-based morphometry arises from asymmetric global normalization:
An illustration in ADNI 3 T MRI data. NeuroImage, 50(2):434�445. (Cited on
page 114.)

[Yushkevich et al., 2006] Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S.,
Gee, J., and Gerig, G. (2006). User-guided 3D active contour segmentation of
anatomical structures: Signi�cantly improved e�ciency and reliability. Neuroim-
age, 31(3). (Cited on page 53.)





Deformation based morphometry of the brain for the
development of surrogate markers in Alzheimer's disease

Abstract: The aim of the present thesis is to provide an e�ective computational
framework for the analysis and quanti�cation of the longitudinal structural changes
in Alzheimer's disease (AD). The framework is based on the di�eomorphic non-rigid
registration parameterized by stationary velocity �elds (SVFs), and is hierachically
developed to account for the di�erent levels of variability which characterize the
longitudinal observations of T1 brain magnetic resonance images (MRIs). We devel-
oped an e�cient and robust method for the quanti�cation of the structural changes
observed between pairs of MRIs. For this purpose, we propose the LCC-Demons
registration framework which implements the local correlation coe�cient as simi-
larity metric, and we derived consistent and numerically stable measures of volume
change and boundary shift for the regional assessment of the brain atrophy. In or-
der to consistently analyze group-wise longitudinal evolutions, we then investigated
the parallel transport of subject-speci�c deformation trajectories across di�erent
anatomical references. Based on the SVF parametrization of di�eomorphisms, we
relied on the Lie group theory to propose new and e�ective strategies for the parallel
transport of SVFs, with particular interest into the practical application to the reg-
istration setting. These contributions are the basis for the de�nition of qualitative
and quantitative analysis for the pathological evolution of AD. We proposed several
analysis frameworks which addressed the di�erentiation of pathological evolutions
between clinical populations, the statistically powered evaluation of regional volume
changes, and the clinical diagnosis at the early/prodromal disease stages. Key-
words: Alzheimer's disease, non rigid registration, longitudinal analysis, structural
MRI
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