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ABSTRACT

In atlas-based segmentation, using one single atlas for seg-
menting all patients introduces a bias. Multi-atlas techniques
overcome this drawback by selecting and fusing the most ap-
propriate atlases among a database for a given patient. Glob-
ally assessing different multi-atlas strategies provides a bi-
ased evaluation of the atlas selection methods. To address
this problem, we propose to evaluate atlas selection methods
independently from the number of atlases selected and from
the atlas fusion step. Briefly, we first cluster the selection
methods on the basis of rank correlation and then assess each
sub-group of methods with respect to a sub-group of refer-
ence selection methods. We apply our method to 105 images
of the head and neck region.

Index Terms— Medical imaging, patient-specific atlas,
multi-atlas segmentation, atlas selection.

1. INTRODUCTION

Radiotherapy treatment planning requires the delineation of
both the target tumor and the organs at risk (OARs). These
delineations are traditionally made manually by experts but
this task is tedious and not reproducible. Atlas-based segmen-
tation has proved to be an efficient procedure to automatically
get these delineations for the head and neck region [1, 2].

The principle of atlas-based segmentation is to non-
linearly deform an already segmented anatomy, called atlas,
on the patient image. Non-linear registration requires a trade-
off between accuracy and smoothness and performs better
when the atlas image is similar to the patient image.

Under this assumption, using one single atlas for any pa-
tient may be satisfactory if the atlas image is a good represen-
tative of the population. When the atlas used is a particular
segmented patient image, it may be very similar to some pa-
tients, but very different from others. An average atlas built
from a database of several segmented images provides better
results [1] , but it still has difficulties to cope with very high
anatomical variabilities as those in the head and neck region.

To overcome this drawback, methods have been intro-
duced to design patient-specific atlases. A way to address

this problem is to automatically select among a set of poten-
tial atlases the most appropriate one for each new image to
segment. The potential atlases can be average atlases pre-
computed from homogeneous sub-groups of the database that
can possibly be obtained by atlas stratification [3]. Alterna-
tively, each image of the database can be considered as a po-
tential atlas [4, 5]. By extension, multi-atlas based segmenta-
tion consists in selecting the most appropriate images among
the database (atlas selection step) and fusing their segmenta-
tions, either globally [6, 7, 8] or locally [9] (atlas fusion step).

In all these approaches, atlas selection is a crucial step.
The selection can be done on the basis of meta-information
such as the age [6] or any clinical information. However, this
is not always possible nor relevant. Thus, several image-based
selection methods have been proposed. The selection can be
based on similarity measures between the patient image and
each potential atlas [6, 7, 8, 4] or based on local deformations
[8, 5, 9]. Therefore, the comparison of these different meth-
ods for a given application is of interest. Usually, this is done
by assessing the resulting segmentations with respect to the
manual segmentation, but this does not enable to evaluate at-
las selection independently neither from the method of atlas
fusion used nor from the number of atlases selected.

Our objective is to compare different atlas selection meth-
ods independently from the atlas fusion step. In order to de-
termine whether some selection methods are equivalent and to
assess them, we consider the issue of atlas selection in terms
of atlas ranking, and we propose to use pairwise rank corre-
lations values to cluster the ranking methods. We present var-
ious ranking methods and our evaluation framework in sec-
tions 2 and 3 respectively. Results obtained using 105 CT
images of the head and neck region are shown in section 4.

2. ATLAS RANKING METHODS

Let N be the number of delineated images in the database.
For each patient P of the database, we consider the N − 1
remaining images as potential atlases, and we rank them from
the most similar to least similar to the patient P using various
ranking methods. We describe automatic ranking methods in
2.1 and 2.2, and a reference ranking method in 2.3.



2.1. Intensity-based ranking methods

Intensity-based ranking methods consist in computing simi-
larity measures between the patient image and the potential
atlases warped into the same referential. Any intensity-based
ranking method can then be defined by:

1. the similarity measure used: it can be Sum of Squared
Differences (SSD), Correlation Coefficient (CC), Mutual In-
formation (MI), Normalized Mutual Information (NMI);

2. the registration algorithm used to put the patient im-
age and the potential atlases in the same referential: it can be
either affine or non-linear registration;

3. the mask on which the similarity measure is computed:
it can be the whole image or a mask of the Region Of Interest
(ROI) corresponding to the structures and their neighborhood.

In the affine case, we register the potential atlases on the
patient image, and we compute the similarity measures in the
referential of the patient. In the non-linear case, we chose to
deform the potential atlases and the patient image onto the av-
erage image pre-computed from the N−1 remaining patients
using [1], and to compute the similarity measures in this ref-
erential. This is computationally interesting because the non-
linear deformation between each potential atlas and the aver-
age image has already been computed during the construction
of the average image. Thus, the only non-linear registration to
perform is the one between the patient and the average image.

2.2. Deformation-based ranking methods

Alternatively, atlas ranking can be based on local deforma-
tions [8, 5, 9]. In this case, the most similar atlas is the one
that requires the smallest local deformation to be matched on
the patient. As in [5], we estimate these local deformations
through the intermediate referential of the average image.

2.3. Reference ranking method

To assess automatic ranking methods, a reference has to be
defined. Since our purpose is the delineation of the OARs,
the potential atlases will be ranked according to their ability
to yield accurate segmentation. Each of them is non-linearly
registered onto the patient image P , and its efficiency is quan-
tified using various measures (such as the Dice index, the
sensitivity or the Hausdorff distance between the deformed
OARs and the patient’s ones) which represent so many refer-
ence criteria to rank the potential atlases. The reference rank-
ing method thus defined does not rely on any fusion method
of several atlases, but solely on the non-linear registration.

3. EVALUATION FRAMEWORK

In section 2, we described automatic and reference ranking
methods. Our evaluation framework has two objectives. The
first one (detailed in sections 3.1 and 3.2) is to identify sub-
groups of equivalent ranking methods. To this end, we pro-

pose to cluster the ranking methods (both automatic and refer-
ence methods) with the affinity propagation algorithm using
pairwise rank correlation. The second objective (detailed in
section 3.3) is to analyze the average correlation between the
rankings provided by each sub-group of automatic ranking
methods and the reference rankings presented in section 2.3.

3.1. Rank correlation analysis

For each patient P of the database, the rank correlation be-
tween two atlas ranking methods Mi and Mj can be quan-
tified using Spearman’s rank correlation coefficient between
the corresponding rankings of the N − 1 remaining images,
called ρ(P,Mi,Mj). Let M be the number of atlas ranking
methods tested. Thus, for each patient, we have a M×M ma-
trix of Spearman’s coefficients. Averaging Spearman’s coef-
ficients over the N patients of the database provides a M×M
matrix of average Spearman’s values ρ̄(Mi,Mj).

3.2. Clustering of the atlas ranking methods

In this step, we use the average Spearman’s values ρ̄(Mi,Mj)
as pairwise similarity measures between the different ranking
methods to apply the affinity propagation clustering algorithm
proposed by Frey et al. [10]. Briefly, given a set of data points
(the ranking methods here) and the pairwise similarities be-
tween these data points (the average Spearman’s values here),
this algorithm iteratively identifies the underlying clusters and
also finds for each cluster the exemplar that best represents
this cluster.1 The optimal number of clusters is automatically
estimated according to the input self-similarities that quantify
the suitability for each data point to be an exemplar. Since
none of the methods is more suitable to be an exemplar than
the others, we chose to give the same self-similarity value to
each method. The higher the shared self-similarity value is,
the higher the number of clusters is.

3.3. Cluster assessment

We assume here that the reference ranking methods group to-
gether in one or several sub-groups, called reference clusters.
In practice, this was always the case in our experiments. Un-
der this assumption, we assess the clusters of automatic meth-
ods by computing their average correlation with the cluster(s)
of reference methods. Given the input pairwise similarities,
we define the inter-cluster correlation between two clusters
cauto and cref as the average similarity value computed over
all pairs of methods (Ma ∈ cauto,Mr ∈ cref ). Comparing
the inter-cluster correlation between each cluster cauto and the
cluster(s) cref enables to determine whether one sub-group of
automatic methods performs better than the others.

1Basically, the algorithm is based on an iterative message-passing proce-
dure where each data point is iteratively reassessed as a potential exemplar
by exchanging messages with other data points and taking into account the
input similarities as well. After convergence, the clusters and exemplars are
estimated from the final messages exchanged. For further details, see [10].



Fig. 1. Spearman’s coefficients for each pair of ranking methods (both automatic and reference methods) before (left) and after
(right) clustering with a self-similarity set to the median value of all input similarities (0.2628). See text for abbreviations.

4. RESULTS

We applied our methodology on a database of 105 CT im-
ages of the head and neck region that were delineated by ex-
perts following the guidelines of [11]. The structures involved
are organs at risk (parotids, sub-mandibular glands, mandible,
brainstem, spinal cord) and the lymph node levels II, III, IV.

In the remainder of the article, deformation-based ranking
methods are abbreviated DEF (when computed on the whole
image) and DEF ROI (when computed on the ROI). Intensity-
based ranking methods are abbreviated either AFF SIM,
NONLIN SIM (when computed on the whole image) or
AFF ROI SIM, NONLIN ROI SIM (when computed on the
ROI) where SIM is CC, SSD, MI or NMI, and where AFF and
NONLIN refer to the registration used for the normalization.
As to the reference ranking methods, we considered the Dice
index (DICE), the sensitivity (SENS), the distance to the best
achievable measure (sensitivity=1;specificity=1) (DIST), the
Positive Predictive Value (PPV), the Hausdorff distance (HD)
and the Robust Hausdorff Distance that exclude the worst 5%
or 10% cases (RHD0.95 and RHD0.9). By way of example,
we also included a random ranking method (RAND).

4.1. Clustering results

First, we applied the framework described in section 3 with
a self-similarity value set to the median value of all the input
similarities as recommended in [10]. In this case, the ranking
methods are divided into 6 sub-groups (see the red dotted line
in Figure 2 for details). The first sub-group gathers all ref-
erence ranking methods. Then, the automatic ranking meth-
ods split into 4 sub-groups, and the random ranking method
is alone in its own cluster. For this value of self-similarity,
this configuration of sub-groups is the one that maximizes the
intra-cluster similarities (on the diagonal blocks) and mini-
mizes the inter-cluster similarities, as illustrated in Figure 1.

Secondly, we were interested in the influence of the self-
similarity value on the resulting clusters configuration, as

shown in Figure 2. When the self-similarity is high (0.95 for
instance), each method tends to be its own exemplar and to
create its own cluster. Conversely, when the self-similarity
is low (-3 for instance), all methods are in a unique cluster.
In between these two extrema, intensity-based methods com-
puted after non-linear normalization tend to group together,
whereas deformation-based methods tend to group together
with intensity-based methods computed after affine normal-
ization. This might be explained by the fact that deformation-
based methods and intensity-based methods computed after
affine normalization are two classes of methods that both de-
pend on the residue after affine registration, either encoded as
intensity or as deformation. On the contrary, intensity-based
methods computed after non-linear normalization depend on
the residue after non-linear registration, which is less discrim-
inant and possibly increases the noise in the measures. As to
the reference methods, they split between overlap measures
(Dice, sensitivity, distance, PPV) and Hausdorff distance
measures, which was expected.

4.2. Assessment of the clusters of automatic methods

For a self-similarity set to the median value of the input
similarities, we computed the inter-cluster correlation values
between the cluster of reference methods (cluster of exemplar
DIST) and the clusters of automatic methods as described
in section 3.3 (see the red dotted line in Figure 2 for details
on the clusters). First, the random ranking method shows a
very low correlation with the cluster of reference methods
(0.0054). The 2 clusters gathering the intensity-based meth-
ods after affine normalization and the deformation-based
methods (clusters of exemplars AFF ROI CC and AFF CC)
provide higher inter-cluster correlation with the reference
cluster (respectively 0.2495 and 0.2331) than the 2 clusters
of intensity-based methods after non-linear normalization
(0.1745 and 0.1880). Therefore, the intensity-based methods
after affine registration and the deformation-based methods
seem more appropriate for our application.



Fig. 2. Resulting clusters according to the input self-
similarity. The boxes correspond to the exemplars of the con-
figuration obtained for a self-similarity set to the median value
of the input similarities (0.2628). See text for abbreviations.

5. CONCLUSION

In this article we presented an evaluation framework to com-
pare atlas ranking methods in the context of multi-atlas based
segmentation. Briefly, we first cluster the ranking methods
according to the pairwise Spearman’s rank correlation values
to identify sub-groups of equivalent methods. Secondly, we
assess each cluster of automatic ranking methods by comput-
ing its average correlation value with a cluster of reference
ranking methods.

The first advantage of this framework is that it enables
to compare the atlas selection methods independently from
the number of atlases selected and from the atlas fusion step.
This is of interest because even if the majority vote rule is of-
ten used for fusing the segmentations of the selected atlases,
more sophisticated atlas fusion methods have also been pre-
sented. For instance, Isgum et al. proposed to locally take
into account the quality of the non-linear registration of each
selected atlas on the patient [12]. Besides, the number of at-
lases selected and fused also plays an important role in the
quality of the resulting segmentation as shown in [6].

The second advantage of our methodology is that it can be
used to reduce the number of ranking methods to consider for
a potential in-depth evaluation or a visual inspection, or more
generally for future work. Finally, this framework can be ap-
plied for any other application dealing with ranking methods.
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