
4D registration of serial brain’s MR images: a
robust measure of changes applied to

Alzheimer’s disease

Marco Lorenzi1 2, Nicholas Ayache1, Giovanni Frisoni2, and Xavier Pennec1

1 Project Asclepios, INRIA Sophia Antipolis, France
2 LENITEM, IRCCS San Giovanni di Dio, Fatebenefratelli, Italy

Abstract. The study of neurodegenerative pathologies like Alzheimer’s
disease led to an increasing interest in the evaluation of the morphological
changes in the brain over time. The recent availability of public longi-
tudinal datasets requires new approaches to consistently measure the
changes through sequences of MR images of a specific subject. Nonrigid
registration represents an instrument to measure atrophy as geometric
differences between pairs of scans. Among these methods, the Symmet-
ric Log-Demons algorithm is a computationally efficient registration al-
gorithm which defines the transformations as diffeomorphisms. In this
work we propose a robust framework for the intra-subject nonrigid reg-
istration of serial MR images to evaluate the brain changes in time. The
temporal consistency is obtained by integration of the structural changes
at each time point into a 4-dimensional warping algorithm, to describe
the subject-specific temporal trajectory. Moreover, we will show how to
derive measurements of brain changes consistently along the spatial di-
mension, from the voxel to the regional level. Results on synthetic and
real data show that, under this approach, the resulting deformations de-
fine smoother trajectories for the evolution of the changes. The accuracy
of the measurements is also improved by reducing the influence of intra-
subject variability and the biases affecting the data. The present method
could represent the basis for the development of a robust and consistent
model of longitudinal changes at the population level.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative pathology of the brain, charac-
terized by a co-occurrence of different phenomena, starting from the deposition
of amyloid plaques and neurofibrillary tangles, to the development of functional
loss and finally to cell deaths [12]. In particular, although the loss of cells is one
of the final results of the pathological process taking place in the brain, it has
been shown that the monitoring of structural changes provides a way to track
the evolution of the disease, even at the incipient or pre-symptomatic stages
[21]. Structural MR images represent a feasible and reproducible instrument for
the study of the brain’s integrity. The recent availability of public studies like



the “Alzheimer Disease Neuroimaging Initiative” (ADNI) [17] provides the re-
search of data representing the complete history of the pathological process of
Alzheimer’s: from the healthy condition to mild cognitive impairment (MCI),
and finally to the advanced stages of the disease.
In the recent past, computational anatomy acquired increasing weight in the
analysis of medical data and several methods were developed to study the brain
in the cross-sectional (evaluating differences between different subjects) and lon-
gitudinal (evaluating changes in time from serial data of the same subject acting
as his own control) settings. While the cross-sectional approach highlights the
main differences between clinical groups, the longitudinal perspective is more
useful in detecting the subtle changes related to the biological processes. A con-
sistent integration of the longitudinal approach into a group-wise analysis rep-
resents the final goal for the development of a comprehensive model of disease
evolution.
Longitudinal Measures. From the longitudinal perspective, large efforts in
neuroimaging were made to evaluate the changes occuring in the brain between
pairs of scans. We can broadly define two main approaches for the detection of
atrophy. The first one is represented by the global measurement of changes at
the regional level by the detection of the volume changes as intensity differences
of the scans [13], through the integration on regions of interest [11], or segmen-
tation of specific areas [3].
The second is based on the detection of local geometrical differences by means of
nonrigid registration. Examples of techniques based on nonrigid registration in
longitudinal studies are voxel compression maps (VCM) [10], voxel/tensor-based
morphometry (VBM,TBM) ([22],[6]), RAVENS maps [20] and cortical pattern
matching (CPM) [26]. Local techniques provide global measures as well, by inte-
gration of the Jacobian Determinant of the deformation in the selected regions,
and direct comparisons of local vs global measures have been provided [4].
While the above approaches are based on the assessment of image-to-image
changes (a 3-D problem), the study of measurements on time-series was less
explored, probably due to the historical difficulties in collecting large longitudi-
nal dataset.
The 4-dimensional problem. The consistent evaluation of changes across
serial images is a fundamental requirement to gain stability and robustness of
the measurements, with higher accuracy in detecting biological phenomena like
pathological trends. The registration of time series images plays a central role in
many research fields, such as cardiac imaging [18] and motion analysis [19]. In
the field of neuroimaging, a real 4D registration procedure for serial images was
introduced in [23], where a subject-specific 4D template is warped to match the
sequence of serial images. The study introduced the idea of Gaussian smoothing
along a multidimensional neighborhood, to impose spatial and temporal con-
straints on the resulting 4-dimensional deformation field.
The new generations of registration algorithms are based on diffeomorphisms,
invertible and differentiable mappings which guarantee higher accuracy, stabil-
ity and smoothness properties. Recently, a study on frontotemporal dementia
[2], introduced consistent longitudinal intra-subject registration with the “large



deformation diffeomorphic metric mapping”’ (LDDMM) theory [16], by use of
diffeomorphisms parametrized by time varying velocity fields. In the study, the
diffeomorphisms matching the baseline image to the related serial images were
sampled in a standardized time range to produce a subject-specific description
of the temporal trajectory of the brain changes. Another remarkable use of the
LDDMM framework for the analysis of longitudinal images was presented in
[7] to perform a regression of the brain shapes as a function of age. Based on
LDDMM, a complete framework for the consistent 4-dimensional registration of
shapes was presented in [8]. While from a theoretical point of view LDDMM is
the most consistent and theoretically founded framework for the study of dif-
feomorphisms, the high complexity and the computational requirements often
prevent and limit the use in the practical contest, especially for the analysis
on volumetric images in longitudinal datasets, due to the increasing number of
registrations required.
The aim of the present work is to develop a computationally efficient algorithm
for the diffeomorphic registration of serial MRI data to provide spatially con-
sistent atrophy measurements, from the local to the regional level, within a
temporally consistent framework.
2 Spatial and temporal consistency in the Demons
2.1 Non-Linear Registration: the algorithm.
The Symmetric Log-Demons algorithm looks for the diffeomorphic transforma-
tion φ which minimizes the intensity difference between a fixed image F and a
moving image M [28]. The deformation φ belongs to the one-parameter subgroup
of diffeomorphisms generated by a stationary velocity field v and is parametrized
through the exponential operation, exp(v), defined by the following ODE:

∂φ(x, t)
∂t

= v(φ(x, t)), (1)

with initial condition φ(x, 0) = id. The transformation is recovered at the param-
eter value t = 1, i.e. φ(x) = φ(x, 1). The use of stationary velocity fields simplifies
the LDDMM problem and leads to an optimal compromise between approxima-
tion and efficiency for computationally tractable solutions. For example, the
exponential operation is efficiently implemented in the Demon’s algorithm by
taking advantage of the “scaling and squaring” property of the one-parameter
subgroups. This allows to compute the final parametrization as the iterative
composition of successive exponentials [1]. The registration of the images F and
M is achieved through the alternating minimization of the following energy
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Reg(v),

(2)

The minimization scheme is alternatively operated with respect to the two vari-
ables v and vx in two steps:



Minimization step. The energy Ecorr(v,vx) is first minimized to find an un-
regularized correspondence vx to match the images F and M . The infinitesimal
velocity ∂v for the minimization is computed in a closed form and the corre-
spondence field vx is updated consistently within the log-domain representation
using the Baker-Campbell-Hausdorff (BCH) approximation for the composition
of exponentials.
Regularisation step. Finally, the functional Ereg(v,vx) is optimized with re-
spect to v. Following [15], we can obtain a closed form for the regularization
step by convolution. As defined in [5], the regularization term Reg(v) can be
generally expressed in terms of an isotropic differential quadratic form (IDQF)
Qk(v) = αk∂i1...ikvik+1∂i1...ikvik+1 , where ∂i1...ik is the derivative composition
∂i1 . . . ∂ik. We note that with the choice α1 = 1 and αk = 0, ∀k ≥ 2, we re-
trieve the classical harmonic regularizer ‖∇v‖2 . The minimization will be then
operated on the functional:

Ereg(v) =
∫
Ω

‖v − vx‖2

σ2
x

dx+
∫
Ω

∞∑
k=1

(
Qk(v)
σ2k
t

)
dx, (3)

where Ω represents the domain of interest. The term log(exp(−v)◦exp(vx)) was
linearized using the zeroth order approximation of the BCH formula, and the
weight σT is considered as a term of the regularizer to preserve the shape of the
impulse response in case of high order regularization terms [5]. Differentiating
now with respect to v yields the following condition:

v(x)− vx(x)
σ2
x

+
∞∑
k=1

(−1)k

σ2k
T

(
αk∆

kv(x)
)

= 0,

and the resulting equation can then be minimized in the Fourier space to verify:

v̂(w) =
1(∑∞

k=0
σ2
x

σ2k
T

αk(w,wT )k
) v̂x(w), (4)

Therefore, the optimal v̂ is obtained in the Fourier domain through the lin-
ear convolution of v̂x, thus leading to the Gaussian smoothing for the optimal
solution v = Gσ ∗ vx, for an opportune σ.

2.2 Longitudinal registration via temporal regularization in the
Demons

The longitudinal perspective in the registration process increases the dimen-
sionality of the problem and adds a new level of estimation along the temporal
dimension. Given serial images Ii, i = 0 . . . n, we propose to address the problem
by borrowing the hierarchical approach from the statistical multilevel modeling:

– First level of inference. We estimate the deformations φi , i = 1 . . . n, and
the relative velocity fields vi, to match each image Ii to the baseline I0.



– Second level of inference. The vi are used to estimate in the log-domain a
subject-specific temporal trajectory v̄t.

– Hierarchical estimation. The v̄t is then reintroduced in the first level as a
prior term to drive the re-estimation of the deformations at each time point
and the whole procedure can be iterated to improve the robustness. The
prior v̄t introduces the information about the longitudinal progression.

The introduction of the new prior term v̄t in the Demons can be done at the
regularization level (3), to constrain the solution for the optimal velocity v:

Ereg(v) =
∫
Ω

‖v − vx‖2

σ2
x

+
‖v − v̄t‖2

σ2
t

dx+
∫
Ω
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(
Qk(v)
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t

)
dx, (5)

The optimization of the above formula lead to the same solution of the Demons
regularization once we replace in (3) vx by vM = σ2

tvx+σ2
xv̄t
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x
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, to finally give

v = Gσ ∗
(
σ2
t vx + σ2

xv̄t
σ2
t + σ2

x

)
, (6)

The optimal velocity v for the Demons is then computed from the weighted
average between the field given by the matching criteria vx and the temporal
prior v̄t. The parameters σx and σt determine the trade-off between the spatial
and temporal information, i.e. the belief that will drive the estimation of the
deformation. Under this approach, the deformation will be estimated taking
into account the global temporal evolution while still remaining consistent in
the registration framework.
It has been previously proposed to perform longitudinal registration through
regularization of the 4D deformation field in a 4-dimensional neighborhood, i.e.
by minimization of the temporal gradient [23]. This approach represents a special
case of the framework we introduced, where the prior v̄t is estimated through
kernel regression from the sequence of the vi.
2.3 The Demons to consistently measure brain changes from the

voxel to the regional level
The quantification of the amount of warping applied at each voxel by the dense
deformation field is usually derived from the Jacobian matrix J of the deforma-
tion in terms of determinant, log-determinant, trace or the strain tensor JJT . A
global index of change can be extracted from the local information by:

– Integration of the Jacobian Determinant in the region of interest. This is an
average measure of volume change.

– Evaluation of the flux of the deformation field across the surface enclosing
the region, i.e. the amount of vectors flowing through the surface during the
registration procedure. This is a value representing the shift of the bound-
aries of the surface required to match the homologous points during the
registration process.



If the flux on a specific surface area is known, and so the average “force” ap-
plied on the infinitesimal surface element, we can derive a volume change index
by comparing the volume enclosed by the shifted surface relative to the origi-
nal surface. However, the direct computation of the flux represents a challenge
and is usually highly sensitive to the localization of the boundaries. While this
limitation prevented the use of the flux in favour of the more robust Jacobian
determinant integration, surrogate intensity-based measures have been proposed
([11], [24]).

We will now follow the procedure derived from [9] and recently introduced
in the Demons in [15], to show how to derive from the Log-Demons formulation
a consistent way to integrate the local measure in the global indices of changes.
From the formula (1), the instantaneous variation of the Jacobian determinant
of the deformation can be expressed as:

∂det(∇φ(x, t))
∂t

= det(∇φ(x, t)) tr
(
∇φ(x, t)−1 ∂(∇φ(x, t)

∂t

)
,

Reversing time and spatial derivatives in the trace and applying the chain rule
we get:

∂det(∇φ(x, t))
∂t

= det(∇φ(x, t)) (∇.v(x) ◦ φ(x, t)) ,

Given that φ(x, 0) = id, we have log(det(∇φ(x, 0))) = 0, and we obtain the
solution log(det(∇φ(x, t))) =

∫ t
0
∇.v|φ(x,h) dh. In particular,

log(det(∇φ(x, 1))) =
∫ 1

0

∇.v|φ(x,h) dh, (7)

The above formula states that, under the Demons framework, the log-determinant
of the Jacobian of φ(x) = φ(x, 1) equals the integration of the divergence of the
velocity field along the path described by the exponential.
Supposing now that Ω is a volume immersed in the vector field φ(x), we can
integrate (7) to obtain:∫∫∫

Ω

log(det(∇φ(x, 1)))dΩ =
∫ 1

0

(∫∫∫
Ω

∇.v|φ(x,h) dΩ

)
dh, (8)

We remember now the Divergence Theorem, which states that for a volume Ω
immersed in a vector field v the following relationship holds:∫∫∫

Ω

(∇.v) dΩ =
∮
∂Ω

v · n d∂Ω,

where the second part of the equality represents the flux of the vector fields
through the surface ∂Ω.
Applying the Divergence Theorem to (8) finally gives:∫∫∫

Ω

log(det(∇φ(x, 1)))dΩ =
∫ 1

0

flux∂Ω(v|φ(x,h)) dh (9)



The integration over the volume of interest of the log-determinant of the Jacobian
of the deformation is equivalent to compute along the exponential path the flux
of the velocity field across the corresponding surface.
Practical Consequences. First, the above formula provides a way to consis-
tently compute the flow of the vector field during all the evolution followed along
the parametrization, and not focusing only on the final transformation φ(x, 1).
Second, we compute a shift between surfaces (right side of (9)) by integration
on a volume (left side of (9)). This relieves the segmentation errors (and rela-
tive erroneous boundary detection ) and allows to deal with uncertainties in the
measures by integration on probabilistic masks, weighting the integral by the
probability of the voxels to belong to the volume. Last, under this formulation
we can clearly distinguish the difference between the integration of the Jacobian
(volume change) and the integration of the log Jacobian (shift of the boundaries).

In the next sections we will use the index of flux-derived volume change,
where the field across the surface given by the flux is approximated with a radial
field on a sphere S1 enclosing the same volume. We obtain a volume change
index by comparing the volume of the resulting shifted sphere S2 relatively to
S1.

3 Experiments and Results

3.1 A synthetic experiment
A synthetic example was simulated in order to mimic the typical problem of at-
rophy detection in Alzheimer’s disease. The subject-specific temporal evolution
reflects the underlying pathological process common to the whole population,
with a certain variability due to the subjective progression and the biases af-
fecting the data. We should be able to retrieve the subject-specific evolution,
as well as the true pathological progression, attenuating the effects of noise and
intra-subject variability.
We built a population of 30 “simplified brains”, composed of noisy images of
a sphere of grey matter surrounding a smaller sphere divided into separated
white matter and CSF areas. The inter-subject variability was simulated by
sampling the external and internal radius (rext0, rint0) from normal populations
with mean of respectively 33 and 7 voxels and variance of 1.
Longitudinal atrophy was then simulated by reducing the GM layer from both
inward and outward in 4 time steps. Here, the subject-specific temporal variabil-
ity was introduced by sampling at each time point t from radius (rext(t), rint(t))
with:

rext(t) = rext0 − 3t+ ue (10)
rint(t) = rint0 + 3t+ ui t = 1 . . . 4

with ue, ui ∼ N(0, 1). The Demons algorithm was used to warp each base-
line image to the four follow-up images, and the flux-derived volume change
was evaluated on the GM layer mask at each time point. For each sphere i,
the four serial estimated velocity fields were used to estimate at each voxel x



the “subject-specific” temporal evolution v̄it(x, t) by fitting a linear model in
time. The estimated temporal evolution v̄i was then used to constrain the new
evaluation of the deformations using the previous formulation (6). We set the
trade-off between spatial and temporal regularization σt

σx
at 0.5, 1 and 2 for ex-

perimental purposes. These values represent respectively double weight to the
temporal information v̄it, equal weight between spatial and temporal informa-
tion, and double weight to the spatial information vx. The differences between
the regularized and non-regularized flux-derived volume changes were assessed
by correlation with the subject-specific, i.e. noisy, true volume change and the
population-specific true underlying volume change given by the law (10).
Results. As shown in Fig. 1, the regularization procedure didn’t significantly
alter the magnitude of the estimated flux-derived volume changes. Table 1 shows
the correlation between flux-derived volume changes and the true volume changes
with the different regularizations. As expected, the temporal regularisation in-
creased the correlation with the population volume change and attenuated the
correlation with the noisy subject-specific trends. Finally, we tested an alternate
optimization scheme iterating the estimation of the v̄it and the following defor-
mations for 3 steps. This evaluation was carried out under the different ratio
σt
σx

of 0.5, 1 and 2 and the results were not significantly different from those
obtained with a single step approach (paired t-test).

Table 1: Correlation between flux-derived and manual derived GM layer percentage
volume changes at different regularization values. The increase of the temporal regu-
larization lead to increased correlations with the true underlying volume change.

σt
σx

none 2 1 0.5

Population volume change 0.916 0.940 0.942 0.944

Noisy volume change 0.9947 0.976 0.969 0.962

3.2 Experiment on Real Data
Longitudinal MRI scans taken within a 3 years period from 8 MCI subjects
converted to Alzhiemer’s dementia were selected from the ADNI dataset. The
images were affine registered to the Talairach space (MNI152 template) and
bias correction was performed using the N3 algorithm [27]. For each subject,
the follow-up images were robustly aligned to the baseline and the intensities
were equalized using a robust intensity correction algorithm [25]. The resulting
follow up images were then non linearly registered to the baseline using the
Demons algorithm with the following parameters: diffusion like sigma=1.5, fluid
like sigma=0.5 and maximum update step length of 1 voxel. Finally, the flux-
derived whole brain volume change was computed in the baseline probabilistic
brain mask. The results were compared to the percentage brain volume change
from manual tracings and to the automated measures obtained with the KN-
BSI algorithm [14], all available from the ADNI database. The effect of the
temporal regularisation was tested. As in the synthetic experiment, the sequence
of velocity fields previously computed for each subject were used to estimate at
each voxel x the subject-specific temporal evolution v̄it(x, t) through a linear



Fig. 1: Synthetic experiment. a) Subject-specific flux-derived volume change at the 4
time points without temporal regularization (black circles) and with different trade-
off σt

σx
for the temporal constraint (coloured lines). Higher weights to the temporal

constraint (from red to blue) lead to a more linear (regular in time) estimation of the
progression. b) Mean and standard deviation of the flux-derived volume changes for
the 30 brain spheres at the 4 different time points without temporal regularization
and with different trade-off σt

σx
for the temporal constraint. At each time point, the

regularization procedure slightly reduced the variance but didn’t significantly change
the magnitude of the estimation.

model with time as an independent variable. The fitted v̄it(x, t) were then used
to constrain the new estimation of the deformations as in (6), testing different
regularization weights for the trade-off between spatial ad temporal informations:
σt
σx

= 0.5, 1, 2, 3, 4.

Results. Figure 2 shows the relationship between flux-derived and manual de-
rived whole brain volume changes. The correlation coefficient was 0.899 while
on the same dataset the KNBSI algorithm scored 0.846. The correlation be-
tween flux-derived measures and KNBSI was 0.759, and the correlation between
manual-derived volume changes and the mean Jacobian of the deformation in
the brain mask was 0.825. Figure 3 illustrates the effects of the temporal regu-
larization on the measurements of the flux-derived volume change and Table 2
summarises the correlation results between flux-derived and manual-derived vol-
ume changes under the different scenario. The temporal regularisation increases
the correlation with the manual measures, and we can notice a bell shaped
behaviour with the maximum value achieved using a spatio-temporal trade-off
σt
σx

= 2, i.e. putting half weight to the temporal information with respect to the
spatial one.

Table 2: Correlation between flux-derived and manual derived percentage whole brain
volume changes at different regularization values. The highest correlation is reached
with a spatio-temporal trade-off σt

σx
= 2.

σt
σx

none 0.5 1 2 3 4

Pearson’s r 0.899 0.918 0.921 0.922 0.920 0.918



Fig. 2: Relationship between flux-derived and manual derived whole brain percentage
volume changes.

4 Conclusion and further works

We proposed a complete framework to evaluate the longitudinal morphologi-
cal changes in the brain via the consistent diffeomorphic registration of serial
MR images. The experimental results exhibited accurate estimations accompa-
nied by an increased regularity along the temporal dimension. The robustness
is achieved through the introduction of a temporal prior to drive the estimation
in the longitudinal setting and the definition of the flux-derived volume change,
a measure consistently derived from the algorithm formulation. In the present
study the prior was estimated using a linear model in time. Even though a lin-
ear progression could not track faithfully the real underlying biological process,
this first order approximation led to reliable results in the 4-dimensional regis-
tration procedure. Moreover, the sample size from typical longitudinal clinical
studies prevents the use of more elaborated models. Experimental results from
weighted regression estimation, not showed in the present study, led to similar
results to those obtained with classical linear regression, but at the expense of
new parameters to calibrate. Further investigations will also be required in the
definition of an optimal value for the spatio-temporal trade-off. The experiments
on real data showed an interesting bell shaped behaviour for the trade-off value,
with the maximum correlation with manual measurements obtained with a ratio
between spatial and temporal weights of 2:1. This means that the linear model
is not sufficient to describe the evolution of the deformations, but it introduces
consistency and helps to improve the registration. We believe that the proposed
approach could represent a robust instrument for tracking the brain changes and
we are currently planning a large scale validation of the algorithm for the use in
the clinical context. The present study introduces a hierarchical approach in the
problem of the estimation of longitudinal trajectories, where the different levels
are determined by the dimensionality of the problem. The structure naturally
evolves into the highest levels of modeling where the different subject-specific



Fig. 3: Flux-derived brain volume change in time for a specific subject without temporal
regularisation (black dots) and with different trade-off σt

σx
for the temporal constrain

(coloured lines). As in the synthetic example, the weight on the temporal constraint
led to a more linear (regular in time) estimation of the progression

.

trajectories will be used to develop a model for the population evolution. This
point will require to merge the different subject-specific geometries consistently
in a common reference space, and so the development of a precise and reli-
able method to transport the subject-specific longitudinal trajectories. Several
strategies based on the Demons are currently under study.
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25. Souplet, J.: Évaluation de l’atrophie et de la charge lésionnelle sur des séquences
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