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NEUROSURGERY

A New Metric for Detecting Change in Slowly
Evolving Brain Tumors: Validation in

Meningioma Patients

BACKGROUND: Change detection is a critical component in the diagnosis and moni-
toring of many slowly evolving pathologies.

OBJECTIVE: This article describes a semiautomatic monitoring approach using longi-
tudinal medical images. We test the method on brain scans of patients with meningi-
oma, which experts have found difficult to monitor because the tumor evolution is very
slow and may be obscured by artifacts related to image acquisition.

METHODS: We describe a semiautomatic procedure targeted toward identifying diffi-
cult-to-detect changes in brain tumor imaging. The tool combines input from a medical
expert with state-of-the-art technology. The software is easy to calibrate and, in less than
5 minutes, returns the total volume of tumor change in mm?. We test the method on
postgadolinium, T1-weighted magnetic resonance images of 10 patients with menin-
gioma and compare our results with experts’ findings. We also perform benchmark
testing with synthetic data.

RESULTS: Our experiments indicated that experts’ visual inspections are not sensitive
enough to detect subtle growth. Measurements based on experts’ manual segmenta-
tions were highly accurate but also labor intensive. The accuracy of our approach was
comparable to the experts’ results. However, our approach required far less user input
and generated more consistent measurements.

CONCLUSION: The sensitivity of experts’ visual inspection is often too low to detect
subtle growth of meningiomas from longitudinal scans. Measurements based on
experts’ segmentation are highly accurate but generally too labor intensive for standard
clinical settings. We described an alternative metric that provides accurate and robust
measurements of subtle tumor changes while requiring a minimal amount of user input.

KEY WORDS: Automatic change detection, Growth rate, Longitudinal studies, Meningioma, Slowly evolving
pathologies, Statistical modeling, Time series analysis
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eningiomas account for at least 25% of

all primary intracranial tumors in the

United States.'? They are generally
slowly growing lesions that can occur within
the meningeal tissues on the surface of the
brain, the skull base, the dural reflections, or
within the ventricles. About 90% of these
tumors are classified as histologically benign.’
However, benign brain tumors that demon-
strate continuous growth may cause neurologic
deficits and eventually, if left untreated, death.
Thus, knowing whether a tumor is growing or
not over time is a critical decision point for the
treatment of the patient. The growth patterns

of benign meningioma are still an active field
of research. Even a relatively large meningi-
oma can suddenly stop growing.”” Many
neurosurgeons therefore generally avoid op-
erating on patients with benign meningiomas,
particularly in those cases where the pathology
is relatively small or difficult to access surgi-
cally and the patient is not symptomatic. In-
stead, close monitoring with serial imaging,
usually with magnetic resonance imaging
(MRI), and neurologic evaluation is used to
assess for tumor progression.” Neuro-
radiologists and clinicians visually inspect the
scans for evidence of change in tumor volume.
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In clinical practice, finding evidence for subtle growth through
visual inspection of serial imaging can be very difficult. This is
especially true for scans taken at relatively short intervals (less than
ayear). Visual inspection often misses the slow evolution of many
meningiomas, because the change can be obscured by variations
in head position, slice position, or intensity profile between scans.
In addition, very small changes in the linear dimensions seen on
cross-sectional imaging can reflect appreciable volumetric change.

Surgeons and oncologists frequently analyze the evolution of
meningioma by combining visual inspection of brain scans via
a light box or visualization software with sophisticated measuring
techniques. These techniques commonly estimate the tumor
volume in each scan based on the diameter of the tumor. The
medical expert then computes the change in tumor volume by
comparing the measurements of consecutive scans. Based on these
metrics, the change in tumor volume, however, is often difficult to
detect between two sequential scans (such as in Figure 1). Instead,
neuroradiologists tend to compare the most recent scan with the
carliest available image to find any visible evidence for the evolution
of the tumor. The resulting analysis does not reflect the current
development of the tumor but rather a retrospective perspective of
the tumor evolution. In addition, such methods generally do not
provide a quantitative measure for the rate of volume change.
Accurate quantitative measurements can aid clinicians in treatment
decisions.

In the remainder of this report we attempt to address these
issues by describing a semiautomatic procedure specifically tar-
geted toward identifying difficult-to-detect changes in pathology.
Our approach first semiautomatically segments the tumor in the
initial patient scan. It then coregisters the sequence of scans.
Finally, it measures growth or shrinkage from these images based
on the statistical analysis of the differences in their intensities.
The software is easily calibrated and, in less than 5 minutes,
returns the total volume of tumor change in mm? and percentage
change. This approach is disseminated as part of the 3D Slicer
(www.slicer.org), a publicly available software package for med-
ical imaging processing and visualization.

We tested the method on synthetic data with known tumor
growth as well as on MRI scans of 10 patients with intracranial
meningioma. These experiments demonstrated that our semi-
automatic tool provided a reliable measurement for volume
change requiring minimal user input.

METHOD: A SOFTWARE TOOL FOR
MONITORING SLOWLY GROWING TUMORS

The goal of our semiautomatic procedure is to detect subtle
changes in pathology at the level of a few voxels. It does so by
completing 3 steps: the tool identifies the tumor in the first scan,

B ROI of Scan 1

E ROI of Scan 2

Segmentation of Scan 1

ROIScan2—ROI Scanl G

Growth Analysis

growth in black.

FIGURE 1. The top row shows images related to the first (earlier time point) scan and the bottom row to the second (later time point) scan. The first column consists of the
input of the pipeline. The second column is the result of the second step of the pipeline, which fuses the region of interest (ROIL). The third column shows the resulting
segmentation of scan 1 and the image resulting from subtracting B from E. Bright voxels indicate tumor growth. The image in G is the result of the growth analysis showing the
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then it normalizes the series of scans, and finally it detects growth
based on these results.

The first step performs a user-guided segmentation of the
tumor in the first scan. The tool ignores the follow-up scans at
this point because the variations in the acquisition across scans
could negatively influence the accuracy of the approach. Manual
supervision of the segmentation ensures highly accurate seg-
mentations. The user guides the approach by specifying a region
of interest around the tumor and a lower and upper bound on the
intensities characterizing the pathology. Based on the input by
the user, the pipeline reliably extracts the tumor volume from
postgadolinium, T1-weighted MRIs, because meningiomas are
generally characterized as homogeneous, bright objects.® The
software then “cleans” the segmentation by removing small is-
lands and holes caused by noise in the MRIs. The resulting map
may include false positives, because dura, vessels, and skull can
have similar intensity patterns as the tumor (see Figure 1C).
These structures, however, should be stable over time so that their
impact on the analysis can be ignored.

The second step automatically fuses the remaining scans to the
first by completing 4 stages. It first (rigidly) aligns the remaining
scans to the first one using mutual information.” As discussed in
the introduction, this procedure adjusts the global pose of the
scans while preserving the size of the tumor. The tumor regions
across all scans are then roughly aligned with each other so that
the previously assigned region of interest defines the tumor region
across all scans. The method then increases the resolution by
performing interpolation within each region to address partial
volume effects in the MRIs. Partial volume artifacts are caused by
insufficient image resolution leading to combining multiple
structures within a voxel. This often causes blurry tissue
boundaries, as the intensity of these voxels is a mixture of the
intensities of adjacent structures. In the third stage, the frame-
work addresses nonlinear distortion artifacts by rigidly registering
only the tumor regions. This process results in a series of images
where, in theory, barring temporal changes, the pathology is well
aligned (see Figure 1B and 1E). The final stage normalizes the
intensity patterns of each scan as the uptake of the enhancement
agent by the tumor generally varies across scans. The tool nor-
malizes the intensities by first specifying the region where we do
not expect any change in tumor volume. This region is a con-
servative estimate of stable tissue based on the segmentation of
the first step. It then computes the intensity histogram for each
scan and modifies the global intensity patterns of each scan via
scaling until all scans have the same mean intensity inside the
stable tissue region.

The final step of the pipeline measures the evolution of the
tumor via a metric that detects change by analyzing differences in
local intensity patterns. We relate change detection to hypothesis
testing. The test is specified by the null hypothesis that local
changes in intensity between 2 scans are caused by image artifacts.
To perform the test, the tool first measures the normal variation
in intensity patterns of stable tissue between the first and the
remaining scans. Our tool measures the variation by subtracting
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each MRI scan from the first scan, computing the absolute value
of this new set of images, and then recording the intensity dis-
tribution of the processed images within the stable tissue region.
Because of the normalization in the previous step, the resulting
images display stable tissue by dark intensities and changes be-
tween the scans by bright intensities (see Figure 1F). Brighter
intensities inside this region are generally the result of noise or
slight misalignment between scans. We reject the null hypothesis
for voxels whose intensities are brighter than the intensities of
99% of voxels inside the stable region. We call this percentage the
“cut-off percentage” of our metric. These voxels are then further
classified into growing or shrinking pathology depending on
which scan shows bright intensities and the location of the voxel.
The total tumor volume change is then computed by subtracting
the volume of voxels labeled as shrinkage from the volume labeled
as growth (see Figure 1G).

Our software allows the modification of the cut-off percentage
so that one can specify a value specific to each case. Although our
approach is somewhat insensitive to small changes in that per-
centage, smaller cut-off percentages make our metric more sen-
sitive to noise in the image. For our study, we empirically choose
99%. We found this cut-off percentage to produce the most
consistent results on our data sets when testing our metric with
values ranging from 30% to 99.9%.

DATA ACQUISITION

Real Data Set

Our experiments are based on data consisting of 9 female
patients and 1 male patient with benign meningioma who had
not received surgery to remove the pathology. All patients were
scanned twice by the Department of Radiology, Brigham and
Women’s Hospital, Boston, Massachusetts, following normal
hospital procedure (axial scan direction, postgadolinium, field of
view; 240 mm; matrix, 256 X 256 X 130; voxel dimension,
0.9375 mm X 0.9375 mm X 1.2 mm; scan time, 8 min). For the
9 women, the mean follow-up period was 13.2 months (ranging
from 6 mos to 21 mos). The male patient received the contrast
agent before the initial scan and then was scanned twice at 8
minutes apart. The difference in contrast and image quality
between the 2 scans was similar to the ones found in the 9 female
cases. A radiologist, who we refer to as expert A, and a neuro-
surgeon, who we refer to as expert B, independently confirmed
that the MRI scans of all 10 cases were consistent with menin-
gioma. The experts then manually outlined the tumor in each
slice of the scans of the 9 female cases using 3D Slicer. The tumor
in the scans of the male case was manually segmented by expert B
using only the same procedure as for the female cases.

Data Set With Known Ground Truth

We also generated 2 synthetic data sets to further analyze the
strength and weaknesses of different metrics. For the first data set,
which we refer to as the data set with known ground truth, we
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synthetically grew the pathology in 1 of the 10 initial scans (see
Figure 2). We initialized the computer simulation via a template
consisting of a manual segmentation of the meningioma and
surrounding tissue in the selected scan. The simulator then uses
the template to parameterize a simple mechanical model that
simulates the tumor growth in the original MR scan.'” The
mechanical model assumes that the tumor expands homoge-
neously and that the tumor’s uptake of enhancing agent in the
follow-up scan is similar to the original scan. Based on these
assumptions, the computer simulator generates a new scan by
deforming the surrounding tissue around the tumor while
keeping the skull fixed. This simulator is somewhat insensitive to
the shape of the tumor as defined by the template. The software
only uses the template to extract the skull and to determine the
tumor’s geometric center in the MR scan.

For our test sequence, the simulator generated 6 synthetic
follow-up scans with different growth values. For each synthetic
scan, we computed the true growth percentage of the tumor by
applying the simulator to the template instead of the MR scan,
computing the volume difference of the tumor between the
original and modified segmentation, and then normalizing the
result by the volume of the tumor in the template. We then
applied 10 randomly generated rigid transformations to each scan
to simulate changes in head positions between consecutive scans.
The resulting test sequence consisted of 60 cases for which the

exact tumor growth was known. The growth percentages were
1% (9 mm?), 3%, 5%, 11%, 16%, and 22% (195 mm?>).

Data Set With Modified Scan Resolution

The second synthetic data set consists of follow-up scans with
varying scan resolution. We synthetically modified the slice thickness
in the follow-up scan of the case used in the previous data set. This
resulted in 4 follow-up scans with a slice thinness of 1.2 mm
(the original slice thickness), 2.4 mm, 3.6 mm, and 4.8 mm.

RESULTS

We performed 4 experiments to determine the accuracy of
different approaches for detecting subtle growth in meningioma.
The first experiment tested the accuracy of experts detecting
subtle growth via visual inspection, manual segmentations, and
our semiautomatic approach. For this experiment, we use the
synthetic data set, where the change in volume is known. The
remaining 3 experiments compared manual and semiautomatic
growth metrics on synthetic as well as real MR scans.

Synthetic Data Set With Known Tumor Growth

The first experiment assessed the accuracy of qualitative tumor
change detection via visual inspection. We trained 5 postdoctoral
students in visually detecting changes in meningioma. After all 5

Original

1% (9mm?)

5% (48mm?)

22% (195mm?)

FIGURE 2. The real scan (first panel) of the patient with synthetically evolving pathology of 1%, 5%, and 22% volume growth (highlighted in black with white boundaries
in the bottom row). We note that visually detecting growths of 1% and 5% is extremely difficult.
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raters reliably analyzed the training cases, we recorded their ac-
curacy in visual inspection of 30 of the 60 cases of the synthetic
data set with known ground truth. Each rater first visually
compared the original with the follow-up scan and then classified
each case as “‘stable,” “shrinking,” or “growing” pathology. We
then compared those findings with the known ground truth. For
each of the 6 growth categories (1%, 3%, 5%, 11%, 16%, and
22%), we computed for each rater an accuracy score, which was
the number of times the rater correctly identified growth for cases
in this category divided by the number of cases in this category.
Table 1 lists the average accuracy with standard deviation across
the experts. We also repeated this study for 3 growth categories
with expert A. Expert A wrongly classified all cases with 1%
growth as stable, achieved an accuracy of 20% for cases with 5%
growth, and correctly classified all cases with 22% growth. The
accuracy scores of expert A were thus within one standard de-
viation of those of the 5 raters.

An alternative metric for detecting change is based on manual
segmentation of the tumor in the original and follow-up scan.
The change in pathology is then defined by the volume difference
of tumor in the 2 segmentations. We quantify the volume dif-
ference between the initial and follow-up scans by first recording
the volume of the tumor in each scan based on the corresponding
manual segmentations. We then compute the change in tumor
volume between scans by subtracting the tumor volume in the
initial scan from the one in the follow-up scan. We note that this
metric is sensitive to the expert’s opinion about the shape of the
tumor in the initial scan. Based on our experiments, experts often
disagree about the exact shape. For the 9 female patients, the
average intrarater correlation coefficient of the tumor volume
in the first scan measured by expert A and expert B was 97%
(F = 34.193, df = 8). To account for the differences between the
experts, we report the change in tumor volume in percentage.
The percentage in volume change is defined by the change in
volume divided by the volume of the tumor in the first scan as
measured by the expert.

We measured the accuracy of this metric by having expert A
manually segment the tumor in the original MR scan as well as 12
synthetically generated follow-up scans. The results are shown in
Figure 3 with the true growth percentage (ground truth) repre-
sented by the dotted line and the outcome of expert A represented

DETECTING CHANGE IN BRAIN TUMORS

by the grey dots. The true growth percentage and the percentage
measured by expert A were defined with respect to expert A’s
segmentation of the initial scan instead of the template. As in the
case of the template, we computed the true growth percentage by
applying the expert’s segmentation to the simulator, computing
the volume difference of the tumor between the original and
modified segmentation, and then normalizing the result by the
volume of the tumor in the segmentation. The true growth
percentages, with respect to expert A’s initial segmentation, were
1.2%, 3.6%, 6.0%, 12.1%, 18.5%, and 24.9%.

Our semiautomatic tool is an alternative to visual inspection
and manual segmentations. We applied our tool to all 60 cases
initialized by the template under “Data Acquisition.” For each
case, the tool completed its analysis in less then 5 minutes
compared with up to 40 minutes for the measurements based on
manual segmentations. Table 1 shows the mean and standard
deviation of the measured percentage for each growth category
(1%, 3%, 5%, 11%, 16%, and 22%). For 1% (9 mm”’) growth,
our semjautomatic metric successfully detected growth for 7 cases
and labeled 3 cases as stable. Our metric successfully detected
growth for all cases with growth larger than 1%. The mean error
between the growth percentage measured by our metric and the
actual growth percentage was —4.47% with a standard deviation
of 2.62%. In comparison, the mean error of expert B was 3.26%
with a standard deviation of 3.71%. The unpaired ¢ test of the
error scores of our metric vs the ones of expert B revealed a
(2-tailed) P value of less than .0001 (¢ = 9.1353, df = 72). The
results of the 2 metrics are therefore significantly different in this
study.

Data Set With Modified Scan Resolution

The second experiment studies the impact of the scan reso-
lution on the outcome of our proposed metric. For this, we apply
our approach to the synthetic data set consisting of follow-up
scans with varying scan resolution. The relative growth per-
centage based on the original scans (1.2-mm slice thickness) was
1.99%, based on the follow-up scan with 2.4-mm slice thickness
relative growth percentage was 2.40%, based on the follow-up
scan with 3.6-mm slice thickness it was 2.31%, and based on the
follow-up scan with 4.8-mm slice thickness it was 2.29%. The
growth percentage across the 4 cases thus only deviated by 0.41%.

TABLE 1. Accuracy of 5 Experts Detecting Growth Through Visual Inspection”

Growth 1% 3%

5% 11% 16% 22%

Accuracy of detection (mean = SD ) 8+8%

6*6%

28 £ 11% 44 = 9% 52 * 24% 88 £ 12%

“We used a computer simulation to generate 30 synthetic scans, where the tumor grew from 1% to 22% in comparison with the original scan (see Data Acquisition). We then

"

showed the original and the synthetic follow-up scans to 5 experts, who independently classified each case as “stable,” “shrinking,” or “growing” pathology. The table lists the
average and standard deviation in percentage of the experts correctly identifying growth in the 5 cases for each growth category. The experts achieved an average accuracy of
more than 50% for cases with at least 16% (or 142 mm?3) growth. The relatively low accuracy of visually detecting subtle tumor growth underlines the need for more accurate

metrics.
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FIGURE 3. The graph summarizes the measurements on the synthetic data
based on our semiautomatic procedure (Auto) and manual segmentations
(Manual). On this synthetic data set, the ground truth is known (dotted line).
The x axis represents the true growth and the y axis corresponds to the growth
computed by the metrics. The gray dots represent a single Manual measurement
by expert A, who did 2 trials for each growth category. The black bars indicate the
mean and standard deviation of the measurements of Auto for each growth
category. In general, Manual seems to overestimate change, but it seems closer to
the ground truth. Auto seems to underestimate change. Furthermore, the rela-
tively small standard deviation of Auto implies that the metric is robust to changes
in head position.

Growth Measurements on Cases With Scans Taken at
Least 6 Months Apart

The next experiment evaluated the interrater and intrarater
variability of volumetric measurements based on the manual
segmentations by expert A and expert B. We also compared these
measurements with the ones obtained with the semiautomatic

TABLE 2. Manual and Semiautomatic Volume Differences of the
Tumor in the 9 Cases®

Expert A Expert B Semiautomatic
Case % mm?® % mm3 % mm?3
1 —4.98 —276 —6.28 —323 —2.54 —227
2 2.54 99.7 —3.72 —68.9 0.0 0.0
3 222 278.4 0.1 6.3 0.0 0.0
4 3.50 27.07 —0.44 —24 0.0 0.0
5 0.94 177.0 5.44 883.8 1.99 341.9
6 3.94 5449 4.81 596.4 4.36 593.0
7 16.61 1138 22.23 1697 13.30 1190
8 13.39 377.6 30.66 685.5 11.47 257.9
9 21.29 902.6 38.98 1165 22.83 808.2

“Based on these measurements, we found relatively large variations between the
results of the 2 experts. Our semiautomatic procedure seems to be a conservative
estimate of change (see also Figure 4).
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method. Table summarizes the measurements across the 9 female
patients. The patients are listed by their average percentage of
change in tumor volume across the 3 measurements. In the
remainder of this section we classify a case as stable if the cor-
responding measured percentage is above —0.5% and below
0.5%. Otherwise, we categorize the case as shrinkage or growth
depending on whether the percentage is negative or positive. We
label 2 different measurements of the same patient as similar
when their percentages in tumor volume change are less than
1.5% apart.

We first measured the intrarater variability of expert B. The
expert segmented the 2 scans of case 5 three times, with a delay of
1 week between the segmentation sessions. Case 5 was selected as
the patient that had the least amount of change and both experts
agreed about the type of change (growth, stable, or shrinkage).
Furthermore, the initial and follow-up scans only showed subtle
differences, making accurate visual change detection challenging
(see Figure 2). The resulting volumetric measurements in change
varied by almost 1 mL or 6% in volume (first, 883.8 mm?
second, 545.8 mm?; third, —99.8 mm?).

Next, we captured the interrater variability of volumetric
change detection of the 2 experts across the 9 patients (see also
Figure 4). Expert A measured larger volumetric change in 4
patients, expert B indicated larger volumetric change in 3
patients, and in only 2 patients (case 1 and case 6) was the growth
analysis of the experts similar. The mean difference in the per-
centage of volume change was —3.7%, implying that expert B
generally measured a higher percentage of volume change than
expert A.

We also measured the volume change in the 9 female patients
with our semiautomatic procedure. In 6 cases, the semiautomatic
measurements were similar to the more conservative estimate of
the 2 experts. A measurement X is more conservative than
measurement Y, if the absolute value of X is lower than the
absolute value Y. Across the 9 cases, the semiautomatic results
more closely correlated with expert A’s finding (0.78 = 8.76%)
than the 2 experts agreed with one another (—3.7 = 8.76%).

Growth Measurements on Clinical MRI Scans Taken 8
Minutes Apart

The last experiment analyzes the accuracy of the volumetric
measurement as well as our semiautomatic metric in establishing
the stability of meningioma. Expert B segmented the tumor in
the 2 scans of the male patient. The scans were taken 8 minutes
apart so that, theoretically, no change should be detected. The
relative tumor growth with respect to these segmentations was
—0.52%, where the change in volume measured by our metric
was —0.26%.

DISCUSSION

As mentioned in the introduction, many neurosurgeons
avoid operating on patients with benign meningiomas by
closely monitoring the tumor progression through visual

www.neurosurgery-online.com
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(see also Table 1). From our clinical experience, yearly follow-
Experts vs Auto

40 ¢ " up scans of patients affected by meningioma often show
growth of less than this. In those cases, our experiment in-
© ExpertA dicates that visual inspection generally is not sensitive enough
30} | e ExpertB ¢ to accurately track changes in the tumor volume. Alternative
® Semi-Automatic metrics for capturing change are therefore necessary.
2 0l . 4 One such metric is [irloposed by the World Health Organi-
£ zation response criteria and the MacDonald criteria. These
§ e o approaches infer the size of a tumor through 2 orthogonal
O ot . diameters, which are the tumor’s largest diameter and perpen-
] . . 12 . . ST
c » dicular diameter. . To increase efﬁqency and rle3p.roduc1b1hty, the
Y Response Evaluation Criteria in Solid Tumors ' is based only on
0 * ¢ o o the largest diameter. Alternatively, Zeideman et al'® suggest 3
s * measurements along the perpendicular axes of the tumor. These 3
211 : ) ) ) : . . ) . metrics, however, ignore small growth deviating from the largest
12 38 4 5 6 7 8 9 diameter directions.'>!®
Cases Volumetric measurements based on manual segmentations are
FIGURE 4. Growth in percentage of expert A (light-gray circle), expert B (dark- considered more accurate’17—l9 especially with respect to visual
gray circle), and our semiautomatic approach (black circle). We note that the inspection. This statement is supported by our experiment on the
experts only agree in 6 cases about shrinkage, stability, or growth of the tumor. synthetic data set with known ground truth. Using manual
The semiautomatic measure seems to be a more conservative metric compared segmentation, the 1% (or 9 mm?) growth case was labeled as
wihhetesdlalofirhe cvpers shrinking in one case and as growing in the other. All cases with
a higher growth percentage were correctly identified as growing
inspection of serial scans of the patients. Based on our syn- by use of manual volumetric segmentation. On this data set, the
thetic data experiment with known ground truth, our experts volumetric measurement was more sensitive than visual in-
achieved an average accuracy greater than 50% for cases that spection. Furthermore, it provided the clinician with a quantita-
showed more than 16% (or 142 mm’) in tumor growth tive measurement for change in pathology.

Case 5 -Scan 1 Case 5 -Scan 2 Semi-Automatic

EXPERT A Expert B - Trial 1 Expert B -Trial 2 ExpertB - Trial 3

FIGURE 5. An example slice of case 5 with corresponding change detection of different metrics. Growth is shown by black and shrinkage is displayed in white. The change in
tumor volume is quite subtle in this case and difficult to detect through visual inspection. This might explain the relatively large differences in change detection between the
different merrics.
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On the downside, the volumetric measurements are sensitive
to variations in head position indicated by the relatively large
difference in measurements for each growth category. They are
also considered sensitive to inter- and intrarater variability, 20
which was also reflected in the outcome of our experiments based
on the real MRI scans. We analyzed the impact of intrarater
variability of expert B on the volumetric measurement by having
expert B repeat the measurement 3 times for 1 case. The first 2
measurements clearly indicated tumor growth, but the last
measurement suggested shrinkage. The large differences between
the measurements are also visible in the sample slice shown in
Figure 5. The growth detected through volumetric change de-
tection is visualized in black, and white represents shrinkage.
Finally, the 3 measurements varied by almost 1 mL or 6% in
volume, which is quite large given that the measured change in
pathology for each of the 9 patients with serial imaging was less
than 1 mL.

We analyzed the impact of the interrater variability on volu-
metric measurements by comparing the outcome of expert A and
expert B on the 9 serial cases. For 6 of the 9 cases in our data set,
the tumor changed by less than 10% in volume according to the 2
experts. The standard deviation between the 2 measurements of
the 2 experts across the 9 cases was 8.76%, which was relatively
large given that most of the cases grew by less than 10%. Figure 5
visually confirms these findings, because the images show rela-
tively large differences between the changes detected by both
experts. Furthermore, the experts only agreed for 6 of the 9
patients about shrinkage, stability, or growth of the tumor.
Another drawback of the volumetric metric is the amount of labor
needed to generate the measurements. In the case of the real MRI
scans, the 2 experts required on average 40 minutes to generate
a measurement. The labor associated with the measurement
makes the method generally unsuitable for the clinical setting.

Computer scientists try to address this issue by developing
automatic segmentation methods.”"** These methods outline
the pathology in a scan by combining the image data with general
information about the visual appearance of healthy tissue and
pathology. To quantify the change in tumor volume, metrics
based on segmentations first determine the tumor volume in each
scan from the corresponding segmentation and then measure the
difference in tumor volume across scans. This type of quantitative
measure is adversely impacted by variations in image acquisition,
such as changes in head position or intensity profile, because these
metrics independently compute the volume of the tumor for each
scan. To date, these methods are therefore not widely used by
clinicians.

Another type of automatic growth analyses of lesions simul-
taneously processes the sequence of scans.”**> These tools first
fuse the sequence of images and then flag unusual patterns across
the scan sequence as changes in pathology. Rey et al*® apply this
concept to patients with multdple sclerosis where lesion pro-
gression is clearly visible. They first align each scan to a fixed
coordinate system using highly flexible and region-specific
transformations. The authors then show that the transformations
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in regions with growing lesions are inherently different from
regions with stable tissue. Angelini et al*” propose an alternative
approach for low-grade gliomas with a growth rate above 30%.
They fuse the scans by first aligning the head in each scan to
a fixed pose using rigid, global transformations. Afterward, they
equalize the intensity patterns across the scans. They then relate
tumor growth to gross regional differences in intensity patterns
across the scans. To the best of our knowledge, current state-of-
the-art software targeted toward change detection in pathology
has been exclusively tested on scans with visibly apparent tumor
or lesion growth. The accuracy of these methods on benign
meningioma cases and more generally in very slowly evolving
pathologies is unclear, especially in those cases where the change
is visually difficult to detect.

We attempt to address this issue in this article by describing
a semiautomatic procedure specifically targeted toward identi-
fying difficult-to-detect changes in pathology. We are specifically
interested in applying our metric to cases where current methods
generally fail. In the synthetic data experiments (see also Figure 3)
our semiautomatic metric was more robust for cases with smaller
growth value compared with the measurements based on manual
segmentations of expert A. The metric was generally a conserva-
tive estimate of change for all cases with growth larger than 1%.
Furthermore, the relatively small standard deviation of our metric
implied that our approach was minimally impacted by changes in
head position, unlike the measurements by expert A. In addition,
the data set consisting of follow-up scans with varying slice
thickness revealed that the impact of the slice thickness on our
measurements is relatively low. Our semiautomatic method was
less accurate in cases with large changes compared with ones with
small changes in meningioma. Large changes in a tumor are often
captured by different properties than subtle changes. Although
the shape of the meningioma generally stays consistent between
scans of a case with small changes, the shape can greatly differ
across scans in cases where the changes are large. Based on the
synthetic data experiment, volumetric measurement based on
manual segmentations better captures the properties of cases with
large changes than our semiautomatic approach. In those cases,
however, clinicians properly would identify growth through vi-
sual inspection, because it is reliable according to our synthetic
data experiment, faster, and less labor intensive than our proposed
and manual segmentation-based metric.

Similar to the synthetic data set, the measurements of the
semiautomatic procedure seemed to be more conservative than
the experts’ findings on the real MRI scans. The measurements
also were more reliable than the experts’ findings. In the 3 cases
where the experts’ findings were inconclusive (cases 2-4), our
semiautomatic method classified these cases as stable. The case of
the patient who was scanned twice 8 minutes apart furthermore
supported that our metric was much more reliable than the expert
findings. Expecting no change, our metric classified the case as
stable. However, the volumetric measurement of expert A in-
dicated slight shrinkage. A more conclusive analysis of our
method is difficult owing to the missing ground truth and the
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small size of the test data set. However, the overall findings on the
real data were consistent with the findings from the synthetic data
where ground truth was available. We also note that our metric
was less labor intensive than the manual volumetric measure-
ments as each measurement took less than 5 minutes. This
suggests that our semiautomatic procedure is more suitable for
standard clinical practice than manual segmentations.

CONCLUSION

We have discussed a new approach that successfully measures
the volume change of slowly evolving pathology from successive
MRI scans. The high correlation with expert findings emphasizes
the potential of the approach in standard clinical practice.
Compared with visual change detection, the tool is highly sen-
sitive to subtle changes in pathology. Compared with measure-
ments based on manual segmentations, the metric is less impacted
by intra- and interrater variability, is more robust to changes in
head position and scan resolution, and requires less user input. To
the best of our knowledge, our semiautomatic approach is the first
metric that allows, in a clinical setting, accurate and relatively fast
measurements of subtle changes of slow-growing tumors such as
meningioma from longitudinal medical scans.
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