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Abstract— The early detection of breast cancer greatly improves prognosis. One of the earliest 

signs of cancer is the formation of clusters of microcalcifications. We introduce a novel method for 

microcalcification detection based on a biologically inspired adaptive model of contrast detection. 

This model is used in conjunction with image filtering based on anisotropic diffusion and curvilinear 

structure removal using local energy and phase congruency. An important practical issue in 

automatic detection methods is the selection of parameters: we show that the parameter values for 

our algorithm can be estimated automatically from the image. This way, the method is made robust 

and essentially free of parameter tuning. We report results on mammograms from two databases 

and show that the detection performance can be improved by first including a normalisation scheme.  

Index Terms— X-ray mammography; microcalcification clusters; image normalization; 

anisotropic diffusion; human visual system. 

 



 2

 

I. INTRODUCTION 
 
 

Breast screening programs attempt to detect and eradicate cancer at the earliest possible stage to reduce 

the rate of mortality amongst women. However, detecting the early signs of breast cancer that appear in X-

ray mammograms presents a significant challenge to radiologists, not least because such signs are often 

difficult to distinguish against the dense or highly textured breast anatomy. Studies prove that the 

performance of radiologists is increased when a good segmentation or classification system is used 

(Funovics et al., 1998; Giger et al., 2002; Petrick et al., 2002).  However, such systems must have provably 

adequate performance and robustness to be used in a clinical setting. 

Most ductal and lobular cancers have secretions that may form calcifications (Highnam and Brady, 

1999). The smallest of these (under 1 mm in diameter) are called microcalcifications and represent some of 

the earliest signs of breast cancer. Microcalcification clusters may be the only indication of in-situ 

tumours. Approximately 80% of microcalcifications are benign (Highnam and Brady, 1999; Veldkamp and 

Kerssemeijer, 1998), their shape and topology differentiating them from the malignant type.   

In general, microcalcification detection algorithms consist of three stages: (i) a pre-processing step based 

on filtering the image, for example, subtracting a signal-enhanced image from a signal-suppressed image 

(Nishikawa et al., 1993); (ii) a segmentation step, for example based on global thresholding and 

morphological erosion (Nishikawa et al., 1993), on region growing (Shen et al., 1993) or adaptive 

thresholding (Betal et al., 1997); and (iii) a clustering step, typically using a fixed size kernel to eliminate 

noise points and isolated calcifications and to identify clusters. A major drawback of such methods is their 

poor sensitivity to small and faint microcalcifications. Other approaches use neural network classifiers 

(Edwards et al., 2000; Hara et al., 2000; Kim and Park, 1999; Rosen et al., 1996), several of which are 

trained on a single database and give poor results when tested on other databases. Wavelet filters have been 

used in (Aghdasi, 1996; McLeod et al., 1996) to highlight the high frequency signal from the background; 

unfortunately, noise also has significant power at high frequencies.  
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Yam et al. (2001) developed a structural approach to microcalcification detection, which exploits the 

Standard Mammogram Form (SMF) representation (therein called hint), which is introduced in Section II of 

the paper. Yam et al.’s technique detects tall thin structures in the hint image and tests with the height of 

such a structure to its footprint of the same structure in the image to detect possible calcifications. Noise is 

a major problem and some individual calcifications are overlooked and so statistical analysis of a cluster is 

compromised. The results appear promising, though it should be noted that they are from a considerably 

smaller database (Yam et al., 2001). 

Perhaps the best-known published statistical method is that of Karssemeijer et al. (1993, Veldkamp and 

Kerssemeijer, 1998). The authors use adaptive noise equalization as part of a Bayesian approach, using 

Markov Random Fields to detect clusters of microcalcifications. Though it set a new standard for feature 

detection at the time it was published, the algorithm involves a large number of parameters, and there have 

been questions raised about its robustness or generalisability to other databases (Poissonnier and Brady, 

2000).  

R2 Technology’s commercial product ImageCheckerTM (Roehrig, 2005) is a CAD system that is widely 

acknowledged as the state of the art of microcalcification detection (though, understandably, few details of 

the detailed operation of ImageCheckerTM have been published). Several large studies show the 

improvements from using ImageCheckerTM to detect breast cancer by reducing the false negative rate, 

while increasing the mean sensitivity of radiologists (Roehrig, 2005). Freer and Ulissey (2001) report that 

radiologists improve the detection of malignant microcalcification clusters from 68% to 100% after the use 

of CAD. In a more recent study, Birdwell et al. (2005) notify that the contribution of CAD increased by 

7% the number of detected cancers, but without clear benefit of CAD systems in the detection of 

microcalcifications. 

Herein we present a novel “foveal” segmentation algorithm that is based on a biological model of 

adaptive contrast-detection, complemented with complex pre-processing steps. The rationale for adopting a 

model inspired from the human visual system derives from the challenge posed by the highly variable 

mammogram image background that often confounds algorithms or human observers, especially when 
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‘bright’ microcalcifications are hidden within ‘bright’ dense tissue. The paper is structured as follows. 

Section II presents the pre-processing of SMF images (Highnam and Brady, 1999), in particular the 

optional, but helpful, normalisation step, the removal of shot-noise, curvilinear structures and image 

filtering. Α novel statistical approach to derive automatically the parameters of the enhancing diffusion 

filter is also proposed. Section III introduces the “foveal” segmentation algorithm. In Section IV we 

perform a Free-Response Operating Characteristic (FROC) curve analysis as a step towards a validation of 

the microcalcification detection algorithm. Finally, we present a discussion and conclusions. 

 

II. PRE-PROCESSING 

 
Due to the complexity of mammogram image formation, we pre-process images before applying contrast-

detection. The aim is to remove structures that may give rise to false positives (e.g. shot noise or 

curvilinear structures) and to smooth out noise in the image without removing microcalcifications. Note 

that we also include in this section an image normalisation step SMF, which is optional to the method, but 

which we have found can improve detection results, since it models the image formation process and 

removes variability in imaging conditions (e.g. time of exposure, film speed). The pre-processing steps of 

our method are described in the following paragraphs.  

A. The Standard Mammogram Form 

A well known normalisation method that results from modelling the process of mammographic image 

formation is the Standard Mammogram Form (SMF) developed by Highnam and Brady (1999) and 

improved in (Yam et al., 1999). The SMF algorithm corrects for scatter and extra-focal radiation, glare and 

anode heel effect. We have also based our work on previous results by Highnam and Brady (1999) and 

Yam et al. (1999), which estimated radiographic mottle, and then used Wiener filtering to subtract its effect 

and estimate glare and local blur. Our paper started from the observation that sometimes Yam’s algorithm 

gave very poor results, and that led us to use – and analyse - anisotropic diffusion. 
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Because of the relatively weak control over the image acquisition process, it is difficult to eliminate 

variability in image characteristics, such as contrast and brightness. It is well known that such differences 

in imaging conditions lead to a complicated functional relationship between the intensities of temporal 

pairs of mammograms that varies from patient to patient (Marias et al, 2005)0. This is a strong indication 

that the non-linearities introduced by varying imaging conditions may alter significantly the image-

intensity profile and reduce the efficiency of automatic microcalcification detection algorithms. After 

developing a method for the calculation and correction for the scattered radiation, Highnam and Brady 

(1999) discovered a method for mammogram image normalisation that eliminates distracting variations. 

This was based on the following assumptions /observations: 

- The x-ray attenuation coefficients of normal healthy tissue and cancerous tissue are approximately 

equal over the range of tube voltages used in mammography; but are significantly different from that of 

fat; 

- Fat is clinically uninteresting, therefore normal healthy and cancerous tissues are collectively referred 

to as “interesting”; 

Highnam and Brady’s method estimates – in millimetres – the amount of interesting tissue in each pixel 

column, as illustrated in Figure 1. This effectively provides objective quantitative information about the 

breast anatomy. If, for example, the separation between the Lucite plates is 6.5cm, the amount of 

interesting tissue at a location (x,y) might be 4.75cm, implying 1.75cm of fat. 

This way, the interesting tissue representation refers only to (projected) anatomical structures – the SMF 

algorithm estimates, and then eliminates the effects of, the particular parameters that were used to form the 

mammographic image. In short, the image can be regarded as standardised (hence the more recent name 

Standard Mammogram Form or SMF) and quantitative since the ‘normalised’ pixel values are 

measurements in millimetres, not in arbitrary units of shading (contrast), and they convey anatomical 

information. The key point is that without normalisation, for example by the SMF process, there is 

inevitably the risk of confounding anatomically useful information and imaging parameter effects, whose 

choice significantly affect contrast, brightness and the level of noise. As we will show in the results 
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section, detection performance is improved if the normalisation step is included. 

 

 

Figure 1: A schematic of hint calculation. In the normalised image each pixel value reflects the 

corresponding amount of non-fatty tissue instead of acquisition-dependent attenuation measurements. 

 

The exception ignored in the generation of an SMF representation of a mammogram is the presence of 

microcalcifications.  The attenuation coefficient of microcalcification is approximately 26 times that of 

normal/cancer tissue, and so, although microcalcifications are physically small, they appear in the SMF 

representation as non-fat tissue that is 26 times as high as it actually is, that is as very high, tall thin towers. 

Thus, although the breast parenchyma is normalised, calcifications remain small areas of higher contrast. 

Hence, the contrast of a feature (microcalcification in our case) is largely independent of the film contrast 

curve. It is its presence in a fat or dense neighbourhood that makes it easy or difficult to detect/visualise.  

We stress that the inclusion of a normalisation pre-processing step is not essential for our algorithm to 

work. However, our results indicate that the detection efficiency can be improved by including such a step, 

probably as a result of removing non-linearities and distracting variations, which in turn improves the 

contrast. 
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B. Shot Noise and Curvilinear Structures Removal 

An important pre-processing step is the removal of noise, which is a major source of false positives (FP). 

In this paper, shot noise refers to an intrinsic noise process during scanning, due to dust and artefacts 

present on the film or in the scanner. Previous papers report the detection of film-screen artefacts 

associated with the SMF generation process (Ancelin et al., 2002; Highnam and Brady, 1999), for example 

at the glare removal stage. Although shot noise appears visually similar to microcalcifications, it is 

introduced at the image digitisation stage, that is, it is introduced to the image after the main blurring stage, 

and so the boundary shape of shot noise tends to be quite sharp. The point spread function of the 

intensifying screen (blur function) enables the identification of image locations that are locally bright but 

the energy imparted becomes negative where shot-noise is present after glare compensation. Using the 

binary information from the shot noise map, the artefacts can be removed from the SMF image by 

interpolating between their surrounding backgrounds. 

Curvilinear structures (CLS) – ducts, blood vessels, ligaments or tumour spiculations - are locally linear, 

relatively thin structures, which often produce in a mammogram a characteristically textured appearance.  

Removing the CLS turns out to be important for the method specificity (Highnam and Brady, 1999), but 

their identification and removal remains a major challenge (Wai et al, 2004). The CLS appear relatively 

bright, though not necessarily with high contrast. They are locally linear, but typically curve at larger 

scales. Their detection is difficult due to the large variety of widths, contrasts, lengths, and intersections.  

Intersections are either genuine bifurcations or may correspond to the overlap of two projected CLS in the 

compressed breast.  The attenuations of the individual CLS add, producing a localized region of higher 

attenuation. Such points also appear similar to calcifications rather than noise.  

The method we propose for CLS removal is based on the local energy model for feature detection of 

Kovesi (1999) and is presented in (Evans et al., 2002). From local energy (LE) we search points with 

maximum phase congruency (PC) to detect and then remove CLS from mammograms. For the spatial 

frequency j, if the local Fourier coefficients of a one-dimensional signal are as in equation (1), then LE and 
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PC can be calculated according to equations (2) and (3). In practice, logGabor filters were used to estimate 

the local energy and phase, with a spreading function and combination of responses from several discrete 

directions to extend the analysis to 2D (Kovesi, 1999). 

Several more assumptions are necessary: (i) the intensity profile of a CLS perpendicular to its local 

orientation is a one-dimensional peak (e.g. cos(φ)), with a phase within –π/2 ≤ φ ≤ π/2; and (ii) the phase 

congruency PCθ+π/2 > PCθ at a CLS of orientation θ, since CLS are long and thin. 
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Our implementation uses a small wavelength, which makes it more sensitive to smaller scales, and a 

reduced number of scales over which features are detected by phase congruency in order to avoid marking 

the CLS as calcifications. The limitation is that there are discontinuities that appear in the true CLS and 

their removal leaves bright areas on the mammogram similar to microcalcifications. We use a smooth 

interpolation process to remove CLS from mammograms. Figure 2 shows an example of removal of shot 

noise and CLS. 

C. Image Enhancement 

We have previously reported our work using anisotropic diffusion to filter and analyse mammographic 

images (Linguraru et al., 2001).  Anisotropic diffusion has the desirable property of smoothing an image, 

that is reducing noise (hence increasing signal to noise, which is generally poor for mammographic 

images) while at the same time largely preserving image structure. In this paper we also address the issue 

of automatically defining the appropriate diffusion parameters. 
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Figure 2.  Removing artefacts in the pre-processing step; (a) the original image; (b) the shot noise map 

(white dots); (c) the CLS map; (d) the “clean” image. 

 
Previous methods used for noise reduction, such as the Wiener filter (originally embedded in the SMF 

generation), have limitations (Linguraru, 2002), primarily arising from deconvolution and inevitably 

simplified models of the complex physical processes involved in mammography. These possible sources of 

errors leave residual high-frequency noise in mammographic images. Digitiser noise, also of high 

frequency, adds to it. The anisotropic diffusion filter aims to smooth the remaining high-frequency noise 

that interferes with our specific application. We base our approach on Weickert's solution (Weickert, 1998) 

for the diffusion tensor for which we define the corresponding eigenvalues in equation (4), where I is the 

initial image, Iσ the Gaussian smoothed image (σ is the standard deviation or scale) and k is a contrast 

measure. I can be either an intensity or SMF image, depending if SMF normalization has been performed 

as a pre-processing step. 
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The parametric nature of anisotropic diffusion in general makes the process highly dependent on the 

fine-tuning of its input parameters. In practice, the more complex and variable the images in a dataset, the 

more problematical it is to choose a single set of values for these parameters that works well for the entire 

dataset. We address this problem by proposing an automatic scheme that defines the diffusion parameters 

using image characteristics. The parameters we deal with are: a) a contrast gradient k, b) the standard 

deviation σ and c) the number of iterations t. 

Microcalcifications represent a tiny percentage of the mammogram surface. Typically, they are very 

small, indeed are only present on average in about a quarter of the total number of screening mammograms 

(Highnam and Brady, 1999). For these reasons, we generously estimate that at most 5% of the 

mammogram pixels is sufficient to accommodate the entire population of microcalcification pixels. 

Microcalcifications often appear relatively bright in an X-ray image, indeed were it not for surrounding 

dense tissue they would be the brightest/highest pixels of the mammogram. As illustrated in equation (5), 

we compute k as a measure of the gradient, where Kσ(I) is the Gaussian of image I, M its derivative and N 

the number of pixels in the neighbourhood δi. k becomes a value with well-defined physical meaning that 

discriminates between microcalcifications (the brightest structures after noise removal) and background; 

more precisely, we chose the 4.4% structures with highest contrast, according to the statistical value in 

equation (5), given that mean(g) is 0. Figure 3 illustrates the estimation and meaning of the value of k. 

 

k= 2*std(g), where ∑
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Figure 3: An example of estimating k. a: From the image shown on the left (after expanded display 

contrast) the histogram of g is computed from equation (5), b: We note the zero mean value of g, as well as 

where the value of 0.47 of k (related to the 4.4% structures with highest contrast) falls. 

 

The second parameter to be set is σ, the standard deviation of the Gaussian filter used to smooth the 

image. We need to choose a value for σ so that, on the one hand, it removes high-frequency noise (which 

is very localized, typically spread over a couple of pixels at, for example, 50µm/pixel), but, on the other 

hand, preserves microcalcifications (on average 0.5-1 mm in diameter). Digital images are convolved with 

a Gaussian kernel, whose width is given by σ (n*σ, for example n=10, where n gives the digital finite 

extent of the Gaussian). σ must be sufficiently small to clean noise and retain microcalcifications and is 

directly related to the image resolution. For example, the width of the kernel must be 300/50=6 pixels to 

preserve microcalcifications over 0.3mm (or 300µm) in diameter at an image resolution of 50µm/pixel. 

Weickert (1998) notes that the number of iterations t is related to the spatial width of the Gaussian 

kernel. To blur features of the kernel order it is required that ( ) 2/* 2σnt = , which gives excellent noise 

reduction results in the microcalcification preservation framework.  

The reasoning behind the parameter setting in the anisotropic diffusion process has been explained 

above. As a concluding remark, we note that our method computes all parameters automatically: k is 

computed directly from the image and its meaning (it depicts the most outstanding features in the 

mammogram) and is independent of the data set; σ is strictly related to the size of microcalcifications and 

the image resolution; and t is set according to the proposed value of σ. We show a typical example of 

k = 0.47

a b



 12

automated image enhancement for microcalcification detection in Figure 4. 

With the automatic tuning of parameters that we propose, anisotropic diffusion becomes, for 

microcalcification detection, a robust process using little, but essential, a-priori knowledge. This is 

important since anisotropic diffusion has often attracted criticism because of its strong dependency on a 

number of parameters. 

 

   
 

Figure 4. Automated image enhancement; (a) the original noisy image with a microcalcification cluster; (b) 

the map of features selected by the value of k; (c) the enhanced image. 

 

III. FOVEAL SEGMENTATION 

An important part in image processing and computer vision is to understand and implement models of the 

human visual system (HVS), partly because understanding the HVS is an important scientific goal in its 

own right, and partly because expert radiologists have generally outperformed computer systems, 

especially for the detection of subtle microcalcifications and/or masses in dense textured backgrounds. 

There is over a century of research behind trying to fully understand the way HVS functions, particularly 

how it responds to intensity transitions and texture variations. A major contribution to this on-going 

research was made by Holladay (1926) and later by Moon and Spencer (1943). They developed several of 

the fundamentals of the way the human processes visual scenes, at least in the early stages. Nevertheless, 

the process is very complex and still not fully understood (Ashdown, 1996). 

 a cb 
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The adaptation of the eye to light changes is a continuous process in the HVS. We perceive objects 

differently if they are against a bright surface (for instance a window on a sunny day) or dark area (a dark 

wooden panel). The adaptation luminance proposed in (Moon and Spencer, 1943) is the response of the 

eye in adding an average luminance within the central visual field or fovea (Lfov) and an equivalent veiling 

luminance caused by surfaces surrounding the peripheral field of view (Lseq) as in equation (6).  

 

La = Lfov + Lseq ;                  (6) 

 

However, foveal adaptation stems mainly from the luminance within the foveal field and relates to 

approximately only ten percent to the luminance of the field of view outside that of the fovea (Moon and 

Spencer, 1943). Furthermore, the visual perception of the eye is dependent on the spatial perception of the 

object we visualise. This effect is called lightness assimilation. The same object may appear lighter on a 

dark background and darker over a light surface (see Figure 5).  

In mammography, the main advantage of human eye over CAD methods is the detection of 

microcalcifications in dense areas of the breast, usually the clusters that make the True Positive (TP) ratio 

inferior to the 100% of the ground truth. At the same time, neither the radiologist nor a computer program 

must pick FP in the dark areas. This is the result of the adaptation to background, which is equivalent to 

lowering thresholds in bright areas (to increase the TP ratio by detecting clusters in dense breast areas) and 

increasing them in dark areas (to decrease the FP number), basically an inverse proportionality to the 

background. In a mammogram we must consider the neighbouring area of the foveal kernel, as shown in 

equation (6). The adaptive thresholding model that we propose for the detection of microcalcification 

applies the above-mentioned concepts in the mammographic setting for the improvement of abnormality 

detection in the breast. 
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Figure 5.  An illustration of the lightness assimilation. We show three synthetic images with dark (left), 

medium (middle) and bright (right) backgrounds. All have central objects of the same size and intensity, 

but are perceived differently by our eyes, due to the variance in background lightness. 

 

The classical contrast (Cclassic) is calculated at every pixel as the difference between that pixel value (p0) 

and a weighted sum of the pixel values in an immediate neighbourhood (N), as in equation (7), where n is 

the number of pixels in N (Gonzalez and Woods, 1993). In mammography, such contrast measures were 

used in (Karssemeijer, 1993) combined with noise/contrast equalisation and (Kegelmeyer and Allmen, 

1994) together with local thresholding. In a simpler scenario, Cclassic is compared with a fixed threshold, 

Cthresh, over the whole image and microcalcifications are marked. The variation in height in an SMF image 

or intensity in a typical mammogram makes it far easier to detect microcalcifications (or contrast changes) 

against a fatty (dark) background but more difficult to detect correctly against a denser (bright) background 

(Highnam and Brady, 1999). The HVS, however, adapts to the local image contrast, and detects faint 

contrast changes in a manner essentially independent of the background. We adopted a model of contrast 

detection similar to HVS for mammography with the aim of improving the accuracy of the detection. 

 

∑
∈

−=
Ni

iclassic p
n

pC 1
0

;                  (7) 

 

We initially pre-process the images as described in the previous section (shot-noise and CLS removal, 

etc.). Then, we compute a set of mean intensity values of the inner area of the object to visualise (i.e. 
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within the boundary of calcification), its neighbourhood (the local area around the object) and background 

(the rest of the breast tissue). The histogram of the inner foveal surface provides the mean of the object 

(µO), as the histogram of the whole image will give us the mean of the background (µB) and a measure of 

the density of breast. The mean of the neighbourhood (µN) is found from the intensities of pixels within the 

neighbourhood and excluding the object pixels according to Figure 6. µN determines whether the visualised 

object is on a dense (bright) or a fat (dark) area of breast. The size of the kernel of the inner object (O) used 

to compute µO is established according to the average size of microcalcifications (Highnam and Brady, 

1999) and the resolution of the tested images, in a similar manner to the kernel of the Gaussian in Section 

II. It is desirable to have a slightly smaller kernel than the microcalcification diameter to assure the 

detection of small calcium salts, which are overlooked by larger kernels. Still, the size of O must not be too 

small to avoid overlapping O and N for slightly bigger microcalcifications. In our application N is set twice 

the size of O. Then the perceivable contrast C is calculated in agreement with equation (8). 
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          µB 

 
 
 
Figure 6.  The foveal masks used for the computation of µO, µN and µB. The object O is the area of the 

fovea centralis, N its neighbourhood (twice the size of O in our applications) and B the background. 

     µN

µO 
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We then compute Cmin (9), a measure of contrast sensitivity, where µA = w µN + (1-w) µB and w is a 

suitable weight between 0 and 1 affecting the amount of background implied in the computation of 

contrast. Cmin sets the threshold from which objects in the image are visible for the observer, a measure of 

the eye’s ability to perceive luminance gradients. The literature proposes 7.7% of the adaptive luminance 

to be due to the background luminance (Heucke et al., 2000), which gives a value of 0.923 to our weight w. 

In practice, we studied the effect of varying w with 10% more or less than the proposed value. We use 

w=0.923 as the default value in comparative studies. For parameter b in equation (9), we have found that 

the literature proposed value b=0.0808 (Heucke et al., 2000) gives good results. Areas in the image having 

C>Cmin are marked as microcalcifications. 
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The segmentation parameters are established automatically based on the image-adapted value of k, as 

computed from the statistical analysis, (discussed in Section II). Through the use of the minimal 

perceivable contrast cw, we include a measure of the image contrast (previously denoted as k) - imagine 

varying the amount of objects we can distinguish with the naked eye by using a pair of sunglasses. cw is a 

crucial variable for assessing our method and is consequently used for producing the FROC curves in the 

results session. From the FROC analysis, we noted that adapting the value of cw to the image 

characteristics gives a better balance between TP and FP than a constant cw. We performed simple 

preliminary tests on 13 random cropped mammograms digitised at 50µm resolution and containing 10 pre-

labelled isolated coarse calcifications. These images originate from Oxford, but are not part of the Oxford 

database on which the algorithm is evaluated in the next section. We found that 200/kcw =  is appropriate 
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for conservative detection of microcalcifications.  

Using Cmin instead of Cthresh, the contrast is adapted locally, not just globally, in a manner similar to that 

of HVS. Figure 7 shows how the variation of perceivable contrast varies with the background in the HVS 

adaptation method versus classical methods. While Cmin varies with the local image characteristics, Cthresh is 

constant over the whole image. Microcalcifications can be easily depicted in a fat background for both 

contrast measures, but Cmin reduces the number of FP. The main advantage of using Cmin becomes clear in a 

dense background, where its adaptability facilitates the detection of microcalcifications.  

 

IV. RESULTS 

 
In this section we present comparative Free-Response Receiver Operating Characteristic (FROC) curves to 

test the outcome of our method with variations in algorithm and input images. We used a database of 102 

samples of digital SMF images from 83 mammograms. 78 of the samples contain between 1 and 3 clusters 

per image, while 24 are normal mammogram samples. An experienced radiologist annotated a total of 98 

microcalcification clusters, which had previously been proven by biopsy. The ground truth for the 

validation of our detection algorithm was the contour drawn by the radiologist on the film around each 

detected cluster of microcalcifications. The films were subsequently digitised using the Lumisys scanner at 

a resolution of 50µm. The cluster positions were then translated into x-y coordinates on the digital images.  

The cropped image sizes are of maximum 1500x1500 pixels. 
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Figure 7. The simulation of a plot of a mammogram section containing microcalcifications over 

height/intensity variation. The variation of the perceivable contrast in the detection of microcalcifications 

is suited to the local characteristics for the adaptation of HVS using Cmin. The classical minimal perceivable 

measure, (here called Cthresh) is a global characteristic of the mammogram and less flexible in the 

elimination of FP in the detection of microcalcifications. 

 
Figure 8 shows a schematic of the method flow described in the previous sections. As noted earlier, the 

normalisation step in the flow is optional and results are reported for both original and normalised (SMF) 

images. A cluster is detected if it contains at least three microcalcifications, where a distance of maximum 

5 mm connects each calcification to the rest of cluster. When a cluster is identified at the position indicated 

by the radiologist, we count a TP. If a cluster is detected outside the marked areas or more than one cluster 

are found at the approximate location of a single contour indicated by the radiologist, we count a FP. 

Recursively, we noted that the distribution of detected FP/image is equal in samples with 

microcalcifications and in normal samples. In Figure 9 we note the impact of CLS removal, image 

smoothing and image normalisation (SMF images) on detecting microcalcification clusters. The results are 

superior when the proposed algorithm (Figure 8) is employed (the top line in the FROC curve); when the 

algorithm is applied to intensity (not normalised) images the results are also very satisfactory. 
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Figure 8. The diagram of the biologically driven algorithm to detect microcalcifications. The top row 

underlines the optional image normalisation that generates SMF images. The rest of the diagram highlights 

the steps introduced by our algorithm, which are described in this paper. 

 

In Section III we noted the significance of the value of w in setting the minimal perceivable contrast for 

obtaining the best detection results when our algorithm is applied. We ran parallel tests to test the 

consistency of our conclusion to use the value 0.923 for w, by varying the value of w over 5-10%. Figure 

10 shows the comparative detection results with the variation of w. A small variation of w around the 

proposed value of 0.923 does not influence the evolution of our algorithm.” 

The results used in building the FROC curves in Figure 9 and Figure 10 are based on processing cropped 

samples of mammograms. To illustrate results on whole mammograms, we used a total number of 83 

mammograms in SMF format from the Oxford Screening Database. 59 of them contain between 1 and 5 

clusters/image, adding the total number of clusters to 85, while 24 mammograms have no sign of 

abnormality. The pooled opinions of clinicians at the Oxford Breast Care Unit established ground truth. 

The breast margin is detected in SMF, thus a threshold above 0 removes the background. Now we can 

compute the value of k (see Section II) for the inner area of the breast. The detection results are accurate 

and similar to those achieved on mammogram samples (see Figure 11). The presence of CLS remains the 

main source of FP, or more precisely their imperfect removal. A few isolated calcifications were also 

depicted, but they were not labelled as microcalcification clusters. The method is more robust to detecting 
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microcalcification in samples because the probability of generating FP is increased when applied to the 

whole image (i.e. the search space for microcalcification detection is larger). 

 

 
Figure 9. The comparative FROC curves for the detection of microcalcifications. ο - represents the 

detection on SMF images; ◊ - are the results without noise removal by anisotropic diffusion;   - are the 

results without CLS removal; ∇ - shows results on intensity images, when no SMF generation is present. 

All algorithms reach 100% TP fraction with a clear better performance on SMF images, which were de-

noised and CLS-removed. 

 

The ultimate goal of any CAD algorithm is to perform correctly on any given similar database, no matter 

where it comes from. As is acknowledged by many authors, without image normalisation this is hard to 

achieve. The SMF generation algorithm is designed to help in this difficult situation, but excepting the 

Oxford database, no other image collections have mammograms in SMF format. Our detection algorithm, 

through its extraction of parameters from image attributes, facilitates the generalization of detection 

standards.  

 

ο - SMF images 
◊ - no diffusion 
  - no CLS removal 
∆ - no SMF (intensity) 
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Figure 10. The comparative FROC curve when w is varied over a range of 5 to 10% of its default value of 

0.923. The difference in detection results is quite small and all four algorithms converge smoothly to 100% 

TP ratio. 

 

 
Figure 11. The comparative FROC curve of the detection of microcalcifications when mammogram 

samples are used versus full mammograms. The behaviour of the algorithm is similar and robust with the 

image size. 

 
We used for comparison a collection of images from the University of South Florida Digital Database 

ο - w = 0.923; 
* - w = 0.877 (–5%) ; 
∇ - w = 0.969 (+ 5%); 

 - w = 0.830 (–10%). 
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ο - Results on mammogram samples; 
∆ - Results on full mammograms; 
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for Screening Mammography (DDSM). The new database consists of 82 image samples, of which 58 show 

abnormalities in the form of microcalcification clusters and 24 are normal. The abnormal images contain 

between 1 and 4 clusters/image and the total number of annotated clusters is 82. All images are intensity 

images, as termed before, digitised at 43µm/pixel. 

The major difference between these images and the ones from Oxford is the image resolution. To 

compensate for this difference, we converted the values of σ in the image enhancement step and that of the 

kernel of fovea in the foveal segmentation change accordingly. These conversions are done automatically 

in agreement with the user specified image resolution. The FROC curve shown in Figure 12 compares the 

performance of the microcalcification detection algorithm between the Oxford Screening Database in 

intensity form and the DDSM database on original images. The algorithm performs better on the Oxford 

Screening database, but the detection results on the two databases converge at about 0.5 FP/image and they 

both achieve 100% TP fraction in the vicinity of 2 FP/image. The DDSM database was chosen for its 

availability; no similarity between databases was considered and no additional tuning of parameters 

performed. It remains desirable to test the detection algorithm on the DDSM database when images will be 

available in SMF form, as normalisation would improve the flexibility of the results of the algorithm on 

other databases. 

Finally, this section compares three algorithms to detect microcalcification clusters that operate upon the 

SMF representation of mammograms from the Oxford Database. The first has been described previously in 

this paper and is addressed as the “foveal algorithm”; the second one is Yam et al.’s physics based 

approach that was described in (Yam et al., 2001). The third is a variation of the statistical analysis 

introduced in Section II, here addressed as the “statistical approach”, and is presented in (Linguraru and 

Brady, 2002). Using FROC analysis, we demonstrate the superiority of the foveal algorithm in Figure 13.  

In Figure 14 we present examples of microcalcification detection.  
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Figure 12. The comparative FROC curve between the detection results on intensity images from the 

Oxford Screening Database and the University of South Florida Digital Database for Screening 

Mammography. Note that the results are for mammogram samples without SMF normalisation. 

 

 
 
Figure 13. The FROC curves of the three microcalcification-detection methods on SMF images; the Foveal 

Approach yields the best results. 

 

ο - Results on the Oxford Screening database; 
∆ - Results on the University of South Florida   database; 

ο - Foveal algorithm; 
 - Statistical analysis; 

◊ - Yam’s algorithm; 
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Figure 14. Two examples of microcalcification detection. On the left we present the input images in SMF 

format: on top an image with two large microcalcification clusters, on bottom an image with faint 

microcalcifications in varying background, while on the right we note the results of our detection method. 

 

V. DISCUSSION AND CONCLUSION 

 
We have presented a novel method for detecting microcalcification clusters based on a biologically 

inspired contrast detection algorithm in combination with a pre-processing step (shot noise and CLS 

removal, image enhancement), as well as an optional image normalisation step. Many methods to detect 

microcalcifications attempt to tune the variety of parameters used in the implementation of the algorithm to 

best suit the studied cases. The consistency and reproducibility of results becomes highly dependant on the 
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operators and their capability to find the best parametrical configuration for the detection. We proposed a 

fully automated method to detect microcalcifications and we reported results on both SMF and intensity 

images. 

The first contribution of the presented work is the automatic tuning of the parameters of anisotropic 

diffusion. The contrast k is found from its direct relation to the image gradient and the percentage of 

features that we desire to enhance. The second parameter σ reflects the scale of features of interest and 

must be set according to their size and the given the image resolution (multiscale analysis may be 

performed). In our application, both σ and k become measures related to the anatomy of breast. The last 

parameter, the number of iterations t, is derived as a function of σ to remove noise in the context of 

preserving microcalcifications. In a general application for feature enhancement, the automatic tuning of t 

may prove to be more difficult than in our particular framework. With the automatic tuning of parameters 

that we propose, anisotropic diffusion, a method with a solid theoretical basis, but controversial for its 

parametrical dependency, can be used as a robust process using little, but essential, a-priori knowledge. 

However, the main contribution of the paper is the method for adaptively thresholding the filtered results 

in order to segment microcalcifications. Based on the biologically driven idea that human eye is a better 

feature detector than a computer algorithm and that both local and global adaptability are necessary for 

subtle contrast detection, our detection model mimics the human eye’s function for improved segmentation 

results. Therefore, the algorithm combines filters, analysis of image characteristics and adaptive 

thresholding based on a human visual system paradigm.  

The robustness of the algorithm has been demonstrated by the FROC analysis performed over a range of 

parameters. It is important to note that the parameters are set according to the image attributes and the 

method is fully automated. The method converged in each case to 100% TP ratio. Similar results were 

obtained on intensity images, although for the lower scale of FP/image there is a more significant 

difference in results. We also compared the performance of our algorithm on data from different databases 

with good detection results. The results indicate that adding adaptive contrast segmentation based on 
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characteristics of the human visual system significantly enhances the detection of microcalcifications.  
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