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Abstract

In modern society, cancer has become one of the most worrying inflictions due to the high and
continuingly increasing death rate. The deep impact of the disease offers sufficient reasons for
extensive research to be carried out in detecting and eradicating cancer of al forms. Breast
cancer is one of the most common forms and approximately 1 in 9 women in the Western
world will develop it over the course of their lives. Screening programmes have already proven
that can reduce the mortality rate, but they introduce an enormous amount of information that
must be processed by radiologists on a daily basis. Computer Aided Diagnosis (CAD) systems
aim to assist clinicians in their decision-making process, for example by acting as a second
opinion, with a view to improve the detection and classification ratios by spotting very difficult
and subtle cases. This thesis presents results on detecting mammographic features in image
analysis for improved effectiveness in cancer detection in screening programmes.

The detection of early signs of breast cancer isvital in exterminating such afast developing
disease with very poor survival rates. Some of the earliest signs of cancer in the breast are the
clusters of microcalcifications. We propose a method based on image filtering comprising
partial differential equations (PDE) for image enhancement. Subsequently, microcalcifications
are segmented using characteristics of the human visual system, based on the superior qualities
of the human eye in depicting localised changes of intensity in an image. We set the parameters
according to the image attributes, which makes our method fully automated. Image
normalisation is another key concept discussed in this thesis. As a step towards a more
complete detection tool, we further investigate the detection of breast masses in temporal
mammographic pairs. This latter algorithm is designed based on the detection sequence used by
radiologistsin clinical routine.
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CHAPTER 1

1 Introduction

It is the mark of an educated mind to
be able to entertain a thought without
accepting it.

Aristotle

1.1 The Prevalence of Breast Cancer

The incidence of cancer in the Western world is enormous and its threatening presence is an
unfortunate reality in our living environment. The impact that this fierce affliction has for a
large percentage of the population has become a cultural phenomenon. We grow and live with
the fear of cancer invading our privacy and shadowing the existence of people dear to us. We
read about the spreading of cancer, and not only in specialised literature, we see on TV how
tumours are formed, we listen to stories about affected lives, we sense the pain of those
suffering. The hospital lost its“ copyright” for the term “cancer” and now shares it with general
sciences and, through its massive connotation, the entire human society. While society reactsto
the burden of cancer, science attempts to get a reaction from the disease and discover the long-
searched for solution to improve worrying statistics.

When considering figures and statistics of breast cancer, we refer to studies conducted in
developed countries of the Western world. Thisis mainly due to the lack of information on this

subject from under-developed and developing countries. Although the number of studies
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carried out in such regions of the world has increased, the lack of appropriate technical
equipment to detect cancer, associated with the high costs of the procedure, makes the records
of such studies quite imprecise. We should normally expect much higher rates of incidence
than reported in the poorer areas of the world, due to the present lack of radiologists and
detection equipment in those regions of the world. That will likely become more of an issue
once people in undeveloped countries live long enough to die from cancer. The disease has a
far higher incidence in Europe (especialy Western Europe) and North America. In the Far East
and parts of Africa, the mortality rate due to breast cancer is much lower, with an incidence
about 5 times smaller than in the West, although there has been a substantial increase in the
number of new cases. During the last few years, Japan has witnessed a growth of 10 times in
the number of breast cancers. In the Western world, recent figures show that breast cancer
accounts for a high percentage of the overall cancer incidence in women, approximately 24%
of al cancer cases. Around the world, there are approximately 945,000 new cases of breast
cancer every year, of which the Western world accounts for 437,000 and the European
Community accounts for approximately 235,000 (figures published in 2001 [40]). Figures have
changed rapidly, asin 1993 there were 570,000 cases world wide [34]. Amongst the devel oped
countries, the UK is rated as one of the regions with the highest incidence in breast cancer,
where 14,000 women died of the disease in 1995.

In amore general context, breast cancer is second after lung cancer (28% of cancer cases),
the most feared form of cancerous death in women of all ages [186, 187]. Once cancer has been
diagnosed, the chances of survival are reduced to just over 60% [34]. Two years ago, when |
was writing my first year report, figures of the time (three year old) showed that an average of
1in 12 women [65] in the western world develop breast cancer during the course of their lives.
The astounding rise in the impact that cancerous diseases have especially over Western Europe
and Americas modified these figures with incredible speed. Nowadays, it is estimated that
approximately 1 in 10 women [15, 189] (1in 9in Britain and 1 in 8 in the USA [132]) will be
victims of breast cancer (only 0.1% of the total incidence of breast cancer is attributed to men),

showing an approximate increase of 0.55% per year in the number of women developing the
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disease. If the rate of change remains constant, the number of cases of breast cancer will double
by 2020, when almost a fifth of the female population will be exposed to the disease at some
stage in their lives.

Why is cancer incidence growing rapidly in modern society? Could the causes be
environmental ? Researchers have tried to trace both genetic and environmental causes that lead
to developing the disease; still, there is so far insufficient evidence to support theories that
attribute unhealthy food, hormonal treatments and pollution as major factors in the expansion
of the disease. Many attribute this to a change in the lifestyle of women, particularly those
seeking a career other than homemaker, and in diet — more fatty foods. It is estimated that 70%
of cancers have their origins in the foods we eat. New reports [68] emphasise the carcinogenic
factors found in diet, smoking, alcohol consumption, sunbathing and sedentary lifestyle.
However, our diet is full of surprises; while fruits, vegetables, fish and milk are some the most
effective sources of protection against cancer, normal food is stripped down of its nutrients by
modern farming and therefore becomes less efficient. Fruits and vegetables may contain a high
level of pesticides and farmed fish is a source of toxins. Amongst the dangerous foods, red
meat, salt, soy, baked, fried, grilled, barbequed food (containing acrylamide), sweeteners and
thickeners found in processed food are the best-known triggers. Other well-established factors
refer to family history, ethnic background, early menarche or late menopause, the absence of
childbirth, obesity and there are increasingly worrying signs related to the use of hormone

replacement therapy (HRT) [7, 110].

1.1.1 A Brief Anatomy of the Female Breast

For a better understanding of the subject, an overview of the breast anatomy becomes
necessary. Throughout the life of a woman, the breast goes through a set of continuous
changes. The first major development occurs at teen-age, when the lactation system evolves. A

second important stage is the menopause, when the milk-producing tissue changes into fat.
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Figure 1 shows a comparison between the appearance of a mammogram of a breast of a young

woman and an image of a breast of a post-menopausal woman.

Figure 1 The appearance of young versus menopausal breasts in mammography: (a) A pair of
left and right cranio-caudal mammograms of a pre-menopausal woman with very dense
appearance due to the presence of milk-producing tissue; (b) a pair of left and right cranio-
caudal mammograms of a post-menopausal woman where there is a larger amount of fat-tissue,

which makes the depiction of dense areas simpler.

The simplest portrayal of the mature female breast would have to enumerate the following
types of incorporated tissues. epithelial or glandular tissue (the milk-producing tissue), which
appears very dense in mammograms due to the high percent of calcium it contains; adipose
tissue (fatty tissue, which is mainly transparent in X-ray), fascia (the connective tissue),
muscles, ligaments and lymphatic and blood vessels [30, 53, 65]. Figure 2 presents the main
anatomical features of the breast. The arborescent structure of the breast is nourished by acini
(milk producing sacs inside a lobule) connected through terminal ducts. Lobules are fruits on
the branches represented by subsegmental ducts that grow from the mammary ducts converging

in the nipple.
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Ribs
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Extralobular terminal duct
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Figure 2 A brief anatomy of the breast showing the branching internal structure of ducts and

|obules.

1.1.3 The Pathology of Breast

Breast cancer is an abnormally fast reproductive process of the epithelial cells in the lobular
unit. It is also referred as carcinoma (the other type of cancer is sarcoma, which is much rarer
and arises from a bone, muscle or other soft tissue [188]). The routes preferred by cancer in its
spreading process are the blood and lymph vessels (which makes the axillary nodes an
important feature in signalling metastatic diseases), but the direct invasion of the surrounding
tissue may have the same effect. Therefore, one would naturally speak about spreading

(invasive or infiltrating) and non-spreading (in-situ — which stay within the lobular or ductal
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unit and has not gone though the basal membrane) forms of cancer. In-situ cancers are
sometimes referred as pre-invasive since further developments of the tumour may occur and
invade the neighbouring tissue. Both invasive and in-situ breast carcinomas are commonly
divided into lobular or ductal. Besides the ductal and lobular forms of cancer, other types of
carcinomamay be medullar, tubular, papillary, cribriform and mucinous [53, 189].

Most ductal and lobular cancers lead to secretions that form calcifications. The smallest of
these (under 1 mm in diameter) are called microcal cifications and represent some of the earliest
signs of breast cancer. Microcacification clusters may be the only indication of in-situ
tumours. Approximately 80% of them are benign [65, 81, 166] their shape and topology
discriminating them from the malignant type. The architectural distortions are another
distinctive sign of breast cancer, when the tumour has no central mass [65].

Ductal Carcinoma in Situ (DCIS) is one of the most common types of in-situ cancers and
can involve alarge number of ductal structures. It is mainly associated with microcalcification
clusters and corresponds to one of the earliest signs of malignancy. It appears in 40% of the
screening detected cancers [95]. Its treatment may involve a partial mastectomy.

Infiltrating Ductal Carcinoma (DC) is the most usual invasive cancer (over 70% of
tumours), a form of disease with very poor prognosis and which may require a tota
mastectomy, including the remova of the axillary lymph nodes and post-operatory
radiotherapy. It may be associated with microcalcifications.

Amongst the special types of cancer is the Phyllodes Tumour’'s [189] whose clinical
behaviour is still not fully understood. Most of these tumours are benign, but there are also
malignant forms. They can be cystic and sarcomatous and usually recur after initial excision.
Their treatment is particularly difficult through the atypical behaviour of the tumour.

The treatment given to a women diagnosed with breast cancer depends on the specific
characteristics of that tumour. Moreover, we are dealing with different stages of the same type
of disease and the treatment differs considerably from one stage to another. So does the
prognosis, as a statistical measure of the chances of having a positive outcome of the treatment

the patient is undergoing. The most relevant factors a doctor considers when deliberating on the
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prognosis are the size and type of the tumour, the presence of metastasis, the stage of the
disease, the status of the axillary lymph nodes and patient’s age and medical condition. The
prognosis is especialy positive for tumours smaller than 2 cm without having lymph node
involvement or other remote areas metastatic. A combination of surgery, radiotherapy and
chemotherapy are typically necessary to eradicate advanced malignancy; still, the prognosisis
rather poor.

Benign diseases may develop within or outside the ductal and lobular system and most are
associated with microcalcification clusters. Adenosis, necrosis, hyperplastia, fibroadenomas
and arterial calcifications are an important source of false positives (FP) in the classification of
breast tumour.

Section 2.2 illustrates some typical cases of breast pathology in both the form of masses

and microcalcifications.

1.2 Are Screening Programmesthe Solution?

The signs of breast cancer that appear in X-ray mammograms present a significant challenge to
radiologists and they are generally difficult to distinguish in the highly textured breast anatomy.
Breast screening programmes attempt to detect and eradicate cancer at the earliest possible
stage to reduce the rate of mortality amongst women. From the first trialsin USA and Canada
in the sixties and its very first implementation in the seventies in Sweden, screening
programmes were found to reduce mortality caused by breast cancer in women by nearly 30%
[4, 29, 163].

Some results of the mass screening in UK show a very high rate of false negatives (FN),
when in situ cancers are |eft to metastise or invasive cancers are not detected, as well asa high
rate of FP, where women are operated on without finding breast cancer. Hence, the early

detection of breast carcinomas and subsequent classification as either benign or malignant is
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subject necessitating further improvements with great impact on the fight against breast cancer
and malignancy.

Breast cancer’s incidence is low in women under 30 years old (although extremely
aggressive when present) and thereafter increases with age. Between the ages of 40 and 50,
women face a doubling of the rate of incidence which continues to increase over the age of 50,
but more slowly. Y ounger women are encouraged to check the status of their breasts by simple
palpation. Unfortunately, most women cannot reliably palpate a tumour smaller than 1 cm;
therefore more thorough examinations are required. In the UK, the screening programme was
arguably implemented for women between 50 and 64, since mammography has not to date
been demonstrated to be clinically effective before menopause and this is the group of age
mostly exposed to breast cancer. Other countries start the screening at ages below 50 and
sometimes push the upper age limit to 75.

There are severa criteria that need to be fulfilled before starting a screening programme.

These include:

the disease to be screened must be very common and a treatment must be available for
it, since there are very high costs involved and there would be little point screening for
anon-treatable affliction;

o the detection method must be robust and reliable and lead to good results for the

overall screening process,

e it must have high specificity;

e patients must accept it, since the method would not be cost-effective without a large

number of patientsto be examined.

The key method used in screening programmes is X-ray mammography, as the most
reliable process fulfilling the above criteria. If a mammogram presents any features that seem
suspicious to the radiologist, the patient will be asked to attend an assessment clinic where
more investigations will be performed by means of medical imaging and consulting. Magnetic

Resonance Imaging (MRI) and ultrasound (US) are secondary imaging techniques used in the
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triple assessment (palpation, imaging and core biopsy). Chapter 2 expands on the advantages
and disadvantages of these imaging methods.

The screening programme should, according to optimistic statements, almost double the
chances of survival in women that develop breast cancer. Studies have shown that 8% of
women are recalled for further investigations [65], most of them not presenting any
malignancy. There is intensive debate as to whether the breast screening clinical assessments
should be performed every two years instead of the usual three-year period, as it has been
noticed that the assessed women sometimes develop cancer over a period shorter than three
years (“interval cancer”). While the UK has a screening interval of 3 years, other countries such
as Sweden and Netherlands have already decreased the period to 2 years [29]. It is estimated
that nearly 20% of cancers were visible in the mammograms previous to the current screening
[150] and that interval cancers prefer to grow in the upper outer quadrant of the breast [17].
Segmentation methods may be more sensitive in detecting abnormalities at an earlier stage, but
it is the radiologist whom will need to make the final decision. Even though screening
programmes improve the results of detection, there is sufficient room for progress in the

clinical performance to warrant further research.

1.3 The Need for Image Segmentation

Image processing is a challenging but difficult task. Working with mammograms is especially
complicated due to the complex appearance of the structures of interest in this particular type of
image representation. Although a mammogram is a good “picture” of the breast, thisis hardly
sufficient when searching for small, subtle and complex anatomical parts, such as
microcalcifications, masses or curvilinear structures (CLS) in the process of early detection of
breast cancer. Statistics show that approximately 25% of cancers are missed and about 80% of
biopsies are performed on benign cases [11, 169]. Such numbers draw our attention to the

additional regquirements of the diagnosis process. Besides saving lives, doctors are aso
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expected to find the least stressful and painful way to check the status of the disease, malignant
versus benign. Regarding the unpleasantness of both mammogram and core biopsy acquisition,
reducing the number of FP becomes as equally important as reducing the number of FN.
Furthermore, it is estimated that about 22% of films are usually lost between visits and 5% of
the mammograms have to be retaken.

The complex anatomy of the breast is the inevitable source of the highly textured structure
of the mammograms. It provides a most difficult to analyse input for radiologists, who are
expected to distinguish very subtle abnormalities out of this mass of structural ambiguity. The
variability between any two cases adds to the difficult task that the human decision maker
faces. The inter- and intra-radiologist variability of 30% emphasises the need for reliable image
processing tools to assist the process of diagnosis. According to Krupinski [92], radiologists
only investigate 87% of the mammogram area; in contrast, an automatic detection algorithm
will not leave any area of the image unexamined.

With up to 3 million new mammograms to be analysed each year in the UK, the amount of
information becomes overwhelming for radiologists, especially since a second opinion is
requested before a decision is made in diagnosing a patient. Moreover, these figures are
doubled as the previous mammograms of the patient are compared to the current ones at each
screening session. Computer-aided diagnosis (CAD) can assist the radiologist at this point, by
helping to balance the measure of confidence of the specialist and eliminate the second
analysis. However, as Karssemeijer highlighted in [76], CAD systems can only be evaluated
from aradiologist point of view:

e on annotated databases, in which case the effect of the CAD in practice cannot be

predicted;

e on databases of known human reader, to compare their evolution with that of the

clinician by receiver operating characteristic (ROC) curve anaysis and predict the
effect of the CAD in practice;

e by comparing the work of the radiologists with and without CAD;
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e by doing prospective evaluations.

1.3.1 Image Quality

The quality of the image depends on several physical factors. The most important are the time
of exposure and the breast thickness along various other imaging factors. Since the X-ray
dosage must be minimised for patient safety reasons, there is a compromise between dosage
and the signal-to-noise ratio (SNR) of the mammogram. Reduction of X-ray exposure degrades
the quality of the image, which already must reflect the superimposed structures of the breast —
athree-dimensional (3D) structure - on a 2D projection. Noise further obscures these features.
This presentation of the mammogram could be easily reduced to that of alarge textured noisy
image, which till represents the best tool for early cancer detection to be used around the
world. The different breast deformation during the X-ray shot causes more difficulties in the

detection process.

1.3.2 Future Trends

In order to overcome the present limitations in medical image analysis, the need for computer
aided image segmentation is most important. There are several implemented techniques that
bring improvements in the field of medical imaging. Most of them have proved to be
unsatisfactory for the purpose that they are used, such as automatic detection and managing
mammograms. Moreover, although the resulting images may look quite impressive, it has not
always been the case that radiologists worked better on the basis of such processed images.
Therefore, there is sufficient room for improvements and further developments in image
processing. Some present trends in the field include:

o the development of soft-copy reading workstations [12, 37, 142, 177], as the tool for

the future use of digital mammograms;

11
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o friendlier user-interfaces (touch-screen, automatic report generation, robust display)
which would only require a minimal intervention from the human factor involved, the
radiologist;

e the development of training-systems with immediate feedback and the use of larger
databases,

e the development of real-time applications for making the best use of the image
processing methods in clinical applications;

o finding more reliable, more robust and faster image processing algorithms;

e software integration of robust algorithms is an inherent condition in building strong

performant medical systems.

1.4 Hoping to “ M ake a Difference”

It has become clear that the earliest possible detection of signs of breast cancer is fundamental
in making a difference in the lives of so many women having to face the disease. The
challenges enumerated in the previous section combine to create a complex problem that hasto

be solved using basic science.

1.4.1 Thelncentive of Work

The research described in this thesis is motivated by the intrinsic facts of managing the
detection of breast cancer. The first question arising is. why detect microcal cifications and not
masses? The answer is quite straightforward; the presence of microcalcifications is one of the
earliest indications of malignancy. Whether or not they appear in independent clusters or
associated with masses, the existence of microcalcifications in a mammogram is often a clear

warning of abnormality. They can be visible long before any palpable lesion has devel oped and
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their early detection can indeed “make a difference” in the prognosis. The detection of masses
isalso investigated to a smaller extent in this thesis.

A second question arises at this stage: what type of medical imaging procedure should be
investigated in the detection process? Although nuclear images of the breast are currently
available, clinical practise reveals that only three techniques are of common practice in a breast
assessment. These are: X-ray mammography, MRI and ultrasound (the main characteristics of
each technigue will be highlighted in Chapter 2). Unlike the first of these, the latter two (and
most commonly only ultrasound) are only used to complete and reinforce the conclusion of
triple assessment. Hence, the fundamental and primary procedure that “makes a difference” in
the diagnosis remains X-ray mammography. As part of the screening programme, X-ray
mammography provides the data that the radiologist will subsequently use to conclude: benign,
malignant or the desired normal. From the point of view of detecting microcalcifications, only
mammograms can provide the necessary spatial-resolution and SNR to distinguish
microcalcifications from the background image. Both MRI and ultrasound are inadequate for

this purpose.

1.4.2 Remarkable Achievementsto Date

The task of CAD systems is to prompt suspicious regions in an image to the radiologist. The
path that all methods must follow starts from image acquisition and visualisation and extends to
guantitative and functional analysis. Directly digital mammography (cf. Chapter 2) will
simplify the acquisition and will eliminate the digitisation stage. The results of analysiswill tell
the radiologist how big is the highlighted abnormality, what are its shape characteristics and
how it behaves. Studies prove that the performance of radiologists is increased when a good
segmentation or classification system is used [42, 48, 135, 152].

The mammogram is enhanced for better visualisation from improving the contrast and

reducing the noise [65, 80] to compensating for breast margin and segmenting the pectoral
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muscle [20, 79]. Two main branches in mammographic image segmentation are further
devel oped: the detection and classification of microcalcification clusters and masses. Chapter 2
outlines afew notable methods.

The ultimate goal of any method is to be robust enough for clinical application and provide
reliable results when used in the hospital environment. A short review of the latest CAD
systems is provided in [108]. A remarkable technique worth mentioning in this introduction
was launched by R2 Technology with their ImageChecker®. This is a complex system that
outputs both clusters of microcalcifications and dense regions and areas with radiating lines.
The results are very promising, as it has been reported that using the R2 ImageChecker®
microcalcifications are detected with 98.3% TP rate with 0.5 FP/image [141]. Other reports
mention 100% TP rate on microcalcification detection with 2.2 FP/image, while 81.6% of
masses are prompted [41]. However, although the diagnostic sensitivity of the clinicians rose
when using the system, the positive predictive value of the clinician’s interpretations worsened
due to the high number of FP [42]. Furthermore, approximately half of the increase in the recall
rate in screening programmes is due to the high number of FP in microcalcification detection
[41].

The Standard Mammogram Form (SMF) is an image normalisation technique that
eliminates the current limitations of the imaging process and relies only on anatomical breast
structures. Chapter 2 will briefly overview the hy; model [65]. The SMF™ Workstation
developed by Mirada Solutions embeds the quantification of the amount of non-fat and fat
tissue for each pixel, temporal registration of the breast, reconstruction of the uncompressed
breast and localising microcalcification clusters in 3D [180]. This system obtained a

microcalcification cluster detection rate of 95% TP with 0.38 FP per image.
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1.4.3 The Aim of the Thesis

The systems enumerated previously show impressive advances in detecting and diagnosing
breast cancer, as there is considerable research ongoing in the field. Although figures almost
reach 100% detection rate, the large number of women undergoing screening (about 3 million
mammograms annually in UK only) mean that every percent that remains undetected represents
alarge number of women that will most probably have to confront cancer at an incurable stage.
In Western Europe alone, 1% of the missed cancers would sentence approximately 2350
women each year to face long and painful treatments, both physically and psychologically, with
extremely small chances of survival.

The motivation of this work is born from the impetuous necessity to develop detection
techniques ready for clinical application. Such systems must prove sufficient robustness and
trustworthiness to be used in hospitals in real-time. When dealing with particularly delicate
problems, such as human lives, we must assure that results are optimal and accept full liability.

Many methods described in the literature attempt to improve the results of detection of
breast abnormalities by tuning the variety of parameters used in the implementation of the
algorithm to suit every single case studied. Although the outcome is impressive, the
consistency and reproducibility of results is highly dependant on the operators and their
capability to find the best parametrical configuration for the detection. The approach used in
this thesis proposes a fully automated non-parametric method to detect microcalcifications
using the SMF normalised representation of the breast. The aim is to overcome some of the
current limitations in methods tackling this subject. The algorithm presented here can be
similarly used for intensity images, since its implementation would follow the same logic on
grey-level mammograms.

Thefirst intrinsic objective is the removal of noise, as a major source of FP. The algorithm
presented here considers several types of noise from quantum mottle to shot-noise and uses

subsequent filtersto eliminateit. Curvilinear structures (CL S) — ducts, blood vessels, ligaments
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or tumour spiculations - proved to be equally important in the computation of the method
specificity and a major challenge. A CLS removal step is embedded in the method, prior to the
final segmentation. Built on acombination of partial differential equations (PDE), wavelets and
statistics, the technique presents the user with a map of detected microcalcifications. The
detection of these early signs of malignancy in the breast is meant to assist the radiologists in
diagnosing breast cancer. The free-response receiver operating characteristic (FROC) curve of
the microcalcification detection method is shown in Figure 3, along with some examples of
detection that illustrate the sensitivity and specificity of the approach. The detection of masses

in temporally registered enhanced mammograms is also investigated.
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Figure 3: The FROC curve of the microcalcification-detection method.
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Figure 4. Detection example 1; (a) the original contrast-enhanced SMF sample with a very
large microcalcification cluster in a dense area of the breast; (b) the detection map of the
detection method presented in this thesis depicting correctly the cluster.

Figure 5: Detection example 3; (a) the origina contrast-enhanced SMF sample with a subtle
microcalcification clustersin a dense breast area; (b) the detection map.
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Figure 6: Detection example2; (a) The origina contrast-enhanced SMF sample with a
widespread microcalcification cluster; (b) the detection map.

Figure 7 Fig Example4. (a) The origina contrast-enhanced SMF sample with a cluster of very

small microcalcifications in an areawith several curvilinear structures; (b) the detection map.

1.5 Overview of the Thesis

The thesis aims to detect features signalling early development of breast cancer in

mammographic images. We have reviewed some basic facts about breast cancer and its impact
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in the Introduction. A brief anatomy of the breast is also presented here along with some of the
most common mammographic anomalies. The incentive of the thesis is closely related to
screening programmes; therefore, the screening programme is analysed along with future trends
in mammography.

Chapter 2 begins with a comparative overview of current imaging modalities to detect
breast cancer. Mammography (X-ray and digital), Magnetic Resonance Imaging (MRI),
Ultrasound (US) and Nuclear Imaging (PET, SPECT) are described and analysed. With their
strengths and weaknesses outlined, this is followed by a discussion of the detection of
anomalies in mammograms. The detection and classification of both masses and
microcalcifications using state-of-the-art algorithms are reviewed. The chapter ends with a
description of the Standard Mammogram Form (SMF), the image normalisation technique at
the heart of our algorithm evaluation.

With Chapter 3 we start presenting the results of our work. The beginning of the chapter
introduces anaytically the concept of diffusion and particularly anisotropic diffusion, a
cornerstone idea in the development of the enhancing filter used throughout the thesis. Our
work is the first attempt to use anisotropic diffusion to filter mammographic images and
analyse them. Thisis a priori areasonable thing to attempt as anisotropic diffusion smoothes
the image, reduces noise (hence increases signal to noise, which is generally poor for
mammographic images), and yet does a reasonable job at preserving image structure. The filter
and its parameters are described and the chapter concludes with the presentation of the first
results.

Chapter 4 presents the principal original contributions of the thesis. The removal of shot-
noise and curvilinear structures (CLS) is introduced in the image pre-processing. We develop a
statistical approach for deriving automatically the parameters of the enhancing anisotropic
diffusing filter. The second origina step is the development of a method for adaptively
thresholding the filtered results in order to segment microcalcifications. This is based upon a
model proposed originaly to account for certain findings about the human visual system,

though, of course, it can be judged on its own merits and by the results that using it leads to.
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The aternation of filtering and segmentation steps employed contributes to the novelty of the
method. We build several FROC curves for the validation of the detection algorithm. We
compare detection methods on SMF images as well as the outcome of our algorithm on both
SMF and intensity images.

Chapter 5 expands the use of the enhancing filter to the detection of masses. An original
method to prompt mammographic masses is investigated; it uses image registration and
enhancement as a pre-processing step, followed by texture analysis-based segmentation and
visual comparison between temporal mammographic pairs. The chapter concludes with a
discussion of features for mass classification.

The final chapter of the thesis, Chapter 6, lays down a general summary of the work
presented in the thesis accompanied by discussion and conclusions. Future work ideas are also

underlined and some initial examples are shown to the reader.

20



CHAPTER 2

2 Diagnosing the Breast

Real knowledge is to know the extent
of one'signorance.

Confucius

The diagnosis of breast disease is based on a routinised process caled triple assessment
involving breast surgeons, histopathologists, radiologists, and oncologists. Medical imaging
procedures form a key part of the evaluation. Generally, when speaking about medical vision, a
variety of imaging techniques should be mentioned. Whether we refer to X-ray and computed
tomography (CT), MRI, US, positron-emission tomography (PET) and scintimammography,
tissue impedance imaging, infrared or optical imaging [170], there are three mgjor problemsto
be dealt with:

e imagestend to have poor signal-to-noise ratio (SNR);

e images are mostly highly textured and variable from one subject to another;

o clinically significant details are often subtle.

Each imaging technique has its advantages and disadvantages and the clinician would often
need to use a combination of them for best results.

Breast imaging faces the same difficulties. While X-ray mammography is the primary
imaging method used in screening programmes around the world, MRI and US have become

auxiliary tools in the breast clinic triple assessment process. Nuclear imaging has also shown
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rapid advances in breast cancer detection, but the cost of installing and maintaining PET
systems has until recently slowed its adoption. This is likely to change rapidly over the next
few years. The next few sections will expand on each of the techniques used in breast imaging

and will be followed by a summary of their strengths and weaknesses.

2.1 Imaging M odalities

2.1.1 X-ray Mammography

X-ray mammography has been widely used to detect the earliest signs of breast cancer since the
beginning of last century, due in part to the cost-effectiveness of the procedure relative to other
imaging modalities [5]. Screening programmes throughout the world have proved its
effectiveness to image non-palpable abnormalities in the breast with very high resolution (the
equivalent of a 25um pixel resolution [75]). The earlier the detection, the better the chance to
cure the cancer and to date, mammography is considered to be the best modality to depict
microcalcifications and even small tumours. Mammography has the best combination of
sensitivity, specificity, low cost and short acquisition, as underlined in Section 2.1.6.

A mammogram is a two-dimensional X-ray image of the mammary gland produced by a
radiation beam passing through the compressed breast. Photons are attenuated according to
their initial intensity, the thickness of the tissue they pass through and the attenuation
coefficient of the respective tissue. The breast must be initially compressed between two plates
to even its thickness and spread out the breast tissue for the radiologist to detect density
variations easier in a mammogram. This improves the appearance of the mammogram and the
image quality is even across the breast, while exposing the patient to a lower radiation dose.
Figure 8 shows the clinical imaging machine. From the X-ray source, the photons traverse the
breast compressed between the superior and the inferior plates and their intensity will change.

The beam eventually reaches the film cassette, which, in the case of a film-screen device,
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contains the anti-scatter grid, the film and the intensifying screen. The photons are absorbed by
the intensifying screen, which then emits light photons; these are recorded on the film, resulting
in a mammogram.

The role of the anti-scatter grid is to absorb the mgjority of scattered radiation (the photons
that have deviated from their initial path after attenuation and re-emission at a different angle).
More specifically, the anti-scatter grid absorbs those photons arriving at a film location at a
“low angle” determined by the dimensions of the grid. The advantage of an anti-scatter grid is
that it removes much of the blur that can otherwise be seen in a mammogram. The
disadvantage is that its use necessitates a significant increase in the X-ray dosage to the breast
since scattered radiation can account for 40% of the total X-ray radiation exiting the breast
[65]. Figure 9 shows the mammographic image formation process and the formation of
scattered radiation. Mammographic applications must take into account:

o therelatively weak control of image formation;

e many non-linear effects, such as scattered radiation, time of exposure, breast

compression;

e thevariation in many image formation parameters between machines or within asingle

machine over time.

The Standard Mammogram Form (SMF) [65, 67] offers amodel of estimating the scattered

radiation that can eliminate the need for an anti-scatter grid.

23



Marius George Linguraru

X-ray source

Superior
plate

Inferior
plate

Film
cassette

Figure 8: The clinicak mammographic film-screen machine. The X-rays pass through the

compressed breast from the X-ray source towards the film cassette.
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Figure 9: A representation of mammographic image formation and scattered radiation.

We noted that mammogram is a 2D image of the breast, but the anatomical information is
3D. Two views of each breast are taken: a medio-latera-oblique (MLO) view (shoulder to

opposite hip) and a cranio-caudal (CC) view (head to toe) [190]. In Figure 10 are shown all
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four images from a single patient: MLO and CC views of the |eft and right breasts, as used by a
radiologist in detecting abnormalities. Both views show the entire breast area from different
angles. The MLO mammograms aso image the axilla, a key in determining metastasis.
Unfortunately, obtaining the four images can cause distress to the patient, not least because the
procedure is rather painful due to the compression of the breast. (During the time that | have
spent at the Breast Cancer Unit of the Churchill Hospital in Oxford | have repeatedly noticed
patients complaining about pain.)

The 3D correlation between these views is still difficult due to the different compression
factors and the considerable inter- and intra-doctor variability in finding the correspondences
between regions in the MLO and CC views. Kita et al. introduced a correspondence between
the MLO and CC in [86, 87] and computed a 3D model of the breast based on the acquired
mammograms. This allows masses and microcalcifications to be viewed in the three
dimensional framework of the breast, making it easier to diagnose and plan the eradication of
tumours.

According to the radiation attenuation of breast tissue, there are three main anatomical
categories in the breast, in the reverse order of their attenuation coefficient magnitude:
calcifications, glandular tissue and fat tissue. In areas of lower exposure, the film will become
brighter and the anomalies will be highlighted on a background of darker fat tissue. The
drawback is the inefficiency of mammography in the detection of cancer for young women and
women on hormone-replacement treatment (HRT), since tumours and glandular tissue have
similar attenuation coefficients. Scars and angiogenesis (tumours show an increase in the local
blood flow) are not always imaged in mammography.

Mammography is the only reliable method to visualise microcalcifications and tumour
spiculations. For these reasons, mammography is currently the best imaging procedure to detect

pre-invasive diseases and the most appropriate modality for screening.
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Figure 10: The combination of four images used by the clinician in diagnosing the breast; (a) a
pair of MLO images showing the breast, the pectoral muscle and axilla; (b) apair of CC images

from the same patient.

2.1.2 Digital Mammography

Currently, mammography is overwhelmingly film-based. Although many technical problems
have retarded the uptake of mammographic image analysis of digitised films — in which X-ray
photons are first converted to light, then expose the film, and then to electrons as the film is
digitised -, directly digital mammography — in which X-ray photons are converted directly to

electrons - is now available [12, 37, 142]. The digital signal is then stored on a computer in the
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form of an image, which can be visualised on a workstation [106] or printed on a film. Full-

field digital systems make a clear distinction between image acquisition, image storage and

image visualisation. There are several clear advantages that digital imaging hasto offer:

digital image acquisition is expected to reduce the X-ray dose in the imaging process,
(because of the higher sensitivity of the charged-couple device (CCD) versus film to
radiation [158]) leading to less risk for the patient; it also improves the contrast
resolution and the SNR will be higher as film granularity will no longer be a source of
radiographic noise [134];

digital image storage reduces the cost of the operation since it does not require film
and chemicals, provides fast and reliable retrieval from the archive and alows the
collection of large image databases. It also prevents films being lost between screening
visits — currently 22% of films are lost;

digital image visualisation enables the use of Computer Aided Diagnosis (CAD) for
automatic detection, data documentation and image processing, unlike the rigid film.
Given that the digitisation of A4 size X-ray films to 50 micron pixelsis typicaly very
slow (up to 10 minutes), directly digital mammography could well be the catalyst that

leads to the widespread use of CAD.

Early detection can be accomplished only with high quality detection and processing tools

in the different levels of the screening programmes. Directly digital mammography is the new

trend in X-ray mammography, which should bring notable improvements in the devel opment of

screening programmes. The soft-copy reading environment, a computer workstation that

displays digital mammograms for the radiologist to read, is a tool that will make digital

mammography available in hospitals for better results in detecting the structures of interest

within the breast. Figure 11 shows the digital mammography machine developed by Siemens.

Recent evaluations [60, 61, 136] proved that radiologists have a similar performance to using

film-screen mammography when working on soft-copy machines.
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Figure 11: A soft copy environment produces digital mammograms, which are stored directly
into a computer. This figure shows the Opdima System from Siemens, which was designed for
near real-time computer guided biopsy.

2.1.3 M agnetic Resonance | maging

Magnetic Resonance Imaging (MRI) is a complementary imaging technique to X-ray in the
diagnosis of breast cancer. X-ray mammography has evolved significantly over the past few
decades and is an extremely useful imaging modality for screening programmes, but needs to
be seconded by MRI and US for best clinical results.

As its name implies, MRI results from magnetising the body tissue of the patient. The
patient is introduced into the scanner (Figure 12), where she must lie with as little movement as
possible for 20-30 minutes. An external magnetic field is applied to the organ to be imaged.
The water protons (which are abundant because of the preponderance of water in human
physiology) enter a higher energy state when a radio-frequency pulse is applied and this energy
is re-emitted when the pulse stops. A cail is used to measure this energy, which is proportional
to the quantity of hydrogen and therefore specific to the tissue type. The fat and dense tissues of
the breast thus give different intensities in the final MR image [27]. However, to date, not pulse
sequence has been found which demonstrates a clear differentiation between carcinomas and

benign tissue changes.
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Figure 12: The MRI scanner with a patient in the right position for an MRI of the breast.

MR images offer a good 3D representation of the organ; they are a collection of successive
dlices of the region of interest (ROI), a profitable way to visualise 3D data. Images can be axial,
as in Figure 13 (slices perpendicular transversal to the body, similar to the CC view in
mammography), sagittal (slices perpendicular along the body, closer to the MLO view in
mammography) and coronal (slices parallel to the body through the breast). The information
gathered from any of the 3 views can be used to build a 3D representation of the breast [148].
Also, fully 3D MR sequences are available, in which data is captured in a 3 dimensional 3D
Fourier space, rather than the data being captured separately in a set of individual slicesina2D

Fourier space and then stacked to make a 3D volume.
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Figure 13: An axia T1-weighted MRI dlice of the breast (using a gradient echo sequence), the
closest view to the X-ray CC image. In thisimage, fatty tissue appears brighter, asits T1 value
(around 200 ms) is considerably less either that that of normal healthy tissue (typically 700-
1000 ms) and of cancerous tissue (typically 1500 ms).

Knowing that tumours have an increased localised blood flow, called neoangiogenesis,
researchers embedded some dynamic information of the breast tissue in MRI. Using contrast
agents, the examination of the angiogenesis of the breast can discriminate between malignant
tumours and the surrounding tissue (Figure 14). The contrast agent used in clinical practice is
Gd-DTPA (gadolinium diethylene triamene petaacetic acid) [65], which is paramagnetic due to
Gd's unpaired electrons. Its intravenous injection will enhance the blood vessels in the MR
image and highlight the regions with high concentration of blood supply and vessel leakage,
such as carcinomas. Malignant tumours have elevated vascularity both at the edges and within
the tumour [157], unlike benign anomalies and can be identified in a sequence of pre- and post-

enhancement MR images [59, 160].
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Figure 14: A sequence of contrast-enhanced MR images of the breast; (a) is the MR dlice
before the injection of contrast agent; (b) isthe MR dlice after contrast enhancement, where the

tumour is highlighted due to its higher vascularity.

In addition to X-ray mammography, MRI has shown great results in detecting tumours in
pre-menopausal women, where mammograms cannot distinguish between parenchymal tissue,
scars and carcinoma. Women with implants or undergoing HRT treatment also benefit from
MRI. Although there is no harmful radiation involved in the process, Gd-DTPA is actually
guite toxic and some patients have adverse reactions. There is no breast compression in breast
MRI, but the time of acquisition is much longer. Furthermore, very small pre-invasive lesions
as well as microcalcifications are not visible in MRI [126, 168] and the spatial resolution is
much lower than in a mammogram (1 mm?® voxels, while the most common resolution in
mammography is 50 micron pixels). The currently high capital and recurrent costs of MRI, the
cost of the contrast agent, and the time taken for the procedure make MRI unsuitable for
screening programmes. However, the UK Government has started a pilot study aimed at MRI
screening of young women who are epidemiologically at highest risk of contracting breast
cancer.

The primary drawback of MRI is the inability to image microcalcifications and there is
extensive debate ongoing on this subject [63]. Until researchers can overcome this inadequacy,
there is substantial work done in data fusion. A combination of X-ray and MRI can combine

the early visualisation of anomalies with the availability of 3D data and angiogenesis.
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2.1.4 Ultrasound I maging

Ultrasound (US) is the third imaging modality currently used frequently in clinical assessments.
When something unusual is noticed in the mammogram of a patient, it is commonly the case
that an US image is subsequently taken and analysed. To date, there is no cheaper and simpler
method to visually investigate the breast than US. For this reason, and its efficiency to
differentiate between soft and hard tissue, US is used as a complementary detection and
eval uation method next to X-ray mammography.

US images of the breast are formed from the reflections produced by high frequency
acoustic waves that reach the breast tissue [170]. The response of the different tissue depths and
densities will return a map of densities. This is the main utility of US, that of distinguishing
between soft and hard tissue and therefore, to some extent, between benign and malignant

masses. Figure 15 shows the HP Sonos 5500 echographic machine.

Monitor

US probe

Figure 15: An ultrasound machine; as the probe is swept over the patient’s body, the clinician
can visualise in rea-time the US images on the machine monitor.

US images show strong echoes for calcium and skin, but because of the small size of

microcalcifications and the poor SNR, only macrocalcifications may be visible. Then there are
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weaker echoes from the parenchyma and finally, amost no reflection from fat and tumours
[105]. Figure 16 shows the representation of a cyst and a cancer in US. The cyst appears as a
dark consistent region surrounded by glandular and fat tissue, slightly squeezed by the pressure
of the probe. The cancerous tumour is more vertically elongated with fuzzier edges and thereis
a shadow following it on the lower part of the image (opposite the US probe). The reduced

SNR and the low lateral resolution mean that their margins are poorly defined.

Figure 16: Two US images of the breast; (a) the image of a cyst, a compact dark area squeezed
by the probe; (b) the image of a tumour, an elongated dense area with less well-defined

margins.

Ultrasound images can be obtained using a free-hand probe that is swept over the ROI.
Using 3D reconstruction, the area of the breast can be visualised three-dimensionally [176].
Due to the limited dynamic resolution, US does not provide a full 3D reconstruction of the
breast, but the information is essential in determining the extent of the tumour. Contrast agents
are also used in US as well to enhance the acoustic impedance of tissue [82, 151]. Furthermore,
an elastographic approach is used by clinicians when palpating the breast with a US probe [18,
31, 46]. The displacement of the ROI is estimated and the larger that it is the higher the chances
to have detected abenign tumour. Other features used by radiologists to classify lesionsinclude

the margin definition, echogenic texture, shadowing and lesion shape [71].
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Besides being the best detector of cysts, the real-time response of the procedure makes it
valuable in performing image-guided minimal-invasive biopsy. It is also applicable to patients
of al ages and, from the patient’s perspective, it is the most comfortable breast imaging
procedure. The changes caused by HRT do not represent a problem when searching for
fibrocystic diseases. US has its disadvantages though: it has the poorest resolution and SNR of
the modalities that we are considering and does not image microcalcifications and very small
lesions. Although US remains unsuitable for breast cancer screening, it is afield that attracts a
great deal of interest from researchers and many people regard it as the next mgjor step in
screening programmes.

One notable achievement related to US is the vibro-acoustic tissue mammography
proposed by Fatemi et al. [38] in which we can visualise microcalcification in an US image for
the first time. They use low frequency US to make the tissue vibrate and utilise the response to
image the tissue hardness. The method is at its very early stages and is not as reliable in

imaging microcalcifications as the X-ray mammography, but opens a new route for breast

imaging.

2.1.5 Nuclear Imaging

Nuclear medicine is a relatively new branch of breast imaging. Positron emission tomography
(PET) and single-photon emission computed tomography (SPECT) have recently begun to be
more widely used in breast diagnosis. The PET scanner appears similar to an open MRI
scanner, as in Figure 17. Scintimammography (SPECT of the breast) has proved to have good
sensitivity for detecting metastasis and palpable cancers [19, 128]. Images are acquired in
multiple cross-sectional slices of the breast by moving a single planar detector around the organ
or by using multiple detectors around the body of the patient [170], offering a good 3D

localisation of the tumour.
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Figure 17: A PET scanner.

Nuclear medicine uses radiopharmaceuticals to differentiate between tumours and normal
tissue. Such agents are injected into the body, and since tumours tend to have a much greater
uptake of the agent, they are identified by a gamma camera [19]. Scintimammography uses a
very small dosage of radioisotope with low residual concentration. As Webb observes [170],
there is no measurable toxic effect with the use of radiopharmaceuticals since the emitted
radiation is not very strong from a small mass of isotope. Figure 18 shows some examples of

scintimammograms and the sensitivity of the technique to multi-focal cancers.
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Figure 18: An example of scintimammograms showing the sensitivity of SPECT images to

multi-focal tumours.
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Nuclear medicine is expensive, although scintimammography is less expensive than MRI.
The cost of aPET scan is currently about £700, compared to about £350 for MRI and less than
£50 for mammography and ultrasound. Its sensitivity is high, but it fails to detect small non-
papable tumours. PET actualy has the best sensitivity and specificity because of the cell
uptake of sugar and the subsequent positron emission from the radio tag. Scintimammograms
are feasible in detecting cancer on younger women and dense breasts, but have low resolution
and poor SNR. Its spatial resolution will soon rival that of MRI, since it has improved
substantially over the past few years. The utility of nuclear medicine is al'so evident in tracing
the effects of chemotherapy faster than MRI, by imaging changesin the local angiogenesis. The

axilla are also well imaged, but the acquisition time of PET is about 60 minutes.

2.1.6 Strengths and Weaknesses of the Breast | maging Techniques

We have briefly reviewed the imaging modalities used today in the diagnosis of breast cancer.
Clinica practice has shown that none of the techniques suffices for every patient, so in general
a combination is required. The triple assessment associated with screening programmes uses
mammography as the main and US (and sometimes MRI) as the complimentary imaging
procedures. MRI and nuclear imaging are used to a more limited extent in the detection of
breast cancer. Table 1 compares the strengths and weaknesses of each assessed method.
Reviewing the advantages and disadvantages of mammography, MRI, US and nuclear
medicine, it becomes evident that at present mammography offers the best compromise
between costs and performance. For its good specificity, sensitivity and low cost,
mammography was chosen as the main screening modality. Its widespread use and obvious
utility are evident reasons for extensive research to be carried out in improving the impact

mammography has on the detection of breast anomalies.
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Table 1: The strengths and weaknesses of breast imaging procedures

Mammography MRI us Nuclear
Imaging
Tumour High Poor to pre- Low Paoor to pre-
sensitivity invasive invasive
tumours tumours
Microcalcifica- | YesYes/Yes No/Yes/No No/Yes/No No/YesYes
tions/ lymph
nodes/
spiculations
Multi-focal Poor Yes Poor Yes
diseases
Young + HRT No Yes Yes Yes
women
Resolution/ SNR | High/High Medium/High | Poor/Poor Poor/High
Costs Cheap Expensive Cheap Expensive
Acquisition time | Short, but 20-30 minutes | Real-time 60 minutes
unpleasant
3D information | No depthinfo, Yes Yes Yes
3D applications
Angiogenesis No Yes No Yes
Toxicity/ Yes/Yes Y es/ natural No/ Y es/ natural
compression deformation deformation deformation

2.2 The Detection of Mammographic Anomalies

The development of Computer Aided Diagnosis (CAD) systems has reached the point where
they offer extremely valuable information to the clinician in the detection and classification of
abnormalities. So far, they can only assist the medical staff in making a decision. To date, a
CAD system performs about as well as a radiologist, but the combination can perform better
than either alone [48, 76, 135, 152]. In X-ray mammography, CAD systems hope to assist the
clinician in diagnosing breast cancer at the earliest possible stage. Their main use to dateisin
screening programmes, where the large number of mammograms to be processed requires a
large number of radiologists and the difficulty of their interpretation necessitates robust and

reliable assistance. Furthermore, the rapid development of digital mammography increases the
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utility of CAD in everyday image processing (e.g. zooming, contrast enhancement, edge
detection, image registration and subtraction) and fully automated detection methods.

There are two groups of major anomalies in the breast: masses and microcalcifications;
detection and classification methods usually tackle one of the two. The following two sections
review the state-of-the-art in detecting and classifying masses and microcalcificationsin X-ray
mammography. The first complex CAD system detecting both masses and microcal cifications
approved by the Food and Drug Administration (FDA) in the USA was the R2 Technology

ImageChecker® [141, 152].

2.2.1 The Detection and Classification of Massesin X-ray Mammography

Masses in the breast take their name from the characteristic well-defined mammographic
appearance. They tend to be brighter than their surrounds due to the high density within their
boundaries [95]. In fact, they do not always have clearly defined edges, this definition being
typically applicable to benign masses. Most malignant lesions have rather ill-defined forms,
since they infiltrate into the surrounding tissue and may present radiating spiculations (stellate
lesions) [127, 159]. Malignant microcalcification clusters might also develop in association
with cancers. Figure 19 illustrates the variety in the appearance of breast tumours. Some masses
appear to create a ‘halo of security’, which contradicts the ideal mass appearance and which
may correspond to the angiogenesi s region surrounding the dense necrotic tissue [65].

Mass detection algorithms aim to depict tumourous regions in mammograms by
differentiating abnormal tissue from the fatty background and parenchyma. The task is
extremely challenging due to the very broad variety of masses and the subtle appearance of
some of them. Furthermore, parenchyma has similar density to that of tumours at the passage of
X-ray through the breast and represents the main source of false positives (FP) in mass
detection algorithms. The 2D highly textured appearance of mammograms with overlapped

tissues contributes to the significant percentage of errors encountered in tumour detection.
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Using information from both MLO and CC views can clarify some of the ambiguities.
Unfortunately, although recent methods tend to equal the radiologist’s performance, no single

algorithm has yet been devel oped to function well on all mammographic cases.

Figure 19: Some examples of masses in X-ray mammography; (a) a benign cyst will well-
defined boundaries and an ellipsoidal self-contained shape; (b) a stellate mass with spiculations
radiating from the central mass into the surrounding tissue; (c) an ill-defined mass with low
contrast at the boundary, which can be easily confused with the neighbouring tissue.

The classification of tumours as either benign or malignant is performed by taking into
account several mass features. The main features used are the shape of the lesions (spiculated
or circumscribed), the texture of the mass and the contrast around the edges.

When related to masses, automated image analysis relies on three main applications:

e Locating abnorma regions in a single mammogram, when, as a result of several
features calculated (i.e. enhancement, likelihood measure), possibly pathological
regions of the breast are extracted and pointed out to the radiologist [14, 16, 24, 49, 52,
79, 88, 92, 94, 115, 145, 146, 184, 185]. Such methods are usually designed on
different types of mammographic lesions.

e Matching bilateral pairs, making use of the same-view left and right breast
mammograms of the same woman at the same time, acknowledging the approximate

symmetry of the two breasts [33, 78, 182]. Areas of high asymmetry are labelled as
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suspicious in both CC and MLO views and referred to further examination. Previous
image registration is required.

e Matching temporal pairs, using the same-view of the same breast mammograms of the
same woman at two different times, searching the major changes that appear between
the two mammograms [89, 97, 104, 109, 110, 111]. All regions showing changes over
time must be thoroughly evaluated, excepting the involution of dense tissue into fat.
The breasts of women on HRT have denser appearance in mammograms over time, an
exception to the general rule. The registration of the temporal pairs is aso necessary
before analysing the images.

The first approach to detecting masses is probably the most elaborate, since it does not ook
for bright and unmatched regions, but it searches for sets of features that describe the
appearance and properties of a breast mass. We shall further expand on the most popular
approaches leading to the most recent and relevant achievements in detecting breast lesions in
single mammograms.

Most algorithms for detection and characterisation of masses follow a three-step process.
They start with a pre-processing step, which aims to filter the image and remove some possible
FP (i.e. noise or background removal). The second step prompts suspicious areas, which form a
set of mass candidates. The selection is done after computing stetistical features of the
mammogram at pixel level, sometimes aided by learning, for example by neural networks [15,
49, 79, 147, 175]. One of the most basic methods to segment lesions is based on region
growing, labelling connected similar pixels from a seed [91, 98]. The fina step is the
characterisation of the depicted masses as either malignant or benign, based on the analysis of
shape, sharpness, size and texture (Chan et al. [24] extract a total of 320 spatial grey level
dependence texture features).

The detection step mostly follows along conventional lines. One of the common
approaches preferred in identifying masses is the convolution of the breast image with a second
order derivative (Laplacian of the Gaussian), a zero mean filter with a positive centre

surrounded by negative boundaries [16, 147]. For such algorithms, the most relevant feature of
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amass isits local brightness. The method will prompt lesions with a bright central mass, but
may fail in detecting more subtle masses. Another approach is template matching using a
model of a mass to find resemblances between the model and areas of the breast [94, 123]. This
approach performs better on faint masses, since the correlation is a normalised intensity
measure, but the wide variety of masses will still confine it to the detection of central masses.
Furthermore, it will depend on the shape of the chosen template.

The evolution of mass detection methods lead to the development of more sophisticated
algorithms, since the above mentioned approaches do not have the necessary flexibility to adapt
to the variety of mass types in mammograms. Statistical analysis of the mass area can bring
valuable information, since the orientation of the gradients will be radial and pointing towards
the centre of the mass [16]. Groshong et al. [52] adapted the concept to a Hough transform. A
signature based on a recursive median filter at various orientations on a pixel was used to
determine the shape of a structure as either blob or line by Zwiggelaar et al. [184, 185]. Miller
and Ramsay [115] perform a multiscale non-linear analysis of maximum entropy, while Li et
al. [97] use morphological filtering. In another approach, the distance from the nipple to the
mass in both MLO and CC imagesis evaluated to discard FP [33].

Chan, Sahiner et al., developed an original method in their ROC study to detect and
characterise masses [24, 134, 145, 146, 147]. The performance of the classifier was evaluated
using ROC analysis, after a previous training step performed on 238 mammograms. A
background correction is applied to the original images and three images are subsequently
generated for each one of them: a median-filter smoothed image and two high-frequency
enhanced images which are used in a clustering algorithm to classify the pixels as either mass
or background. The outcome of the segmentation of the mass provides a mass region smaller
then the real mass and then using a rubber-band-straightening transform (RBST), a 40-pixel
wide region around the tumour, the mass is transformed into a rectangular shape. The RBST
transforms the band of pixels surrounding the mass into a Cartesian plane (the RBST image)
and has the advantage of making the mass margins almost parallel, with perpendicular spicules

to the length of the rectangle.

41



Marius George Linguraru

Chan, Sahiner et al.’s classification algorithm relies on two types of texture features:
measures from the spatial grey-level dependence matrices of the RBST image containing
information about image characteristics (i.e. homogeneity, contrast, etc. resulting in 320
features); and features computed from the run-length statistics matrices of the horizontal and
vertical gradient images of the RBST image (20 features). Using statistical analysis, the most
effective features are retained, eventually reducing to 41, and these are used as input for
Fisher'slinear discriminant classifier [10] to compute the relative malignancy rating of masses.

The likelihood of a mass to be malignant is very high when spiculations are present.
Besides detecting the central mass, there has been considerable interest shown in the detection
of spicules. They can be associated with a central mass, although there are architectural
distortions that can be prompted only by detecting the radiating spicules. Spicules typically
radiate from the centre of the mass (their pixels are directed to the centre of the mass [14,16])
and have the histogram of orientations flatter than normal tissue [83]). While a normal
mammogram has a radial pattern of ducts converging towards the nipple (especially at lower
resolution), a spiculated area introduces another radiating centre. Kegelmeyer [83] first noticed
the difference between the largely homogeneous orientations of normal edges (in small
windows) and the variety in orientations of suspicious edges. He proposed to use this histogram
of their orientations to differentiate between them. A model for spicules was built in [130].
Curvilinear structures (CLS) may sometimes be confused with mass spiculations. We shall
describe the detection and removal of CLS in Chapter 4.

Karssemeijer and te Brake [14, 15, 16, 78, 79] developed an elaborate algorithm to detect
stellate lesions without relying on the presence of a central mass. The method is laboriously
tested on different sets of images with a multiscale use of parameters. It makes use of familiar
pre-processing steps, including noise equalisation [80], pectoral muscle remova from MLO
images and breast edge correction. The results converge to an approximate fraction of 90% TP
at 1 FP per image.

Spiculated lesions are detected more easily than architectural distortions. If an increase in

pixels oriented towards a certain central region is found, then that area may be abnormal. The
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best results are obtained by combining the line-based pixel orientation map with features
signalling the presence of a central mass. Also, the multi-scal e approach improves the detection
figures, but is very dependent on the choice of the optimal scale. A comparison is made
between three methods for mass detection: Laplacian filtering, template matching and gradient
orientation analysis with clear general best results provided by the latter method.

The automated classification of masses in digital mammograms to a level that is clinically
acceptable remains an open subject. There are no clinically robust methods to differentiate
between benign and malignant lesions. There are several features that most papers take into
account: the size of the lesion, its shape (round for benign and jagged for malignant), the
sharpness of the intensity transformation at the edges (well-defined for benign, vague and
stellate for malignant), texture and contrast [24, 55, 120, 139]. Some origina work can be
found in [73] on the use of aradia edge gradient and [137] on looking at the lesions external
roughness.

Kitaet al. [86, 87] found a spatial correspondence between the MLO and CC views of the
same breast. The result of this was a 3D reconstruction of the breast with a model of the
detected mass within it. The authors computed a model of the decompressed breast from both
views, after having the mass prompted, and add the recomputed mass coordinates to it. There
are some obvious difficulties related to the ML O-CC correspondence of the deformed breast. A
considerable number of approximations are employed in this method and they result in
obtaining a model of an “idealised” breast, hardly matching the large variety of shapes
encountered in screening programmes. Some of the factors contributing to this are: the
estimation of the rotation angle of the X-ray source to acquire the MLO view; the modelling of
the expanded breast area (when sgueezed between the compression plates) by dilation
proportional to the breast thickness (later improvement introduced by Yam in [180]); the
correct detection of the nipple position; the ellipsoidal approximation of the cross-section of the
breast. The authors acknowledge the insufficient deformation data that can be extracted from
just two views and introduce some approximations regarding tissue movements. Although the

3D reconstruction of the breast from its two breast views is rather non-deterministic, the

43



Marius George Linguraru

method computes an estimation of the tumour or cluster of calcification location and situates
the abnormality in an actual 3D context.

Highnam and Brady [65] comment on the advantages of using the h;, representations,
noting that a mass would correspond to a hill-like structure surrounded by a smoother region
corresponding to fibroglandular tissue. The ultimate aim of the detection of masses is their
interpretation; therefore, the shape and arrangement of the salient region are relevant featuresin
this process. Section 2.3 of this Chapter will introduce the Standard Mammogram Form, as
image representation of hyy.

A potential problem that arises in evaluating detection algorithms is the use of the same
database to both train and evaluate the algorithm. Since such detection algorithms need to
adjust their particular parameters in the training stage, there is a clear risk that they might end
up being tuned to a specific image database and their performance on a different set of images
remains uncertain.

Increasingly, detection algorithms are evaluated on a set of publicly available databases
including that provided by the University of Nijmegen (50um, but no longer available), MIAS
(50um, http://www.wiau.man.ac.uk/services/MIAS/MIASweb.html, available free of charge at
small resolution) or University of South Florida (42-50um,
http://marathon.csee.usf.edu/M ammography/Database.html) databases. Although this provides
a good basis for algorithm performance comparison (when several methods are compared on
the same collection of images), there also involves the danger of developing worldwide
detection algorithms that may only work for certain image acquisition characteristics. For
example, there is a huge difference between the same mammogram (film) digitised on a laser
scanner (e.g. Lumisys) or CCD (e.g. Canon). Rarely, images from more than one database are
used in the evaluation of methods (i.e. the Nijmegen group uses images collected from two
databases), but no explicit comparison is made between results on the different sets of images.

Image normalisation is the solution to these problems.
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2.2.2 The Detection and Classification of Microcalcificationsin X-ray

Mammography

Microcalcifications represent one of the earliest signs of breast cancer and they account for
half of the non-palpable lesions that appear in mammograms. Calcifications are small deposits
of calcium (and related) salts representing either warnings of malignancy or just benign
formations. They are encountered in approximately 25% of mammograms and appear as bright
spots or clusters of such spots, due to the high X-ray attenuation factor of calcium [65]. Figure
20 shows some examples of samples of mammograms containing calcifications. To
differentiate malignant from benign microcalcifications, radiologists believe that they take into
consideration several criteria, such as their shape, size and arrangement of calcifications as
clusters.

According to their size, calcifications can be classified into macrocalcifications or coarse
calcifications (usually interpreted as meaning that their size exceeds 1 mm) and
microcalcifications. While it is believed that large, single, regular-shaped calcifications are
benign, small clustered whorled calcifications are more likely to signify malignancy, as noticed
by Caseldine et al. [22] and Le Gal et al. [44]. Although the detection and classification of
calcifications are two fields that have improved significantly in recent years, there is still no
robust differentiation between benign and malignant calcifications. However, each incremental
improvement in the detection rate has a potentially significant impact on breast cancer
screening.

The aim of automatic detection is to find a sufficiently reliable algorithm to be used in
clinical practice. Such algorithms are meant to assist the radiologist in making decisions and to
improve the overall sensitivity (the ratio of TP) and specificity (1 minus the proportion of FP,
c.f. Appendix C) of the detection process. Some of the factors that drastically influence the TP

and FPfigures are:
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o the variability of the anatomy of the breast; every mammogram has different features
related to different tissue types and correspondingly variable brightness in the
mammographic appearance;

e the imaging conditions, such as shot noise, quantum mottle, patient movement, low
contrast in mammograms due to low X-ray dosage and glare;

o faint microcalcifications lost in a dense background, the superposition of certain breast

structures (such as CLS).

Figure 20: Some examples of microcalcificationsin X-ray mammography; (@) an isolated large
calcification; (b) a group of two isolated macrocalcifications; (c) a subtle cluster of
microcalcifications following the shape of a duct (ductal carcinoma in-situ); (d) a compact

malignant microcalcification cluster.

There are many aspects of microcalcifications that need to be understood before attempting
to detect them. Lefebvre discusses them carefully in building a simulation model of

calcification clusters [96]. In order to overcome the above-mentioned compromising factors,
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most conventional detection algorithms consist of three main stages, similar to the approach

taken in detecting masses:

a preprocessing step based on filtering the image; the filter is meant to detect and
remove noise and enhance the structures of interest, the microcalcifications; Chan et al.
[25] and Nishikawa et al. [124] use a difference image, the result of subtracting a
signal-enhanced image from a signal-suppressed image;

a detection and segmentation step based on adaptive thresholding or local contrast, due
to the bright spot appearance with very high contrast of the microcalcifications; in
[124] both global thresholding and morphological erosion are used, in [153] the
segmentation is done by aregion growing algorithm, in [28] an adaptive thresholding is
combined with feature analysis, while in [8] morphological erosion and dilation are
used to detect microcal cifications,

a clustering step using a fixed size kernel to eliminate noise points and isolated

calcifications and identify clusters (formed of more than 3 calcifications).

Although most conventional detection methods are based on the above three-step

algorithm, the literature includes some novel detection methods, which are further discussed.

These new approaches tend to overcome some of the problems that conventional algorithms

have with faint microcal cifications and image noise.

One approach uses automatic neural network classifiers in subtracting calcification

candidates from mammograms and then building clusters with them [85, 143]. As expected, the

classifiers need to be trained and may become adapted to certain databases. Neural networks

are further used to discard FP [32] and classify [56]. Aghdasi [1] uses a neural network

classifier after using an adaptive wavelet transform to enhance the signal. Wavelet filters are

also used in [93] and [113] to highlight the high frequency signal from the background. Noise

is also high frequency and therefore remains the main problem to be solved.
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Yam et al. present a physics-based approach to detecting microcalcifications in [178, 179,
180]. The algorithm uses both grey level and SMF images and is based on two of the major
characteristics of calcificationsin each of the image types:

e onagrey level image, calcifications have an X-ray attenuation that is about 26 times

higher than that of fat or dense tissue; therefore, on a 3D plot of a mammogram they
“grow” higher and more abruptly than the surrounding tissue;

e on an hy, image, the estimated volume of the interesting tissue corresponding to the
region where a calcification is detected must exceed the estimated volume of the real
3D model of that region;

The detection method is described in more detail in Section 2.2.3

Most existing classifiers for microcalcification clusters consider 2D features from the
mammogram. A sense of 3D information is implied in the algorithms that utilise both CC and
MLO views. Yam et al.’s 3D reconstruction of microcalcifications builds a fully three-
dimensional model of the cluster and allows a thorough visual and statistical analysis of the
microcalcifications. The improvements brought by using information from CC and MLO views
are also underlined in [144]. Taylor et al. originally investigate the use of computerised
decision-making support to classify microcalcifications [2, 161, 162].

Ancther innovative detection method is introduced by Karssemeijer in [80, 81] and further
developed in [165, 166, 167] and [113] to reduce false positives. An adaptive noise equalisation
algorithm was developed to deal with the variation of noise characteristics in an image to make
the detection algorithm less dependant on image acquisition. Karssemeijer builds his noise
equalisation model by considering the strong dependency of image noise on signal intensity. He
relates the term “noise” to the standard error of feature values. The rescaling of data is then
based on a high-pass filtered image representing local contrast, since local features will only
depend on high frequency noise components.

The segmentation uses Bayes' rule for labelling and a Markov Random Field (MRF), a
combination widely applied in the enhancement of noisy images and subsequent classification.

These are the first results obtained from applying simulated annealing in mammography. The
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method uses an extended number of parameters making its performance extremely dependent
on them. The parameters being very specific, the algorithm is oriented towards detecting only
certain types of calcifications, as emphasised in [72]. Poissonnier and Brady also comment on
the ineffectiveness of the noise equalisation approach in images that have the relation between
intensity and density different than on the Nijmegen databases [138]. Nevertheless, it should be
acknowledged that it is an elegantly complex innovative approach with very promising results
in detecting microcalcifications and reveals a different perspective in approaching
mammography.

Reports [42, 141] show figures of 98% TP with the R2 Technology |mageChecker®, a great
improvement in the sensitivity of breast cancer diagnosis with a number of 0.5 FP/image as the
state-of-the-art in the detection of microcalcifications. All the clusters are reported detected at
2.2 FPlimage [41]. The results are excellent, but there is still room for improvement. Since
perfect detection figures could not be achieved, the ideal numbers should tend towards 99% TP
with 0.1 FP/image. The work of this thesis aims to take a next step towards achieving such
results.

The reduction of the number of FP remains the magjor problem that researchers have to
solve in the detection of microcalcifications. In [164], a Hough transform is used to detect
calcified vessels and discard them, while Edwards [32] uses a Bayesian Neural Network to
eliminate FP. An important source of FP is the presence of film-screen artefacts. Highnam and
Brady [3, 66] use a model-based approach of the blurring functions in the X-ray imaging
process to detect dust and dirt on the film. The hj, normalised representation of the breast
imbeds the film screen artefact removal and offers a ‘ cleaner’ image for subsequent detection
algorithms.

The classification of microcalcification clusters as either benign or malignant is based on a
number of cluster features describing the shape of the cluster, the shape of the individual
microcalcifications and their distribution. The resulting set of computed characteristicsis input
to a neural network or pattern recognition system. In [153], a back-propagation neural network

on three layers is reported, while in [129] the classification is performed by a k-nearest
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neighbour classifier. Artificial neural networks are also used in [56] and [74]. Patrick [131]
describes an expert system subdivided in five sub-systems using clinical data and the CC and

MLO views. Both views are al'so used in [165] in a k-nearest-neighbourhood classification.

2.2.3Yam et al.’s Physics Based Approach

Yam et al. [179] proposed a method to detect microcalcifications using both grey-level and
Standard Mammogram Form (SMF) images [65] (see Section 2.3). The values corresponding to
the hy of pixels corresponding to calcifications do not represent the real thickness of the
interesting tissue of the breast in that specific area. Therefore, the physics-based approach
makes two major assumptions:

o microcalcifications have an X-ray attenuation that is 26 times higher than normal
tissue; in SMF microcalcifications appear as towers — this is approximately true for a
range of X-ray photon energies as is shown on page 40 of Highnam and Brady’ s book
[65] and reproduced herein Table 2;

e thevolume of the detected microcalcifications must exceed the estimated volume of the
3D model of that region;

The first step of the method described by Yam et al. is the region extraction. A 12-bit
image with grey levels between 0 and 4095 is thresholded at every 32 grey level between levels
2000 and 4000, resulting in layers of surface regions surrounded by contours of the same
intensity. This is essentially a watershed algorithm. Only those regions with an area
corresponding to the size of calcifications are selected. An area change constraint is then

imposed to the candidate regions. All candidates are discarded unless for every rg:

AA(rG , rG+32) < AAhresh ! ( 1)

where rg is the candidate region, G represents the grey level, AAyresn IS a preset threshold

and AA(ry,ro) = (Ai-A))/(Ai+A;), as seen in Figure 21.
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Grey level

Figure 21: The extraction of candidate microcalcification regionsin Yam's algorithm.

The second stage of the detection algorithm computes the volume of the interesting tissue

blob

of the extracted regions. The corresponding blob's volume vi, "~ is calculated according to

blob+surr

equation ( 3), where vy is the sum of the h;, values of all pixels within the extracted

v

region and v, is the volume of the interesting surrounding tissue. Figure 22 shows the
interesting volume computation. N is the number of pixels within the blob region, p is the pixel
size, rqyand re represent the extracted region and the region after dilation respectively and nis

the number of pixelsinrg\re.

ha' = zhint (i)/n (2)
ierg\rg
VR =y 3
Vi = Z h % p? (4)
iery
VT = h3T % N x p? (5
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Figure 22: Computing the interesting tissue volume (removing the background) in Yam's
algorithm.

The other relevant volume for the method is the volume of the extracted blob estimated
from the image. The blobs are assumed to have ellipsoidal shape and therefore the
corresponding 3D volumes are estimated by ( 6), where a and b are half of the length of the

sides of arectangular box that encloses the region.

6
v = 4 o

3

ratio

The interesting tissue composition is then defined as v ', asin equation ( 7). Finaly, the

ratio is thresholded at some preset value and the regions with v;,®° above the chosen value are

marked as calcifications.

\/Diob (7)

ratio __ Vint
Vi = blob
3D

The described method stands for the segmentation step in the detection algorithm for
microcalcifications. Yam et al. introduced a de-noising approach for h;; images built upon a
Wiener-typefilter in [178].

Yam uses a simplified Wiener filter, which has the following transfer function in the
frequency domain:

P.(u,v) (8)
P.uv)+PR,u,v)

G(u,v)=
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Ps(u,v) is the power spectrum of the signal, while P,(u,v) is the power spectrum of the
noise. The two power spectra are approximated, within a small local neighbourhood, by their

local variances o% and o%,. The filtered signal through an adaptive Wiener becomes:

0 0Y)  (x,y)-m,(x (9)
ol(x y)+o(x, y)(h( Y)=-my(x,y))

f(xy)=m(xy)+

h(x,y) is the original degraded signal and my(Xx,y) is the signal mean within a local
neighbourhood of (x,y). The mean of the signal is approximated by that of the original signal
my(x,y). Radiographic noise is additive, therefore

2(y ) JOR X Y)=0r(x ) if oy (x, y)>oa(xy) (10)
o2 y)={ 7Y
otherwise
1 (112)
or 0ey)=- 3 (0 y)-m, (x y)Y
(xyEd

xy)

where M is the number of pixels in the neighbourhood J of (xy). ¢*,is estimated from the
computation of quantum mottle (caused by the spatia fluctuations in the number of X-ray
photons absorbed per unit area of the intensifying screen and the variation in light photon
emission per absorption event) and film granularity (fluctuations in the number of silver halide
grains per unit area of the film emulsion). The computation of both these variances has been
proposed in literature using characteristics of the film, intensifying screen and light photon
energy.

The robustness of the physical-based approach isimproved and the filtering step achieved.
It should be noted that this method uses both grey-level images and h;, representations.
However, the basic Wiener filter may alter the results in a way in which both small spots of
noise and very fine microcalcifications may be overlooked during the filtering process. The
method has been tested on both isolated calcifications and clusters with impressive results (see

Figure 76). Yam et al. algorithm offers state-of-the-art results (93% TP fraction at 0.16
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FP/image) with a novel physical interpretation of mammograms. The results of their algorithm
are in the range of those obtained by commercial detection toolboxes. An implementation of

the algorithm on SMF images only istested and the results are presented in Section 3.2.3.

2.3 Standard Mammogram Form

The concept of a Standard Mammogram Form (SMF) has emerged from the core problems
encountered in mammography. A normalisation of mammograms is necessary since the image
brightness combines image-specific and anatomical information, making their appearance
dependant on the imaging process. Furthermore, the breast is compressed during the X-ray shot
and even if the density is constant, the deformation induces changes in area measures.

The h;; representation is a physics-based approach to mammographic analysis, an image
normalisation method based on a complete understanding of the imaging process. Since the
guality of mammograms is so highly dependent on the imaging conditions, the h,, model is an

alternative quantitative representation of the breast tissue. Figure 23 shows a depiction of the

hi surface of a breast.

Mass CLS

Figure 23: The h, surface; (a) amammogram presenting alump; (b) the SMF that is generated
from the mammogram where the ducts become ridges, and the mass a mountainous area.

54



Chapter 3: Filtering h; Images

The intensity or attenuation value of a pixel in amammogram is determined by the amount
of the X-ray photons absorbed by the tissue present between the X-ray source and the
respective pixel. Table 2 shows the linear coefficients for various tissue types. The h; value of
a pixel represents the thickness of the breast tissue of interest (in mm) underlying between the
X-ray source and the actual pixel. By interesting tissue one must consider the non-fatty tissue
present in the breast, such as glandular, cancerous and fibrous tissue, which have high
attenuation. Hence, the h;, representation (or Standard Mammogram Form when visualised as
an image) is not dependent on the imaging procedure the same way the intensity valueis. Other
types of tissue present within the breast are the fatty tissue with low attenuation and the
calcifications with very high attenuation, since they contain a concentrated level of calcium.
They lead to the definition of hg and heye, the thickness of the fatty tissue and calcification.
Calcifications are very small anatomical features of the breast and are considered an exception
in the generation of the h;, representation; therefore their height will be considerably larger.
Thetotal thickness of the compressed breast can be computed with:

H = hint + Deat (12

Table 2: The linear coefficients for various tissue types reported by Highnam and Brady [65]
after Johns and Y affe. The coefficients of fibrous tissue and tumour overlap, while that of fat is
clearly distinctive. Microcalcifications a so have different attenuation coefficients, much higher
than that of fibrous tissue.

Tissuetype No. patients p (em™) at energy (keV)
18 20 25

Fat 7 Minimum 0.538 0.441 0.317

Mean 0.558 0.456 0.322

Maximum 0.585 0.476 0.333
Fibrous 8 Minimum 1.014 0.791 0.499
(Glandular) Mean 1.028 0.802 0.506
(Parenchymal) Maximum 1.045 0.816 0.516
Infiltrating 6 Minimum 1.061 0.826 0.519
duct Mean 1.085 0.844 0.529
carcinoma Maximum 1.137 0.884 0.552
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Although formula ( 12) has a very simple appearance, the computation of h; is a rather
complex process. It is based on an analysis of the mammographic imaging process from X-ray
generation to film exposure.

It starts in the X-ray tube, more precisely in the anode, where accelerated electrons are
converted into X-ray photons (with an energy spectrum that is quite complex, but which isthen
filtered to cut out photons of high energy that could be harmful to tissue. The result is a
spectrum of photons that have energies between about 17 and 32 keV). The filtered X-ray
photons then form the beam that passes through the breast. The variation of the tube voltage in
time has a peak called kVp. Depending on the size and density of the breast, different times of
exposure (t) are chosen to assure a good exposure of the whole area of the breast. From the tube
current (1) and the photon output (f), we can compute the photon flux at position (x,y), as:

oV, x,y)= TV, )x1, (), wheref(V,) isthe photon output when kVp=V,  ( 13)

We can further compute the incident radiation at a certain kVp over asmall area A, where

N:e IS the relative number of photons of energy & and epx = Vi

E(xy)= 90, % VAL ™ N, ()l o
The higher the kVp, the higher the average energy of the emitted photon, the lower the
patient dose, but also the lower the image contrast. To reduce the amount of extra-focal
radiation (photons that reach the breast from other directions that the focal-spot) a collimator is
used (see Figure 9).

The X-ray photons than pass through the compressed breast and the compression plates
and are attenuated. Those coming from the focal-spot and passing undeflected form the primary
radiation, while those re-emitted in different directions are part of the scattered radiation. The
majority of scattered radiation can be removed using an anti-scatter grid, but the pay-off is the
increase of radiation dose to compensate for the loss of primary radiation. According to Beer's
law, the number of exiting photons (p..) after travelling through a material of thickness h and

attenuation coefficient u(e) is proportional to the number of incident photons (p;,) as below:

pout = pin X e—h,u(E) ( 15)
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From Equation ( 14) and knowing the thickness and attenuation coefficients of the lucite

plates and breast, we can compute the primary energy exiting the breast:

5" ()= 00 X YA N, el e P v

Once the radiation has passed through the breast, it reaches the film-screen cassette, where
the intensifying screen and the X-ray film are placed. Curiously (for that is the way current
scintillators work), the photons pass through the film, then the screen absorbs the X-ray
photons and emits light photons back in the direction of the incoming X-ray photon beam that
expose the film. The intensifying screen reduces the radiation dose due to its amplifying
property, but also induces a blur on the film, which is called glare. The primary energy
imparted to the intensifier screen becomes a function of the screen absorption value S(¢) and

the anti-scatter grid transmission ratio G(¢):

exi Emax —Hiuc\& Nplate -4 (€ 17
ES" ()= 00 % VAL ™ N, U eeSeole)e =P ere e rge (1)

After reviewing briefly the mammographic image formation, we will focus on the different
stages that lead to the generation of SMF images.
Here are the steps to be followed to generate SMF, based on [65]:
e Convert the pixe value P(x.y) into film density D(x,y); thisis achieved by considering
the linear relationship between P(x,y) and D(xy) as in ( 18), where m and c are
constants obtained from the digitiser calibration data.

P(x,y)=mD(X,y)+c (18)

e Convert the film density D(xy) into energy imparted to the intensifying screen
Eoe ™(xy); the film-screen characteristic curve is relevant for this purpose, which is
found by exposing a lucite step wedge phantom. The energy imparted image appears as

an inverted version of the density image, where dark parts correspond to high energies;
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Compensate Epsei ™(xy) for the intensifying screen glare by using the point-spread
function of the intensifying screen. The energy imparted is deconvolved using a
weighting mask w(x,y) constituting the number of glare photons. They are emitted from
various positions and depths of the intensifying screen and impress the film at position
(Xy). The algorithm estimates the thickness of one of the n layers of the t, thick screen
as being dt,=t,/n. The glare reaching the film at (x,y) from (x.,y.) on the layer at depth z
on the screen is computed according to Figure 24, where uiigy iS the linear attenuation

value of light photons and z/cos6 is the path they have to travel.

incident X-ray

(¥) )
-‘..' e I Film
2¢ ST --:-_. _-. -.. i . _..:::_::_:'-_.,_-__.
o T "}{‘_‘[,’,Y_C)
:::::::::::::::::::'-;f::::::::::% dtp=tp/n
Screen

site of X-ray photon absorption Reflective end

Figure 24: The glare process.

The energy imparted at (x.,Y.) is the difference between the attenuation at depth z and

the layer below, where E" is the energy reaching the intensifying screen:
Eimp (X y ): Ein (X y k‘ﬂ;ﬁ;phorz _ Ein (X y k_:u;\?;phor (Z+dtp) ( 19)
z c? Jc c? Jc cr' e

A symmetry assumption is made in order to compute the weighting masks at each
depth z and they are scaled to sum to 1, while the glare is computed as:

(20)

7/1I\ght

glare(s)” =6e "= EI™(x,, Y, )

Compensate E,e ™(x,y) for the anode-hee! effect and diverging X-ray beam, by taking
into account the variation between the incident photon flux between different spatial
locations on the film. A blank film isfirst exposed without any breast present so that no

scatter is present and the primary energy imparted is simplified:
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Epme (%, y)=0(,, x, y)At (21)

The pixel on the film with greatest exposure is (Xa,Ya) and is positioned under the

anode:
Ell)raﬂk (Xa’ ya ) = ¢(Vt ’ Xa’ ya )At ( 22)
Therefore:

| ¢V X Ya) cim . (23)
Eoseg (X Y)=——2=22E"™ (X, y), Where:

corrected (X y) ¢(Vt X, y) (X y)
¢V, Xar Vo) _ Enne (Xar V) (24)

¢(waa Y) Eti):;?wk(x Y )
A limitation of the correction for the anode-hedl effect is the lack of notion about the

variation of the X-ray energy spectrum across the beam.

Estimate the scattered radiation E<™(x,y), since this component of the imparted energy
contains no information about the breast tissue, but influences the neighbourhood of
the pixel. Once more, a weighting mask w(x,y), which estimates the relative scatter
reaching the central pixel (x.y.) from pixel (x,y), is computed. The initial estimate is
made without the presence of an antiscatter grid. A lucite cylinder that approximates
50% fat and 50% dense tissue (of thickness H, inner radius r and outer radius r+dr) is

used for the estimation, asin Figure 25.

Figure 25: The cylinder used in scatter estimation.
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To compute the scatter coming from the cylinder dE{™(r), we use the scatter-to-
primary ratio for the cylinder (s/p(r)), which becomes approximately constant after a

certain value of the cylinder radius:

_ _ _ . S s (25

dES™ =E™(r +dr)-E™(r)=E;*(r {— (r+dr)-=(r ))
P Y
If Risthe stopping radius, the total scatter becomes:
£ (R)=E ()2 (R), and 20
P
s s (27)
dEiSmp ~ B(r + dr)_B(r)

E™(R) S[R)

is the proportion of total scatter for each cylinder. As in Figure 25, the cylinder is
divided into n horizontal slices of thickness dh=H/n to estimate the scatter from

different positions along the height of the cylinder, p(r,h):

In order to estimate the scatter when an anti-scatter grid is used, we must know the grid

relative transmission ratio for s photon with incident angle 9, t(6):

p,(r.h)=p(r,hx(), where (29)
0 =tan™ L) (30)
- 3

As in the estimation of glare, assuming azimuthal symmetry, a weighting mask w(x,y)
can be computed to represent the relative scatter. This mask is convolved with the total
energy imparted Epseirrp for three example cases (just dense tissue, just fat tissue, half fat
and half dense) to approximate the scatter function s. Due to the linearity of s, it can be
combined with w(x,y) to obtain the scatter component E{™ of E,™ by direct

convolution.
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The deconvolution of scatter radiation is one of the major sources of error in noise
estimation in the SMF generation, as deconvolution is an intrinsically ill-conditioned
problem. The original technique by Highnam and Brady uses the standard method that
operates in Fourier domain. Recent unpublished work by Ancelin (by personal
communication) shows that alternative deconvolution techniques can significantly

improve results of estimating scatter.

Estimate the extra-focal radiation E.™(x,y) component, which is relevant at the curved
breast edge where photons arriving with low angles can reach the intensifying screen. It
is assumed that the extra-focal radiation is constant (E;) over the image if there is no
breast present. The breast edge is represented semi-circularly, as in Figure 26. The
extra-focal energy is computed along the inner projected breast edge Q, where there is

only fat tissue. Hence, along Q:

£ (@)= B @)~ B @)~ E @) (31

E. is approximated from the average E.™ along Q over the total attenuation of the

extra-focal photons under the assumption of symmetry:

imp (32
E = E. (Q) ,where0< 0 <x/2

271..[05 e*ﬂfathfat (Xyg)t(ehe

From the value of E. we can now compute E.™ by multiplying it by the attenuation of

the extra-focal photons along the fatty tissue inside the breast edge.

inner breast edge

compression plate
L

chest

wall ¢ breast

extra-focal
8  radiation

film-screen cassette ’

Figure 26: Modelling the breast for the estimation of extra-focal radiation component.
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e Compute the primary radiation Epi”‘p(x,y);

Ep™(X,Y) = Epse™(XY) - E<™(x) - ES™(x,y) (33)

e Convert Epi”"(x,y) into hiy using the conversion equations developed by Highnam and

Brady. From equation ( 16) and estimating the breast thickness H, we can write:
hu = h ttig + Nt =0 Wi — iy )+ Ht (34)
The resulting hi (X,y) is afloat value representing the thickness of dense breast tissue

at the pixel location.

Examining the h;; surface, we observe significant amounts of high-frequency noise, a clear
impediment in image analysis and detection of abnormalities, notably microcalcifications. The
SMF image is noisy, since the removal of intensifying screen glare [63] amplifies the image
noise. In [174] an estimation of the radiographic noise is computed. A Wiener filter (c.f.
Section 2.2.3) is applied to the original images before the h;,, generation, which improves the
signal-to-noise-ratio of the de-noised SMF image.

The h;, representation is a robust and reliable method resulting in a floating-point form that
corresponds to the thickness of interesting tissue in the breast. By removing most of the
unwanted effects of the imaging process, such as glare, scatter radiation, anode-heel effect and
extra-focal radiation, the output of the method presents a much more adequate representation of
the real anatomical structure of the breast. Hence, the h;,, representation of the breast is mainly
a 3D surface built from the h, values of the image pixels. By removing the image parameters,
the hi,; images stand as normalised images of the breast.

A hiy, representation can be easily visualised as animage in SMF, since the h;; valuesarein
floating-point format, where brighter parts correspond to thicker parts of the breast or
calcifications as in Figure 27. Importantly, the depicted surface of a h;, representation of the
breast can show important anatomical features, such as masses as hills in a less dense

background, while the background is mainly flat.
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Figure 27: The Standard Mammogram Form image of a breast; () an ML O digitised intensity

mammogram; (b) the correspondent SMF image.
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CHAPTER 3

3 Filtering hin: Images

‘Contrariwise, ..., 'if it was so, it might
be, and if it were so, it would be; but as it
isn't, it ain't. That'slogic!"

Lewis Carroll - “Alicein Wonderland”

The field of Medical Vision is constantly concerned with developing novel approaches of
turning a representation of parts of the human body into valuable information for cliniciansin
order to get a better view and understanding of the structural anatomy of the region of interest.
Unfortunately, this process is far from simple as medical images, in general, have quite poor
signal-to-noise ratios, and so they need to be enhanced in order to become useable. Of
particular importance in what follows is the fact that the SNR of medical images tends to be an
order of magnitude poorer than for regular visible images, for which most image enhancement
schemes have (naturally) been developed. Few image enhancement schemes have been
developed specificaly for medical images, nor have they been adequately tested on such
images. It has repeatedly been demonstrated that filtering methods can substantially improve
the quality of the image of interest by means of eliminating artefacts and reducing the weight of
unwanted information in the original image, but also simplifying the appearance of otherwise

complicated anatomical structures.
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The notion of image filtering has already been discussed in the previous Chapter as an
image pre-processing step used by several calcifications and mass detection algorithms.
Conventional filtering methods include a background smoothing stage (e.g. convolution with a
low pass filter) followed by enhancement of the structures of interest (e.g. high pass filtering)
and the subtractions of the two newly obtained images. A single such method is not capable of
dealing with the large variability of the anatomical features that must be considered in practice.
There are numerous algorithms based on evolving partial differential equations (PDE) for noise
removal and image enhancement, but, as noted above, few of them have been tested thoroughly
on medical imaging. Ultrasound images are largely acknowledged for their very noisy
appearance and there have been many attempts to develop noise removal filters in medical
ultrasound imaging [117]. Several other algorithms deal with the application of diffusion
tensors in MRI [140, 149, 173]. Since the detection of microcalcifications is influenced
significantly by the presence of noise of similar shape and magnitude, a PDE filter for noise
removal in X-ray mammography is developed in this thesis. The next section introduces the
basic theory behind anisotropic diffusion, a particularly important example of such a PDE

filter.

3.1 Anisotropic Diffusion

Anisotropic diffusion has its origins in the classical nonlinear diffusion filter developed by
Perona and Malik in 1987 [133], which is based on a PDE in divergence form. It is the
cornerstone for new developments in multi-scale image analysis aiming to simplify the image
appearance while enhancing structures of interest, such as edges or coherent structures. Its
name is derived from the classical diffusion (or heat) equation.

Anisotropic diffusion is the solution we adopt for its inherent properties of smoothing and
edge enhancement, but other methods are reported in literature with good results in image

regularisation. Amongst them, we mention morphological methods [125], which have a
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geometrical interpretation of images and are based on finding specific spatial characteristicsin
an image. Grey-scale morphology decomposes the image into its level sets[172]. The SUSAN
noise removal and feature detector [155] is anonlinear approach to feature detection that uses a
circular mask for local measurements (excluding the central pixel). Those parts of the local
image that are similar to each central pixel are used to compute the pixel’s value. Wavelet
packages [107] are also used to filter out high frequency noise through subspace decomposition
of a characteristic function. Wavelets enable filters to be constructed with well defined spatial
and frequency attributes obtaining a set of characteristics that can be used to detect specific
image features.

A rather different approach to image smoothing is based on Markov Random Fields (MRF)
[47], which allow stochastic modelling of images ending with a maximum a posteriori solution.
The value of each pixel is probabilistically conditioned by the pixel vaues in its
neighbourhood. Particular models inevitably impose specific constraints on the neighbourhood
suited to the application. Any model requires that its parameters be estimated, therefore a
parameter evaluation stage is also necessary for MRF, as for anisotropic diffusion. MRF
usually having a large number of parameters that must be estimated from a training set, the
computational time increases accordingly. Crucially, for example, Karssemeijer's [80, 81]
original image filtering technique was based on Markov Random Fields; several papers have
drawn attention to the many parameters it necessitated, its lack of robustness, and its poor
convergence properties.

When the diffusivity function is a constant, the approaches and goals of both anisotropic
diffusion and MRF are very similar. The energy is shown differently. The local energy function
in anisotropic diffusion is infinitely differentiable and very smooth. Hence images diffuse
slowly and anisotropic diffusion works well for removal of high frequency noise. MRF have
the local energy expressed as a step function that is not continuous. That makes this technique
appropriate for image segmentation. In general, the basic difference between anisotropic
diffusion and the MRF is that in the first the local linearity is explicit in the structure of the

filter, but in MRF the local linearity is determined very localy through propagation of
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probabilities across cliques. Depending on the definition of its cliques, the MRF can be

isotropic or anisotropic.

3.1.1 The Diffusion Process

One of the most commonly used methods for smoothing an image f: RZ — Ris by convolving it
with a Gaussian with standard deviation o ( 35). The effect of the Gaussian kernel will be to

blur the central point (considered to be the origin) into the neighbourhood, as shown in Figure

28.

KU(X)= = - eX —K) s

2o’ 20°
J

-

Figure 28: The plot of the 2D Gaussian, where the central point (the top of the hill-like shape)
will be gradually smoothed into the background.

The image f is transformed into afamily of gradually smoother versions over an often large
repeated convolution with a Gaussian (later referred as number of iterations t > 0). An
increasing scale will simplify the appearance of the original image. There are severa
limitations to this method, as observed in [171, 172]:

e athough convolution with a Gaussian reduces noise, it also blurs important anatomical

structures in the image, such as edges,

e linear smoothing dislocates edges when changing from finer to coarser scales.
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The nonlinear diffusion process was proposed as an alternative to smoothing images by a
Gaussian kernel, which does not preserve edges. Since it derives from a process of equilibrating

concentration differences, it can be expressed through a continuity equation of Fick’slaw [171]:

J=-D-Vu (36)
é,u=div(D-Vu) (37)

D is called the diffusion tensor, a positive definite symmetric matrix that represents the
relation between the concentration gradient (Vu) and the flux (J) that aims to compensate for
this gradient ( 36). In image processing, the concept of concentration is replaced by that of grey
level. The diffusion tensor may be replaced by a positive scalar-valued diffusivity g. If Jand Vu
are paralld, the diffusion is called isotropic. In the anisotropic case, J and Vu are not parallel.
Equation ( 37) is caled the diffusion equation. If the diffusion tensor is space-dependent, then
the diffusion is caled inhomogeneous, while a constant diffusion tensor is related to a
homogeneous diffusion.

In order to overcome the scale correspondence problem (the coarse-to-fine tracking
difficulties), the inhomogeneous linear diffusion filtering introduces [Vf| (the gradient of the
original image) as edge detector to preserve different entities in the image. High values of the

detector indicate the presence of edgesin theimage. The diffusivity function g was set to:

ofvif)e 1 (0) (38)

V1+[VE[* 7k?

and the diffusion eguation reduces to:

s.u=divig(vi| ) vu) (39

Introducing feedback into the diffusion process, by adapting the diffusivity to the gradient
of u(xt) - the actual image - rather than the origina f(x), the diffusion equation becomes

nonlinear and therefore the diffusion filtering becomes nonlinear and isotropic:
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Su= div(gQVu|2)' Vu) (40)

The Perona-Malik model [84, 132] represents the first nonlinear diffusion filter. It provides
stable edges over alarge number of iterations based on arapidly decreasing diffusivity, but will
only enhance those edges for which the gradient is larger than the contrast parameter k.

1 (k>0) (41)

gQVU|2): /1+|Vu|2 /k?

Catté et al. [23] introduced the Gaussian convolution of u: u=K, *u and the result of it

was:

S.u= div(g([Vuarz)- Vu) (42)

This new form of the diffusion equation solved the spatial regularisation problem of the
inhomogeneous filtering, meaning that the solution of the nonlinear filtering method of images
aims to achieve a steady state. Moreover, a new parameter is introduced in the process, the
scale parameter 0. As aresult, the process is now controlled by three parameters, t (time), k
(contrast) and o (scale), which substantially reduce the impact of the choice of diffusivity over
the whole process and make the use of it more flexible and robust. Although the contrast
parameter works similarly to the Perona-Malik model, the scale parameter makes the filter less

sensitive to small-size structures, such as noise, by increasing o, the kernel of the Gaussian.

3.1.2 Nonlinear Anisotropic Diffusion

The main improvement introduced by nonlinear anisotropic filters is smoothing along the
isophote and, when the value of the gradient is large, not acrossit [54]. While for low gradients
smoothing is performed in the usual way, diffusion is inhibited at edges. Weickert [171, 172]
introduces a system of eigenvectors v1, v2 of the diffusion tensor D. v1 and v2 are orthonormal

(see Figure 29) and
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V1||Vu, (43)
v2 1 Vu, (44)

The corresponding eigenvalues are:

4 =g(vu,[) (49)
J=1 (46

In general Vu, is not parallel to one of the eigenvectors of D for >0 and Weickert's model
behaves highly anisotropically. As o tends to 0, the process tends to behave like the original
Perona-Malik model.

Edge
Direction on which 9

diffusion isinhibited
(v1)

Direction on which
diffusion is maximal
(v2)

Figure 29: The diffusion tensor eigenvectors; vl is paralel with the edge gradient and the
smoothing is inhibited across the edge; v2 is orthonormal to v1 and the diffusion is permitted

along the edge.

The edge-enhancing diffusion model proposed by Weickert and described above is the one
that is used in our initial experiments; it gave the best results, although we found in practice
that the value of the constant —3.31488 ( 47) is not crucial. The diffusion across edges is

performed according to the following eigenvalue:
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1 [Vu,| =0 (47)
A, = — 3.31488
l-exp| ——— Vu,|>0
[QVu6|/k)8 Ivud

3.1.3 Discussion

Anisotropic diffusion overcomes some major limitations of linear and nonlinear isotropic
filters (see Figure 30 for some comparative results):

¢ enhances noisy edges and flow-like structures (this might, for example, be useful in the

detection of curvilinear structures, as proposed for future work in Chapter 6);

e inhibitsdiffusion at edges;

o ismore flexible due to the larger number of parameters, but not so much so as to alter

the robustness and accuracy of the method;

The use of anisotropic diffusion, as observed in [172], ranges from computer-aided quality
control to post-processing fluctuating data, target tracking in infrared images and blind image
restoration, to enumerate just afew of the applications. However, most applications [117, 140,
149, 172, 173] concerned with filtering medical images were mainly developed for ultrasound
and magnetic resonance images.

However, it is not sufficient to use “blind” filtering methods when the features we need to
preserve in an image are so precise and specific. The use of a priori or even a posteriori
knowledge in the diffusion process (i.e. image characteristics) must be embedded in the use of
PDE-based filters, a field that is evolving rapidly and which has to bring many advantages in

the overall development of medical vision.
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h

Figure 30: Some comparative diffusion results. (a) the origina image; (b), (c), (d) the
smoothed image with nonlinear isotropic diffusion (Perona-Malik) after 20, 40 and 100
iterations; (e), (f), (g) the smoothed image with nonlinear anisotropic diffusion (Weickert) after
20, 40 and 100 iterations; (h), (i), (j) the smoothed image with linear diffusion after 20, 40 and
100 iterations.
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Anisotropic diffusion is one particular technique of nonlinear diffusion, from the larger
family of methods referred to collectively as scale-space theory. It can be thought of in terms of
the application of partial differential equations (PDE) to image analysis, which adds a-priori
knowledge to the classical scale-space evolution. The regularisation by convolution with a
Gaussian builds an edge detector that does not depend on noise smaller than the order of the
Gaussian kernel and ensures the uniqueness of results. The filter class with diffusion tensor has
a unique solution, dependant on the original image, which is infinitely differentiable for t>0.
[172]. This guarantees that the diffused image has similar properties to the input image. For t
— oo the result converges to the most simplified version of the input, namely a constant image
with the same average grey level asthe original. Thisis an important issue in medical imaging,
where grey level has physical meaning. But for finite, although large, values of t, the result
shows enhanced contrast at edges. Weickert also notes that such filters respect an extremum
principle and non-enhancement of local extrema.

If we choose afast decreasing diffusivity, asin our application, the reasoning of employing
anisotropic diffusion becomes obvious. As Weickert points out, since diffusion is much
stronger at both sides of an edge than at the edge itself, the contrast of the edge becomes
enhanced. The filter acts like a backward diffusion at edges, while smoothing between them.
Thisis precisely why we chose anisotropic diffusion for our application. After afew iterations,
the less important features will be filtered out of an image, while the salient ones will persist
over time. Therefore, it is important to include the appropriate set of saliency descriptors into
the diffusion model for good filtering results.

A practical prablem inevitably encountered using anisotropic diffusion is its parametric
nature. Although it has far fewer parameters than probabilistic methods, typified by Markov
Random Fields, it is difficult to find a general solution for a wide range of images. The
parameters must be tuned for robust results and this will limit their relevance in the broad-
spectrum situation. Note however that this is true of every technique that has been devel oped

for image analysis. Nonlinear anisotropic diffusion adds two further parameters to the number
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of iterations (t) found in standard linear diffusion, namely the contrast k and the scale o; but as
argued in this Chapter 4, there are rational reasons to inform the choice of parameter values for
this particular application. It is sometimes argued that another major disadvantage of
anisotropic diffusion is its computational complexity, as it is an iterative solution to a PDE.
However, thisisno longer avalid objection as research over the past ten years have shown how
semi-implicit and paralel implementations can reduce the computational complexity to the
point where anisotropic diffusion systems nowadays run in real time on moderately powerful
workstations.

Some specific concern in using anisotropic diffusion in mammography is the spatial scale
of diffusion compared with thin structures in the breast. When o—0, the filter becomes
isotropic (Vu becomes eigenvector of the diffusion tensor D), hence extremely small structures
cannot be preserved. The resolution of mammograms becomes relevant to the type of filter we
need to build. While a 50um resolution seems sufficient for structures under a quarter of a
millimetre in width, 100um in resolution would be insufficient. Thus, in the case of mass
detection, where a resolution of 100um is common, some fine spicules may be overlooked.
Usually, extremely thin lines are corrupted because of the high gradients on both sides of the
line. Very small microcalcifications face the same problem, as well as corners, which become

rounded in time.

3.2 Filter Modd

A novel approach to filtering mammographic images for detecting microcalcifications will be
introduced in this section. Consistent with the overall aims of the thesis, the method has been
implemented and tested primarily on images in Standard Mammogram Form; but it is not
confined to this image format. The theoretical foundation of the algorithm uses anisotropic
diffusion. The aim of our approach is to “clean” the noisy hi; images while preserving

structures of interest, specifically calcifications and the portions of noise of the signal that

74



Chapter 3: Filtering h; Images

could help in the detection of false positives. The diffusion process becomes a method of
detecting both microcalcifications and noise in X-ray mammography, h;, representation. The
discriminating factor between noise and calcifications is the appearance of the two types of
structures. We will return to this issue later. The method is further developed in the following

chapters of thisthesisinto afully automated technique to detect microcalcifications.

3.2.1 Theory

One of the major characteristics that we have used in approaching microcalcification detection
was the genuine difference that should be visible in the shape of microcalcification versus noise
in mammographic imaging. While microcalcifications are anatomical structures with dightly
blurred edges due to the scattering effect of X-ray beams passing through the breast [65], noise
tends to have extremely sharp edges. In Figure 31, we show the plots of an intensity image and
a h;x image showing the same characteristics for microcalcifications and noise. Noise does not
represent an anatomical structure, therefore its shape is very well delimited and does not
present the otherwise usual fluctuations in height or grey-level. Since the technique that leads
to building h;; images from intensity images eliminates the side-effects produced by the X-ray
imaging process [65], we will show in Chapter 4 how the elimination of undesired imaging

artefacts helps the detection of microcalcifications on SMF images.
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Figure 31: The shape differentiation between microcalcifications and noise; (@) the plot of a
filtered (de-noised) intensity image sample containing a microcalcification; (b) the plot of a
filtered intensity image sample containing noise; while the microcalcification has the
appearance of ahill with less steep edges, the bit of noise is rather spiky and has a higher value
of intensity; (c) the plot of a h;; image containing a microcalcification; (d) the plot of a hy

image containing noise. Each plot istaken from one linein an image.

Cdlcifications and noise differ significantly in their image characteristics or appearance
Shot-noise may drastically influence the local image characteristics and represents a main
source of FP. The h;, representation can eradicate this type of noise, but since our method is
designed to detect noisy structures as well, we did not remove shot noise in advance from the

images on which we tested our algorithm. The appearance of h;, images would be extremely
noisy mainly due to the removal of the glare effect, extra-focal and scattered radiation (which
accounts for up to 40% of the total radiation exiting the breast [65]). This would lead to a

difficult observation of the regions of interest, making it harder to distinguish small structures
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in mammograms. Since microcalcifications are tall in hy, images, only the most prominent
spots of noise may lead towards FP, the smaller ones being easily removed by the diffusion
process.

One should note that the term “contrast” in a h;,, image does not correspond to the grey-
level as in intensity images. It represents the height of interesting tissue in the region under
observation (cf. Section 2.3). While calcifications are typically small and sparse structures, they
appear in about 25% of mammograms. And even then they occupy a small fraction of the entire
area of a mammogram. Hence, the percentage area of microcalcifications in a large set of
typical mammograms is vanishingly small. For this reason, Highnam and Brady's h;y
generation algorithm [65] assumes only two types of tissue: fat and non-fat (i.e. parenchymal,
tumour) and hey is omitted from the computation ( 12). Since the attenuation coefficient of
calcium is typically 26 times higher that of interesting tissue, microcalcifications are in effect
an exception in the hy,; representation. Therefore the hy, value of a region corresponding to
calcifications does not represent the thickness of the corresponding area of the compressed
breast. Those regions would appear much thicker than they really are and make the
calcifications appear tall in the image. Yam et al.'s algorithm presented in Section 2.2.3 is
based on exploiting this effect. The high values of calcifications in the h;,; representation of the
breast make them react differently to our filter than a background, an important assumption in

our work.

3.2.2 Method

The filter model introduced here is a preliminary attempt towards the automatic detection of
noise and calcifications in mammograms. It can operate on SMF images or grey-level pictures.
The results we present are based on a set of samples of SMF images that show considerable
variation in the size and visibility of calcifications. The filter implemented in this work is an

anisotropic diffusion-based filter (cf. Section 3.1). It blurs the input mammographic image
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while preserving significant intensity/thickness changes. The process relies on the use of a set
of specific parameters, e.g. time, contrast, size, and it is critical to find the right choice of
parameters that will lead to good repeatable results. Figure 32 shows different output images
after using anisotropic diffusion on a grey-level digital mammogram containing both a

calcification and noise.

Microcalcification Noise

Figure 32: (a) The original grey-level image containing a microcalcification in the centre-right
of the image and a large spot of noise on the lower side of the image; (b) the diffused image
with k=5, ¢=0.6 and t=20, we notice that the edges of the important structures of the dense
tissue are emphasised; (c) the diffused image with k=5, ¢ =0.5 and t=40, where only the

important small structures are kept and their edges enhanced;

To choose the right diffusion tensor for our application, we initially tested some of the
known tensorsin literature. The diffusion tensors that we have tried for the anisotropic filtering

were based on the following diffusivity-like functions:

2 1 (Perona-Malik [132]) (48)
gqvu| )= 2 2
1+|Vu,| 7k
gQVu|2 ): 1 (Charbonier [171]) (49)

NENIS
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(Weickert [171]) ( 50)
—3.31488
gq u| ) GVUGVK)B)
Vu, ? (51)
ofe)-1-ef -2 |
J
(52)
-1
vu’)=1-expg ———
gQ | ) (Vu, |/ k)
ng”|2 ): 1 (linear diffusion) (53)

We found experimentally that Weickert's diffusion tensor is best suited to our application.
We used asimilar simplified tensor having the corresponding eigenvalues ( 54), ( 55) (since the

shape of the diffusivity-like function can be easily altered by changing the values of its

parameters):
1 IVu| =0 (54)
A -1
l-exp| —— Vu,|>0
{QVUGVK)S Vi
J2=1 (55)

Nonlinear anisotropic filtering proves to be highly flexible due to the variability of its
parameters which help in covering a rather extensive set of possihilities in multi-scaling
filtering with respect to the output one can get by filtering medical images, as Table 3 shows.
Using the parameters of the process in multi-scale filtering lead us to make the following
remarks:

e by increasing k, the contrast factor, one would increase the overal blurring of an

image, would extinguish the anatomical structures that have smaller contrast to their
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surroundings (gradient value) than k and would lose the edges that do not have very
high contrast;

e by increasing o, the scale factor, one would increase the overall blurring of an image,
would extinguish the anatomical structures that are smaller than the kernel of the
Gaussian (approximately 100);

e by increasing t, the number of iterations, one would increase the overall blurring of an
image, would strongly extinguish the anatomical structures, which become more and
more diffused with an increasing t, but would preserve edges over arather long number
of iterations.

The flexibility of anisotropic diffusion occurs from the process parameters. More
parameters may also mean less robust and the choice of the specific set of parameters becomes
crucial. In general, we can only do this empirically.

The appearance of h;; images would still be extremely noisy, mainly due to the removal of
the glare effect, extra-focal and scattered radiation [64, 65]. If glare is removed, facilitating the
removal of shot-noise [66], the price to be paid is a massive decrease in the SNR in SMF
images. Yam [178] attempts to overcome this substantial increase in noise by Wiener filtering
the original images before generating the hi, surfaces, an approach that improves the SNR
dightly. The h representation can eradicate shot-noise [65], an important source of FP in
detecting microcalcifications. We prefer to work with glare de-convolved (no shot-noise
removed) images and use anisotropic diffusion to differentiate edge sharpness of noise and
microcalcifications. Figure 33 shows a phantom study on how the generation of SMF images
and the glare de-convolution influence the appearance of a mammogram. The phantom was
generated by adding noise to an image containing bright white blobs on a dark background (of
values similar to the intensities of microcalcifications and fat in a mammogram); the noise was
obtained by subtracting afiltered mammogram from the original one (high frequency structures

in a mammogram).
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Table 3: Variation of anisotropic diffusion parameters. k - the contrast factor, ¢ - the scaling
factor and t - the number of iterations;, 7 represents an increase in the associated feature, as
opposite to decrease for N.

Blur Anatomical features | Edges
k7 i N NN
oz A A \
t7 A NN Well preserved over along time

By varying the values of the three parameters of the process (cf. Table 3) different output
images of the same input h;,; would be obtained. In our application, small bright structures are
salient; therefore an appropriate combination of contrast and scale is desirable. Having obtained
the diffused image, we subtract it from the original. Some differences in the way
microcalcifications, as opposed to noise, are diffused can be noticed in Figure 34.
Microcalcifications tend be smoothed faster than prominent noise spots, for an appropriate
choice of parameters. After a certain number of iterations, the surface of the difference image
contains significant changes for noise only. The subtraction of pre- and post-processed images
just illustrates the difference in which microcalcifications and noise are smoothed, as an
exemplification of the use of the principles of anisotropic diffusion for our specific purpose.

The algorithm employs no such subtraction.
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Figure 33: The changes in SNR during h;; generation: (a) the original phantom with simulated
microcalcifications and noise; (b) the Wiener-filtered phantom; (c) the h;, image before glare
deconvolution; (d) the h;,, image after glare deconvolution; (e) the 3D plot of the original image
in (a); (f) the plot of the smoothed image in (b) with improved SNR; (g) the plot of the hiy
imagein (c); (h) the noisier plot of the h;, image in (d).
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Microcalcification

N

Figure 34 Image subtraction; (a) The original preprocessed SMF image containing a
microcalcification on the left side, alarge spot of noise on the lower right side and several other
smaller noise structures; (b) the 3D plot of the difference image between the original image
diffused with k=15, 0 =0.6 and t=5 and the same one diffused with k=15, ¢ =0.6 and t=10; ()
the original image diffused with k=15, 0 =0.6 and t=10 and the same one diffused with k=15, &
=0.6 and t=15. We notice that after a few iterations the big changes appear at the location of

noise only.

3.2.3 Results

This section starts by showing some results from applying nonlinear anisotropic diffusion
filtering to samples of real mammograms containing microcalcifications. We de-noise hiy
images while preserving only calcifications and significant bits of noise, Figure 35.

In order to reduce processing time and, more importantly in practice, remove the need for
intervention of the operator in the filtering process, we initialy chose a large value for the
contrast factor k. We still chose a rather small value for the scaling factor ¢ for preserving tiny
anatomical structures or noise over the first iterations in the process of diffusion. Due to the
strong variability that existsin mammographic images (e.g. contrast, size of interesting tissue) a
multi-scale approach is performed. Since the whole process should be robust and easy to use,
we reduced the number of variable parameters to one, keeping constant the contrast and scale

factors and varying only the number of iterations over a very small range. We found that the
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time factor t gives optimal results for the filtering process over the whole set of SMF images
when we used values between 3 and 7 iterations for that pair of values k and o.

In demonstrating the efficiency of our method in increasing the number of true positives,
we also considered images with very high likelihood of giving false positives. Such an example

is presented in Figure 36.

Microcalcification

500
S00

" ]

Figure 35: Filtering example 1; (a) The original preprocessed SMF image containing a
microcalcification on the left side and a large spot of noise on the lower right side and several
other noise structures; (b) the diffused SMF image with k=15, =0.6 and t=5, we notice that the
microcalcification has amost faded, while the noise is till preserved with high contrast; (c) the
noisy 3D plot of the origina SMF image in (a); (d) the surface of the diffused SMF image in
(b), the microcalcification appears as a hill with smoother edges than those of the very sharp-
edged noise structures in the same image.

84



Chapter 3: Filtering h Images

500

Figure 36 Filtering example 2; (a) The original preprocessed SMF image containing only noise
structures, the largest piece of noise on the upper right side could be easily considered of being
amicrocalcification since it does not present very high contrast from the surrounding tissue; (b)
the diffused SMF image with k=15, ¢=0.6 and t=3; (c) the 3D plot of the original SMF image in
(a) with highly noisy appearance; (d) the 3D plot of the diffused SMF image in (b) where all
structures have very sharp edges and are labelled as noise.

The detection method, both of calcifications and noise, was based initialy on the
association one can make between the original h;, mammograms containing the structures of
interest and the surface we built from the filtered images after just a few iteration steps. Since
radiologists may have doubts when searching the original image for microcalcifications, the
surface we present would show either hill-shaped structures for microcalcifications or sharp-
edged formations for noise in the locations corresponding to the structures of interest.
Moreover, we found the simple visual comparison of the two h;; images - the original noisy one

and the filtered one - to be quite reliable in differentiating between microcalcifications and
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noise. While noisy structures tend to be better preserved by the filtering method applied with
our specific choice of parameters, microcalcifications fade faster and look like imploding
structures.

Our set of data images was obtained at the Breast Care Unit of the Churchill Hospital
Oxford. Images were collected from the screening database and correspond to women aged
between 50 and 64. There are a total of 102 images, 24 normal, while the rest contain
microcalcifications. An experienced radiologist annotated a total of 98 microcalcification
clusters, which have been previously proven by biopsy. The ground truth for the validation of
our detection algorithm was the contour drawn by the radiologist on the film around each
detected cluster of microcalcifications. The cluster positions were subsequently translated into
x-y coordinates on the digital images. The films were subsequently digitised using the Lumisys
scanner at the same location into 12-bit .mit images at a resolution of 50um.

For theinitial results on isolated calcifications that we present in this Chapter, we used a set
of 33 samples from the same database. A clinician annotated each isolated calcification (10
macrocalcifications and 27 microcalcifications) in the dataset. We used the coordinates of

calcifications as ground truth in the detection method.

3.2.3.1 Coar se Calcifications

The algorithm was tested initially on a set of 13 samples of average h;, mammograms
containing 10 pre-labelled isolated coarse calcifications and severa artefacts. The image
samples were digitised a 50um resolution. Samples were preferred, rather than whole
mammograms, in order to reduce processing time, since, as noted earlier, the space occupied by
microcalcifications tends to be small and mammograms digitised to 50um are typically 4000 by
4000 pixels (which, at 12 bit resolution generates 32 Mbytes per image). Eight each samples
contained one coarse calcification, one contained two calcifications, and four samples
contained only noisy structures. The enhanced images were filtered by means of anisotropic

diffusion and a surface representation was built for each filtered image. The values of the
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diffusion parameters were k=15, ¢=0.6, while t varied between 3 and 7 iterations. The
algorithm applied to the enhanced images gave a detection rate of 100%. It is hardly worth
showing the free-response receiver operating characteristic (FROC) curve, but it is given in

Figure 37.

TP
fraction

10

09

[k

o7

06

035

o4

03

02

ol

)

o 01 02 03 04 05 086 07 O0F 09 FP per
image

Figure 37: The FROC curve of the detection method for the set of 13 samples with coarse

calcifications.

3.2.3.2 Microcalcifications

While coarse calcifications are generally easy to detect and are typicaly benign, the real
difficulty arises in the detection of microcalcifications, which are much smaller and variablein
brightness. The algorithm was tested further on a set of 20 samples of h;; mammograms
containing 27 pre-labelled isolated microcalcifications and various regions of noise at 50 pum.
The set was meant to offer an overview of possible clinical aspects related to microcalcification
of different sizes, some of them clear while some others are faint, making sure that we will
observe both the detection of microcalcifications and noise during the process of filtering.
Sixteen of them contained one microcalcification each, two of them two microcalcifications,
while there were two samples containing three and respectively four microcalcifications 25 of
the microcalcifications were detected correctly, while 2 of them were labelled as noise. Also 2

FP occurred. The TP fraction was 92.6% for a number of 0.1 FP per image. In the initial

87



Marius George Linguraru

experiments, we tested the filtering method on isolated microcalcifications or small clusters to
evaluate the method for every salt of calcium, rather than the general detection of acluster. The
detection of microcalcification clusters will be revisited in Chapter 4.

We further applied an implementation of Yam et al.’s algorithm (cf. Section 2.2.3) to the
same set of microcalcifications. The process differed dightly in this case. The original h;y
mammograms were not enhanced, in order to preserve a fixed scale for all mammogram
samples. The diffusion parameters were: k=15, =0.6 while t varied between 2 and 5. The
algorithm was applied to the filtered versions of the original SMF images. We obtained a 100%
TP fraction with 0.3 FP per image. The FROC curve of the detection using the combination of
the anisotropic diffusion filter and the algorithm implemented by Yam et al. is shown in Figure

38.
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Figure 38: The FROC curve of the combined detection method for the set of 20 samples
containing different types of microcalcifications.

3.2.4 Discussion

An important issue in the use of this new filtering method in X-ray mammography is the good
preservation of tiny anatomical structures over the diffusion process. Unlike most filters that
actually blur the whole image and blend small regions together, our method preserves the

anatomical independence of many small structures encountered in an image. Figure 39 shows
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the output of diffusing an image containing a cluster-like structure of tiny particles at a
resolution of 50 pm. A Wiener filter blurs the structure and its output would look like a single
microcalcification, blurring together the individual tiny particles and possibly inducing some
FP. In the case of anisotropic diffusion, the tiny bits of calcium stay independent of the rest, an
essential feature in clustering techniques. The high variation between the diffusion parameters

used in obtaining the two filtered versions proves the consistency of the filter.
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Figure 39: Filtering example 3; the left column presents the origina SMF image (a) and itstwo
diffused versions for the sets of parameters k=5, 6=0.5, t=40 (c) and k=15, ¢=0.6, t=2 (€); the

right column shows the 3D surfaces of the three respective images.
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A magjor source of FP in mammography corresponds to shot noise. The noise maps
obtained after removing the glare-effect in the process of generating SMF images can be used
as a further step to exclude this specific type of noise from mammograms and therefore reduce
the number of FP. AsYam et al.’s algorithm is built to use a combination of a grey-level and an
SMF image, using its origina implementation on SMF only is expected to give poorer results.
Detecting the small area changes over the height of shot noise (in asimilar way to the detection
of microcalcifications), would eliminate the imaging artefact and could generate a shot noise
map similar to the one produced during the SMF generation.

Computational requirements are important in the development of real-time clinica
applications and filtering algorithms are usually time-consuming because of the subsequent
application of kernels over one image. In order to reduce the necessary time for the diffusion
process, we used a higher value for the contrast factor k. A higher k leads to faster diffusion
over the image and fewer iterations are requested. The consistence of our choiceis based on the
high h;, values corresponding to both shot noise and calcifications. Both structures preserve

their characteristics for high contrasts over afew numbers of iterations.

3.3 Conclusion

We presented a filtering method based on anisotropic diffusion, a process known for its scale-
space and edge detection properties. Our filter implements such nonlinear diffusion filtering for
what seems to be the first time in digital mammography and aims to be an alternative to classic
filters previoudly used in working with breast images and microcal cifications.

Our method uses the normalised representation of mammograms that the h;, generation
provides only, arobust and consistent approach to digital mammography. The initial results are
encouraging and further improvements to the method promise better rates of detection. The

algorithm is also reliable in detecting both calcifications and noise in one go by taking into
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account the “physical” appearance of different structures of interest. While the term noise refers
only to shot noise, as a major source of FP, the term cacifications would include coarse
calcifications as well as microcalcifications. Quantum mottle, an important source of errorsin
mammography, has little interference in our application as it is smoothed by our filter, with a
good choice of the contrast and scaling factors. Furthermore, anisotropic diffusion blursimages
making use of the edge enhancement property.

Having obtained the filtered mammograms (or as exemplified here, SMF images), we aim
to develop the method towards a fully automatic real-time algorithm. Here are the steps to
follow in extending the method to afull detection algorithm:

e arobust integration of the shot noise detection and removal, either further improving
this filtering algorithm into a shot-noise removal or integrating Highnam and Brady’s
artefact removal [65];

o the development of a non-parametric version of the present filtering method [101, 102,
103] - which enhances microcalcifications and smoothes the background into a more
homogenous area — to improve its robustness;

o the development of a reliable method to depict microcalcifications from the set of
possible candidates (as Yam et al.’s [179] implementation was used in the work
presented in this Chapter).

In the following chapters we will show the expansion of the filter we have presented here

into anovel non-parametric method to detect microcalcifications in X-ray mammography.
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4 Adapting Characteristics of the Human Visual
System to Digital Mammography

Unlike the wine, science shouldn’t
be let to age

Grigore Moaisil

In this Chapter, we present the results of developing a method to identify microcalcificationsin
mammograms using a model of the human vision. It is critical that a programme that is
designed to assist aradiologist detect microcalcification clusters missesfew —if any —clinically
important clusters, equally that it does not signal too many false positives (FP). However, no
method is perfect and though some have reportedly reducing the numbers of missed
calcification clusters by as much as 20% - they continue to return too many FP. Previous
methods can be classified as primarily statistical [80, 81] or structural [179].

Our method relies upon using a quantitative representation of breast tissue, for example the
Standard Mammogram Form (SMF) developed by Highnam and Brady [65]. The results
presented below have been obtained using the SMF quantitative representation of breast tissue;
however, the method does not depend upon the specific characteristics of the h;, and SMF
representations. Our method will work interchangeably on any such representation, though, as
we will demonstrate, there are significant advantages to applying it to the SMF representation.

The novelty of the technique derives from (a) the way in which the method analyses the

statistical characteristics of the mammogram and (b) the particular combination of filters that
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are applied in sequence (statistical analysis, image enhancement, adaptive segmentation). In
particular, the algorithm adapts to digital mammography a model of how the human visual
system functions for conventional visual images. We do this because the human eye proved, in
combination with the mobilisation of specialist knowledge that radiologists use, to be generally
more sensitive in depicting microcal cifications from a cluttered image than existing algorithms.
For this reason, a novel measure for adaptively estimating image contrast is used, as explained
further in this Chapter. The new measure adapts to the local brightness and adjusts a threshold.
Critically, the approach does not depend on the careful setting of a number of parameters,
despite the fact that it uses a number of methods (i.e. anisotropic diffusion), which depend
crucially on the setting of numerical parameters. This is important for large-scale deployment
in mammography, where it is simply unfeasible to re-set parameters for each mammogram. We
do this by a novel method of adapting the filters to the characteristics of the particular image
under consideration.

An overview of the algorithm is presented in Figure 40 with a clear separation of the stages
we use to detect microcalcifications. While the top row in the diagram relates to the SMF
generation (see Section 2.3) and Wiener filter (discussed in detail in Chapter 2), the bottom row
underlines the steps that will be described in the following sections of this Chapter. Therefore,
our input imageisin SMF format and addressed as SMF-blurred-noGlare. In the pre-processing
stage we remove shot noise and curvilinear structures (CLS) according to Section 4.1 and
obtain SMF-noCLS. Then we compute the parameters of the anisotropic diffusion filter
(addressed as dtatistical analysis and described in Section 4.2) and enhance the mammogram
while removing the remaining noise; the result is SMF-AD. The map of microcalcifications is
the output of the foveal segmentation explained in Section 4.3. Results and a comprehensive

discussion about the parameter setting are included at the end of the chapter.
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4.1 Pre-Processing

We have previoudly presented in Section 2.3 the new approach by Highnam and Brady for
mammographic image normalisation offering a quantitative representation of the breast tissue,
the hi [65]. There is adrawback however, the extremely noisy appearance of these images that
makes their analysis more difficult. Although the signal-to-noise ratio (SNR) of the
mammogram is improved slightly by the process that generates the h;,, representation prior to
glare removal, the subsequent glare removal step, which has the advantage of reducing the
number of FP, has the disadvantage of drastically decreasing the SNR due to the amplification
of high frequency noise.

Yam et al. [178] introduce a de-noising algorithm, which attempts to remove radiographic
mottle [65], a major source of FP in microcalcification detection. Thisis achieved by applying
a Wiener filter, adapted to the characteristics of radiographic noise, to the original image prior
to the generation of the h;,, image. As aresult, the SNR isincreased and the overall appearance
of the hi image improved. Since microcalcifications are also subject to noise, the amplified
high frequency noise in the original hy tends to disrupt small structures, such as
microcalcifications. The new smoother version would reduce the number of false negatives
(FN) in our detection algorithm.

To detect microcalcifications, we aim to filter the image in a way that blurs the
background, but enhances calcium. Prior to the image enhancement and detection of
microcalcifications, the normalised mammogram is pre-processed for shot-noise and
curvilinear structures (CLS) removal. This step, described in the following section, eliminates

some major sources of FP, aswill be seen in the detection results.
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| grey-level M’ | blurred %’ SMF blurred | Glare > SMF blurred
Filter generation removal noGlare
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Figure 40: The diagram of the foveal algorithm to detect microcalcifications in Standard
Mammogram Form images. The top row underlines the typical generation of an SMF image,
including glare removal. The bottom row highlights the method described above: pre-

processing, statistical analysis, image enhancement and adaptive segmentation.

The above flow diagram outlines the steps of the detection method including the foveal
segmentation (c.f. Section 4.3). In the diagram, SMF is taken to mean any suitable quantitative
representation of breast tissue, such as Standard Mammogram Form, | isthe original grey-level

image; k isthe contrast parameter used in the anisotropic filter and the foveal segmentation:

4.1.1 Shot Noise Removal

The main causes of FP that we aim to eliminate are shot-noise and curvilinear structures [65].
The SMF generation process can easily detect film-screen artefacts [3, 66], at the glare removal
stage. Therefore, glare removal may reduce the SNR, but would also minimise the number of
FP in the detection of microcalcifications. Shot-noise generally refers to a noise process in a
sensor in the scanner. Dust, hair or scratches on the intensifying screen or on the surface of the
film (when it is subsequently digitised) are light attenuating. They have sharp boundaries in
mammograms and can be treated as shot-noise. It has visual properties that are similar to those
of microcalcifications. Highnam and Brady [65] note the absence of blur in such structures of

noise in mammograms. The 3D shape of noise is sharp, as seen in Chapter 3, Figure 31. Using
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the point spread function of the intensifying screen; the points are identified and marked on a
map (the energy imparted becomes negative after glare compensation where shot-noise is
present, since it has been introduced to the image after the main blurring stage [66]). Using the
binary information from the shot noise map, the artefacts can be removed from the SMF image
by interpolating between their surrounding backgrounds. Figure 41 shows an example of shot

noise removal.

4.1.2 Curvilinear Structures Removal

Curvilinear structures (CLS) in the mammogram arise due to anatomical features, such as milk
ducts, ligaments, blood vessels and tumour spiculations. They appear relatively bright, thought
not necessarily with high contrast, in mammograms and are typically long thin lines crossing
parts of the breast. They are localy linear, but may also curve on larger scales. Their detection
is difficult due to the large variety of widths and lengths. Noise can easily disrupt the
appearance of CLS in mammograms leaving isolated bright spots behind, which can easily be
confused with microcalcifications. Also, at an intersection of two CLS in the image,
corresponding to overlap of the CLS in the 3D compressed breast, the attenuations of the
individual CLS add, producing alocalised region of higher attenuation. Such points also appear
similar to calcifications rather than noise.

The method we propose for CLS removal is based on the local energy model for feature
detection of Kovesi [90] and is presented in [35, 36, 181]. For a more detailed review of local
energy and phase congruency please refer to Appendix A. A recent development of CLS
detection and removal is presented in [154] and we show results on initial experiments after
removing CLS from mammograms using Schenk’s multiresolution algorithm later in this
Chapter.

The principles behind local energy and phase congruency methods are discussed next.

From local energy we can search for features at points of maximum phase congruency, which
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are the points where the local Fourier components are maximally in phase [90]. Phase
congruency highlights those points with maximum local energy. It is invariant to changes in
image brightness and contrast, but scale affects the detection of relevant features. Local energy
(LE) and phase congruency (PC) are expressed by Evans et al. as in Equations ( 57) and ( 58)
[36]. (We used their formulae for computation; but for Kovesi’s approach refer to Appendix
A.) For the spatial frequency j, the local Fourier coefficients of a one-dimensional signal are:
(56)

ZN:(AjHBj)

=1

[z ][z | 7

(59)

When the Fourier components of the signal are in phase, PC becomes 1.

Things become slightly more complicated in the case of two-dimensional images (intensity
mammograms, SMF images). PC becomes a function of position in the image and filter
orientation. Kovesi proposes the convolution of the logGabor function with the image using the
Fast Fourier Transform over 6 orientations and 4 scales. The logGabor filter appears as a hill of
approximative Gaussian shape on the positive side of frequency (see Figure 105). Thisisin the
frequency domain a good approximation of the sum between an even symmetric and an odd
symmetric filter (multiplied by i) and the convolution with alogGabor can be seen as the sum
of convolutions with both these symmetric filters. Performing the inverse FFT, we obtain the
real part as the result of convolving with the even symmetric filter, while the imaginary part is
the result of the convolution with the odd symmetric filter. For every scale and orientation, the
magnitude and the phase of the convolution are computed. The size of the bandwidth is set as

seen in Appendix A. The logGabor with a transfer function as in Equation ( 59) is used to
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obtain oriented wavelet filter ( 61), where w, is the centre spatial frequency of the filter
(oriented wavelet filter), 6, is the orientation of the wavelet, o, is the angular spread of the
wavelet, log(k/w,) isthe wavelet’ s frequency spread and S(6) is the cross-section of the transfer
function in the angular direction ( 60). Through the computation of LG(w), PC becomes
PCy(X).

(log(w! @, )f ] (59)
2llogk/ @, |

— (9 — 90 )2 (60)
SO)= exp[—T]

LG(w)= ex

6

G(6,w)=S(E)xLG(w) (61)

Evans, Yates and Brady [36, 181] make the following two assumptions in detecting CLS
from PC:

o theintensity profile of a CLS perpendicular to itslocal orientation is a one-dimensional

peak (e.g. cos(9)), with a phase within —t/2 < ¢ < 7/2;

o PCy .»>PCyataCLSof orientation 6, since CLS arelong and thin.

The weighted mean local phase in the direction 6, ¢y, is calculated using scaled wavel et
filtersand unless —/2 < @< n/2 for a given pixel, then the pixel does not belong to a peak and
is discarded. Alternatively, PCy is calculated. The step is repeated at regularly spaced intervals
of and apixel islabelled as CLS if | PCy ,» - PCy| > 0 for al orientationsé. The CLS labelled
pixels are now output in abinary map of CLS. The choice of scale and parametersis critical for
agood CLS detection, as Evans and Y ates remark [35, 181].

The CLS remova algorithm, in its origina implementation [35, 36], gets the best
estimation of CLS as in Figure 102. One major reason behind this over-estimation is the
devel opment of the method for mammograms of smaller resolutions than the one we use to find

microcalcifications. Also, calcifications were not relevant for the validation of the original CLS
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removal method and therefore their removal along the CLS not considered important. The
implementation we propose uses a smaller wavelength, which makes it more sensitive to
smaller scales. Furthermore, we reduced the number of scales over which features are detected
by phase congruency to avoid marking as CLS the calcifications, as small structures that still
have local orientation. The downfall isthat there are discontinuities that appear in the true CLS
and their removal leaves bright areas on the mammogram that do not correspond to real
structure with that particular form and characteristics (similar to microcalcifications). To avoid
having such discontinuities and major errors in image manipulations, we followed the original
algorithm proposed by Evans et al. and dilated the features appearing in the binary CLS map.
After dilation, a smooth interpolation is required.

To perform the smooth interpolation, we adopted the solution proposed by Evans, which
uses the Matlab Image Toolbox function roifill. This function takes as input (in this particular
application) the mammogram and the corresponding binary CLS map. The interpolation is done
from the boundary of the non-zero contours in the CLS map inwards, using the pixel values
from the mammogram. Each non-zero region is treated separately during the interpolation. The
criterion used is to solve Laplace' s equation with specified boundaries. This may be interpreted
as finding the smoothest interpolation on the interior of the boundary by solving a heat
equation. The Matlab implementation of Laplace’s equation solves a sparse linear system using
finite differences.

Figure 41 shows an example of CLS remova and a binary CLS map. The amount of
estimated CLS is large and shows responses of the algorithm to very weak edges, which
induces a smoothing effect in those areas when the removal/interpolation is performed. Thisis
an undesired side effect of the algorithm. These are the results obtained using Evans et al.’s
method, when a good compromise is achieved in removing CLS without removing
microcalcifications. A more accurate CL S removal technique is proposed in Section 4.4.2 and

will be employed in future work.
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Figure 41: Removing artefacts; (a) the original image; (b) the binary shot-noise map (white
dots are noise); (c) the binary CLS map; (d) the ‘clean’ image after shot-noise and CLS
removal.

4.2 Statistical Analysis and | mage Enhancement

There are various methods, which may be used to do image enhancement, for example
anisotropic diffusion-based filtering (cf. Chapter 3) which aims to blur the input
mammographic image while preserving certain intensity changes, such as small regions of
interest. The process relies on the use of a set of numerical parameters, often referred to in the
image processing literature as time, contrast, and size. It has been found in practice that it is
essential to determine the right choice of parameters to obtain good reproducible results. Our
method automates the parameter setting for each individual image, and in thisway it eliminates

the need to set parameters.
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The method exploits Weickert’s solution [172] for the diffusion tensor. It uses a similar
simplified and stronger tensor having eigenvalues ( 62), where | is the initia image, |, the
Gaussian smoothed image (o is the standard deviation or scale), k a contrast measure and n a

suitably high power, such as 8 or 12.

1 VI, [EO, (62)
Ao L VI >0
(VI 11K)"
A,=1

As we have noted in the previous Chapter, the parametric format of anisotropic diffusion
makes this process highly dependent on the fine-tuning of its input parameters. In practice, the
more complex and variable the images in a dataset, the more problematical it is to choose a
single set of values for these parameters that works well for the entire dataset. Critically, by any
measure, mammograms are very complex images, whose appearance varies widely across a
population (at a centre, hospital, region, country, or continent), yet any microcalcification
detection algorithm must generate very few FP and have even fewer false negatives (FN). One
possible approach is to provide for interactive setting of parameter values; but this is
unacceptablein clinical practice.

Microcalcifications are typically extremely small, therefore a small scale ¢ is desirable.
Since t is not an image characteristic, we choose to vary only k, which is image dependent.
Now we can iterate the blurring filter for a constant number of iterations over the image, but
this raises the problem of how to choose the contrast parameter to determine the values of the
eigenvalues ( 62).

Our method uses an adaptive Gaussian derivative filter ( 63) - ( 66). The application of this
filter to a de-noised, glareremoved h;, image results in a gradient-map that highlights
suspicious regions as regards microcal cification detection. Furthermore, the same filter outputs
the value of k for the subsequent diffusion. Figure 43.c.,d. shows two examples of such gradient

maps. Having the gradient map and the resulting value of k, we apply the anisotropic diffusion
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filter to the h;, image with the corresponding value of k for afixed number of iterations and set
scale. The new images will generally be blurred, except possibly for some suspicious regions
that will have their edges preserved, as in Figure 43.e.,f. Note the emphasised outline of the
microcalcifications, while most of the background is blurred. By using the adaptive filter to
compute the value of k, the anisotropic diffusion filter becomes robust, easy to use and
automatically adapted to the image characteristics. The value of k represents the threshold
selecting only the top 4.4% outstanding features in an image, a statistical value related to the
sum between the mean and two standard deviations. Since the mean of our matrix is null (see

Figure 42), equation ( 66) takes a simpler form.

K_(1)= 12*%{_“5) (63)
2no 20
M =K, (1) ]; (64)
RV ( 65)
gi_Mi N%Mj
k= 2*std(g) : (66)

where K(1) is the Gaussian of image |, M the Gaussian derivative, g; a classical measure
of local contrast in a neighbourhood of N pixels, while k is the computed contrast value to be

subsequently used to filter the image.
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Figure 42: An example of estimating k. The image shown on the left (after expanded display
contrast) has the associated histogram of function g in the right. We note the zero mean value

of g, aswell aswhere the value of 0.47 of k falls.
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Figure 43: Automated image enhancement; (a) an image with an isolated calcification; (b) an
image with a microcalcification cluster; (c) the corresponding gradient map for image (@)
depicting the microcalcification and some extra undesired regions, (d) the corresponding
gradient map for image (b) with a good representation of the cluster, but some falsely
suspicious areas as well; (€) the automatically diffused image (a); (f) the diffused image (b);

4.3 Foveal Segmentation

An important goal in present image processing and computer vision methods is to integrate

spatial models that reveal the sensitivity of the human visual system (HVS) at various intensity
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transitions and texture variations in an image. There is over one century of research behind
trying to fully understand the way the HV S functions. A major contribution to this on-going
research was brought by Holladay in 1926 [69] and later by Moon and Spencer in 1943 [118].
They introduced the fundamental s of the way the human processes visual scenes. Nevertheless,
the process is very complex and still not entirely understood [6], which make it difficult to
design comprehensive models of HV S.

The final step in our method to detect microcalcifications is an adaptive segmentation
method. It is well known that the Human Visual System (HVS) is highly sensitive and can
detect fine details in noisy or textured images. Image processing aims to reproduce the quality
of these results. Recently, Heucke et al. [62] introduced a computational model for the HVS. In
their method, foveal contrast depiction is adapted to the object surrounding and background.

The adaptation of the eye to light changes is a continuous process in HVS. We perceive
objects differently if they are against a bright surface (for instance awindow in a sunny day) or
dark area (a dark wooden panel). The adaptation luminance proposed in [118] isthe response of
the eye in adding an average luminance within the central visual field or fovea (Ls,) and an
equivalent veiling luminance caused by the luminance of surfaces surrounding the peripheral
field of view (L) asin ( 67). However, the foveal adaptation owes mainly to the luminance
within the foveal field and only approximately ten percent to the luminance of the field of view
outside of that of the fovea[118]. The literature proposes 7.7% of the adaptive luminance to be
due to the background luminance [62], which gives a value of 0.923 to our weight w (see
below). In practice, we studied the effect of varying w with 10% more or |ess than the proposed
value and a comparative FROC curve is shown in Figure 61.

La= Liov + Leeg (67)

Furthermore, the visual perception of the eye is dependent on the spatial perception of the
object we perceive. This effect is called lightness assimilation. The same object may appear

lighter on a dark background and darker over a light surface (see Figure 44). The eye is still
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perfectly capable of distinguishing the three central areas, but thisis not obvious for acomputer
program.

In the mammographic environment, the main advantage of the human eye over CAD
methods is the depiction of microcalcifications in dense areas of the breast. At the same time,
the radiologist must not pick FP in the dark areas. This is the result of the adaptation to
background, which is equivalent to lowering thresholds in bright areas and increasing them in
dark areas, basically an inverse proportionality to the background. While in our synthetic
images the background is constant, in a mammogram we must consider the neighbouring area
of the foveal kernel, as shown in equation ( 70). The adaptive threshold model that we propose
for the detection of microcalcification applies the above-mentioned concepts in the

mammographic setting for the improvement of abnormality detection in the breast.

Figure 44: Anillustration of the lightness assimilation. We show three synthetic images with
dark (left), medium (middle) and bright (right) backgrounds. All have central objects of the
same size and intensity, but are perceived differently by our eyes, due to the variance in

background lightness.

Previous contrast measures used in mammography seek to establish a minimal constant
contrast difference all over the mammogram [80]. The contrast (Cyasic) iS calculated at every
pixel as the difference between that pixel value (pg) and a weighted sum of the pixel valuesin
an immediate neighbourhood (N) ( 68), where n is the number of pixelsin N. Cyasc IS then
compared with a fixed threshold, Cyesn, Over the whole image and microcalcifications are

marked. The variation in height in an SMF image or intensity in atypical mammogram makes
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it far easier to detect microcalcifications against a fatty background but more difficult to detect
correctly against a denser background [9]. In like manner, computer vision algorithms often
find it more difficult to detect faint contrast changes against a bright background than against a
dark background. The HVS, however, adapts to the local image contrast, and detects faint
contrast changes in a manner essentially independent of the background. We have adopted a
similar model of contrast detection in the HVS for mammography with the aim of improving
the accuracy of the detection.

We initially remove the glare, shot-noise and CLS from the SMF image. Having the
SMFocLs image, we compute a set of mean values using masks for the inner area (within the
boundary of calcification), its neighbourhood (the local area around the calcification) and
background (the rest of the breast tissue). The histogram of the inner surface will provide the
mean of the object (uo), as the histogram of the whole image will give us the mean of the
background (ug). The mean of the neighbourhood (uy) is defined as the weighted sum of
intensities depending on the scale of the mask. A synthetic image designed to illustrate the

kernels used for object (O with the mean uo), neighbourhood (N with the mean ) and
background (B with the mean ug) is shown in Figure 45. The perceivable contrast C is

calculated according to equation ( 69):

1 (68)
Cclasic = Po __Z P,
niEN
_ 69
I 5L (69)
C= Hy
0} otherwise
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HB

Figure 45: The fovea masks used for the computation of o, un and us. The object O is the
area of the fovea centralis, N its neighbourhood (twice the size of O in our applications) and B

the background.

We then compute Ci, ( 70), where ua=w un + (1-w) ug and wis a suitable weight between
0 and 1 affecting the amount of background implied in the computation of contrast. We have
found that w=0.877 to 0.923 gives good results. We will use the value of 0.923 for the default
value in comparative studies, as proposed in literature [62]. The segmentation parameters are

set-up automatically based on the image-adapted value of k, as computed from the statistical
analysis, (discussed in Section 4.2). We found that C, =k /200 is appropriate for a

conservative detection. Areas in the SMF image having C>C,, ae marked as

microcalcifications. In practice we have found that the value b=0.0808 has given good values.

— C—W(b+\/Z)2, Ha = [y n
Hy

C:min= c 2 z
Swlpy BN s,
Hy Hp

(70)

Using Cin instead of Cyyesn, the contrast is adapted locally, not only globally, in a manner
similar to that of the HVS. Figure 46 shows how the variation of perceivable contrast varies
with the background in the HV'S adaptation method versus classical methods. While C.,, varies

with the local image characteristics, Cyen IS constant over the whole image.
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Microcalcifications can be correctly depicted in a fat background for both contrast measures,

but in a dense background the detection is facilitated by the adaptability of C.,.

A Intensity/Height

Cihresh é ;{ S {) Crin

Cihr e? Cmn
—

Figure 46: The simulation of a plot of a mammogram section containing microcalcifications

>
X dimension

over height/intensity variation. The variation of the perceivable contrast in the detection of
microcalcifications is suited to the local characteristics for the adaptation of HVS using Cpp.
The classical minimal perceivable measure, (here called Cyesn) is a global characteristic of the
mammogram and less flexible in the elimination of FP in the detection of microcalcifications.

The function C.,, ( 70) is ameasure of contrast sensitivity. It sets the threshold from which
objects in the image are visible for the observer, a measure of the eye's ability to perceive
luminance gradients. Through the use of the minimal perceivable contrast (c,), it includes a
measure of the image brightness. (Imagine varying the amount of objects we can distinguish
with the naked eye by using a pair of sunglasses.) The variation of C,, over a set of synthetic
images presenting variations between background (see Figure 47), neighbourhood and object is
shown in Figure 48. Using the adaptive thresholding qualities of HVS we can depict al the
high peaks in these images, which would be impossible with a simple threshold. For the
parameter b in the C,,, equation, we used the value 0.0808, as proposed in [118] with good

segmentation results.
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Figure 47: A set of five synthetic images with variations between object, neighbourhood and
background and their associated cross-sections. These examples cover a wide aspect of
contrasts in image processing: bright on dark, bright on bright, dark on dark. The corresponding
values of o, un, g and C are shown in the table below the figure. The variation of the
adaptive threshold is shown in Figure 48.
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Figure 48: The variation of the adaptive threshold C,;, for the synthetic imagesin Figure 47 in
the central area of images, which corresponds to the object and neighbourhood surface. For this
example, we used ¢,=0.03. The value of C, in the centre of foveais shown in the table below
the figure. We note that for the most delicate case (extreme right), Cin, and C are in the same
range of vaues. In such difficult cases, which approximate better the mammographic
environment where transits between different intensities are much smoother, the adaptation of
Crin become crucial. Moreover, C> C, in al five cases and all peaks are detected.
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Figure 49: The FROC curve of the microcalcification-detection method based on the
adaptation of HVSin digital mammography.

Figure 49 shows the Free-response Receiver Operating Characteristic (FROC) curve of the
tested microcalcification detection method based on the adaptation of HV S. We used a database
of 102 samples of digital SMF images. 78 of them contain between 1 and 3 clusters per image,
while 24 are normal mammogram samples. There are atotal of 98 clusters of microcalcification
annotated in the database. All images were digitised at a resolution of 50um and have sizes
under 1500x1500. We further show some examples of microcalcification clusters detection in
Figure 50 -Figure 54. A cluster is detected if it contains at |east three microcal cifications, where
a distance of maximum 0.5 cm (approximate value) connects each calcification to the rest of
cluster. Recursively, we noted that the distribution of detected FP/image is equal in samples
with microcalcifications and in normal samples. Along with the original SMF sample and the
microcalcification detection map, the figures show intermediate results from the following
stages; we also show the gradient map resulting from the statistical analysis, the CLS map and
the enhanced SMF sample after applying the automated anisotropic diffusion filter described
previously. The detection process is non-parametric and fully automated, being adapted to the

local and global image characteristics.
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Figure 50: Detection example 1: (a) the original SMF images with a microcal cification cluster;
(b) the gradient map from the statistical analysis depicting suspicious pixels; (c) the CLS map;
(d) the enhanced image after diffusion; (€) the microcalcification detection map.

Figure 51: Detection example 2: (a) the original SMF images with amicrocalcification cluster;
(b) the gradient map; (c) the CLS map; (d) the enhanced image; (€) the microcalcification
detection map.
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Figure 52: Detection example 3: (a) the original SMF images with a microcalcification cluster;

(b) the gradient map; (c) the CLS map; (d) the enhanced image; (€) the microcalcification
detection map.

(b) the gradient map; (c) the CLS map; (d) the enhanced image; (€) the microcalcification
detection map.
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Figure 54: Detection example 5. (a) the originad SMF images with a very large
microcalcification cluster; (b) the gradient map; (c) the CLS map; (d) the enhanced image; (€)
the microcalcification detection map.
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4.4 Discussion

We have presented a fully automated non-parametrical method to detect microcalcificationsin
digital mammography. The result of applying it to a mammogram (typically an SMF image) is
amap of detection, which highlights the microcalcifications present in the image. As the FROC
curve in Figure 49 shows, the detection rate on a 102 set of mammogram samples reaches 98%
TP fraction at 0.1 FP/image. All the microcalcification clusters in the tested images are
correctly detected at 1.1 FP/image. The most difficult case was a cluster in the breast margin
(see Figure 55). Since the margin of the breast in mammogram has not been compensated, the
characteristics of microcalcifications in that area are atypical and their detection becomes

difficult.

Cluster

Figure 55: A case of difficult detection with a faint microcalcification cluster in the breast
margin. The contrast in the image has been enhanced for the reader to help in the visualisation
of the cluster.

Adding adaptive contrast segmentation based on human foveal processing significantly
enhances the detection of microcalcifications (see Figure 76). However, the variability of
microcalcification appearance is very large and the algorithm may struggle with some difficult
cases. The robustness of the method comes from the sequence of filters applied to the

mammogram; the complex processing of images makes the algorithm slow when working with
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entire  mammograms (generally images of 4500x4500 pixels). Therefore, a faster

implementation of it may be required.

4.4.1 Comparative ROC Analysis

In this section we present comparative FROC curves to test the response of our method with
variations in algorithm and input images. We will see the impact of CLS removal, the changes
with the variation of the minimal perceivable contrast, the results on intensity images and on

whole mammograms.

4.4.1.1 CLS Removal

We will first test the influence of the CLS removal step in the detection of microcalcifications.
Although the number of FPislowered (see Figure 57 and Figure 56), the method is not perfect.
To make sure that no microcalcifications are eliminated during this step, we preferred a
conservative approach. This may leave some CL S residualsin the image, which may lead to FP
in the detection. Also, we may still lose some small microcalcifications during the CLS
removal, which does not seriously affect the detection of the cluster, as seen in the examples

below.

Figure 56; Another example of CLS removal in detection: (a) the origina mammogram; (b)

the detection map using the CLS removal; (c) the detection map without CLS removal with a
few extra FP detected.
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Figure 57: CLS removal in detection: (a) the origina mammogram; (b) the detection map
using the CLS removal; (c) the detection map without CLS removal with a few extra FP
detected.
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Figure 58. The comparative FROC curve when CLS are removed or not prior to the
microcal cification detection

In Figure 58 we show the comparative FROC curve of our method applied on original
images, which are not pre-processed with the CL S removal algorithm versus CL S-free images.

The response of the agorithm is vastly superior when CLS are eliminated prior to
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microcalcification detection. The large number of FP caused by the presence of CLS delays the

FROC response when CL S are not removed.

4.4.1.2 Image Diffusion

The pre-processing of our database includes, as highlighted along the manuscript, the
smoothing of images by anisotropic diffusion. The reason for employing smoothing along the
algorithm has already been mentioned in previous sections. What is still left to be done is
comparing the performance of the method with and without smoothing to get a clear
understanding of the effect of diffusion on the detection results. The whole algorithm is
replicated without the smoothing step and the comparative FROC curve is shown in Figure 59.
An example is al'so shown in Figure 60, where we can compare the detection results with and
without smoothing on a mammogram sample. Although the smoothing is expected to remove
some of the very small or faint microcalcifications, the clusters are well preserved using the
nonlinear qualities of anisotropic diffusion. Notably, the higher number of FP detected when no

smoothing is present reduces considerably the performance of the algorithm.
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Figure 59: The comparative FROC curve when smoothing by anisotropic diffusion is

performed or not prior to the segmentation of microcalcifications.
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Figure 60: Image smoothing in detection; (a) the original mammogram sample; (b) the
detection map using anisotropic diffusion; (c) the detection map without using smoothing with
FP marked.

4.4.1.3 Per ceptibility

In Section 4.3 we mentioned the significance of w in setting the minimal perceivable contrast
for obtaining the best detection results when our algorithm is applied. We ran parallel tests to
test the consistency of our conclusion to use the value 0.923 for w. Therefore, we varied the
value of w over 5-10% and found that the detection peak is achieved when w is set between
0.877 and 0.923. However, a 5% difference in the value of w does not change significantly the
detection results, although the efficiency of the algorithm is slightly lowered. Figure 61 shows

the comparative detection results with the variation of w.
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Figure 61: The comparative FROC curve when w is varied over a range of 5 to 10% of its
default value of 0.923. The difference in detection resultsis quite small and all four algorithms

converge smoothly to 100% TP ratio.

4.4.1.4 Intensity I mages

The obvious question we have to ask ourselves at this point is how well would the algorithm
perform on intensity images and if the results are similar to those obtained on SMF images. We
used the same 102 images, this time intensity images corresponding to the previously used
SMF images, and tested our method over the same range of parameters as in the case of the
SMF images that generated the above FROC curve. The results are shown in Figure 62. The
detection algorithm performs similarly on intensity image, with a slower convergence, for the
same set of parameters as for SMF images. The shape of the FROC curves makes a great
difference to the number of microcalcification clusters detected at a particular number of
FP/images, especially on the left side of the curves. This is the area of the FROC curve that

corresponds to clinical results.
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Figure 62: Intensity versus SMF comparative FROC curve. The detection algorithm converges
dightly slower for intensity images, but reaches the same performance as for SMF images. One
reason for the delay could be the use of same parameters when building the FROC curve,
although the image characteristics (intensity versus SMF) are different.

4.4.1.5 University of South Florida Database
The ultimate goal of any CAD algorithm is to perform correctly on any given similar database,
no matter where it comes from. As is acknowledged by many authors (not least those who
constructed the University of South Florida database), without image normalisation thisis hard
to conceive of. The SMF generation algorithm is designed to help in this difficult situation, but
excepting the Oxford database, no other image collections have mammograms in SMF format.
Our detection algorithm, through its parametrical relation to the image attributes, facilitates the
generalisation of detection standards, but without the use of a normalisation algorithm (a corner
stone in our reasoning), the results are not ideal.

We used for comparison a collection of images from the University of South Florida
Digital Database for Screening Mammography (DDSM). More precisely, we applied our
algorithm to mammogram samples digitised at 43um/pixel with annotated microcalcification

clusters. They have similar sizes to the image samples from the Oxford Screening database
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(c.f. Section 4.3). The major difference between these images and the ones from Oxford is the
image resolution. To compensate for this difference, we conversed the values of ¢ in the
anisotropic diffusion step (see Section 4.5.2) to build a Gaussian kernel of approximately same
size. In the Oxford database (at 50um/pixel), o was 0.6, which has the same physical size asa
o of 0.7 at the new resolution. Also, the kernel of foveain the foveal segmentation (see Section
4.5.2) becomes 11 instead of 9 to be in accordance with the parameter setting reasoning. These
conversions are done automatically at the launching of the application in agreement with the
user specified resolution.

The new database consists of 82 image samples, of which 58 show abnormalities in the
form of microcalcification clusters and 24 are normal. The abnormal images contain between 1
and 4 clusters/image and the total number of clustersis 82. All images are intensity images, as
termed before, therefore the FROC curve shown in Figure 63 compares the performance of the
microcalcification detection algorithm between the Oxford Screening Database in intensity

form and the DDSM collection.
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Figure 63: The comparative FROC curve between the detection results on intensity images
from the Oxford Screening Database and the University of South Florida Digital Database for
Screening Mammaography .
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As expected, the algorithm performs better on the Oxford Screening database, on which the
parameters were originally trained. Nevertheless, the detection results on the two databases
converge at about 0.5 FP/image and they both achieve 100% TP fraction in the vicinity of 2
FP/image. A more appropriate test of the detection algorithm on the DDSM database will be

done when images will be available in SMF form.

4.4.1.6 Whole Mammograms

The results used in building the previous FROC curves are based on processing cropped
samples of mammograms from the Oxford Screening Database. All experiments were
performed on a 1.2 GHz Pentium |1l class workstation with 1 GB RAM. Nevertheless, it was
very computationally expensive to test the detection method on whole mammograms, which
are sized 3549x4816. This is mainly caused by the implementation of our method in Matlab,
which uses extensive memory and slows down the processing time due to the high-level
programming. By doing some algorithm optimisation, the processing was made possible for the
illustration of results on detecting microcalcificationsin the full surface of breast.

The breast margin is detected in SMF, thus a threshold above 0 removes the background.
Now we can compute the value of k for the inner area of the breast. The detection results are
accurate and similar to those achieved on mammogram samples (see Figure 64). The size of the
images processed does not influence substantially the number of FP/image in the |eft side of the
FROC curve. On the right side of the FROC curve, where the algorithm aims to achieve a
detection rate of 100%, the difference in the number of FP is more substantial. We used a total
number of 83 mammograms in SMF format from the Oxford Screening Database. 59 of them
contain between 1 and 5 clustersimage, adding the total number of clusters to 85, while 24
mammograms have no sign of abnormality. The clinicians of the Oxford Breast Care Unit of

the Churchill Hospital set the ground truth.
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The most challenging cluster to detect remains the one shown in Figure 55. The presence
of CLS remains the main source of FP, or more precisely their imperfect removal. A few
isolated calcifications were also depicted, but they were not labelled as microcalcification
clusters (they were located in groups of less then 3 calcifications, the minimum number
required in the detection method). In Figure 65 we present detection results on whole
mammograms; we indicate with ellipses the TP microcalcification clusters and with arrows the

|ocations of FP.
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Figure 64: The comparative FROC curve of the detection of microcalcifications when

mammogram samples are used versus full mammograms. The behaviour of the algorithm is
similar and robust with the image size.
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Figure 65: Detection results on whole mammograms; (a) and (c) are the MLO SMF images,
while (b) and (d) the corresponding CC images. Ellipses indicate the |ocations and spread of the
detected microcalcification clusters, while arrows indicate the positions of FP.

4.4.2 An Alternative CL S Removal

This alternative method we present here to detect and remove CLS is a refined version of the

phase congruency presented earlier in this Chapter (see Section 4.1.2). We have used local
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energy (LE) and phase congruency (PC) to detect and then remove CL S from mammograms.
The results are substantially improved (see Figure 58), but the CLS removal algorithm leaves
artefacts in images that can be misinterpreted as microcalcifications. In this section we discuss
an alternative method to detect and remove CL S based on multiresolution oriented local energy
analysis [154]. We encounter the same major problem, namely the wide range of scales and
orientations of CLS. Using multiscale analysis, CLS are detected as a collection of edge-ridge-
edge lines with similar orientations at the correct scale. The condition that neighbourhoods
must follow the same model removes a substantial number of the CL S candidates highlighted
by LE. Through exact interpolation between the edges, no artefacts and undesired smoothing

are introduced. The proposed algorithm is detailed below.

4.4.2.1 Theory
The motivations behind detecting and removing CL S have already been discussed in thisthesis,
but to briefly summarise:

e CLSarethin bright structures corresponding mainly to healthy tissue in the breast;

e They complicate the textured appearance of a mammogram,

e Their scale and brightness resembles that of microcalcifications and CLS crossings

correspond to bright blobs;

o CLS related to blood vessels, ducts or ligaments may be confused with tumour

spiculations;

Schenk and Brady [154] make the following assumptions in their work on CL S detection:
CLS are locdly linear; they have well-defined orientation; CLS are high-frequency (small-
scale) structures. Local energy (c.f. Appendix A) gives responses to all CLS feature (i.e. the
centre and the edges of the CLS) and uses phase to distinguish between these asin Figure 66.

An effective computation of orientation can be performed.
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Figure 66: The response of local energy to a variety of input signals: (a) the input signal; (b)
the local energy response; (¢) the phase-angle response.

The local energy decomposition is done by polar-separable quadrature filtersin the Fourier
domain, which are implemented as steerable filters. The computation is performed using an
even-symmetric filter ( 71) and a corresponding odd-symmetric filter for the radial part with a
negative lobe on the negative frequency axis. For the angular component of the filters (spread
at N orientations over a half-circle) the cube of the cosine is used ( 72) and its absolute value
for the odd and respectively even-symmetric filters. Figure 67 shows the steerable quadrature

filter pair. Empirically we found good practical results by setting N = 4 over three scales.

F(4)= Iog(% cos(x)z) ()

A@,)=cos’ (@ -, ) 5 =" (72)
" N
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The Fourier transform of the image is multiplied by each of the filters and the inverse
transform calculated. The filter response is computed for each pixel at each scale by a vector

sum weighted by the amplitude of the oriented filter coefficients.

1.8
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Figure 67: The angular part: a steerablefilter.

The method uses phase to find al locations corresponding to positive going lines (ridges)
and locations corresponding to positive/negative going edges. A point on a CLS must consist of
an edge-ridge-edge triplet of similar orientation and correct scale. Figure 68 shows an example
of ridge-edge combinations. The immediate neighbours of the CL S must follow the same scale-
dependent rule.

At each pixel of aCLS, an approximate width of the structure is computed by selecting the
scale that has the largest magnitude coefficients. The width is used at each pixel to remove the
CL S by interpolating between pixels neighbouring each edge. The a gorithm uses histograms of
immediate small neighbourhoods to randomly sample the points in-between, weighting the

values by the distance to either step-edge.
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Figure 68: A simplified example of edge-ridge-edge triplet. The background is a scale image;
ridges are shown in green, while edgesin red. The lengths of the vectors express scale.

4.4.2.2 Initial Results

In Figure 69 we can see an example of CLS detection on a sample of real mammogram. The
example is design to show the robustness of the detection and removal on an image containing
CLS, microcalcifications and a mass. The CLS map over three scales is shown along with a
close up exemplifying the edge-ridge-edge triplets detected from the filter response.

Having detected CLS, we removed these lines from the image and applied the
microcalcification detection algorithm to both the original mammogram sample and the CLS-
free image. The two sets of results are shown in Figure 70. A notable improvement can be seen
from the incorporation of this multi-resolution CLS detection stage. The microcalcification
clusters are preserved over the CLS removal, since CL S are now manually removed at different
scales depending on the filter response. Furthermore, edges are not erroneously detected, as
they do not respect the edge-ridge-edge rule, while microcalcifications are not affected, as they
do not fit in the model at the right scale. At thisinitial testing stage, the method to remove CLS
seems more performant than the phase congruency-based algorithm presented earlier. Note that

the scale selection and CL S detection were done manually
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Figure 69: An example of CLS detection: (a) the original mammogram sample containing a
mass, two clusters of microcalcifications and CLS; (b) the CLS map over 3 scales; (d) a close-
up of the upper right corner of image (a) showing the edge-ridge-edge triplets (edges in green,
ridgesin red). The CLS are detected using manual thresholding over each scale.
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Figure 70: An example of microcalcification detection: (@) the original mammogram sample;
(b) the CL S-free mammogram sample using Schenk and Brady’s algorithm; (c) the CLS map
before CLS removal with a large number of FP; (d) the CLS map after CLS removal with
improved results and a significant reduction of the number of FP.

4.4.2.3 Discussion

The new CLS detection method can reliably differentiate between CLS and other high-
frequency components in a mammogram, which are congruent over scale. A better and more
complete CLS removal can be performed without risking the removal of microcalcifications or
excessive interpolation. However, when we performed experiments involving an automated
selection of scales the results were different. We marked a CLS at the first scale that gives
response to it. Unfortunately, most microcalcifications gave responses to one scale or another
when no manual thresholding was used. While the number of FP was significantly lowered,

most microcalcifications were lost and the features of the detected clustered seriously altered.
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Thus, the CL S detection based on multiresolution oriented local energy analysis must be further

devel oped before imbedding it in an automated detection algorithm for microcalcifications.

4.5 The Detection of Microcalcificationsusing SMF

45.1 Comparative Results

This section compares three algorithms that operate upon the h;, representation (or the SMF) to
detect microcalcifications. Two of these algorithms have been described previously in this
thesis; one is the method presented in the last sections (using image enhancement, CLS
removal and foveal segmentation) and referred as the Foveal Approach, the second oneisYam
et al.’s Physics Based Approach that was described in Chapter 3. The third is a variation of the
statistical analysis introduced in Section 4.2. Using ROC analysis, we demonstrate the
superiority of the first algorithm. First, however, we describe briefly the third algorithm that
we compare here.

The third detection method, which we refer to as the Statistical Approach, differs from the
foveal approach only in the final segmentation stage. In common with the foveal approach, the
statistical approach applies an adaptive Gaussian derivative filter to the de-noised, glare-
removed SMF images, which results in a gradient map and outputs the value of k for the
subsequent diffusion stage. Next, the anisotropic diffusion filter is applied to the SMF image
using a constant number of iterations t, with a pre-defined value of ¢ and the pre-computed
value of k. With the diffused images ready, we need to ensure that the artefacts emphasised in
the gradient maps will be eliminated.

A final segmentation stage uses statistical analysis to classify the content of an image into
three main categories:

e background - where the variation of the image gradient is too low to correspond to

microcalcifications;

e putative microcalcifications; they are conservative to avoid FN;
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e shot noise - where the variation of the image gradient is too high to correspond to

anatomical structures.

The filter is based on the same computation as the anisotropic diffusion, but also
incorporates some adaptive thresholding suited to the image characteristics and the properties
of microcalcifications. This last filtering process outputs a black-and-white map of detection
(BWMD), where all pixels different than the black background correspond to calcifications in
the breast.

The statistical analysis operates in the following manner. If | isthe SMF image we process,
the contrast of | is computed by comparing the value of the mean(l) with that of max(l)/2. A
first threshold is adapted to the image contrast and | (SetPixels)=mean(l), where SetPixels are
the pixels in image | that have the absolute value of the Gaussian derivative smaller than a
constant M. For images with low contrast, we found M=5 to give good results, while for
images with high contrast M has the value 20. The step is repeated over a few iterations in
order to evaluate the steepness of the selected microcalcification candidates at each step. The
final version of the image is contrast enhanced and the maximum value of M is used for
thresholding. All the pixels that satisfy the thresholding criterion are marked as
microcalcifications on the BWDM image.

In summary, the third method uses three filters in sequence:

e an adaptive Gaussian filter, which generates a gradient map and, more important, the

value of k;
e an anisotropic diffusion filter, which will enhance certain suspicious regions based on
the previous computation of k;

e some more statistical analysis built as an adaptive thresholding filter, which will

discriminate between microcalcifications and the rest of the image.

Figure 71 to Figure 75 show the detection results on some mammogram samples containing
microcalcification clusters. We present, along with the original contrast-enhanced SMF sample,

the detection maps of the Physics-based Approach, Statistical Analysis and Fovea Approach.
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We used a database of 102 samples of digital SMF images, 78 of them contain 1 to 3 clusters
per image, while 24 are normal mammogram samples. There are a total of 98 clusters of
microcalcification. All images were digitised at a resolution of 50um and have sizes under

1500x1500. Figure 76 shows the comparative FROC curves of the tested detection methods.

s
o«

Figure 71: Comparative Results 1 for the Detection of Microcalcifications in SMF; (a) the
original SMF image sample; (b) the detection map of the Physics-based Approach; (c) the
BWMD of the Statistical Analysis; () the detection map of the Foveal Approach.

Figure 72: Comparative Results 2 for the Detection of Microcalcifications in SMF; (a) the
original SMF image sample; (b) the detection map of the Physics-based Approach; (c) the
BWMD of the Statistical Analysis; () the detection map of the Foveal Approach.
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Figure 73: Comparative Results 3 for the Detection of Microcalcifications in SMF; () the
original SMF image sample; (b) the detection map of the Physics-based Approach; (c) the
BWMD of the Statistical Analysis; (c) the detection map of the Foveal Approach.
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Figure 74: Comparative Results 4 for the Detection of Microcalcifications in SMF; () the
original SMF image sample; (b) the detection map of the Physics-based Approach; (c) the
BWMD of the Statistical Analysis; (c) the detection map of the Foveal Approach.
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Figure 75: Comparative Results 5 for the Detection of Microcalcifications in SMF; (a) the
original SMF image sample; (b) the detection map of the Physics-based Approach; (c) the
BWMD of the Statistical Analysis; (c) the detection map of the Foveal Approach.
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Figure 76: The FROC curves of the three microcalcification-detection methods, where we

notice the better performance of the Foveal Approach.

45.2 Setting the Parameters

The diffusion process is modelled by three parameters that determine its response to various
image situations. Their influence on the smoothing of an input image has been described before
in Section 3.2.2, their setting for a specific application, such as image smoothing prior to the
detection of microcalcifications is the subject of the following paragraphs.

During the experiments performed and presented in Chapter 3, we aimed to characterise the
effect of the choice of specific values for the three diffusion parameters, k, o and t, on glare-
removed SMF images. Since anisotropic diffusion was originally meant to be used as an
alternative smoothing technigue to the Wiener filter (see Section 2..2.3), though it was
subsequently used in combination with it, no such filtering was used on the trial images in
Chapter 3 prior to the SMF generation. Hence, the contrast (k) values used in these
experiments, which were chosen empirically for theillustration of our first experiments, would
be atypical for the validation of our algorithm on glare-removed Wiener-filtered SMF images,

asin Chapter 4.
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Microcalcifications represent a tiny percentage of a mammogram surface. Typicaly, they
are very small and present in about a quarter of the total number of screening mammograms.
Therefore, a percent of about five of the total number of mammogram pixels should be more
than sufficient to accommodate the entire population of calcium salts. Furthermore, calciumis
very bright in an X-ray image and it would be amongst the brightest/highest pixels of the
mammogram. Asillustrated in equation ( 66) we compute k as a value of the gradient (for tall
steep microcalcifications) that discriminates between these brightest structures and the
background; more precisely, we chose the 4.4% structures with highest contrast (a threshold at
mean(g) + 2*std(g)). k becomes a value with well-defined physical meaning (differentiating
between high-pointed structures, referred to earlier as towers, on the SMF surface and the rest
of the images), which is calculated automatically part of the detection algorithm. Figure 77

illustrates the effect of k.

Bigger Smaller

N

Figure 77: Inthe left case, the k factor is bigger than the gradient and the diffusivity function g
— 1, which is equivalent to finding an edge and maximising diffusion; in theright case, g — 0

(for very big gradients) and diffusion isinhibited.

The second parameter to be set is o, the standard deviation of the Gaussian filter used to
smooth the image, which will give the size of the Gaussian kernel that removes noise by
convolution with the mammogram. We need to choose avalue for o so that, on the one hand, it
removes high-frequency noise (which are very small and spread over a couple of pixels at
50um/pixel), but, on the other hand, preserves microcalcifications (on average 0.5-1 mm in
diameter). To ensure that small calcifications (that is, those whose sizes are 300 microns or

more) are preserved in the image, we set oto 0.6. Thiswill build a Gaussian kernel of 0.35mm
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(100 +1), which is sufficiently small to clean noise and keep calcium salts. The principle is

shown in Figure 78.
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Figure 78: In the left case, the filter width is small compared to the structure, so it essentially

detects a step edge; but in the second, it is not obvious that it will .

The experimental results show that k has small values for the inner area of the breast, which
makes smoothing safe for faint microcalcifications, but that this process is aso rather
inefficient over the first couple of iterations. Weickert [172] notes that the number of iterations

tisrelated to the spatial width of the Gaussian kernel. To blur features of the kernel order (100)
requires t = (10c )’ / 2. Rounding this value foro=0.6 , yields t=5, which give excellent noise

reduction results in the microcalcification preservation framework. We studied experimentally
the effect of the variation of t and can offer the following comments. 1-3 iterations have too
little influence and the output images are still noisy; for t greater than or equal to 7, not only is
the process is time consuming, but most images are overly smoothed and valuable information
islost.

A reliable application must prove its robustness under different clinical imaging conditions.
When parameters are involved, they must be suited for any type of input images. The danger
that an algorithm is tuned to a particular data set is amajor concern in the validation of clinical
applications. Such a discussion is required when evaluating our method for the detection of
microcalcifications.

One of the starting points in this method is the employment of a technique of

mammographic image normalisation, the SMF. While various hospitals around the world use
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different X-ray machines to acquire mammograms during screening trial, the SMF finds a
common framework in which mammograms are presented as maps of dense tissue. The major
advantage of SMF is the de-parameterisation of mammograms, the normalisation of their
appearance. ldedlly, the setting of parameters of our algorithm must be done once to make the
algorithm work on any normalised image. A justification of the parameter tuning follows.

The first trials for the setting of parameters are done on small mammogram windows with
isolated calcifications (c.f. Section 3.2.3). The samples are extracted from the Oxford Screening
Database. They are generally of 500x500 pixels at 50um/pixel, although some of them may be
slightly smaller. These experiments are designed to evaluate the removal of noise associated
with the differentiation in shape between shot-noise and background versus microcal cifications,
as proposed by Yam [178, 179]. In Chapter 4, where the main evaluation of the algorithm is
described, we aso use mammogram windows (both intensity and SMF) from the Oxford
Screening Database. They are samples from the same screening mammographic database, but
different windows of different mammograms, since we search microcalcification clusters this
time. The first tuning of parameters is therefore done on different images coming from the
same screening centre, adifferent collection of images, but with similar imaging characteristics
(asthey are acquired and digitised using the same equipment).

The choice of the values for the parameters used in the anisotropic diffusion process has
been explained above; but afew more comments arein order. First, k is computed directly from
the image and its meaning (depict the most outstanding features in the mammogram) is
independent of the data set. o is strictly related to the size of microcalcifications and the image
resolution; the condition imposed hereis that databases must be digitised at 50unv/pixel. t is set
according to the observed value of k and the proposed value of o, which are consistent over the
Oxford Screening, DDSM and MIAS databases (see Chapter 5). We perform tests with images
from several databases to prove the robustness of the algorithm. Moreover, we obtain good

results both on images with and without normalisation.
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We presented a working example of tuning the parameters of anisotropic diffusion to an
application. In amore general framework, anisotropic diffusion is afeature detector, namely an
edge detector. k, being closely related to the gradient in the image, can be derived according to
the percentage of features that we desire to enhancein an image. o gives ameasure of scale and
must be set according to the size of searched features at the image resolution (multiscale
analysis may be performed). The literature proposes stopping criteria for t aswell [23, 171] as
functions of o, which can be well related to noise removing, but may be more difficult to
combine with feature enhancement for some applications. With the automatic tuning of
parameters that we propose, anisotropic diffusion can finally be used as arobust parameter-free
process using little, but essential, a-priori knowledge. This should be a great relief in
applications of diffusion, a controversial method for its parametrical dependency.

The other parameters employed by our method are the kernel of inner object (O) used to
compute o in Section 4.3 and the value of the minimal perceivable contrast c,,. The size of O
is established according to the size of the microcalcifications for the resolution of the tested
images. A kernel of 9x9 pixels has an area of 0.4x0.4mm? which is just below the average
surface of a microcalcification. It is desirable to have a dlightly smaller kernel than the
microcalcification diameter to assure the detection of small calcium salts, which are overlooked
by larger kernels. Still, the size of O must not be extremely small to avoid overlapping O and N
for slightly bigger microcalcifications. The last parameter, c,, is related to the image contrast
(c.f. Section 4.3) and empirically it has values typicaly between 0.002 and 0.005 for good
detection results. We noted that adapting the value of c, to the image characteristics gives
better responses to microcalcifications than a constant c,,. Since k is a value of image contrast,

we simply had to scale it to the suitable range of values for c,,.

142



Chapter 4: Adapting Characteristics of the Human Visual System to Digital Mammography

45.3 Discussion

Though it is acknowledged that the state of the art of microcalcification detection is probably
represented by R2's ImageChecker, unfortunately (though understandably) no details of the R2
detection algorithm are published. The R2 method was originally based on the work published
by Nico Karssemeijer at the University of Nijmegen [80, 81], but it is known that the R2
implementation has been changed substantially over the years (some researchers claim, with no
apparent justification, that the R2 implementation of ImageChecker takes the form of a neural
network). All other published microcalcification detection algorithms have significant
shortcomings, and sensitivities/specificities that fall short of R2's ImageChecker. This appears
(to us) mainly because they don’'t work on normalised images. The key point is that without
normalisation, for example by the h,/SMF process described in the thesis, there is inevitably
the risk of confounding anatomical information (of interest) and imaging parameter effects (not
of interest), whose choice can affect contrast, brightness and level of noise, to name some of
the classical limitations.

This is the framework where Yam's work (see Section 2.2.3) is the first to claim results
that appear to rival those published by R2, though it must be acknowledge that her results are
from a smaler database. Nevertheless, her work is based on SMF, which was the point of
departure of the thesis. The advantages of her technique are straightforward and the incentive
that we should build on Yam's work followed, but it is important to understand what we
considered to be the problems with Y am' s algorithm, hence why it needed improvement.

In very few words (more details can be found in Section 2.2.3) Yam's technique works in
two steps: (i) detect thin towersin the SMF (towers appear because the SMF generation process
is based on the fundamental assumption that the breast (more precisaly, the vast mgjority of
projected pixels) contain only fat and “interesting tissue”, not calcium. A consegquence isthat a
calcification appears approximately 26 times higher than it should (this is the factor by which

the attenuation of calcium exceeds “interesting tissue”); and (ii) then test a 26 fold reduction
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with footprint in image as a plausible calcification. The major problem arises in step (i) since
the SMF is extremely noisy. Yam's solution isto introduce a Wiener filter; but we found that in
many cases, which we considered during the first year of our research that this blurred the
edges of the microcalcifications, therefore hampering both steps (i) and (ii) above. Faint
microcalcifications become “too small” and “less sharp” to be detected, while the remaining
noise imposes strong constraints on removing false positives and the algorithm further misses
some microcalcifications (see Figure 76 for comparative results). While clusters of
microcalcification are generally still well detected as a whole, some individual calcifications
are overlooked and so statistical analysis of a cluster is compromised.

Our suggestion was to develop an alternative way to smooth the image/SMF, namely
anisotropic diffusion, a process well known for its quality to smooth while preserving edges.
Our initial idea was proposed as in Figure 79.a, as an alternative to Figure 79.b, but in reality,

what is done corresponds to Figure 79.c. This is the point where the work done in this thesis

intervenes.
Irtensity Al Anizotropic Detect
— r- o —
Image Diffuzion T owrers
Irtensity AMIF | Wiener . Detect
Itmage T oarets
Irtensity Wiener AMF TF' ;:,EEI;Z
Image |
Irtensity -~ Wietier -~ =ME Anisotrapic Detect
Image Diffusion (] Towers

Figure 79: The original idea for the detection of microcalcifications: (a) what we initially

proposed; (b) what we thought it was done; (¢) what was done in reality; (d) our solution.

The final diagram that we propose is represented in Figure 79.d, adding the anisotropic
diffusion filter after the SMF generation and before the detection of towers. Of course, this
immediately poses the question: why use two different smoothing filters, namely the Wiener

filter and anisotropic diffusion. The noise removal is carried out in two separate steps; the
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Wiener filter models a noise process (quantum mottle and film granularity), but not glare.
Glare, along with scatter and extra-focal radiation and the anode-heel effect, isremoved within
the SMF generation, which massively reduces SNR by amplifying high frequency noise (see
Table 4). Thus, glare removal solves the problem associated with the presence of this type of
low frequency noise and sharpens the image, but also creates a new difficulty, the lower SNR.
The newly amplified high-frequency noise is a major source of false positives and governs the
difference in SNR between columns 2 and 3 in Table 4.

At this point of the SMF generation, most imaging artefacts are dealt with either by the hjn
model (scatter, glare, anode heel, extra-focal) or the Wiener filter (Quantum mottle, film grain).
However, as emphasised in Section 2.3, the SMF generation has its imperfections. Yam
comments in [178] about the drawbacks of her noise deconvolution arising from the
simplification existing in the estimating theory of quantum mottle and the available physics
parameters of film-screens. These possible sources of errors leave residua high-frequency
noise in mammographic images. Digitiser noise, also of high frequency, and errors of SMF
generation add to it. Nevertheless, we can consider the Wiener filter together with the hin
generation as one main stage designed to remove imaging specific parameters/errors, basically
the image normalisation. The anisotropic diffusion filter aims to smooth the remaining high-
frequency noise that interferes with our specific application, the process of detecting

microcalcifications.

Table 4: The variation of SNR in generating SMF.
SMF SMF SMF
with Glareno Wiener | no Glareno Wiener no Glare with Wiener

SNR 39.86 5.37 29.24

More specifically, would replacing the Wiener filter with anisotropic diffusion have
eliminated the need for Wiener and subsequent anisotropic diffusion? Glare would amplify any

residual noise after SMF generation, hence would have continued to interfere with the detection
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of microcalcifications. It follows that smoothing after SMF is needed for any application
dealing with very small anatomical features, in particular microcacifications. On the other
hand, not smoothing before computing the SMF would amplify noise to very high levels
during the image normalisation process (see Table 4) , which would make it extremely difficult
to detect small structures and the subsequent filtering would be inefficient in properly removing
noise while preserving microcalcifications. The Wiener filter has the advantage, stressed by
Y am, of modelling particular kinds of mammographic noise (see Section 2.2.3).

We implemented the diagram in Figure 79.d for the detection of microcalcifications, as
illustrated in Section 3.2 and further in Chapter 4, where a simulation of the detectability
properties of the human visual system replaces the detection of towers. Thus, besides the SMF
generation and its normalising action, we use two non-linear blurring filters: anisotropic
diffusion (see Section 3.1) and Wiener (fundamentally a probabilistic assignment to signal and
to noise). Through them, we address two different problems: the Wiener filter models quantum
mottle and granularity of film, whereas the anisotropic diffusion filter smoothes the SMF
image, but retains the signal (in the form of towers).

The subsequent filters (Wiener, SMF related, diffusion) model and correct for specific
image analysis problems, rather than trying to amalgamate into a single (linear or nonlinear)
filter that attempts to do everything. Separating them should make things clearer for the
developer of such afilter, even if, for the end user, it isall reduced to a“black-box” that detects
microcalcifications. Hence, we have a collection of blurring/low-pass and deblurring/high-pass
filters. Is there any danger that they simply counteract/undo each other? As explained above,
the Wiener filter and the deconvolutions within the SMF generation address the physics and the
condition of the imaging process its controlling parameters. They separately attack different
problems on the way to a normalised image. So does the anisotropic diffusion filter for the
purpose of detecting salts of calcium, using data estimated parameters. The Wiener filter is a
deconvolution tuned for quantum mottle and film grain noise; the glare unblurs and sharpens
the image revealing anatomical details (calcium for example), but noise as well; the diffusion

filter blurs again, but this time just the high-frequency noise, without losing the anatomical
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details emphasised in the previous step. The last filter may have to undo the noise
amplification, but will preserve the valuable anatomical information that would not have been

available without the glare removal. Furthermore, we have a normalised image to work on.

4.6 Conclusion

In this Chapter we presented an algorithm for the detection of microcalcifications in X-ray
mammography. The robustness of the algorithm has been demonstrated by the ROC analysis
performed over a range of parameters. The method converged in each case to 100% TP ratio.
Similar results were obtained on intensity images, although for the lower scale of FP/image
there isamore significant difference in results.

Our method was tested on mammographic samples for faster processing and simpler
validation, but on whole mammograms too. We also compared the performance of our
algorithm on data from different databases with good detection results. Adding adaptive
contrast segmentation based on characteristics of the human visual system significantly
enhances the detection of microcalcifications. The parameters are set according to the image
attributes and the method is fully automated. In future work, we aim to develop the algorithm

by incorporating additional knowledge of X-ray attenuation.
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CHAPTER 5

5 Temporal Comparison of Feature Enhanced
Mammograms For Mass Detection

What hath night to do with sleep?

John Milton —“Comus’

The development of reliable CAD systems for mass detection in digital mammograms remains
an important problem that is still only partially solved. In this Chapter, we present a new
method for prompting the clinician to “suspicious’ dense regions in tempora mammogram
sequences that combines feature detection and temporal comparison. The particular context that
we envisage is post-screening assessment, where a radiologist recalls a woman after a
suspicious screening mammogram for more in-depth analysis. At this point, the clinician
compares the most recent mammogram to previous ones in order to detect significant changes.
An important problem in automatic mass detection is the large number of candidate masses.
The method presented in this Chapter uses anisotropic filtering (cf. Chapter 3) as a pre-
processing step in order to significantly reduce the number of candidate masses, while
preserving the important anatomical information about each mass. The method has been tested
on the 15 temporal pairs currently available from the Oxford Database, where pathology has
been diagnosed in the most recent image. Though we detect 100% of the masses, the number of

false positives remains significant, necessitating further work.
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5.1 Introduction

Computer Assisted Diagnosis (CAD) systems for breast cancer aim to assist the clinician in
interpreting images and establishing reliable and early diagnosis of pathology. In particular,
mass detection algorithms aim to automatically detect masses and/or characterise cancerous
tissue against normal parenchymal tissue and benign diseases. Their purpose is to assist
clinicians in the early detection of cancers. In digital mammography, CAD systems can be
directly integrated in a soft-copy environment [12, 37, 142, 177]. To date, research in mass
detection has given moderate results. For instance, using the R2 system, the accuracy in
detection rate was reported to be less than 81.6% true positives (TP) for the detection of masses
[41].

In this Chapter we present a new approach to prompt breast tumours with a central mass.
The method aims to identify and segment such mammographic anatomical structures. Given
the presence of central mass, we assume in Section 5.3.3 that masses are to be found in the
dense and very dense areas of the breast. We do not expect architectural distortions, for
example, to be prompted by our mass detection algorithm. We discuss our preliminary results
on mammograms containing masses along with some initial features we propose towards mass
classification.

Mass detection is arapidly developing field; the main trends in approaching the subject are
reviewed in Chapter 2. From the radiologist’s point-of-view, detection is performed on single
mammograms, bilateral mammogram matching and temporal mammogram matching. We aim
to use a number of detection features that prompt masses in single mammograms and then use
temporal matching of mammogram pairs to reduce the number of FP. The reasoning in the
algorithm design was inspired by the mammographic screening programmes, where
radiol ogists compare temporal mammograms to depict changes and discard FP.

Our method is similar to the work of Li et al. [97] for the segmentation step, where each

mammogram is decomposed into several tissue classes according to their statistical properties,
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but we use tempora comparison for improved results. However, our approach makes use of a
more sophisticated pre-processing step (adaptive anisotropic diffusion-based filter) that
enhances dense regions in mammograms and a simpler but more intuitive mammogram
segmentation that defines dense regions that prompt the mass-candidates. Moreover, we
investigate the possible role of prompting in mammogram sequences (after registering them)
for reducing the number of false positives viatemporal comparison.

The method is an extension of previous work on image registration [109, 111] and the
mammogram filtering for microcalcification detection presented in Chapter 3. Next we discuss
how anisotropic diffusion can assist in general mass detection and feature analysis. The
following sections focus more on the method designed for temporal mass detection; they
illustrate the concepts behind the image registration, image diffusion and texture analysis that
are used for prompting the mass candidates. Section 5.4 presents the results of our method
applied to a set of clinically assessed mammograms. The chapter concludes with final remarks

and improvements that will be the basis for future work.

5.2 Diffusion and M asses

In the previous Chapter, we have described an automated anisotropic diffusion filter to enhance
microcalcifications in digital mammography. The promising results encouraged us to perform
more tests on images that contained masses to see if a similar filter can emphasise the relevant
mass characteristics and help in distinguishing them from parenchymal tissue.

While microcalcifications have distinct characteristics in both intensity and SMF images
(thin tower shape, see Figure 31), their enhancement can be very well tuned for their shape and
intensity/interesting height values. Most important, a microcalcification filter must preserve
calcium and clean the small noise. When referring to masses, filter design must address regions
with different characteristics:

e massesarelarger;
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e masses have similar intensity/interesting height to normal mammographic, i.e
parenchymal tissue, the main source of FP in mass detection;
e noise (typicaly small structures) does not influence significantly the number of FP,
Hence, using the anisotropic diffusion filter presented in Chapter 3 with the same
characteristics would be expected to be unsuitable for mass detection. The scale of thefilter, o,

would need to be enlarged when searching for larger structures (missing microcalcificationsis
irrelevant in the search for central masses, although their eventual association is important for
characterisation); the number of iterations must be increased, since a mild diffusion would
enhance similarly the edges of normal tissue and we search only for well-defined self-contained
dense regions. The parameters of the new filter force it to highlight larger regions of dense
content with strong boundaries (masses have better defined boundaries than normal tissue). The
anisotropic diffusion filter targets benign and malignant tumours with a central mass. Figure 80
and Figure 81 show a couple of examples of mammogram samples where masses are enhanced

using the adapted automated anisotropic diffusion filter.
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Figure 80: The plot of a benign mass; (a) a mammogram sample containing a benign tumour
with well-defined margins; (b) the 3D plot of image (a) where the tumour appears as a high hill
surrounded by several smaller structures of normal tissue and noise.
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Figure 81: The plot of a malignant mass; (a) a mammogram sample containing a malignant
spiculated tumour; (b) the 3D plot of image (a) where the tumour appears as a structures of
high ridges descending along the spicules and surrounded by several smaller structures of

normal tissue and noise.

Figure 82: Diffusing a benign mass 1; (a) the mammogram sample containing a benign tumour
in Figure 80 after diffusion with t=10, k=15, ¢=0.8 (small number of iterations and high
contrast); (b) the 3D plot of the diffused image in (a); (c) the SSD image between the original
not-blurred imaged and the diffused one — the latter image is cleaned by its high-frequency
component, but the inner surface of the mass is also diffuse because of itsiso-density.
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Figure 83: Diffusing a benign mass 2; (a) the mammogram sample containing a benign tumour
in Figure 80 after diffusion with t=400, k=5, ¢=0.8 (large number of iterations and small
contrast); (b) the 3D plot of the diffused image in (a) with flat background; (c) the SSD image
between the original not-blurred imaged and the diffused one — the latter image has a ‘ clean’
background, since ailmost everything else, but large dense regions has been removed; at this
high number of iterations, the inner surface of the benign lesion (which is roughly uniform) is
still diffused.

Figure 84: Diffusing a malignant mass 1; (a) the mammogram sample containing a malignant
spiculated tumour in Figure 81 after diffusion with t=8, k=8, ¢=0.8 (small number of iterations
and high contrast); (b) the 3D plot of the diffused image in (a); (c) the SSD image between the
origina not-blurred imaged and the diffused one — the latter image is cleaned by its high-
frequency component, while the complex geometry of the malignant mass is seen as a
combination of edges/ridges and is not diffused.
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Figure 85: Diffusing a malignant mass 2; (a) the mammogram sample containing a malignant
spiculated tumour in Figure 81 after diffusion with t=40, k=5, ¢=0.8 (large number of iterations
and small contrast); (b) the 3D plot of the diffused image in (a) with mainly flat background;
(c) the SSD image between the original not-blurred imaged and the diffused one — the high-
frequency map is similar to the one in Figure 84, since the inner surface of the malignant lesion

isirregular and the ridges are perceived as edges.

5.2.1 Defining Diffusion Parametersfor M ass Detection

From Figure 82 to Figure 85 we can deduce that low contrast and a large number of iterations
(as one choice in the set of parameters) yield well-preserved and clearly enhanced edges, an
important characteristic in mass classification, for which the roughness of edgesis an important
feature. The SSD images refer to the difference image between the original (un-blurred)
mammogram and the diffused version. We used the minimisation of the sum-of-square-
differences (SSD) to compute a weighting factor used to scale the diffused image before
subtraction. The background becomes flatter as well, but the processis highly time consuming.
Furthermore, the 3D plot of the diffused image doesn’t necessarily show a great improvement
from the process using a second choice of diffusion parameters, since the evolution of diffusion
is slow with the number of iteration for a small k. Hence, in our further experiments we prefer
to use the same automated setting of parameter k as described in Chapter 4, increasing the

number of iterationst and the scale o.
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The difference in the shape of the enhanced margins of the benign versus malignant masses
becomes more pronounced: benign masses have regular shaped margins, while malignant
tumours have irregular jagged boundaries. From the 3D plot, also visible to a smaller extent in
the 2D images, one can notice a relative iso-density inside the benign tumour, while the
malignant lesion has several peaks or ridges within its boundary. One observation isthat benign
masses diffuse differently than malignant masses, due to their internal smoothness versus the
relative complexity in the case of malignancy. This characteristic will be further exploited in
Section 5.6. Also note the resemblance between the SSD images in Figure 82 to Figure 85 and
the CLS maps shown in the previous chapters (if we ignore the surface of the benign mass).
Since microcalcifications are not the subject of this Chapter, high-frequency components can
be eliminated prior to mass detection.

We ran the diffusion algorithm on a set of 20 mammogram samples from the MIAS
database. Half of the mammograms were benign, the other half malignant. The database
annotation was considered to be the ground truth in looking for features that differentiate
cancerous masses from benign tumours. Figure 86 and Figure 87 show a couple of examples of
benign and malignant masses presenting the same diffusion in the SSD image characteristics as
described above. We used the statistical analysis presented in Chapter 4 to compute the contrast
factor k, but we used the value 3*k for diffusing the mass images. While the value k was
sufficient in the previous application (to clean images for microcalcification detection), we
need a higher contrast value to diffuse masses (to enhance their boundaries). The number of
iterations t was also increased from 5 to 20, for a stronger effect. There were also exceptions
and Figure 88 shows a benign mass and a malignant lesion that have associated SSD images
which do not follow the same rule. The observation is based on visually inspecting the images.
From the total of 20 tested mammograms, 3 did not follow the diffusion rule; 1 contained a
malignant tumour, while the other 2 showed benign lesions. Therefore, the error of the
proposed classification feature went up to 15%. Yet, the diffusion feature (a measure of the

“amount’ of diffusion within the mass boundaries), with classification TP ratio of 85%, can be
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combined with a set of other features (as commonly done in literature) for a more reliable
classification.

The following sections will refer to the method we propose for mass prompting in temporal
mammograms. After the presentation of prompting results, Section 5.6 will expand on feature

detection and mass classification.

Figure 86: The diffusion feature on benign masses; (a) and (c) the origina mammogram
samples showing benign lesions; (b) and (d) the SSD images corresponding to (a) and (c),
respectively; both show that diffusion is allowed within the mass area.
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Figure 87: The diffusion feature on malignant masses; (a) and (c) the original mammogram
samples showing malignant lesions; (b) and (d) the SSD images corresponding to (a) and (c),
respectively; only high frequency structures are diffused within the mass area.
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Figure 88: The diffusion feature on exceptions; (a) an original mammogram samples showing
a benign lesions; (b) the SSD images corresponding to (a) where the diffusion was mainly
inhibited within the mass area; (c) an original mammogram samples showing a malignant
lesions; (d) the SSD image corresponding to (b) where diffusion is allowed within the mass

area

5.3 Method

The method we propose comprises two steps that pre-process the original mammogram prior to
the detection of dense regions. mammogram registration and anisotropic diffusion of the
registered mammograms. The basic assumption in our work is that masses appear as dense
regions in mammograms. We believe that temporal comparison of automatically generated
“prompts’ in mammogram sequences can reduce the number of false positives. Figure 89

shows the algorithm flow we propose for mass prompting.
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Figure 89: The diagram of the algorithm proposed for temporal mass prompting.

5.3.1 Mammogram Registration

First, the temporal pair is registered using a mammogram registration method developed by
Marias et al. [109, 111]. In summary, thisis a three-stage registration algorithm:

e |Initially, the images are aligned based on the boundary. An agorithm that
automatically detects 3 anatomically significant points in the outline of both
mammograms does this. A thin-plate spline interpolation is used to calculate the image
transformation that aligns the boundaries of the two mammograms.

e Using a wavelet-analysis segmentation algorithm [111] we define internal regions of
dense tissue in each mammogram. The boundary transformation, together with scale
and areainformation, is used to match the segmented internal structures.

e Subsequently, a regularised approximation scheme is used to calculate the refined
transformation. This accounts for possible inaccuracies in the selection of the internal
landmarks.

Registration is performed in order to facilitate the comparison between any temporal pair of
mammograms emanating from successive screening visits. Figure 90 shows an example of
mammogram registration where a large deformation is required (notice the displacement of the
film edge) in order to geometrically align the images. The main aspect of registration for this

specific work is to aid mass detection by comparing “suspicious’ regions in the registered
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mammogram sequence, where false positives can be reduced by visually inspecting the

correspondence of “temporal prompts’. Thisis further discussed in the result section.

Figure 90: Mammogram registration is performed as a pre-processing step in order to facilitate
the comparison between the temporal mammogram pair for mass detection. (a) and (b)

comprise the original mammogram pair, while (c) is the registered mammogram (b) to (a).

Appendix B offers more detailed insight into the mammogram registration method used by

our mass-prompting algorithm.

5.3.2 Anisotropic Diffusion of the Temporal Mammograms

In order to detect only the most important features of the mammogram, the images are
processed using an adaptive anisotropic diffusion-based filter, which enhances the suspicious
features in mammograms [100, 102, 103]. The parameters of the filter are computed from a
statistical analysis of the image gradient (cf. Chapter 4) and the mammogram is blurred
anisotropically. The new version of the image will generally be blurred, while the prominent

areas will be enhanced.
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5.3.3 Tissue Classification Based on Texture Analysis

Finally, a texture-based classifier is used to segment the image into different tissue types and
the “denser” classes are used to automatically prompt to “suspicious’ regions in each
mammogram of the sequence.

The image is divided in small patches (10x10 pixels for 300 micron images). Since small
masses are between 3 and 15 mm diameter [97], they are likely to occupy over 10 pixelsin a
300-micron digital image. For this reason the choice of a 10x10 pixel window is a reasonable
compromise between speed and mass detectability.

In each patch, normalised second order statistics are calculated. For example the correlation
measure:

Z,Ej,ijp(i,j)—ﬂx#y (73)

0,0,

where

>ip) p)= Zp(l i) o-z(u . ¥p.(0)s (74)

ZEJ,pr(J)’ py(J):zl, p(h])’ 0§=2(J_ﬂy)2py(l)’ (75)

i

and p(i, j) = P(i, j) / Ris the normalised joint probability of the pixelsi and j; R is the
number of co-occurrences (pixel intensities transitions) [57, 112]. For each image patch i, a
texture vector T; is calculated from ( 73) and all the vectors are classified in adesired number of
classes using hierarchical clustering. The texture classification is extended to temporal pairs,
since we are interesting in detection only. In our work we detect 4 classes corresponding to:

e Very dense tissue. This class usually includes the pectoral muscle and very dense

regions of the breast parenchyma. The separation of masses versus pectoral muscle can
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be done either by visual inspection or on a geographical basis since the pectoral muscle
consistently appears on the top left (right) part of aleft (right) mammogram.

o Densetissue. Thisclassincludes al the remaining parts of the dense parenchymal cone

(fibrotic stromal tissue and glandular tissue).

o Fatty tissue. This class effectively represents the fatty background of the mammogram

or according to Wolfe classification [174], “normal” involuted breast patterns.

o Fatty breast edge. Thisisthe last segmented class and it’s a homogenous, low-intensity

region near the breast edge.

A candidate mass is expected to appear either as a “very dense” or “dense” tissue region
according to the above classification depending on the presence or not of the pectoral muscle
and on the local density variations. Density variations around an iso-dense contour in the
denser classes indicate the presence of abnormalities, namely tumours. These classes are

explained in more detail in the result session.

5.4 Results

Figure 91 and Figure 92 show typical results on both the origina and the diffused MLO
mammogram pair. The main effect of diffusing the images is the significant reduction of the
variations in the denser regions, which in our work are considered the “suspicious’ regions for
mass detection. While Figure 91 prompts numerous density variations in the image and
therefore alarge number of candidate masses, Figure 92 shows more homogeneous regions and
reduces dramatically the number of possible tumours. For that reason, as illustrated in Figure
93, temporal mammogram comparison can be further facilitated by prompting the clinician in
the denser regions of the mammogram pair. A second exampleis shown in Figure 94, Figure 95

and Figure 96 on a CC mammogram pair.
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Figure 91: Texture classification 1 of the registered MLO mammogram pair into the classes A,
B, C and D described in the previous section. The top row shows the firstly taken mammogram,
while the bottom row shows the most recent mammogram. Both mammograms are registered,

but not enhanced using anisotropic diffusion before the texture classification is applied.

Figure 92: Texture classifications 1 of the diffused and registered MLO mammogram pair into

the classes A, B, C and D. The top row shows the firstly taken mammogram, while the bottom
row shows the most recent mammogram. Both mammograms are registered and enhanced

using anisotropic diffusion before the texture classification is applied.
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Figure 93: The detected “suspicious’ regions 1 (from the diffused pair) superimposed in the
originalk MLO mammogram. The current mammogram (b) prompts a real tumour with no

correspondent in the earlier mammogram (a).

;
by

Figure 94: Texture classification 2 of the registered mammogram pair into the classes A, B, C

and D in a CC mammogram pair. The top row shows the firstly taken mammogram, while the
bottom row shows the most recent mammogram. Both mammograms are registered, but not
enhanced using anisotropic diffusion before the texture classification is applied.
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Figure 95: Texture classifications 2 of the diffused and registered CC mammogram pair into
the classes A, B, C and D. The top row shows the firstly taken mammogram, while the bottom
row shows the most recent mammogram. Both mammograms are registered and enhanced
using anisotropic diffusion before the texture classification is applied.

Figure 96: The detected “suspicious’ regions 2 (from the diffused pair) superimposed in the
original CC mammogram. The current mammogram (b) prompts a real tumour with no
correspondent in the earlier mammogram (a).
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Table 5 shows the preliminary results we have obtained in mass detection (true positives
and false positives for the “suspicious’ regions detected) in 15 temporal pairs. An experienced
radiologist annotated the masses, which we used as ground truth. Note the improvement in
detection by including anisotropic diffusion as a pre-processing step. In addition, the same table
shows the improvement in the mass detection rate by visually inspecting the generated prompts
in the mammogram sequence. Only candidate masses that have been detected in the current
mammogram and not in the previous one, or which have significantly evolved between the
screening sessions could prompt a tumour.

The detection of mass candidates is based only on the visual inspection of the temporal
prompts using a light-box approach. The implementation of the temporal prompts comparison
as an automatic step of the mass detection algorithm must take into account severa factors
describing the evolution of dense areas of the breast over time. Amongst them, the
guantification of area and intensity changes in and around denser areas of the breast (to assess
the appearance or evolution of atumour and remove FP in involuted areas) and the distribution
of very dense and dense areas over less dense areas of the breast (to remove FP in dense
breasts and increase sensitivity towards the detection of faint tumours). We aim to incorporate
this comparison as an automatic step in future work.

The number of FP is excessively high if no enhancement or temporal comparison is
involved. It decreases dramatically when the enhancement pre-processing filter is used on
single mammograms without temporal comparison (from 3.93 to 0.86 FP/image). Using the
typical clinical procedure of comparing temporal mammograms (without image enhancement),
the FP number is also lowered by over 71%. Using both image enhancement and temporal

comparison of registered mammograms we obtain 0.4 FP/image.

166



Chapter 5: Temporal Comparison of Feature Enhanced Mammograms for Mass Detection

Table 5: True positives and false positives in 15 pairs of mammograms (a mass has previously
been diagnosed in each pair).

Temporal comparison | Anisotropic diffusion True False

of “prompts’ (visual) | preprocessing positives positives
No No 15 59

No Yes 15 13

Yes No 15 17

Yes Yes 15 6

Note that only mammograms where an abnormality is present have been considered in
validating the method. Finally, the potential to facilitate temporal comparison for mass

detection has to be tested within the screening environment.

5.5 Conclusion

We have presented an automatic method to detect masses in digital mammography, which
prompts the clinician to candidate masses in temporal mammograms. The first pre-processing
step isregistration of temporal mammograms, which aligns the main landmarks in both images
of the pair for a better comparison of the temporal changes in mammograms. Subsequently, we
blur the mammograms with an adaptive non-parametric anisotropic diffusion-based filter. This
scale-space process enhances the “suspicious’ regions in the breast, while halving the number
of false positives. A texture-based classifier performs the segmentation of the image into
classes of different densities. The number of candidate masses drops significantly after
diffusing the images. Still, the FP fraction is unacceptably high, since no association between
the candidates in the two images has been implemented yet. However, the visual inspection of
prompts in mammogram sequences (Table 5) indicates that a further improvement can be
achieved. Future work will concentrate in developing an automatic method that would enable
the temporal comparison of prompts detected in any mammogram of a particular registered
patient-sequence. This could reduce the FP problem that appears in most of the suggested

mass-detection algorithms.
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One other future application of the method presented here is the automatic identification
and characterisation of the important tissue groups in mammograms and subsequent
classification of the dense tissue according to the BI-RADS criteria [127]. The American
College of Radiologists suggests that breast composition should be reported in all patients
using the BI-RADS classification: | describes an almost entirely fat breast, |l breasts with
scattered fibroglandular densities, |11 heterogeneously dense breasts and 1V extremely dense
breasts. Little work has been done on the identification and characterization of significant tissue
categories prior to feature detection. Such an analysis framework could have a significant
impact on mammographic examination and breast cancer epidemiology since tissue content has
been related to the risk of developing breast cancer.

M ore mammogram sequences are required in order to test the method in a sufficiently large
database of tempora mammograms. It is a'so necessary to consider methods to validate the
value of this approach for temporal mass detection; parallel prompting of the current and
previous mammograms in the screening environment. We will further investigate the results of

this method on images in Standard Mammogram Form [65].

5.6 Future Work on Mass Characterisation Features

Further to the diffusion feature, which aims to detect the ‘amount’ of anisotropic diffusion
‘permitted’ within the mass area (a mathematical model of the feature must still be devel oped),
this section introduces work on what we call the uniformity feature. This new feature searches
the uniformity versus roughness of the boundary of masses. We have observed that benign
masses, as described in literature [127], have smoother surfaces, while malignant tumours have
jagged or more complex 3D plots. In the following examples, we use the vector flow of the
image Gaussian derivative ( 63),( 64). Figure 97 and Figure 98 illustrate the concept behind the

uniformity feature.
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Figure 97: The vector flow of a benign mass; (a) the vector flow of the original mammogram
sample; excepting the boundaries of the mass, the vectors flow chagtically; (b) the vector flow
of the diffused mammogram; note the radial pattern of vectors pointing towards the centre of

the mass.

We used the same 20 case database, as in Section 6.2 to perform tests on the uniformity
feature. Figure 99 and Figure 100 illustrate more examples of vector flows on malignant and
benign lesions. Only 50% of the tested cases showed consistent results regarding smoother
flows along the boundaries or a certain radial/chactic pattern within the mass area, when the
diffusion was performed as described in Section 6.2. The large variety of benign masses and
the presence of CLS create an outburst of vector flows within the mass and interfere with the
general radial pattern. Repeating the experiments with a more carefully chosen set of
parameters (set manually for each individual mass), we observed promising results in 75% of

the tested mammogram samples.
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Figure 98: The vector flow of a malignant mass, (a) the vector flow of the origina
mammogram sample; excepting the boundaries of the mass, the vectors flow chaotically; (b)
the vector flow of the diffused mammogram; although the vectors point towards the inside of
the lesion, there is no definite centre of the mass; this ‘multi-focality’ is due to the rough

surface of the cancerous mass.

Figure 99: The uniformity feature on benign masses, (a) the vector flow of the original
mammogram sample showing a benign lesion; (b) the vector flow of the diffused images
corresponding to (@) showing a smooth transition along the edge of the mass;
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Figure 100: The uniformity feature on malignant masses; (@) the vector flow of the original
mammogram sample showing a malignant lesions; (b) the vector flow of the diffused images

corresponding to (a) where the transitions along the edge are still rapid;

We are sufficiently encouraged by the initial results to have begun the implementation of a
mathematical model of the uniformity feature through vector flow analysis. In future work it
can be combined with the diffusion feature and other measures of mass roughness and contrast
in building a discriminating mass classification criterion. A second order Gaussian derivative
should offer extra information about the smoothness of the inner surface of a mass. We should
expect that removing the CLS would, as in the case of microcalcifications, again improve the
results. Although we would lose some of the spiculations associated with malignant lesions, the
main shape of the mass would not be altered. The number and variety of tested cases must be

increased.
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CHAPTER 6

6 Discussion And Future Work

Any man who reads too much and
uses his own brain too little falls into
lazy habits of thinking.

Albert Einstein

We presented in this thesis a method for feature detection in digital mammography. The
detection of microcalcification clusters and breast masses have been investigated on both
Standard Mammogram Form (SMF) images (c.f. Chapter 2) and original intensity images. The
following section summarises the work presented in the previous chapters, along with the
encountered limitations and some concluding remarks. Then we will present suggestions for
future work and, where possible, some initial results on improving feature detection in

mammographic image analysis.

6.1 Summary and Discussion

6.1.1 Mammogr aphic I mage Filtering

The thesis commences with a filter model for SMF images to ‘clean’ the noisy appearance of

hix images and enhance the structures of interest. Initially, the filter was designed for the
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detection of microcalcification (c.f. Chapter 3), but later in Chapter 5 the same filter is used to

enhance mammographic masses as well asin atemporal detection method.

The need for a pre-processing filter comes from the poor signal-to-noise ratio (SNR) that

SMF images have and the difficulty that arises from this in spotting small salts of calciumin a

mass of textured ambiguity. Furthermore, it is desirable to have enhanced structures of interest

prior to segmentation for a simpler differentiation between microcalcifications and

mammographic background.

The use of partial differential equations (PDE) and in particular anisotropic diffusion led to

the following observations:

The parametric format of the proposed filter allows the user to obtain very reliable
results given the right choice of parameters. The appearance of the image isimproved,
but a non-parametric approach is desirable to make the algorithm robust;

The filter is stable in time and offers a good alternative to filters previously described
in the literature;

Quantum mottle is smoothed by the filter and errors are minimised, without disrupting
microcal cifications;

Microcalcifications can be depicted according to their physical appearance as thin
towers in a smoothed background;

The main source of false positives (FP) are shot-noise, caused by dust or hair on the
film, and curvilinear structures (CLS), long thin bright structures in a mammogram

corresponding to blood and lymph vessels, ligaments, ducts or tumour spiculations.

6.1.2 Complex Pre-processing

To eliminate some of the difficulties outlined above, a complex pre-processing step was

introduced prior to image segmentation to reduce the number of FP in the detection algorithm.

Our aim has been to eliminate shot-noise and CLS from the mammographic image, as well as
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to filter the mammogram with an adaptive filter suited to the detection of microcalcifications.

This step was designed to improve the robustness of the algorithm and to obtain consistent

results independent of the user’s experience and dexterity.

By removing glare in the h;,, generation process, shot-noise can be marked on a binary map

that can subsequently be used for its removal (c.f. Chapter 4). Information gathered from local

energy (LE) and phase congruency (PC) is used to detect and remove CL S from mammograms

(c.f. Chapter 4). Using the filter design described in Chapter 3 and the statistical analysis of the

local image characteristics, the parameters of the diffusion process can be computed

automatically and the pre-processing step becomes fully automated. A few remarks are

necessary here:

The number of FP is significantly lower after pre-processing;

CLS removal, being scale dependent, tends to eliminate some microcalcification
candidates. To avoid this, we only use a subset of the scales at which we detect CLS.
However, as aresult, some disruptions appear in the CL S map and they can leave small
bright dots on the processed image, which may be interpreted as FP by the
segmentation algorithm. A better solution could be provided by an alternative CLS
removal algorithm;

The computation of the diffusion parameters by statistical analysis is robust and
consistent over the database. The same computation was used both for intensity and
SMF images with similar results, although the image characteristics are different. The
value calculated hereis further used to automate the segmentation step. We do not alter
the ‘natural’ contrast of the images we process. Images with very high contrast will be
smoothed more and therefore a prior contrast enhancement of the analysed images (as
found in the literature) will lead to deteriorating the values of the parameters. The
results will be similar, since the method is adapted to the image characteristics, but a
different computation of the parameters used to set the minimal perceivable contrast (

70) may give optimal results.
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6.1.3 Human Vision Based Segmentation

The fina step is the segmentation of microcalcification clusters. The aim of this stage is to

produce a reliable detection map that indicates the location of microcalcification clusters by

maximising the number of individual calcium salts detected and minimising the impact of FP.

A contrast measure is introduced that is derived from a model of the human vision detection

mechanism (c.f. Chapter 4). This new measure is locally adaptive in each processed image and

uses the results of the pre-processing step (statistical analysis) to become non-parametric.

Combining the pre-processing and the segmentation steps in building a microcalcification

detection method, we can conclude the following:

Our method is non-parametric and fully automated and gives similar good results on
both SMF and original intensity images;

The variation of parameters showed consistent results with small differences in the
detected ratios when parameters are varied around the optimal value;

The receiver operating characteristic (ROC) curve analysis demonstrated that adding
adaptive contrast segmentation based on human foveal processing significantly
enhanced the detection of microcalcifications;

The method was tested on mammographic samples for faster processing and simpler
validation; afaster implementation would be necessary for better clinical manipulation;
The detection rate reaches 98% TP fraction at 0.1 FP/image and converges to 100% for

each ROC curve when the number of FP/image reaches 1.1.

6.1.4 Temporal Mass Prompting

The final application presented was mass prompting by temporal comparison of feature

enhanced mammogram pairs (c.f. Chapter 5). It is an expansion to breast masses of the
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mammographic image filter described above, which was originaly designed for
microcalcifications. The algorithm enhances structures of interest and blurs the background.
Alteration of the diffusion parameters lead to good results on mammograms presenting masses.
The goal of this application was to assist the clinician in interpreting images and establishing
reliable and early diagnosis of pathology. The prompting of masses comes as a natural
completion of the microcalcification detection in the early detection of cancers.

The algorithm consists of three steps that conclude with mass candidates being prompted in
the pair of temporal mammograms: image registration for accurate temporal comparison; image
filtering for feature enhancement (an adaptive anisotropic diffusion-based filter); and
mammogram segmentation that defines dense regions that prompt the mass-candidates. Note
the assumption that masses appear denser in mammograms than other tissue. From our
experimental results, we were able to draw the following observations:

e The adaptive anisotropic-diffusion filter is robust when used for mass enhancement in
digital mammography; some of the diffusion parameters must be stronger than for
microcalcification enhancement (size and time), but the preceding statistical analysis
used to remove the user-set parameters from the algorithm is used to automatically
compute the contrast;

e The algorithm correctly detected all the masses in the tested images; the number of
candidate masses drops significantly after diffusing the images, but the number of FP
remains high;

o Registration facilitates further reduction of FP in the temporal comparison process
through a more accurate matching between the mass candidates depicted after texture
analysis,

o A more refined texture analysis would give a better segmentation of the candidate
masses; the algorithm should also be further developed to incorporate automated mass

matching and FP discarding in the temporal sequence.
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Using a similar computation as in the image pre-processing, we can depict some breast
tumour related features. Once the tumour is detected, a number of features can be signalled (c.f.
Chapter 5). We have noted the following characteristics of benign and malignant masses:

o Benign masses diffuse differently than malignant masses. This is because benign
masses are smoother within their boundaries, while malignant tumours have a more
complex internal geometry;

e The vector flow of the image Gaussian derivative prompts a measure of the uniformity
versus roughness of boundaries in benign and respectively malignant masses through
radial or chaotic patterns within the masses and along their boundaries;

It still remains to incorporate a mathematical model of these two features into a feature

analysis algorithm.

6.1.5 Conclusion

This thesis presented the results of research to develop better detection tools to assist
radiologists in their task of detecting breast cancer at the earliest possible stage. The need for
efficiency of screening programmes has become obvious [4, 29, 164] and the necessity of
computer aided diagnosis (CAD) systems to assist clinicians in evaluating such large amounts
of information is increasingly important in contemporary society. The improvement of CAD
systems is expected to improve feature detection and classification in digital mammography,
especially with the introduction of soft-copy environments in hospitals around the world. At the
present time, there are very few systems ready for clinical use. Thisis a primary motivation for
the work presented in this thesis.

We have presented a method to detect microcalcifications in X-ray mammography using
the scale-space properties of anisotropic diffusion and a model of the characteristics of the
human visual system. The method consists of three stages. image pre-processing for

eliminating some of the sources of FP and computing the filter parameters; image enhancement
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for emphasising the structures of interest and blurring the background; and image segmentation
for the detection of microcacifications. The algorithm was designed for SMF images,
normalised representations of the breast, but similar results are obtained on intensity images. It
is fully automated and non-parametric.

We have further investigated the prompting of masses in pairs of temporal mammograms.
This is an extension of the automated filter designed for the detection of microcalcifications
and previous work done in mammographic image registration [109, 111]. The characterisation
of massesis also considered at this stage.

The method shows promising results both for microcalcifications and masses. While the
detection rates are very high, minimising the number of FP is the main concern for future work.
The next section will expand on the main ideas to be further explored to this end. First, a few
more general remarks on the actual state and limitations of the detection algorithm will be
discussed.

The large variability of microcalcification size and brightness combined with poor control
in imaging conditions when dealing with such small structures makes the detection of
microcalcifications a difficult task. Some measure of the calcium X-ray attenuation combined
with image normalisation would be useful in the detection process. The CLS removal step
should also be refined for more accurate results. A faster implementation of the detection
algorithm would be necessary for better clinical manipulation of full mammograms. A cluster
classification step is desirable for a complex detection and classification of microcalcification
clusters method. Possible features to be used by such a detection-classification system include
size, shape, distribution, density and orientation.

As for prompting masses, more experiments must be performed on larger databases. An
automated implementation of the image-matching algorithm must be developed, since visual
inspection is performed at present. A more sophisticated segmentation should depict the
boundary of the detected mass more accurately for the subsequent classification. Only

preliminary work on such a boundary detection system has been investigated in this thesis.
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In the next section we will concentrate on some possibilities for future work for the
immediate improvement of the detection algorithm for microcalcification clusters in X-ray

mammography.

6.2 Future Work

The most obvious improvement in the detection of microcalcifications is the elimination of FP.
The main observed source of FP remains the presence of CLS. These have high attenuation and
their thin appearance may make their disruptions or overlapping look like microcalcifications.
The first idea presented here for future research is the use of an expectation maximisation
algorithm to differentiate between the detected salts of calcium and the FP corresponding to
CLS. An alternative method for the detection and removal of CLS is also discussed in Section
4.4. In Chapter 3 we presented an edge-enhancing anisotropic diffusion approach. Coherence
enhancing is a modification of the same model smoothing along flow-like structures using a
coherence-enhancing anisotropic diffusion filter [172]. CLS can be enhanced before detection
and removal; the enhanced CLS are expected to be contiguous and their elimination more
accurate. Finaly, both CLS and parenchymal tissue may produce FP, but they are laid on a
basis that must be much larger or longer than that of a microcalcification. An iso-level
segmentation algorithm is proposed for differentiating between calcifications and other breast
tissue for improved detection results. These algorithms are presented below with some initial

tests on mammograms.

6.2.1 Expectation Maximisation

Many of the FP prompted by the microcalcification detection algorithm result from artefacts of

the CLS removal step that |eaves some disrupted bright blobs in the mammogram. Therefore a

simple differentiation between the candidates would aim to split them into two categories:
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o Putative microcalcifications (including FP that do not occur from CLS);

e [P caused by the inadequate removal of CLS.

An estimation maximisation (EM) [10, 26, 122] algorithm was implemented to try to solve
this problem. Here are some theoretical foundations of the algorithm followed by some first

results.

6.2.1.1 Theory
The EM agorithm is one of the best-known methods to estimate maximum likelihood for
problems of incomplete data with large applications from image and signal processing to
statistics and applied science. The maximum likelihood parameters are computed iteratively
using an initial estimation. At each iteration, thereis:
e An expectation step: starting from the observed variables and the current parameters,
the unobserved variables are estimated:;
e A maximisation step: assuming that the expectation is correct, the parameters are re-
evaluated to maximise likelihood.
The algorithm converges to a steady state once alocal maximum is reached. For the current
problem of microcalcification detection we can use the EM algorithm to solve a mixture

estimation problem. We will express the distribution function as a sum of k Gaussians:

k 1 (x —uf : ()
f(X)znZJTﬂ-n'\/ZO'n -ex o7 =n2={7rn Glx ;u,;0,),
where
2k/[n . (77)
i :%éxi (78)
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The parameters of the distributions are computed in the expectation step. Let X = (Xq,
Xa2,..Xn) D€ the sequence of observations from a mixture of k Gaussians (as above) and 6= { 7,
T2y e 71Ny 01,02, o, Oy s Lo - - o N} the parameters that must be estimated from X. The values of
the parameters x,o and u will be updated with each iteration until the algorithm converges. The
likelihood maximisation becomes that of maximising:

|nF>(X|9)=i|np(xi 10) (80)

Note that we are trying to determine the ‘belongingness of a pixel to one of the n classes

considered and denominated by Ty, I,,....I. In the present problem we have 3 classes:
microcalcification, CLS and ‘uncertainty’. Using the parameters € we can compute P(xeT7).

Using Bayes'slaw: P(A|B)-P(B)= P(B/ A)- P(A), it results that:

Px e T, %)= T IXE Ffzx)i-)P(xi er,) (81
where

P(x )= f(x) (82
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Therefore:
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The maximisation step will update the values of the variables as follows:
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ZP(xi el) (88)
TSPk er,)

i,n
The EM algorithm is a simple accessible tool to solve maximum likelihood problems, when
agood estimate of the initial parametersis available. It offers a numerically stable solution that
is easy to implement. However, it may converge very slowly and additional constraints or

assumptions may need to be introduced to speed up the process.

6.2.1.2 Initial Results

For testing the result of the EM implementation on the set of processed mammograms, we first
produced a microcalcification and a CLS map. In both cases the detected microcalcifications
and CLS pixels are marked on a black background with the value of the original SMF/intensity
image corresponding to the putative pixel. The values of variance and mean are computed from
the approximation with a Gaussian of the histogram of the non-zero elements of the two images
(microcalcification map and CLS map). The histograms of the two structures overlap, as seen
in

Figure 101. Three classes for the mixture estimation are defined:

o Calcifications: where there is a non-zero pixel in the microcalcification map and a zero

pixel in the CLS map at the same location;

o CLS: wherethereis a zero pixel in the microcalcification map and a non-zero pixel in

the CLS map;

e Uncertainties. where there is a non-zero pixel both in the microcalcification map and

the CLS map;

The final goal of the algorithm is to split the uncertainty class between microcalcifications
and CLS. For a good estimate of the CLS, most of the putative microcalcifications will overlap
with some CL S and therefore be labelled as uncertainties. Figure 102 shows the best estimate
of CLS versus the estimate used in the CLS removal. The initial estimates of the maximum

likelihood parameters incline to give priority to CLS, both because of the much larger number
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of CLS versus cacifications and because most microcalcifications are labelled as uncertainties.
For that reason, we forced the uncertainties to be part of the calcification class in the

expectation step and then re-evaluated all the probahilities in the maximisation.

Figure 101: Histogram comparison: (d) and (c) are two mammogram samples with
microcalcification clusters and CLS; (b) and (d) are their respective histograms, where the blue
continuous plot corresponds to microcalcifications, while the red dotted plot isrelated to CLS;

We applied the EM agorithm to reduce the number of FP in the detection of
microcalcifications. While we found the number of FP to be lowered, the number of correctly
detected microcalcifications also decreased. Generally, most or al calcifications are labelled as
CLS when the algorithm converges. In a few cases, when the histograms were minimally
overlapping, the calcification clusters were preserved or even some of the CLS were labelled as
calcium. Some a priori information about the percentage of microcalcifications versus CLS
should be embedded in the algorithm, as well as different convergence criteria restricting the

algorithm from eradicating too many TP. Thisis subject for further work.
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The expectation maximisation algorithm that we propose is an iterative Bayesian classifier,
which could be related to the work proposed in [81]. The authors propose a Bayesian approach
using Markov Random Fields to detect clusters of microcalcifications. This well-known
algorithm has been closely studied and intensively tested and is briefly described in Section

222.

Figure 102: Errors in CLS estimation: (a) the origina contrast-enhanced mammogram sample

with a microcalcification cluster; (b) the best estimation of CLS, which erroneously includes
the microcalcification cluster; (¢) the CLS map used in our algorithm, which may cause the
disruption of CLS in the removal step

6.2.2 | so-L evel Segmentation

The agorithm presented here is based on work done by Hong and Brady [70] for segmentation

of mammograms using a topographic approach.

6.2.2.1 Theory

From a topographic perspective, images are seen as surfaces that rise higher with the level of
intensity (grey-level) in the original mammogram or interesting height in SMF images (Figure
103). By thresholding the image over alarge number of intensity levels, a set of iso-contoursis

obtained to form atopographic representation. The intensity quantisation is similar to that used
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by Yam et al. [179] in their microcalcification detection agorithm and is equivalent to slicing

the 3D surface along its height.

Tix xh

Indenaity

Intensity

Figure 103: 3D image representation and quantisation: (a) a 2D phantom of Gaussian intensity
variation used here as the original image; (b) the 3D surface of image (a); (c) the grey-level
threshold levels (14, I, |5...) on a surface model; (b) the iso-contours super-imposed on image

(@).

An iso-level contour C for the level | of the image f is represented by a closed curve that
does not cross itself at any point along the curve ( 89). Q is a domain of an image in R%. The
continuity of the curve istested in its 8 adjacent neighbours. A bilinear interpolation is used to
resample the image for a continuous approximation of the digital image. Gaussian smoothing is

then applied to reduce noise and smooth curves prior to segmentation.

Clh)=1xy)lfxy)=1}  V(xyeQ (89)

The algorithm generates quasi-concentric iso-contours. A nested relationship is defined to
provide a hierarchical representation between iso-contours to examine the topological

characteristics of an image. Saliency is seen as a significant gradient value across the boundary
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of a region. By considering the nesting depth from the innermost contours of each nesting
structure within a given contour, a minimum nesting depth is set and used as saliency estimator.

An appropriate choice for the minimum nesting depth is critical for achieving good results.

6.2.2.2 I nitial Results

Topographic representation provides extra information about a mammogram; shape, size and
location are key issues in the detection and classification algorithms. We are interested in the
size and shape of the lowest intensity contour above the noise level. If the contour corresponds
to amicrocalcification, it should be approximately round and small, while FP should have thin
elongated contours (for CLS) or large surfaces (for parenchymal tissue). For an approximation
of the noise level we can use the minimisation of the sum-of-square-differences (SSD) and
estimate noise as the high frequency component (c.f. Chapter 5).

For our initial tests, we selected mammograms which generated microcalcification maps,
including both correctly labelled microcalcifications and FP. Our motivation is to use the iso-
level segmentation method to remove FP. A labelling algorithm identified the weighted-centre
of each putative microcalcification to be used as a seed pixel in the iso-contour algorithm. The
seed pixel is used as the innermost contour on the origina mammogram and concentric
contours are generated out of this seed. Using the minimal nesting depth, we can test the shape
and size of the obtained iso-contours and identify if the seed pixel corresponds to a
microcalcification or an FP. Figure 104 shows some examples of iso-contours obtained from a
mammogram sample containing a microcalcification cluster correctly detected and a number of
FP.

The initial results have proved to be highly accurate when a small dicing step is used.
Future work will be to apply the algorithm to a mammographic image database in order to
better assess the robustness of this approach through ROC analysis A natural extension to this

work would be to incorporate an automatic method of estimating the noise level.
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Figure 104: Iso-contours and their 3D plots used to reduce the number of FP in the detection of
microcalcifications: (a) the original mammogram sample with a microcalcification cluster; (b)
the microcal cification map with a conservative selection of parameters; (¢), (€) the iso-contours
around two selected FP as seed pixels (the FP are marked in blue); (d), (f) the projections of the
3D plots of (c) and (€) with large elongated contours below the seed point; (g), (i) the iso-
contours around two selected TP as seed pixels (marked in blue); (h), (j) the projections of the
3D plots of (g) and (i) with thin round contours below the seed point and above the noise level.

6.3 Concluding Remark

In this thesis we have presented a method to detect features in mammographic images. The
primary application has been the detection of microcalcifications. We have developed a three-
step automated algorithm designed to aid in the early detection of breast cancer. Moreover, we
have investigated the detection of mammographic masses as part of a more complex detection
algorithm for breast anomalies. The method has been motivated by known characteristics of the
human visual system and facts from the manner clinical examinations are conducted in the

screening programmes.
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Phase Congruency and the Structure Multivector

What is the status of feature detection prior to phase congruency? If one would summarise, then
the following remarks should be drawn to attention:

e Anisotropic diffusion, implemented properly, gives good responses to isolated step
changes in intensity between locally constant regions (c.f. Chapter 3). Unfortunately,
such isolated edges are rare in medical image analysis. Anisotropic diffusion remains a
goad tool in smoothing images with loca enhancements, but does not suffice for
feature detection.

e The many kinds of intensity change (e.g. lines, ramps) that occur in practice are not
detected reliably by anisotropic diffusion.

e Thereare anumber of techniques dubbed “corner detectors’ for estimating locally two-
dimensional changes. Of these, the algorithms developed by Harris and Stephens [58]
and by Smith and Brady [155] are perhaps the best known.

Ignoring point 3 for the moment, we may restrict attention to locally one-dimensional
intensity changes. It is a remarkable fact that since 1987 there has been a single, unifying
theory of feature detection which (a) works well, and (b) has been largely ignored by
researchers in computer vision. It is called phase congruency or local energy. We will follow
the Morrone-Owens-Kovesi [119, 90] development, leading to recent work by Felsberg [38].

The following account is based on [13].
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Morrone and Owens [119] observed that all commonly occurring one-dimensiona signal
changes - steps, ramps, thin bars, dots - correspond to signal locations at which the local
Fourier components are al in phase. Furthermore, they found that even complex intensity
changes often correspond to points of maximum phase “congruence”. They established the link
between a signal features to the point of maximum phase congruency. They also proved that
their definition of phase congruency (PC) is a normalised measure of a well-known
computation, the local energy. This provides an important explanation to the concept of the
local energy: peaksin the energy function correspond to feature points where phase congruency
is a maximum. Being a measure of phase ‘ congruence’, PC (or local energy) has the advantage
of not being sensitive to the image contrast and brightness. According to this approach, a

featureis defined as alocation in asignal where the PC is high.

A.1 Local Energy and Phase Congruency (PC)

Let f(x) be aone-dimensional signal. It can be reconstructed from its Fourier spectrum by

f(X) ='[_°; a, cos(ax + ¢, )dw (90)

where a, is the amplitude and wX+ ¢, is the phase offset. Since steps, roofs, etc. all

correspond to pointsin a signal where the components of the spectrum are in phase, the Phase

Congruency PC(x) at each point x in the signal is defined as:

() = M A SO0, =00 (91)

6¢[0,27) J‘ awda)

The @ that maximises this expression for PC represents the amplitude-weighted mean phase
angle. By definition, PC is a dimensionless value between (0, 1).
It is inconvenient to compute PC directly from its definition. It is normally obtained from

the local energy, computed as below, using the relationship:
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_EX) (92)

PC(x) =
) 'anda)

The local energy can be obtained from the analytic wavelet transform, which is equivalent
to convolving the signal with a pair of quadrature filters. It turns out that the choice of
guadrature filters plays an important role in determining the quality of results obtained.

An analytic wavelet ¥ is a function whose Fourier transform is zero for non-positive
frequencies (hence the issue about DC correction). ¥ (w) =0 if @ <0, (~ denotes the
Fourier transform). Let f be the signal, then the result W of transforming the signal with ¥is
the inner product W = ( f,y) . In general, Wis complex. The local energy E is the amplitude

of the transform.

E=W=[(f.v), (%9
Similarly,
p=ArgW), (99

gives the phase angle at which the phase congruency occurs, and will be used later to
specify the feature type. The analytic function has zero phase. It does not change the signal’s
phase. Instead, it separates the signal’s amplitude and phase. This is so for any analytic
wavelet, so the question arises which one to use.

Gabor functions are widely used and are considered approximately analytic, if the non-
positive frequencies are small enough. This requirement restricts the use of Gabor filter: one
cannot construct Gabor functions of arbitrarily wide bandwidth and still maintain a reasonably

small non-positive frequency component.
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Figure 105: Log-Gabor functions of different bandwidths and centre frequencies.

The log-Gabor function is found to have better properties. It is analytic by definition. It has
along high frequency tail, which is useful for detecting fine features. The log Gabor functionis
defined in the frequency domain as

~togtwlay)? (95)
G(w) =™ if ¢ >0, and all zero otherwise,

where o, is the filter's centre frequency. The term K/, is held constant. A k/w, value of
0.74 will result in a filter bandwidth of approximately one octave, 0.55 will result in two

octave, and 0.41 will produce three octaves. Figure 105 is a plot of log-Gabor functions of
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different bandwidths and centre frequencies. The function’s centre frequency and bandwidth
are to be chosen according to the application.

Figure 106 shows the Phase Congruency of a sample signal calculated using log-Gabor
functions and the Hilbert Transform. The solid line of PC obtained from the log-Gabor function
has peaks for every feature point, which are marked with ‘*’. Note, however, that the doted line
of the Hilbert transform has only two peaks, instead of four in the second half of the signal. The
reason is that the Hilbert transform of 1D signal is a specia case of the anaytic wavelet
transform where the whole positive frequency spectrum is evenly covered, unlike the band-pass
filter of the log-Gabor functions. Therefore its time-space coverage is too narrow to produce
the all feature peaks. We next discuss a method to recover al the feature points using phase

angles.

Signal
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Figure 106: Phase congruency and phase of a sample signal
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A.2 Detecting Feature Type from Phase Angle

Consider the third sub-plot of Figure 106, which is the phase angle p(x) obtained from the
Hilbert transform of the sample signal. Each feature point corresponds to a specific phase

angle. Figure 107 shows the feature type and the phase angle.

1 1v2: Down Step

T VaIIeyf \
kil \\/ »IL 0: peak

I -w2:Up Step

Figure 107: Phase angles of different feature type

Combining the phase information and with the PC (or local energy), it is possible to
distinguish the peaks in the local energy (or phase congruency) function. More precisely, PC
and phase can be combined in the following way, which gives a new measure of the features,

denoted as PC;,

PC, (x,¢)=PC(x)- Y [cos(p)-¢) f (96)

where p(X) is the phase of the signal as defined in Section A.1, and ¢ is the phase at the

following feature types

0 peak
_|ml2  upstep
" x valley

—ml2 downstep

i is one of the feature types listed above, and L J denotes that the enclosed quantity is

equal to itself when its value is positive and zero otherwise. PC; can be used to detect any of the

feature types, or, more importantly, any combination of them.
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The usefulness of the above combination is illustrated in Figure 108, where different
features were detected from the sample signal of Figure 106. The two feature points in the
second half of the signal are clearly identified in the up-step feature. Even more features show

up; for example, the peak of the first half the signal and the long down slope in the second half

of the signal.
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Figure 108: Detecting features using the phase angle
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A.3 Extending PC to 2D

The local energy and Phase Congruency computation can be extended to 2D if it is assumed
that the signals of interest have simple neighbourhoods, that is, varies localy only in one
direction. With this kind of image data, it is possible to interpolate the local energy and
estimate the orientation from a minimum of three energy outputs obtained from three
symmetrical distributed directions: 30°, 90° and 150°. The energy was computed in each
direction with an analytic wavelet function constructed at this direction and extended with a
spread function cos’(¢). In practice, six directions(0°, 30°, 60°, 90°, 120° and 150°) were used
to accommodate the complexity of the images.

For illustration, this method of extending PC to two dimensions is applied to the idealised
image shown in Figure 109.a, with the result shown in Figure 109.b. The method also givesthe

approximate local signal orientation as shown in Figure 109.c.
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20 40 60 80 100 120

Figure 109: Test (a) Idealised test image; (b) Phase Congruency; (c) Orientation vectors

A.4 Multiscale Analysis

Phase Congruency can be applied to an image at multiple scales and at different filter
bandwidths. Figure 110 shows the scalogram of applying PC on a section of an incised tablet
image. The first and second sub-images of Figure 110 show the tablet image and a signal from
the image. The next three scalograms were obtained with three log Gabor filters of different
bandwidths. The horizontal axes of the scalograms correspond directly with the signal’s
horizontal axes. The vertical axes of the scalograms are scales ranging from 1-20, and
correspond to the filter wavelength from 3 to 20. The scaling factor between the filtersis 1.1.
The scalogram shows the lifeline of a feature across scale. We can choose the most suitable
scale and bandwidth to do a single scale analysis of PC or local energy, or multi-scale analysis

using Kovesi's method [90]. However we have found that the performence of Kovesi's method
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depends on noise estimation. In the case of tablet images, we find that single scale analysis

achieve better results.
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Figure 110: Phase Congruency at different scales.
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A recent development has been the Structure Multivector developed by Felsberg and
Sommer [39]. Theinitial observation is purely technical: it has frequently been asserted that the
Hilbert Transform — fundamental to developing quadrature filters — only exists in one-
dimension, so that the PC/Local Energy model inevitably involves one-dimensional signals that
are then extended to two- and three-dimensions by steering. Felsberg and Sommer point out
that thisis only true for scalar valued functions; there does indeed exist a 2- and 3-dimensional
Hilbert Transform for vector valued functions. More precisely, they develop a 2- or higher
dimensional generalisation of the analytic function called the monogenic function. The

monogenic function is given by:

fu (X, %z) = (F, by = £ 0y = £)(x, %) (97)

where h, are the inverse FT of two filters H, (w,,,) defined in the 2D Fourier plane.

The local energy turns out to be f, /| fu | and this leads to a representation of the image in

terms of spherical polars that contain the local phase and the orientation of image features. In
this way, the structure multivector/monogenic signal embodies all of the information that has
been found useful for detecting features of all kinds even in textured images. Thisis subject to

considerable ongoing effort.
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APPENDIX B

Registration Framework for Mammography

B.1 Introduction

The method described in this Appendix was developed by Kostantinos Marias [109, 110, 111]
in order to overcome the main problems in temporal mammogram registration which are due to
a combination of a non-rigid tissue motion due to different compression between acquisitions,
differences in the imaging parameters and the temporal changes in tissue composition and
structure of the breast. Since the intensity distribution and the structural morphology can
significantly differ in temporal sequences, we need a photometrically invariant method that can
exploit the variable similarity of temporal pairs of mammograms. An application is illustrated
in Chapter 5 for the prompting of masses in pairs of temporal mammograms.

The method relies on two stages:

o Initialy the images are aligned based on the boundary. This is done by developing an
algorithm that automatically detects 3 points with characteristic curvature in the outline
of both mammograms. A thin plate spline interpolation is used to calculate the image
transformation that aligns the boundaries of the two mammograms.

o Using a wavelet-analysis segmentation algorithm internal regions of dense tissue are
defined that have good spatial characteristics in each mammogram. The boundary

transformation together with scale and area information of the segmented regions is
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used to match internal structures and refine the registration. In this second optimisation
stage, a regularised approximation scheme is used to account for possible inaccuracies
in the selection of the internal landmarks, especially because the centre of mass of each
matched region pair is used to calculate the image transformation.

Figure 111 is a flow chart of the registration algorithm. Though the technique could be
fully automated, the acceptance or not of the internal landmarks should in practice be decided
or confirmed by the user. If the suggested internal landmarks do not meet the clinician's
satisfaction (e.g. possibly in involuted breast pairs) the boundary-based registration is the final
result, otherwise an approximation scheme (including internal and boundary landmarks) is

employed in order to better approximate the deformation necessary to align the mammograms.
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Figure 111: The basic steps of our breast registration algorithm (reproduced from [110]).
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B.2 Partial Registration Using the Boundary

The breast boundary is the most useful feature of the mammogram in terms of tempora
consistency. It provides information about the difference in compression between two
acquisitions and enables the calculation of landmarks that allow the approximation of the
transformation that relates the geometry of a temporal pair of mammograms. Still, the
registration using the boundary is not sufficient as internal structures move to different extents
under different compressions, because of differences in shape and tissue density. However,
accurate detection of the breast outline and calculation of temporally invariant geometrical
landmarks is a key first step for mammogram registration. The steps that comprise the
boundary registration method are:

e Boundary outline detection;

e Curvature analysis of the outline(s) and detection of consistent landmarks;

e Anatomical significance of detected boundary landmarks;

e Thin-plate spline interpolation to align the boundaries.

B.2.1 Breast Outline Detection

To generate the breast outline, the image is thresholded in the first “valley” between two peaks
(inside the breast and outside the breast) of the intensity histogram resulting in a binary image.
Subsequently, an 8-connected component outline is obtained using mathematical morphol ogy
(closing followed by dilation and then subtraction).

This method yields an approximation to the boundary. This tracks the points along the
boundary since the breast outline can have an irregular shape (e.g. very often 2 points in the x
axis can correspond to 1 in the y). However, the segmented curve is "jagged” and this poses a

problem for the robust detection of boundary landmarks, asis discussed in the next section.
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B.2.2 Curvature Analysison the Breast Outline-consistent Landmarks

In order to be able to register mammogram pairs one needs to be able to establish
correspondences between the breast outline of each mammogram, since the “beginning” and
“end” of each outline highly depend on the segmentation result and the image acquisition (e.g.
in some medio-lateral mammograms alarger part of therib isvisible than in others). Theaimis
to “trandlate” the geometrical consistencies in mammograms into an automatic algorithm for
the detection of consistent boundary landmarks. Three points are considered, as in Figure 112:
in the cranio-caudal case (CC), the points 1 and 3 can be assumed to be near in the chest wall
(and thus invariant) and are approximated by the first and last points of the breast-outline
respectively; point 2, is the maximum curvature point (negative curvature by convention). The
medio-lateral oblique mammograms (MLO) represent the most difficult case. Geometrically,
these points can be described as two maxima of positive (by convention) curvature (points 1

and 3) and 1 point of maximum negative curvature (point 2).

2 CC ML

Figure 112: Consistent landmarks in the CC and ML “idealised” outlines.

In order to build a robust detection algorithm for the three points discussed above, the
curvature profile of the breast outlineis calculated. The steps are as follow:
e An algorithm based on the separation of positive and negative curvature automatically

detects the three suggested points (Figure 112);
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e Define an optimum sampling rate (Syy) of points along the segmented breast-outline
and run a spline to approximate the breast boundary. Different sampling rates preserve
different amount of detail at a trade-off with overall smoothness. This optimum would

depend on the pixel dimension (300 microns in the images we used).

B.2.3 Anatomical Significance of Boundary Landmarks

The boundary registration technique is based on the robust detection of 3 points of
characteristic curvature. This makes the boundary alignment more robust as consistent
boundary points are calculated for a mammogram pair, instead of attempting to match the
whole segmented breast outline. Asis shown in Figure 112, the detected landmarks very often
correspond to the anatomical location (in MLO) of the rib (point 1 in Figure 112), the nipple
(point 2), and the axilla (point 3). However, this anatomical correspondence is not a
regquirement for the boundary registration to work. A good example is the case where the nipple
is not visible but there is always a global maximum of negative curvature.

The user can refine the location of the boundary landmarks by shifting the cal culated points
along the breast-edge. Making the registration process completely “blind” can have an effect in
the robustness and adaptability of the method. The most important correspondence is the

nipple, since the glandular tissue converges to it.

B.2.4 Partial Registration from the Breast Boundary

Sampling between these three points (that from now on will be referred as rib, nipple and
axilla) and more specifically, between the axilla-nipple and nipple-rib segments, any temporal
or bilateral mammogram pair can be aligned based on the boundary.

For temporal mammogram registration, a good initial alignment can be achieved using at

least five points along the breast boundary. However, for greater accuracy in aligning the
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boundaries, seven points uniformly sampled between the “axilla’ and “nipple’ boundary
landmarks, and another seven between the “nipple” and the “rib” landmarks (total of 17 points)
are used. Using these points, the images are registered using thin-plate spline interpolation.

Radial basis functions (RBF) are used for the elastic image deformation in this registration
scheme. RBF are used in two contexts — firstly, for aligning only the boundary. Later, when
internal landmarks are included, information about the spatial characteristics of the deformation
points is used to implement a more sophisticated regularisation that is based on an
approximation method.

In RBF interpolation, a set of nlandmarks (p; ,q;) is used to define atransformation function
u:RP—R? , where pi= (X1, Y1) are the landmarks in the first image, g=(Xy, Yi») are the landmarks
in the second, and the interpolated transformation function u(x) must satisfy the interpolation

constraint;

u(p)=q.,i=1..,n (98)

Marias uses the thin-plate spline radial basis function Ryps, Since it is a stable method to
recover deformations (including local deformations due to breast tissue motion). By weakening
the interpolation constraint, the smoothness of the transformation can be controlled and the
uncertainty in the localisation of landmarks can be taken into consideration.

Once the interpolating function has been calculated, “warped’ images are produced by
forcing every point (X, y) in a mammogram to take the intensity value of the point where the
interpolating function maps the (X, y) point of the previous mammogram. After image warping,
difference (subtraction) images can be generated and used to search for regions of large
intensity differences. These regions can be either new growths (e.g. a cancer), changes due to

involution, or they can be dueto local inaccuracy in registration.
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B.3 Multi-scale Landmark Selection for Improved Registration

It is demonstrated that a usually small, but significant number of internal correspondences
greatly improves registration and better approximates the complex internal tissue deformation
due mainly to differencesin compression.

The main steps of the multi-scale segmentation algorithm to detect regions of dense tissue

are:

e The mammogram pair is decomposed using the Coiflet wavel et packets. This particular
wavelet was chosen because it yields good spatial localisation (e.g. it is edge
preserving) and has compact support.

o After each mammogram is decomposed into a set of high-frequency and low-frequency
images (with good spatial localisation of features), these are ranked by information
content using an entropy measure. This construction is used to track significant features
through scale space and forms the basis of the feature segmentation.

e A region growing is performed from the lowest scale towards the highest. A merging
operator tracks the feature to the highest scale so that each feature can be represented
with more “detailed” information. In a mammogram pair, the n most important regions

(usually n<=5) are tracked and subsequently matched.

B.4 Landmark Matching and Registration Refinement

Based on the regions that are detected using the scale-space segmentation approach described
above, a set of internal landmarks is defined by a matching algorithm that includes the partial
transformation (induced by the boundary alignment) in conjunction with scale, size and area
information of the candidate matches. In the registration process the segmented regions are

represented by their centroids.
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Theinitial search-space for a match in the first image is defined as awindow in the second
image whose size is proportional to the amount of displacement of the transformed internal
landmarks using the boundary transformation. This is used to limit the possible matches to a
“window” or neighbourhood. All the feature parameters (size, scale, relative motion) are used
to drive a simple spatial searching. Essentially these criteria are used as the basis of a “match-
rejection” filter. A distance measure is evaluated between landmarks to ensure that landmarks
classified as a “match” have similar spatial properties and have demonstrated a change in
geometrical correspondence as aresult of the boundary deformation. On average, depending on
the degree to which the breast is involuted, 3 to 5 internal landmarks are defined at the centres
of mass of the corresponding wavel et-defined regions.

The last step in the registration process is to include both the boundary (curvature-based)
landmarks and the internal landmarks. However, at this stage of the registration process, an
approximation (rather than an interpolation) schemeis used to compute the elastic deformation.
Thisisto account for possible inaccuracies in landmark representation, as well as to produce a
smooth deformation that takes into consideration the relative importance of the matched
regions (represented by their centre of mass).

The boundary points and the internal landmarks (computed by the wavelet analysis)

together control a thin-plate spline approximation technique, which gives the final registration.

B.5 Results an Discussion

Marias [110] reports the following validation results:
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Table 6: Comments on registration results in 50 mammogram pairs. The viewer classified the

results in three categories according to the alignment of image features.

Boundary alignment | Internal correspondence

Good: 100% Good: 70%
Average: 0% Average: 25%
Poor: 0% Poor: 5%

Table 7: Clinical assessment of the improvement in registration using internal landmarksin 25
mammogram pairs and comparison with the reduction in the standard deviation of the

difference image after geometrical alignment for the same cases.

Improvement of the registration | Reduction in the standard
result when including internal | deviation of the differenceimage
landmarks

Significant: in 20 mammogram pairs 10%-35%

Not significant: in 5 mammogram pairs | 0%-15%

Multi-scale analysis provides a reliable framework for establishing correspondences
between significant regionsinside the breast. Using internal landmarks, the registration result is
improved, as was asserted by the clinician and the difference images after registration as well
as the joint histograms of the aligned images. Even though matching points inside the breast is
difficult due to temporal changes and depends upon the extent to which the architecture (or
topology of the surface) is preserved, the multi-scale segmentation method used, reliably
locates regions of dense tissue that appear in both temporal mammograms. Additionally, using
the thin-plate approximation scheme, the internal landmarks can be weighted according to their

size and scale and therefore compensate for landmark localisation errors.
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APPENDIX C

Receiver Operating Characteristic (ROC) Curve
Analysis

Clinical information from patients is routinely collected in all hospital across the country.
However, in order to understand the correlation of the different clinical signs, symptoms and
diagnostic tests to the likelihood of a disease, this information has to be accurately analysed and
interpreted through objective measures and definitions.

In this Appendix we shall be concerned with issues related to the evaluation of detection
and classification algorithms. The ROC curve anaysis is the most common measure of
diagnostic accuracy and an essential tool in assessing the performance of a developed method.
The questions addressed are:

e How well can we detect microcalcifications or masses?

o How do afew selected detection algorithms compare with each other, and how should

we assess the performance of an algorithm?

e Given amass or microcalcification cluster, can we classify it as benign or malignant?

A detection or classification algorithm in digital mammography is traditionally assessed by
applying the algorithm to a representative set of mammograms, for which ground truth
information is known. It is then possible to compare the results with the ground truth to
determine if the microcalcification cluster or mass regions have been correctly detected or
classified. In this work we assess the performance of microcalcification detection algorithms

using a set of 102 normal and abnormal mammographic cases taken from the Oxford database.
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Each abnormal mammogram has an associated truth file containing the outline of the
microcalcification cluster present in the image. We believe that the tested cases are a
reasonabl e representation of different types of microcalcification clustersaclinician islikely to
see in women of breast screening age. Although we will further refer to microcalcification
clusters, the same assessing principle is used in evaluating mass detection and classification
algorithms.

The most common assessment criterion in the radiological literature is the ROC curve.
Since detection algorithms will output a ‘positive’ or a ‘negative’ flag for each processed
image, a ROC analysis must evaluate their ability over amammographic database, over arange
of parameters. Consequently, a database of processed mammographic images can be split into
four digoint subsets, given the ground truth:

e TP- True Positives, correctly identified as containing a microcalcification cluster;

o FP- Fase Positives, incorrectly identified as containing a microcalcification cluster;

e TN - True Negatives, correctly identified as being clear;

e FN - False Negatives, incorrectly identified as being clear.

Denoting the total number of malignant (or detected) outcomes as M, we have M=TP+FN,
similarly the total number of benign (or non-detected) outcomes is N=TN+FP. The following
definitions are related to clinical diagnostic tests and the main interest from the image analysis
standpoint is to improve the understanding of clinical articles as well as the reported results on
CAD systems:

e Sensitivity: TP/M, also referred to as the true positive fraction (TPF), is the probability

of apositive test among patients with a disease;

e Specificity: TN/N isthe probability of atest being negative among healthy patients;

e The fase positive fraction (FPF): is defined as 1-specificity, which is equivalent to

FP/N; typical ROC curves plot the TPF as afunction of the FPF;
o Diagnostic accuracy: (TP+TN)/(M+N) is the ratio of correct detections over the total

number of assessments;
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e Incidence: is the probability that a healthy patient develops the disease during an
interval (e.g. in ayear, or in the screening interval for the case of breast cancer); this
definition is important when determining the incidence of breast cancer, since a
significant number of cancers are missed;

e Prevaence: isthe probability of adisease in the entire population. Using the definitions
of sensitivity, specificity and prevalence, the probability of disease given a positive test
can be defined according to Bayes' equation:

prevalence - sensitivity 99)
[ (prevalence- sensitivity) + ((1- prevalence) - (1- sensitivity) )]

P (disease | positive test) =

Although sensitivity and specificity are important in describing diagnostic tests, they do not
always offer sufficient information to interpret the results of a test. For this reason, the
predictive values are more useful to the clinicians:

o Positive predictive value: TP/(TP+FP) is the probability of disease among patients that

had a positive test;

o Negative predictive value: TN/(TN+FN) is the probability of no disease among patients

that has a negative test.

It can be the case that although the sensitivity of the test is very high, the probability of
disease among patients with a positive test to be lower, which is the probability that a patient
has breast cancer if the CAD test for cancer is positive.

If now, we can redefine what is ‘positive’ or ‘negative’ according to the CAD (e.g. change
the threshold at which a clustered is detected), the values for the specificity and sensitivity will
change. By repeating the procedure for several thresholds, we can plot the values of sensitivity
versus (1-specificity), the Receiver Operating Characteristic curve. Examining different
thresholds represents the trade-off between sensitivity and specificity, or between false
positives and negatives.

In traditional ROC analysis, the image is viewed as a single entity and the binary value P,

(Positive: cluster detected) or N (Negative: no cluster detected) is assigned. As we change our
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parameters, e.g. threshold value or contrast value in Chapter 4, the ROC curve is drawn out.
Figure 113 shows a comparative analysis between two representative ROC curves. The straight
line connecting the points (0,0) to (1,1) is referred to as the chance line. The name arises
because an algorithm that just assigns the value P to an image with a probability 1/2, i.e. it
guesses, lies on the chance line. An ROC curve should always lie above the chance line.

What features do we expect in a ROC curve? The ROC curve of a good agorithm will
show a sharp monotonic rise as we move away from the origin; it detects the majority of
microcalcification clusters whilst generating very few false results. Towards its end, the curve
should ideally become horizontal. If a ROC curve's gradient falls below 1 then it is starting to
label more things wrong than right, and it is of no real use beyond that point.

Referring again to Figure 113 we note that curve A aways lies above B, indicating that
algorithm A outperforms B. Typically, two ROC curves C and D cross so that for part of the
plot D<C and then D>C. One would have to qualify the statement D outperforms C by stating
the TPF range over which the statement held. Choosing the right trade-off between FPF and
TPF and comparing the curves at that point could be used as a comparison. This is generally
insufficient, since the general behaviour of the algorithm might be more important than just one
point on the ROC curve. Another generally accepted comparison criterion between two
algorithms is the integral below each curve, an exact and exhaustive measure in discriminating
between healthy and non-healthy patients or benign and malignant. Therefore, the ROC

measure gives a clear indicator of an algorithms performance.
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Figure 113: An example of ROC analysis.

A number of variations on ROC curves are used in clinical evaluation. The free-response
receiver operating characteristic (FROC) curveislargely used in literature. Unlike the classical
ROC curve plotting TPF versus FPF, the FROC curve plots TPF versus FP/image. The ROC
analysis performed in this thesis is based on plotting FROC curves, as exemplified in Chapters

3and 4.
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