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Abstract. Understanding the motion of the heart through the cardiac
cycle can give useful insight for a range of different pathologies. In par-
ticular, quantifying regional cardiac motion can help clinicians to better
determine cardiac function by identifying regions of thickened, ischemic
or infarcted tissue. In this work we propose a method for cardiac motion
analysis to track the deformation of the left ventricle at a regional level.
This method estimates the affine motion of distinct regions of the my-
ocardium using a near incompressible non-rigid registration algorithm
based on the Demon’s optical flow approach. The global motion over the
ventricle is computed by a smooth fusion of the deformation in each seg-
ment using an anatomically aware poly-affine model for the heart. We
apply the proposed method to a data-set of 10 volunteers. The results in-
dicate that we are able to extract reasonably realistic deformation fields
parametrised by a significantly reduced number of parameters compared
to voxel-wise methods, which better enables for statistical analyses of
the motion.

1 Introduction

Better understanding the motion of the heart through the cardiac cycle is crucial
in aiding diagnosis and therapy planning for patients with heart defects and in
particular for those that are known to have deformed ventricular shape. However,
tracking cardiac motion from 3D images is a difficult task due to the complex
movement of the myocardium through the cardiac cycle.

The clinical challenge is to capture the apparent cardiac motion from the
available data (i.e 3D cine MRI sequences), and for this we can apply non-rigid
registration algorithms. In this case we require methods that are not only fast but
also reproducible and robust (able to handle noisy and low resolution images).
In order to compare the heart beat motion of a number of patients, we also
require the tracked motion deformation to be characterised by a small number
of parameters. Rigid-body or affine motion would do this but is not sufficient
in capturing the observed dynamics. Therefore we are interested in finding a
compromise between rigid (or affine) and non-rigid deformations.

A recently proposed method for tracking cardiac motion using cine MRI is
the incompressible log-domain Demons algorithm (iLogDemons for short) [1].



This method has the nice advantage of ensuring near incompressibility in the
myocardial region; a realistic constraint for the heart given that the myocardial
muscle volume changes by around 5-10% during the cycle. However, the motion
is highly localised since the deformation is considered on a voxel-by-voxel basis
making the method sensitive to image noise and constrained by a high number
of degrees of freedom. Therefore we are interested in tracking the motion in a
more regional manner to capture a more realistic global deformation as well as
including some anatomical priors in the regional regularisation process.

For that purpose, an interesting regional regularisation method was proposed
in [2] to register mandibles by using the log-domain Demons algorithm [3] and in
each region estimating the affine transformation from the resulting deformation
field and fusing to a global deformation using the poly-affine model proposed
by Arsigny et. al [4]. A poly-affine model was applied in cardiac imaging in
[5] for 2D+t multi-modal images. In this last work the poly-affine model is
based on an adaptive grid to determine the poly-affine regions. When going
to 3D, interpretation of the results could be made easier with a lower number
of regions that are anatomically grounded. In [5] the regions are determined on
the fly by the images, and are thus without inter-subject reproducibility. A 3D
combination of locally affine transformations was used in [6] as an initialisation
step to a free-form deformation for cardiac image segmentation. This approach
could be improved by coupling the poly-affine deformation with the non-rigid
deformation rather than using only as an initialisation.

Inspired by the method of Seiler et. al [2], we propose in this paper to track
cardiac motion by estimating an affine transformation in given regions of the left
ventricle (LV) myocardium from a computed Log-Demons velocity field [3], with
added penalisation to control the compressibility of the tissue. We apply the pro-
posed method to estimate the left-ventricular motion of a 3D data-set of 10 vol-
unteers from the STACOM 2011 MICCAI workshop motion tracking database
[7]. We compare the results to the iLogDemons algorithm to deduce that we
are able to obtain similar results at a significantly lower degree of parametri-
sation, which enables statistical analyses to be applied directly to the reduced
parametrisation rather than the full iLogDemons velocity field.

2 Cardiac Motion Tracking with a Near-Incompressible
Log-Domain Poly-Affine Model

We propose an algorithm for regional cardiac motion tracking that utilises the
log-domain Demons algorithm (LogDemons) to estimate the motion of the left
ventricle at a local level, in a given set of physiologically meaningful regions.
This way, we can define a diffeomorphic transformation from one image to an-
other. From this deformation, we estimate the affine parameters in each region
to determine a global affine transformation to give a more regional based motion
for each segment. The regional deformation fields are fused in a smooth man-
ner using the poly-affine model. The key contribution of this work is an added
penalisation term to the affine parameter estimation to control the amount of



compressibility we allow in each region, as well as an added regularisation term
to control the similarity between regions, both formulated as efficient quadratic
criteria.

AHA Left Ventricle Segmentation Using the American Heart Association
(AHA) standardised myocardial segmentation, we can define anatomically mean-
ingful regions of the ventricle [8]. The recommendation given by the AHA is to
divide the left ventricle of the heart into 17 regions with six regions for the
basal area (1-6), six regions for the mid area (7-12) and five for the apical areas
(13-17).

Log-Domain Demons Registration We are interested in tracking the motion
of the heart from a reference time point (in this case we use end diastole as the
reference) to the remaining time points along the cardiac sequence. To do this we
want to estimate the transformation φ that minimises the distance between the
reference image R and the target image T . For this we employ the Log-Demons
algorithm which has the key property that the transformations are constrained
to be diffeomorphic (therefore don’t allow folding and are invertible), as well
as enabling efficient computation in the log-domain by integrating stationary
velocity fields using the exponential scaling and squaring method [3].

Poly-Affine Registration The poly-affine registration algorithm proposed in
[4] and extended further in [9] allows to fuse locally affine transformations into a
global diffeomorphism using weight functions. The method is suitable for cardiac
motion tracking due to the fact that the deformations are computed in the log-
Euclidean framework and therefore has the advantage that the transformations
are invertible (and the inverse is also a poly-affine transformation).

Poly-Affine LogDemons In Seiler et.al [2], the authors propose a method to
estimate a poly-affine model from a log demons deformation field. Using homo-
geneous co-ordinates, the parameters of the poly-affine model can be defined for
points x in Cartesian co-ordinates as

log (T ) def= log
(
A t
0 1

)
=
(
M
0

)
(1)

where log is a principal matrix logarithm, A is the linear part of the transfor-
mation, t its translation, and M a 3 × 4 matrix. For each segment the affine
deformation fields parameterised by the Mi matrices are fused to a global defor-
mation field using the poly-affine model:

vpoly(x) =
∑
i

ωi(x)Mix, (2)

where ωi is a parameter controlling the weight of the ith region for each voxel x.
Eqn. 2 can be estimated by a linear least squares problem with the least squares



error with respect to the observed velocity field v(x) (in this case computed
using the LogDemons algorithm) given by:

C(M1,M2, · · · ,MN ) =
∫
Ω

‖
∑
i

vpoly(x)− vobs(x) ‖2 dx. (3)

Ω defines the mask to restrict the estimation within the myocardium (1 inside
the binary mask of the myocardium, 0 outside). As shown in [2] the log affine
parametersMi can be estimated by the least-squares minimisation problem given
in Eq. 3 to give

M = BΣ−1, (4)

where M = [M1M2 · · ·M3], Bi =
∫
ωi(x)·v(x)·xT dx and Σij =

∫
ωi(x)·ωj(x)·x·

xT dx. Equivalently, the least-squares solution can be written in terms of vectors:

M̄ = (Σ ⊗ I3)−1 · B̄, (5)

where M̄ (resp. B̄) is the standard matrix vectorisation of M (resp. B), ⊗ is the
Kronecker Product.

2.1 Left-ventricle Poly-Affine Model

The weights ωi(x) can be defined by a simple Gaussian function as

ωi(x) = − exp
(

1
2

(x− x̄i)Tφ(−1)
i (x− x̄i)

)
, (6)

with x̄i the barycentre (centre point) of zone i and φi the corresponding covari-
ance matrix as in [2].

Incompressibility penalisation In order to control the compressibility of the
myocardium to be within physiological ranges, an added penalisation term is
needed. Given that a transformation is incompressible if its Jacobian determinant
is equal to one, for an infinitesimal transformation T = I + vpoly with ∇T =
I +∇vpoly we have

det(∇T ) = det(I +∇vpoly) = Tr(∇vpoly) + O(‖ ∇vpoly) ‖2). (7)

Here O(·) represents higher order terms. Therefore the velocity field vpoly is
locally incompressible if the trace of ∇vpoly is zero. A penalisation term can
then be derived as:

α

∫
Ω

Tr(∇vpoly)2dx. (8)

The parameter α is used to control the strength of the penalisation. Incorporating
this term into the least squares minimisation (3) gives the penalised least squares
formula:

C(M1,M2, · · · ,MN ) =
∫
Ω

‖
∑
i

ωi(x)·Mi·x−vobs(x) ‖2 dx+α
∫
Ω

Tr(∇vpoly)2dx

(9)



To incorporate the new term into the least squares computation, (8) needs to be
re-formulated to obtain a quadratic form of M̄ . Taking the partial derivative of
the poly-affine velocity field with respect to x gives

∂vpoly(x)
∂x

=
∑
i

(
ωi(x)Mi

[
I3
0

]
+Mi · x ·

∂ωi(x)
∂x

)
. (10)

Using T = vect[I3; 0]) to extract the diagonal elements from the matrix, we have

Tr(∇vpoly(x)) =
∑
i

(
ωi(x) · TT · vect(Mi) + gi(x)T · vect(Mi)

)
, (11)

with gi(x) = vect(∇ωi(x) · xT ). A penalisation term can then be derived as:

α

∫
Ω

Tr(∇vpoly)2dx = α
∑
i,j

vect(Mi)T · Vij · vect(Mj) (12)

with Vij =
∫
Ω

(ωi(x) · T + gi(x))(ωj(x) · T + gj(x))T dx. Seemingly, this could be
simplified to consider only the first order terms: Vij =

∫
Ω

(ωi(x)·T )(ωj(x)·T )T dx.
This is sufficient to penalise the trace per region, but does not take into account
the directional information meaning that neighbouring regions can have high
deformations in opposing directions, causing problems in the overlap.

Regularisation term We can also define a regularise term to control how
neighbouring regions influence one another. The weights ωi(x) control how smooth
the transition is between two regions, however we would also like to control how
similar the affine matrices are, as an addition regularisation. To do this we can
add an additional term: ∑

ij

πijdist(Mi,Mj). (13)

Defining a matrix Q such that Q =
[
I3 0
0 µ

]
allows to account for the different

scaling between the rotation/sheering part of the affine matrix and the transla-
tion part. The distance term can be written as:

dist2(Mi,Mj) = Tr[(Mi −Mj)T ·Q · (Mi −Mj)]
= Tr(MT

i QMi) + Tr(MT
j QMj)− 2Tr(MT

i ·Q ·Mj),
(14)

with

Tr(MT
i QMj) = vect(MT

i Q)T · vect(Mj) = vect(Mi)T · (Q⊗ I3) · vect(Mj).
(15)

Setting

lij =
{
−πij = −

∫
Ω
ωi(x)ωj(x)dx for i 6= j∑

k 6=i πij =
∑
k 6=i
∫
Ω
ωi(x)ωk(x)dx for i = j



we can account for the correlation between regions. Thus we obtain∑
i,j lijTr(M

T
i ·Q ·Mj) = M̄T · L⊗ (Q⊗ I3) · M̄. (16)

For R = L⊗ (Q⊗ I3) the penalised least squares error is given by:

C(M) = M̄T (Σ ⊗ I3)M̄ − M̄T · B̄ + α · M̄T · V · M̄ + β · M̄T ·R · M̄, (17)

where β controls the strength of the regularisation. We want to find the optimum
by solving ∇CM = 0.

∇CM = (Σ ⊗ I3 + αV + βR)M̄ − B̄. (18)

Therefore the solution for M is given by:

M̄ = (Σ ⊗ I3 + αV + βR)−1 · B̄ (19)

Algorithm 1 Heart Poly-Affine Near-Incompressible Log-Domain Demons (Re-
gional iLogDemons)

- Segment LV into 17 AHA zones
- Let vpoly(x) = I (identity transformation)

Require: Let v0 = vpoly(x)
loop {over n until convergence}

- Compute the update velocity: δvn given vn−1.
- Update the correspondence velocity field: vn ← Z(vn−1, δvn).
- Estimate affine transformation of each segment from vn by solving (2) under the
incompressibility penalisation (19).
- Let vpoly(x)←

P
i ωi(x)Mix

return v, φ = exp(v) and φ−1 = exp(−v).

3 Left-Ventricular Motion Tracking in Healthy
Volunteers

Patient Data and Preparation We illustrate these tools on 10 volunteers (3 fe-
males, mean age ± SD = 28±5) obtained from the STACOM 2011 MICCAI car-
diac motion tracking challenge database [7]. Steady-state free precision cine MRI
were acquired using a 3T scanner (Philips Achieva System, Philips Healthcare)
in the short axis view covering entirely both ventricles (12-15 slices; isotropic in-
plane resolution:1.21x1.21mm to 1.36x1.36mm; slice thickness: 8mm; 30 frames).

Myocardium Mask and AHA Segment Delineation We extract a binary mask
image to define the left ventricle myocardium where the least squares minimisa-
tion is computed. To do this we to define a surface mesh of the myocardium by



annotating the boundary of the ventricle directly on the given patient images,
and create a surface mesh (and related binary mask) from these annotations.
This was done with a 3D interactive segmentation tool based on implicit varia-
tional surfaces and provided within the CardioViz3D package3. Each LV mesh
was then divided into 17 regions according to the AHA recommendations us-
ing a semi-automatic C++ segmentation tool that required just the input of
four landmarks to define the base, apex, LV-RV junction on anterior and LV-RV
junction on posterior.

3.1 Results

In order to determine a suitable range of parameters for α and β a set of simu-
lations were run for one patient fixing α (resp. β) and ranging β (resp. α) (see
Fig. 1). From this analysis, the values for α and β were set for all patients as
α = 1 and β = 10. Higher values of β give better values for the Jacobian deter-
minant, but result in over regularisation of the field, converging towards a single
affine transformation and thus restricting the global motion. Values of α greater
than 10 (towards an incompressibility constraint rather than projection) result
in numerical instabilities in the matrix inversion of Eq. 19.

Fig. 1. Mean and standard deviation of the Jacobian determinant for one patient
computed as an average over each AHA zone with varied values of α (left) and β
(right). A reasonable trade-off between the range and smoothness of the Jacobian
determinant is given for α = 1, β = 10.

From each of the computed frame-to-reference deformation fields, the corre-
sponding Jacobian determinant images were computed. The average value within
each of the AHA regions was calculated and the average per region for all pa-
tients is shown in Fig 2 (left), to show the amount of regional compression (or
expansion) in the myocardium. The strain was computed over the cycle in each
of the circumferential, radial and longitudinal directions, and averaged over each
of the AHA regions. In Fig. 2 we show the average strain in each direction of all
patients per region.

3 http://www-sop.inria.fr/asclepios/software/CardioViz3D/



Fig. 2. Left: Plot of the average Jacobian determinant per AHA region averaged for
all patients, shown at each frame of the cycle. The plot shows that the volume change
of the left ventricle is maintained with 15% over the cycle (each region shown in a
different colour). Regional strain curves computed in the circumferential (centre-left),
radial (centre-right), and longitudinal (right) directions for each of the 17 AHA regions
then averaged over the patients.

The values of the strain, Jacobian determinant and the apparent registra-
tion accuracy based on the figures shown in Fig. 4, can be compared directly to
the results obtained from the STACOM 2011 MICCAI workshop cardiac motion
tracking challenge algorithms applied to the same data-set [7]. The left ventricu-
lar volume was compared between the iLogDemons algorithm and the proposed
algorithm (see Fig. 3) showing an ejection fraction of 50% and 58% resp. (note
the normal range is 55−70% and typical value is 58% [10]). These results suggest
that the method is able to obtain comparable registration, strain curves, and left
ventricular volume to those for the iLogDemons algorithm [11].

Fig. 3. Left ventricular volume along the cardiac cycle for the iLogDemons algorithm
(blue dashed line), and proposed algorithm (red solid line) shown in relative measures
to the end-diastolic volume (left), computed from deforming the 3D segmented end-
diastolic volume mesh (right).



To exemplify the results of the registration for one individual, the mesh
segmented at the reference frame (end diastole) is overlaid on the reference image
(see Fig. 4 top row). The same mesh is deformed by the poly-affine deformation
field computed from peak contraction to reference, and the resulting mesh is
overlaid on the peak contraction image (see Fig. 4 bottom row). The results
show good alignment between the deformed peak systole mesh and the image.

Fig. 4. Top row: Three views of the reference frame (end diastole) with segmented
mask over-laid in green. Bottom row: Same views of peak systole with the segmented
reference mask deformed by the computed poly-affine deformation field. The results in
the bottom row indicate that the registration provides reasonable deformation fields
that capture the motion of the heart.

4 Discussion and Future Work

The results suggest that the method is able to track the cardiac motion rea-
sonably well and with less than 20% volume change in the myocardium for all
patients and all regions. Moreover, we are able to parameterise the deformation
by 204 parameters, as opposed to over 5 million parameters for the iLogDemons
algorithm (or similarly for other registration algorithms parameterised at the
voxel level). Full incompressibility can only be achieved in this model with a
global affine incompressible deformation, thus with so few degrees of freedom,
the volume change is penalised within reasonable ranges. Using more regions
may possibly improve the results with respect to the incompressibility.

This paper describes a proof of concept of the method. More work is needed
to better understand the weight functions, the choice of suitable regions, as well



as the optimal number of regions. Given that the definition of the regions is con-
sistent in this work from subject to subject, we expect to obtain reproducible and
powerful clinical scores to characterise different heart conditions. A long term
objective is to use the computed parameters as clinical scores to aid in quanti-
fying healthy heart motion and then to analyse the motion in the pathological
case.
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