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Abstract. Patient-specific models of the heart may lead to better understanding
of cardiovascular diseases and better planning of therapy. A machine-learning ap-
proach to the personalization of an electro-mechanical model of the heart, from
the kinematics of the endo- and epicardium, is presented in this paper. We use
4D mathematical currents to encapsulate information about the shape and defor-
mation of the heart. The method is largely insensitive to initialization and does
not require on-line simulation of the cardiac function. In this work, we demon-
strate the performance of our approach for the joint estimation of three parame-
ters on one heart geometry. We manage to retrieve parameters such that the model
matches the 4D observations with an accuracy below the voxel size, in less than
three minutes of computation.
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1 Introduction

Patient-specific models may help better understand the role of biomechanical and elec-
trophysiological factors in cardiovascular pathologies. They may also prove to be useful
in predicting the outcome of potential therapeutic interventions for individual patients.
In this paper we focus on the mechanical personalization of the Bestel-Clement-Sorine
(BCS) model, as described in [2][4].

Model personalization aims at optimizing model parameters so that the behaviour
of the personalized model matches the acquired patient-specific data (e.g. cine-MR im-
ages). Several approaches to the problem of cardiac model personalization have been
suggested in the recent years, often formulating the inverse problem via the frame-
work of variational data assimilation[6] or that of optimal filtering theory[14][13][3].
The output of these methods is dependent on the set of parameters used to initialize
the algorithm; for this reason calibration procedures are introduced as a preprocessing
stage, such as the one developed in [16]. Furthermore these approaches rely on on-line
simulations, as an accurate estimation of the effect of parameter changes along several
directions in the parameter space is required to drive the parameter estimation. Due to
the complexity of the direct simulation these approaches are costly in time and compu-
tations.
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In this paper, we explore a novel machine-learning approach, in which the need for
initialization and on-line simulation is removed, by moving the analysis of the parame-
ter effects on the kinematics of the model (and thus the bulk of the computations) to an
off-line learning phase. In this work we assume the tracking of the heart motion from
images to be given (e.g. via [15]) and focus on the mechanical personalization of the
cardiac function from meshes. Our work makes use of currents, a mathematical tool
which was originally introduced to the medical imaging community in the context of
shape registration[18][8] and offers a unified, correspondence-free statistical represen-
tation of geometrical objects. Our main contributions include the construction of 4D
currents to represent, and perform statistics on 3D + t beating hearts and the proposal
of a machine-learning framework to personalize electromechanical cardiac models.

The remaining of this article is organized as follows. In the first part we introduce
the background on currents necessary to present the rest of our work. We develop our
method in the following section, then present and discuss experimental results in the
final sections.

2 Currents for shape representation

2.1 A statistical shape representation framework

Currents provide a unified representation of geometrical objects of any dimension, em-
bedded in the Euclidean space Rn, that is fit for statistical analysis. The framework
of currents makes use of geometrically rich and well-behaved data spaces allowing for
the proper definition of classical statistical concepts. Typically the existence of an in-
ner product structure provides a straightforward way to define the mean and principal
modes of a data set for instance, as in the Principal Component Analysis (PCA). These
comments motivate an approach of currents from the perspective of kernel theory in this
section, although currents are formally introduced in a more general way via the field of
differential topology. The connection to differential topology is particularly relevant to
outline the desirable properties of currents when dealing with discrete approximations
of continuous shapes, in terms of convergence and consistence of the representation [7].

A well-known theorem due to Moore and Aronszajn[1] states that for any sym-
metric, positive definite (p.d.) kernel on a set X , there exists a unique Hilbert space
HK ⊂ RX for which K is a reproducing kernel. This result suggests a straightforward
way of doing statistics on X as long as a p.d. kernelK can be engineered on this set, by
mapping any point x ∈ X to a function K(x, ·) ∈ HK and exploiting the Hilbert space
structure in HK . Furthermore, practical computations can be efficiently tracted thanks
to the reproducing kernel property - namely, for any x, y ∈ X , we have

( K(x, ·) |K(y, ·) )HK = K(x, y) , (1)

and more generally yet, for any f ∈ HK , (K(x, ·)|f)HK = f(x). Expanding on this,
one can compute statistics on pairs of points and m-vectors (x, η) ∈ Rn × ΛmRn by
mapping them to functions K(x, ·)η and making use of the reproducing property

(K(x, ·)η|K(y, ·)ν) = η>νK(x, y) . (2)
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Eq. 2 simply extends Eq. 1 to vector-valued functions, making use of the fact that the
tensor product of two kernels is again a kernel over the product space. Expanding the
framework even further, we can regard a discrete shape as a finite set {(xi, ηi)}1≤i≤p,
where ηi describes the tangent space at xi, and associate to it a signature function∑

1≤i≤pK(xi, ·)ηi. The correlation between two discrete shapes {(xi, ηi)}1≤i≤p and
{(yj , νj)}1≤j≤q can then be measured by the inner product

(
∑

i

K(xi, ·)ηi |
∑

j

K(yj , ·)νj ) =
∑

i,j

η>i νjK(xi, yj) . (3)

This construction may in fact be acknowledged as a special case of the convolution ker-
nel on discrete structures described in [11] and [10]. The above defines a correspondence-
free way to measure proximity between shapes, trading hard correspondences for an
aggregation of the measures of proximity between each simplex of one shape with ev-
ery simplex of the other shape in the sense of a kernel K(·, ·). We have yet to specify a
choice of kernel K. In the following, we will consider the multivariate Gaussian kernel
with variance Σ:

KΣ(x, y) =
1

{(2π)n|Σ|}1/2
exp−1

2
(x− y)>Σ−1(x− y) .

The choice of kernel width Σ can be interpreted as a choice of scale at which the shape
of interest is observed: shape variations occurring at a lower scale are likely to be
smoothed by the convolution and go unnoticed. This mechanism naturally introduces
some level of noise insensitivity in the analysis. This parameter should thus be decided
with regard to the mesh resolution and the level of noise in the data.

Finally, the linear pointwise-evaluation functional δηx : ω 7→ ω(x)(η) is continuous
and dual to K(x, ·)η by the reproducing kernel property. In the following we will re-
fer to δηx as a delta-current or a moment. To summarize, the discretized m-manifold
{(xi, ηi)}1≤i≤p admits equivalent representations as the current

∑
i δ
ηi
xi , its dual differ-

ential m-form
∑

1≤i≤pK(xi, ·)η>i or its dual vector field
∑

1≤i≤pK(xi, ·)ηi.

2.2 Computational efficiency and compact approximate representations

This framework lends itself to an efficient implementation. Firstly, the inner product be-
tween two discrete shapes can be computed in linear time with respect to the number of
momenta through the use of a translation invariant kernel. Indeed γ(·) =

∑
iK(xi, ·)ηi

may then be precomputed at any desired accuracy on a discrete grid by convolution, and
rewriting

∑
i,j η

>
i νjK(xi, yj) as

∑
j γ(yj)

>νj demonstrates the claim.
Secondly, if the mesh diameter is small with respect to the scale Σ, the initial delta-

current representation will be highly redundant. Durrleman et al.[9] introduced an it-
erative method to obtain compact approximations of currents at a chosen scale and
with any desired accuracy. We rely on this procedure at training time to fasten com-
putations and reduce the memory load. This algorithm is inspired from the Matching
Pursuit method[5]. A compact current is built from the current S to approximate (of
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dual field γ) by iteratively adding a single delta current δηnxn to the previous approxima-
tion Sn−1, in such a way that the difference ‖S − Sn‖H′

Σ
steadily decreases. This is

achieved by greedily placing the moment at the maximum (in ‖ · ‖2 norm) xn of the
residual field γ(·) − γn−1(·), then choosing the optimal η, i.e. the one that minimizes
‖γ−{γn−1 +K(xn, ·)η}‖2HΣ . It is shown in [9] that this algorithm is greedy in ‖ ·‖HΣ
norm, and converges both in ‖ · ‖HΣ norm and ‖ · ‖∞ norm. The stopping criterion
is on the residual norm ‖γ(·) − γn(·)‖2HΣ . Our implementation uses a discrete kernel
approximation of the Gaussian kernel, rather than an FFT based scheme, for fast local
updates of the residual field.

3 Method

The workflow for the proposed machine-learning based parameter estimation method
couples three successive processing steps: the first one aims at generating a current from
an input sequence of meshes, so as to obtain a statistically relevant representation; the
second one consists in a dimensionality reduction step, so as to derive a reduced shape
representation in Rk, which leads to computationally efficient statistical learning; the
third step tackles the matter of finding a relationship between the reduced shape space
and the (biophysical) model parameters. The three modules are mostly independent and
can easily be adjusted in their own respect. As a machine learning based method, our
work involves an off-line learning stage and an on-line testing stage: all three modules
of the pipeline are involved during each stage. Fig. 1 gives a visual overview of our
approach. The rest of this section describes the three afore-mentioned processing steps
and their use during learning and testing stages.

3.1 Current generation from mesh sequences

Let us briefly describe the way we build a current from a time sequence of 3D meshes.
We first extract surface meshes from the volumetric meshes. This choice derives from
the assumption that the displacement of surface points can be recovered more easily
than the displacement of all points within the myocardium, given a sequence of images;
thus learning from surface meshes may be more relevant for real applications. In this
work we assume the trajectory of surface points to be entirely known, as opposed to the
displacement in the direction normal to the contour only (aperture problem). Several
variants to derive currents for 4D object representation can be discussed (e.g. [7]), but
their relevance largely depends on the application and complete processing work flow
from the original data.

In this work, we rely on the remark that the concatenation of smoothly deformed
surface meshes can be visualized as a (3D) hyper-surface in 4D (Fig. 2). The ith
simplex of this hyper-surface generates a current δηixi , where xi is its barycenter and
ηi is the vector of R4 normal to its support and of length the volume of the simplex.
The current associated to the series of meshes is the aggregation of such delta currents,∑
i δ
ηi
xi . This construction captures both the geometry of the heart and its motion.
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(a) Step-by-step process

(b) Learning phase

(c) Testing phase

Fig. 1: Overview of the learning and testing phases.

3.2 Shape space reduction

Since learning a direct mapping between the space of model parameters and the space
of 3D+t currents is a cumbersome task, we introduce an intermediate step of dimen-
sionality reduction via PCA. During the learning stage, we compute the mean current
and principal modes of variation from the learning database of N currents {Si}1≤i≤N
generated from the N training mesh sequences {Mi}1≤i≤N as described in §3.1. This
is achieved efficiently by computing the Gram matrix of the data Gij = (Si|Sj) col-
umn by column and using the ”kernel trick”[17]. Each column of G is computed in
O(N · P ), where P is the maximum number of momenta among all currents Sj (cf.
§2.1). Finally, we compute an approximate compact representation at the scale Σ of
the mean current T̄ and of the K first modes of variation {Tk}1≤k≤K to accelerate
computations of inner products involving these currents[9].

At testing time and given a new current S, we derive its coordinates v =
(
v1, · · · , vK

)

in the reduced shape space by projection on the principal modes of variation, vk =
(S − T̄ |Tk).

3.3 Regression problem for model parameter learning

It remains to link the physiological (model) parameters to the reduced shape space. Al-
though we are ultimately interested in finding an optimal set of parameters p ∈ Rd
from an observation v ∈ RK we will actually learn a mapping in the other direction,
f : p ∈ Rd 7→ v ∈ RK . We motivate this choice by three arguments. Firstly, the obser-
vation v is a deterministic output of the cardiac model given a parameter set p and thus
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Fig. 2: Current generation from a mesh element, illustrated on an element of contour
in 2D deformed in time. The simplex PQ is followed over two consecutive timesteps,
which gives a quad embedded in 3D. The quad is divided into two triangles, from which
we get two current deltas, applied at each triangle barycenter, orthogonal to the support
of their corresponding triangles and of norm the area of the triangle. For a surface in 3D
deformed over time, each element of the triangulation followed over two consecutive
timesteps generates a hyper-prism embedded in 4D, which is in turn decomposed in
three tetrahedra from which we obtain three momenta.

the mapping f is well-defined; however there may be several parameter sets resulting
in the same observable shape and deformation, as parameter identifiability is not a pri-
ori ensured. Secondly, the parameter space is expected to be of smaller dimensionality
than the reduced shape space and therefore easier to sample for combinatorial reasons.
Finally, we can also expect that the set of biologically admissible model parameters be
relatively well-behaved; on the other hand few points in the shape space may actually
relate to anatomically reasonable hearts: thus mapping every v ∈ Rk to a parameter set
could be impractical.

The regression function f is learned by kernel ridge regression using a Gaussian
kernel[12], and admits a straightforward close-form expression. During the testing
phase, given a new observation v, we solve the optimization problem arg minp ‖f(p)−
v‖2 by Simulated Annealing[19]. This optimization problem involves an analytical
mapping between low-dimensional spaces, as opposed to optimizing directly over the
4D meshes or currents. Thus it will not constitute a computational bottleneck regardless
of the chosen optimization scheme. Naturally, if a prior on the likelihood of a given pa-
rameter set p ∈ Rd were known (e.g. via a biophysical argument), it could be integrated
in the cost function in the form of a prior energy term λ ·R(p).

4 Experimental results

In our first experiment we focus on the prediction of the maximum contractility param-
eter σ0 of the BCS model, defined globally for the whole cardiac muscle. Building on
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the sensitivity analysis from [16], we consider that σ0 covers the range of values from
106 to 2 107 in an anatomically plausible way. We form a training base of ten cases
{pi,Mi} by sampling this range deterministically and launching simulations with the
corresponding parameter sets, for a single heart geometry from the STACOM’2011
dataset. Following the PCA, the first principal mode of variation is found to explain
81% of the variance, thus we set the reduced shape space to be of dimension 1 (K = 1);
the regression function (σ = 0.3, λ = 10−5) bijectively maps the model parame-
ter space and the reduced shape space. In all experiments, the model parameters are
affinely mapped to [−1, 1] for convenience, for the regression and optimization stages.
We use an isotropic Gaussian kernel of width 1cm in space and 50ms in time.
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Fig. 3: PCA results for the first experiment. The projection of the first mode of variation
on a plane orthogonal to the z-axis at a fixed time step is shown in (c), and can be
interpreted as capturing the variability in the extent of the contraction of the muscle.

In the spirit of cross-validation procedures, we evaluate the performance of our ap-
proach on an independent test set {pj ,Mj}0≤j<N ′ by randomly choosing parameter
sets in the admissible range of parameters and launching the corresponding simula-
tions. We thereafter refer to pj as the real parameter (value) and to the output of our
approach p∗j as the optimal parameter (value). Our test set is of size N ′ = 100 samples.
The whole personalization pipeline, from the current generation to the parameter opti-
mization phase, takes roughly 2 minutes per sample on a regular laptop. We define the
relative error on the parameter value for a given test sample j as εrpj = |p∗j − pj |/pj .
In addition to the relative error, we consider the absolute error over the range of admis-
sible parameters, εapj = |p∗j − pj |/|pmax − pmin|. We refer to εap as an absolute error
but express it for convenience as a percentage of the admissible parameter variation.
Over the test set, we found a mean relative (resp. absolute) error of 9.2% (resp. 4.5%)
and a median relative (resp. absolute) error of 6.8% (resp. 2.3%).

We are also interested in a preliminary evaluation of the robustness of our approach
with respect to geometry changes. Ten samples are generated following the same proce-
dure as before, but using another heart geometry of the STACOM dataset. The 10 mesh
sequences are manually registered (via a similarity transform) to the training geometry
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based on the end-diastole mesh before applying the normal pipeline, as described in
Section 3. The mean relative (resp. absolute) error on the contractility parameter over
our sample is 25% (9.3%), with 15% (resp. 7.5%) median relative (absolute) error.

The second experiment proceeds similarly to the first one, but we simultaneously
estimate the contractility σ0, the relaxation rate krs and the viscosity µ. For the train-
ing phase, the parameter space is sampled on a 7 × 7 × 7 grid with σ0 in the range
[106, 2 107], krs in [5, 50] and µ in [105, 8 105]. The explained variance with 1 eigen-
mode of the PCA (resp. 2 to 5) out of theN = 343 modes equals 63.2% of the total vari-
ance (resp. 80.3%, 89.5%, 94.1%, 96.7%). We set the dimension of the reduced shape
space to K = 3. The performance is tested on N ′ = 100 random samples. Because
we can no longer assume the parameter set to be identifiable a priori, we introduce
another measure of the goodness of fit of our personalization by directly evaluating the
error on the observations. Given two surface mesh sequencesM = {Mi}1≤i≤T and
M′ = {M′i}1≤i≤T , we define the pseudo-distance dsur(M,M′) = maxi ds(Mi,M′i)
where ds(Mi,M′i)2 is the mean square distance of the points of the surfaceMi to the
surfaceM′i. Additionally given one-to-one correspondences betweenM andM′, we
can define the distance dnod(M,M′) = maxi dp(Mi,M′i), where dp(Mi,M′i) is the
mean distance between corresponding nodes of Mi and M′i. While dsur intuitively
relates to an upper bound for the matching between surface meshes at any time step,
dnod conveys more information about the quality of the matching of point trajectories.
The results for this experiment are reported in Table 1. As a comparison, two mesh
sequences corresponding to extreme values in the parameter set will yield a value for
dsur(M,M′) (resp. dnod(M,M′)) of the order of 6mm (resp. 8mm).

Table 1: Experiment 2 - results
εrσ0 (εaσ0) εrkrs (εakrs) εrµ (εaµ) dsur (mm) dnod (mm)

Mean 15.2% (8.0%) 48.8% (26.4%) 40.5% (20.0%) 0.92mm 1.42mm
Median 13.2% (6.3%) 44.7% (19.6%) 32.1% (17.5%) 0.80mm 1.32mm

In addition we compute the optimal parameters and performance indicators for a
different choice of the reduced space dimension K, obtaining quasi-identical statistics
for K = 4. Finally, we test here again the robustness with respect to changes of the
heart geometry. Using the same procedure as before on 10 test samples on a differ-
ent geometry, we find a mean error of 1.4mm and a median value at 1.3mm for dsur
(respectively, 1.8mm and 1.6mm for dnod).

5 Discussion

Despite working around the bias and error introduced by the model and image process-
ing in real applications, our synthetic experiments show promising performance for our
framework in terms of accuracy, tolerance to non-linear effects of parameters, robust-
ness and computational efficiency. The accuracy of our approach was found to be below
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the typical voxel dimension (1mm), while a priori optimizing among a very wide range
of parameter values at test time, and using a reasonable number of training samples at
learning time. Although a single geometry is used for the training phase, the accuracy
was of the same order on similar (non-pathological) heart geometries. Naturally, fur-
ther work should handle geometry variability in a proper way, taking it into account at
the training stage, and adding ”shape factors” to the model parameter space capturing
3D shape variability. Moreover the addition in the pipeline of a pre-clustering stage
with respect to the heart geometry, so as to distinguish very different geometries and
treat them separately, should reduce the number of samples required to cover the whole
parameter space while achieving better model personalization.

The proposed framework also brings an interesting perspective on the issue of pa-
rameter identifiability. It should be noticed that we achieve good results in terms of spa-
tial distance between the matched model and observations while significant differences
in the parameter space may still be observed. Parameter identifiability encompasses two
distinct aspects. Firstly, small variations of the parameter values may result in changes
that are not noticeable at the scale of reference. This sensitivity to parameters partially
explains the error on the retrieved set of parameters. In our approach, the kernel width
for currents impacts the ability of the algorithm to discern shape differences. In the
future we will experiment with smaller kernel widths and improve algorithms to handle
increased computational cost. Secondly in joint parameter estimation, a whole subset
in the parameter space may result in identical observations, which also affects param-
eter identifiability. Such considerations can be analyzed in depth at the regression or
optimization steps: several parameter sets with similar costs along with a measure of
local sensitivity around these values may be additionally output by the Simulated An-
nealing algorithm. Biophysical priors may also be introduced at the optimization step
by penalizing unlikely parameter sets without adding significant computational cost.

Finally more efficient machine learning algorithms should be tested in lieu of PCA,
so as to capture non-linear 4D shapes variation, and to obtain and exploit precise in-
formation about the manifold structure of 4D heart shapes. Not only will this be of
help with parameter identifiability and to derive efficient representations in the reduced
shape space, but it could also provide valuable feedback for ”smart” sampling of the
parameter space.

6 Conclusion

A machine-learning current-based method has been proposed in this paper for the per-
sonalization of electromechanical models of the heart from patient-specific kinematics.
A framework to encapsulate information regarding shape and motion in a way that al-
lows the efficient computation of statistics via 4D currents has been described. This
approach has been evaluated on synthetic data using the BCS model, with the joint es-
timation of the maximum contraction, relaxation rate and viscosity. It is found that the
proposed method is accurate, computationally efficient and robust.

Acknowledgments. This work was partly funded by Microsoft Research through its
PhD Scholarship Programme and by the ERC Advanced Grant MedYMA.



10 Loı̈c Le Folgoc et al.

References

1. Aronszajn, N.: Theory of reproducing kernels. Harvard University (1951)
2. Bestel, J., Clément, F., Sorine, M.: A biomechanical model of muscle contraction. In:

Niessen, W.J., Viergever, M.A. (eds.) MICCAI. LNCS, vol. 2208. pp. 1159–1161. Springer
(2001)

3. Chabiniok, R., Moireau, P., Lesault, P.F., Rahmouni, A., Deux, J.F., Chapelle, D.: Esti-
mation of tissue contractility from cardiac cine-MRI using a biomechanical heart model.
Biomechanics and Modeling in Mechanobiology 11(5), 609–630 (2012)

4. Chapelle, D., Le Tallec, P., Moireau, P., Sorine, M.: An energy-preserving muscle tissue
model: formulation and compatible discretizations. IJMCE, 10(2):189-211 (2012)

5. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constructive ap-
proximation 13(1), 57–98 (1997)

6. Delingette, H., Billet, F., Wong, K., Sermesant, M., Rhode, K., Ginks, M., Rinaldi, C.,
Razavi, R., Ayache, N., et al.: Personalization of Cardiac Motion and Contractility from
Images using Variational Data Assimilation. IEEE Trans. Biomed. Eng. 59(1), 20 (2012)

7. Durrleman, S.: Statistical models of currents for measuring the variability of anatomical
curves, surfaces and their evolution. Ph.D. Thesis, INRIA (March 2010)
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