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Abstract—We propose a unified computational framework to resolution is still considered to be infeasible in the near term
build a statistical atlas of the cardiac fiber architecture from pecause of heart motion and limitations in current imaging

diffusion tensor magnetic resonance images (DT-MRIs). We apply tachniques [6], [7]. Therefore, modeling of the cardiac fiber
this framework to a small database of nineex vivo canine hitect ,d it iabilit ’ vodata | ticular]
hearts. An average cardiac fiber architecture and a measure of architecture and 1ts variabiiity oax vivodata Is particularly

its variability are computed based on most recent advances in important. For instance, the fiber architecture model can be
diffusion tensor statistics. This statistical analysis confirms the used to simulate the electrical and mechanical functions of
already established good stability of the fiber orientations and a the heart for planning patient-specific therapies [8], [9].

higher variability of the laminar sheet orientations within a given —ntj| recently, the modeling of the cardiac fiber architecture
species. The statistical comparison between the canine atlas and a " f tudi f histoloaical sli 101 M1
standard human cardiac DT-MRI shows a better stability of the MoStly came from studies of histological slices [10], [11].

fiber orientations than their laminar sheet orientations between They revealed the common features between species such as
the two species. The proposed computational framework can be the transmural variation of the fiber and laminar sheet orien-
applied to larger databases of cardiac DT-MRIs from various tations parameterized by the inclination angle (also known as
Species to better establish intra- and inter-species statistics on g|eyation angle) and the intersection angle [1]. However, the
the anatomical structure of cardiac fibers. This information will definiti f th | limited by the 2D nat f
be useful to guide the adjustment of average fiber models onto f) ini 'OF‘ 0 : ese angles was limited by e_ . na ur_e 0
specific patients fromin vivo anatomical imaging modalities. histological slices, whose accurate reconstruction in 3D is not

: N . straightforward [12]. Measurements of fiber architecture have

Index Terms—Atlas, cardiac, diffusion tensor magnetic reso- b d by th f diffusion t fi
nance imaging, DTI, DT-MRI, fiber architecture, heart, laminar een. eased by the use ot difiusion tensor maglje IC resonance
sheets, statistics. imaging (DT-MRI) [13], [14]. Indeed, a correlation between

the cardiac fiber structure and diffusion tensors has been
demonstrated: the primary eigenvector of the diffusion tensor
. is locally aligned wi e fiber direction , as is the
. INTRODUCTION locally aligned with the fiber direction [15], [16 th
ARDIAC fiber architecture, a complex arrangemertertiary eigenvector with the laminar sheet normal [17]-[19].
of myofibers bounded to each other to form laminaFhus, DT-MRI provides directly a 3D description of the fiber
sheets [1], plays an essential role in defining the electricaichitecture in a shorter time but at a lower resolution com-
and mechanical behavior of the heart [2], [3]. Mathematicalred to histological studies. In the past years several authors
modeling of the cardiac fiber architecture and its variability isave performed studies on the variability of fiber [20]-[22] and
important to better understand physiological principles and kmminar sheet [18]-[21], [23] orientations using DT-MRI. They
construct computational models of the heart [4], [5]. Howevenave been so far limited to features extracted from diffusion
the in vivo imaging of the cardiac fiber architecture at higliensors such as scalar values (for instance, inclination and
intersection angles [18], [19], [23]) or vector values (primary
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Fig. 1. Overall workflow of the proposed framework to build a DT-MRI
atlas that is compared to human and synthetic data.

use a Riemannian metric to be consistent with the positivity
constraint on the eigenvalues. Second, we compute the average
and covariance matrix of the whole diffusion tensors. Third,
we employ new tools to extract the variabilities of the eigen-
vectors and eigenvalues from the covariance matrix. These
tools are better suited for studying the variability of cardiac
fiber and laminar sheet orientations.

A first preliminary study showed the feasibility of such
a statistical atlas on the ventricles with downsampled im-
ages [37]. Here, we perform an extended study by using more
ex vivocanine hearts at the full image resolution and including
whole heart. The resulting atfagrovides an average cardiac
fiber architecture and its variability within a population. Then,
we evaluate the advantages of the average cardiac fiber archi-
tecture directly built from real data over a synthetic model
based on a generalization of the observations in different
studies. As mentioned previously, tlie vivo acquisition of
high resolution cardiac DT-MRI is made difficult by heart
motion. Furthermore, since healthy hearts are preferred to be
transplanted rather than used for research purpasesjvo
DT-MRI acquisition is very rare. The exceptional access to a
singleex vivohuman cardiac DT-MRI allows us to perform a
preliminary inter-species comparison before a larger database
is available.

We present here an overview of the workflow (see Fig. 1):

« Groupwise registration of anatomical MRIs (Section II)
To compare different hearts, we first need to find an
inter-subject mapping for normalizing their geometries.
This mapping is obtained from a groupwise registration
of anatomical MRIs. To ensure the accuracy of the atlas
we build, matching corresponding anatomical structures
is necessary. Thus, we propose to include interactive
guidance of pairwise registrations [38] in a classical

that is learned statistically from a population of DT-MRIs. Our
approach differs from previous cardiac studies in computing
statistics directly on the diffusion tensors that contains the
whole fiber structure information. However, since diffusion
tensors are symmetric positive definite matrices that do not lie
on a vector space, classical Euclidean multivariate statistics are
not consistent with the positivity constraint on the eigenvalues.
Riemannian geometry, based on either affine-invariant [27]—
[31] or Log-Euclidean [32] metrics, gives a general and
consistent computational framework. Statistics on diffusion
tensors have already been used to build brain atlases. But none
of them defined a complete and consistent framework with the
most recent advances on diffusion tensor processing. Jones
et al. [33] computed first-order statistics with a Euclidean
metric. Their second-order statistics were limited to features
of the diffusion tensor (the dyadic tensor [34] formed from
the primary eigenvector). Second-order statistics on the whole
diffusion tensor were computed for model-based diffusion
tensor tractography [35] in the brain but only with a Euclidean
metric. A population study of brain diffusion tensors used
statistics with the Log-Euclidean metric but was limited to
their averaging [36].

Unlike previous works on statistical analysis of DT-MRIs,
the proposed computational framework is both complete and

worklow for atlas building [39].

Transformation of diffusion tensor fields (Section .lII)
Once a mapping between the hearts is known, an impor-
tant issue is to transform the diffusion tensors properly.
These tensors contain a directional information of diffu-
sion linked to the reference frame of the image. When
transforming an image, this reference frame is modified.
Thus, the diffusion tensors have to be transformed accord-
ing to the modification of the reference frame. Different
transformation strategies have been proposed [40]. We
compare these strategies on synthetic and experimental
data to characterize their impacts on diffusion tensors
and give insights on how to determine the most suited
transformation strategy.

Complete and consistent statistics on diffusion tensors
(Section IV) This is realized by computing average diffu-
sion tensors and their corresponding covariance matrices
using the Log-Euclidean framework. The difficulty is
to interpret directly the covariance matrix of diffusion
tensors, especially in terms of cardiac fiber architecture.
Thus, we propose new efficient tools to extract from this
covariance matrix the variability of the eigenvectors and
eigenvalues.

consistent in terms of the following three aspects. First, welavailable at http://www-sop.inria.fr/asclepios/data/heart
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« Intra- and inter-species comparisons (Section We « the scalingS,, to match the length of the line segments
apply this framework to perform an intra-species compar- defined by the two pairs of corner points,
ison building a statistical atlas of cardiac fiber architecture « the scalingS, along the axis of the heart to match the
from a small database of nine canine hearts. This atlas is two pairs of axial planes: the valve plane and the one
compared to a synthetic model of the fiber orientation [8] containing the LV endocardial apex.
showing that the proposed statistical model of the cardiac) |nteractive Non-Rigid RegistratiorBeg et al. [45] pro-
fiber architecture is more complete and accurate. Finaljypsed a landmark and image intensity-based large deformation
we perform a quantitative inter-species comparison bgiffeomorphic metric mapping (LDDMM) method for non-
tween this atlas of canine hearts and a human heart. Thfid registration of cardiac geometries. We preferred to use
results confirm a better inter-species coherence of tBfother hybrid intensity- and landmark-based registration al-
fiber orientations than the laminar sheet orientations. gorithm [38] that is well suited for fast interactive corrections.
The interactive guidance by a selection of pairs of landmarks is
Il. REGISTRATION OFANATOMICAL MRIS useful to control the registration and avoid the matching of dif-

rent structures. The advantage of this hybrid algorithm is to

o . f
: Rlc_aglsterm_g .th? ggometfrlehs b:.?fed on thetI)D T—MRIséA_lﬁl]—Mé mbine easily any intensity- and landmark-based registration
Implies a minimization of the differences between di u‘Q"ogllt,zjorithms. It relies on an iterative dual energy minimization

tensors. In this case, we make the assumption that there a5 yields to the deformation field, which is a weighted-
similarities between cardiac DT-MRIs. Actually, quantifyingaverage of the fitting of intensitg), z;nd landmarks),:
these similarities is exactly what we want to evaluate in the

following statistical analysis. To avoid introducing a bias, we T'(X) = (1 — A(X))[K1 * Q1(X)] + AM(X)[K2 * Q2(X)]
register the unweighted images of the DT-MRI acquisition
that only hold anatomical information. Furthermore, thesk ) o :
anatomical MRIs have the advantage to be acquired in t gd K> being regularization kernels for_ each defgrmanon
same geometry as the DT-MRIs without distortion. Thus, t i€ld @1 and @, and A(X) € [0,1] being a confidence

deformation fields used to transform the anatomical MRIs cgﬁap across the image defining the trust in the deformation

be directly used to transform the DT-MRIs lelds Q1 versus@s. This confidence map is a mixture of

To register the anatomical MRIs to an average geometry, \ﬁ
propose here a classical workflow for atlas building. First, W
present a pairwise registration algorithm allowing interacti\}g
guidance that ensures the quality of the inter-subject mappir? .
Second, we describe an alternate groupwise registration of

anatomical MRIs relying on pairwise registration steps.

ith X being the voxel position in the reference spasg,

%) normalized Gaussian centered on each landmark in the
erence space and whose variance depends on its distance
the corresponding landmark. We used here a combination
thin-plate splines [46] and a diffeomorphic registration
orithm [47] based on the mutual information.

inally, the pairwise registration is the composition of
the constrained affine transformatioh with the non-rigid
deformation7” that can be used in the groupwise registration
A. Pairwise Registration as follows.

The mapping ofex vivohearts is challenging due to large
differences in alignment and scale of the data. Thus, there iBa Groupwise Registration
need.for a robust affine registration before using any non-rigid ¢ groupwise registration is not trivial since the average
algorithm. . _ o . geometry and its mapping with the subject geometries are
1) Constrained Affine RegistratiorVe perform an inter- jnterrelated. Guimondet al. [39] proposed an alternate ap-
active affine transformation to control its quality and to 98§roach that was adapted by Helet al. [48] to build an
an appropriate initialization for the non-rigid registration a§verage cardiac geometry. All the subjects are registered to
follows. An affine transformation can be defined by foufhe same current reference geometry which is then updated by
landmarks. The difficulty to find four repeatable landmarkge new mapping to converge to an average geometry. Avants
to best normalize the geometry of the hearts limited us {q 5. [49] presented a recursive approach where the current
use three landmarks. Thus, we constrained the affine trapsrerence geometry is updated each time a subject is mapped.
formation S based on three interactively Io_cated Ian_dmarkg‘oshiet al. [50] find simultaneously an average geometry and
the left ventricular apexA4;v) and the two right ventriculo- tpe mapping of the subjects to it by sequentially minimizing
septal junctions (corner points; andC>) in the valve plane g energy with respect to these mappings. We preferred the
orthogonal to the long axis of the heart (see Fig. 2). alternate approach to ease the introduction and the control of
We use these landmarks to define a composition of trafge guidance with pairs of landmarks. This method has the
formationsS = 5. o Sz o Rg, o T' (see Fig. 2) that align the advantage to register all the subjects to the same reference

hearts and normalize their heights and radius: geometry and thus to ensure that the interactive guidance is
« the translatioril” to match the centroid& andG’ of the as meaningful as possible for the final average geometry. In
two pairs of corner points, the other methods, the guidance of the registration to the

« the rotationRy_ around the direction of the long axis offinal average geometry would not be clear since pairs of
the heart to match the directions given by the two paitandmarks would be set with different reference geometry for
of corner points, each subject.
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Constrained affine transformation S n

Fig. 2. The pairwise registration is initialized with a constrained affine tran&ig. 3. The groupwise registration of the anatomical MRI$};—1, . o is
formation S based on the matching of three interactively located landmarkggapted from the algorithm proposed by Guimendl.[39]. This algorithm is

the left ventricular apex4 ) and the two corners of the right ventricle in based on an alternate registration process using the resulting average geometry
the valve plane@; andC). This transformation is defined as a composition/mean as a reference for the next step. The deformation figlE8};—1,...o

of a translatioril’, a rotationRy_ , a radial scalingsz,, and a long axis scaling at the stepn are a composition of a constrained affine transformation and a
S.. The atria are not shown here for a better visualization of the landmarkin-rigid deformation as described in Section II-A.

We alternately build an average geometry and registgach heart of the dataset. Then, these deformation fields can
the subjects to it. We first register the dataset of imaggs used to transform the DT-MRIs.

{I;}i=1,...n to the current reference imadg.,,of the stepn

based on the pairwise registration steps described previously
(the initial reference imagél.,,is chosen within the dataset). ) ) .
The resulting deformation fieldd” registering the initial _SNc€ We use the unweighted image of the DT-MRI acquisi-
imagesl; to the current reference imadg,,are averaged. In tion as thg anatomical MR, the DT—MRIS qnd the anatomical
our case the average deformation fields have been shown td/f!S @re in the same geometry without distortion. Thus, we
smooth enough and to have small enough deformations to ¢ directly apply to the DT-MRIs the deformation fields com-
computationally invertible. One could think about improvingUt€d in the previous section. The transformation of DT-MRIs
this step using most recent advances in statistics on diffeomisr-noré complex than anatomical MRIs. A diffusion tensor
phisms [51]. A least squares approximation of the inverse 5 & covariance matrix (symmetric definite positive matrix)
the average deformation fiell",, is applied to the current modeling the directional distribution of diffusion rates of water

reference imagé?”. . which then gets closer to a barycentriénOIecmeS- This directional information is linked to the local
geometry of the  dataset (see Fig. 3). The intensities dfierence frame that is modified during the transformation. To

averaged in this new average geometry. Therefore, through flﬁécribe this distribution in the new local reference frame, a

deformation fieldsI?, the original geometry and intensitiestr?meormation of the diffusion tensor is necessary. Each of the

of each heart are taken into account in the new average h&lgenvalues describes a diffusion process in a specific direction

[l of the fiber structure given by its corresponding eigenvector

One iteration can be summarized in the equation as followlSE€ first column in Fig. 4). We assume that the basic structure
of fibers, organized in laminar sheets, is locally preserved. It

means that the transformed eigenvectors are still an orthonor-
mal basis in the new local reference frame. This assumption is
. . ) ) important to preserve the correlation between the transformed
where X is the voxel coordinates); is the anatomical MRI' it sion tensor and the underlying fiber structure. Moreover,
of the samplei, 77" is the deformation field matching they,q giffusion process in each specific directions of the fiber
current average geometdfica, to the samplel; at the step gy,cture only depends on material properties of the underlying
T % ZTi" is the average deformation field at thdnicrostructure. At our scale of observation, we can consider
pt that these material properties are intensive properties. Thus, the
stepn. These steps are repeated using the new average hemygenvalues are preserved when warping the space. Finally, the
Indl as the reference geometry until it converges. In practideansformation of the diffusion tensors can be simply described
a few iterations are sufficient to get a stable geometry. by a rotation of the eigenvectors. Different methods have
Finally, the outputs of this process are an average geomebgen proposed to reorient diffusion tensors in the literature.
of cardiac anatomical MRIs and a dense deformation field féve propose here to compare the reorientation strategies to

IIl. TRANSFORMATION OF THEDT-MRIs

N
n 1 n mn -
Im;raln(X) = N ZIz(Tl o [Thead 1(X))
i=1
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understand their fundamental differences and to justify the

use given the registration context. V2 V2, Avy
First, we describe the most common and meaningful reo t_. L Avi

entation strategies: thanite Strain(FS) and thePreservation Vi vi

of the Principal Direction(PPD) proposed by Alexandet — Vi

al. [40]. They are defined in the case of affine transformatiol / ﬁ gz:j

and extended to non-rigid deformations [40] by approximatir Vi T Vi

at each voxel the deformation field (matching the reference ..’ —

image to the transformed image) with an affine transformatic A 3y g AV

A = 1d+VT where Id is the identity matrix and the gradient m.lﬂgp../' S L.Vz [ AV2

V5

operator. Second, we point out their fundamental differenc
on a typical case of synthetic diffusion tensor field transformea
by basic affine transformations. Third, we compare them ®y. 4. [First Column] Cardiac fiber structure (adapted from LeGete

real cases of cardiac diffusion tensors non-rigidly transforméy [1])- [Second Column] Original basic fiber structure with eigenvectors
for experimental validation v;. [Third Column] Example of shearing applied to the basic fiber structure:

continuous arrowslv; are the transformed eigenvectors through the shearing
and dashed arrows, are the eigenvectors related to the correlation between

_ . the fiber microstructure and the diffusion tensor.
A. Finite Strain (FS) ! Ierostructr sl y

In the FS reorientation strategy, the rotation component of
the local affine transformation is used to reorient the diffusion
tensors. The polar decomposition of an affine transformati?g

A can be written as followsA = RU where R is the : . . X )
i . field. Since the action of the transformation is consistent with
rotation component and a deformation component. Actually, : e
the gradient on diffusion tensors, we expect to preserve the

the rotation component is the least squares approximation o

! . . eometric features. We can characterize the FS reorientation
the affine transformation by a rotation and has a closed-forg‘prate as a geometric transformation of the diffusion tensor
solution [52]: R = (AA")~zA. In the case of the FS, the oy 9

action of an affine transformation on a diffusion tendor fields.
(whose operator ig) is defined as follows:

AxD = Rps(A) -D- RFSt (A)

The gradient of a transformed diffusion tensor field is equal
the transformed gradient of the original diffusion tensor

B. Preservation of the Principal Direction (PPD)

] ) ] The basic idea of the PPD reorientation strategy is to
where Res(A) is the rotation component of the affine transgome hack to the underlying microstructure described by the
formation A. _ - diffusion tensor. In the case of cardiac diffusion tensors, it

Since the transformation of a diffusion tensor only depengigs peen shown [15]-[19] that the eigenvectors are linked to
on the affine transformatiod, we can infer interesting prop- he fiper and laminar sheet orientations. The primary eigen-
erties. For instance, we propose to compare the action of a&orv, is aligned with the fiber direction as is the tertiary
transformation on the diffusion tensor field (whose operat@{genvectow; with the normal direction to the laminar sheet
is x) and the action of the transformation on the gradient ?éee first column in Fig. 4). Once we have a model of the
diffusion tensors (whose operatordin the case of a global \,ngerlying microstructure, we transform it through the local
affine transformation. _ . ~ affine transformation. Then, from this transformed microstruc-

Let us considerX the voxel coordinates in the originaly,re we build the transformed diffusion tensor according to

space andD the original diffusion tensor field. Respec+he relationship between the eigenvectors and the underlying
tively X’ = AX and D’ are their transformed values.myicrostructure [40].

We use here the minimal representation (veg of a dif- An affine transformation can be described by a composition
fusion tensorD = (D;;) to take into account the

S i i)i,j=1,2,3 _ of basic transformations: translation, rotation, scaling and
multiplicity of its off-diagonal eIemert1ts [29]: V&€D) =  ghearing. Translations and uniform scalings do not modify the
(D11, V2D12, Doz, V2D31,v/2Ds2, Dss)". Thus, the classi- grientation of the fiber structure, and the transformation of

cal Euclidean norm of this vector representation is equal {Re fiper structure through rotations is obvious. Non-uniform

the classical Euclidean norm of the diffusion tenso.r. scaling and shearing are the most problematic basic transfor-
In the space of the transformed image, we have: mations to apply to the fiber structure since the amount of
Vxved Dyg(X')) = Vxved A D(A1X)) deformation depends on the original structure. An illustration

of this dependency is shown in Fig. 4 with the action of pure
Vxveo Dipg(X')) = Vxved Res(A)-D(A™'X')-Res'(A))  shearing on the basic microstructure of cardiac fibers. The
direct transformation of the original eigenvectasleads to
the vectorsdv; and the final transformation deduced from the
Vxved Dyg(X')) = A~ eV xveq Res(A)-D(X)-Res' (A))  deformation of the fiber structure leads to the vestor
Thus: The fiber and laminar sheet structures are preserved when
mechanically deformed by an affine transformation. Fibers
AeVxvedDpg(X') = VxvedAx D(X)) are locally considered as lines and the affine transformation

As Rgs only depends oM which is constant over the space
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Fig. 5.  Synthetic diffusion tensor field with a sinusoidal variation o Relative position of the vector over [(]’ Qﬂa]
the orientationf of the primary eigenvectov along the direction of the

x coordinates. The diffusion tensors are colored in red when the prlma’g}/g. 6. [llustration of the difference between the action of the FS and PPD

ceniector ' oI long e eclon o heooranates 19181 eorntaton stateie: e o e oeniaton anges, and i f e
between the action of the ES and PPD reorientation strategies, a bvector field after a non- unlform scaling transformation. The orientation angle

non-uniform scalingA (in this figure a compression < 1 along the the angle between the primary eigenvector and the direction ofthe
: scaling. 1gure pre 9 coordinates as described in Fig. 5. The original orientation is described by
coordinates) is applied to the diffusion tensor field. the red curve

) _ _ ) ) C. Comparison of the Reorientation Strategies
of a line remains a line. Thus, the new primary eigenvector

Vi pointing in the direction of the deformed fibers is the 1) Affine Transformation of Synthetic Datdb better un-

normalized direct transformation of the primary elgenveugor derstand the effect of the presented reorientation strategies,
pointing in the direction of the original fibers: — we f|rs_t illustrate the.d|ff_eren.ces betwee_n the FS and the PPD
_ 1= J on a simple synthetic diffusion tensor field transformed by a
the same way, laminar sheets are locally consideret as P'aﬁéﬁ uniform scaling (see Fig. 5). To simplify the calculations
and the image of a plane through an affine transformatigid to clarify the example, we only consider the primary
remains a plane. Thus, the laminar sheet is spanned ayd eigenvector of the diffusion tensors in 2D. One can easily
V2 and its image bydv, and Av,. The secondary eigenvectorextend this study in 3D on all the eigenvectors. Let us consider
5 lies in the laminar sheet plane and is orthogona/l to thRe following profile of the primary eigenvector orientations
ﬂber direction by definition:v, = Avy — (Avy - V)V that only depends on the position along the directionzof

||[Avy — (Avy - VI)Vi[| ; .
The tertiary eigenvectors is aligned }ocally with the normal coordinates:

vector of the laminar sheet plane. The normal vector of the cos(z)

image of a plane through an affine transformation is given v(z) = ( sin(z) )

by the following expression (more details in the Appendix):

A % One can easily show that this expression Wherez € [0, 27].

[[(A ) vs|| We apply the following non-uniform scaling to the vector

Ieads to the same result as the one proposed in [40] whﬁ%efd
they buildv;, from v} andvj, to obtain an orthonormal frame: ' a 0
V5 =V} x V. This new formulation has the advantage to be A= ( 0 1 )

independent of the computation of the other eigenvectors and
to show the contravariant action of the affine transformation Let vig(z') = RFS( )v(z) be the transformed vector by

on the tertiary eigenvector. the FS and levppp(z') = Rppp(A, V)v(z) be the transformed
The three transformed eigenvectors form an orthonorm‘f’;ﬁc'[Or by the PPD:
frame. Thus, the diffusion tensor is reoriented as follows: Vig(2') = v(%’)
, a cos( e’ )
AxD = RppD(A, D) -D - Rpth(A, D) y no_ AV(%) _ \/a2 cos? (% +51112( )
VPPD(x)_inAV(%)H = Sm(m )
where Rppp(A, D) = V'' -V is the rotation mapping the \/ a2 cos? (2 ) 4sin? ()

original eigenvectors{v;},=1 23 on the transformed eigen-
vectors {V;};,—1 23 respectively described by the matrices
V = [v1,Ve,vs] and V' = [V}, v}, Vv4].

wherez’ € [0, 27q].

Since the polar decomposition of a non-uniform scaling

does not contain any rotation component, the orientation of
In this way, the PPD is by definition a mechanical transfothe vectors is not modified using the FS reorientation strategy:

mation of the heart and its fiber architecture that for instand&s = Id. Thus, only a resampling of the diffusion tensor field

occurs when the heart is deformed during the cardiac cyclés performed.
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We observe in Fig. 6 that the profile of vector orientatiomspecially the transmural variation of the fiber orientation
along the direction of the coordinates is modified in the casewvhich is known to be a common feature between hearts.
of the PPD strategy whereas this profile is only resampled 8econd, the FS does not depend on the extraction of the
the case of the FS strategy. The difference between these ®igenvectors whereas the PPD relies on a strong correlation
strategies is enhanced with the importance of the compressimiween the eigenvectors and the underlying fiber structure.
(¢ < 1) and stretching ¢ > 1). This example illustrates An error in the extraction of this structure (for instance, due
the mechanical effect with the PPD and the preservation tofnoise in the DT-MRI acquisition) could be propagated to the
geometric features with the FS. The choice of the reorientatiansformation of diffusion tensors and thus to the computed
strategy will depend on the context of the diffusion tensatatistics. The interpretation of these statistics should take
transformation. If we consider that there is a mechanicaito account these errors on the transformation of diffusion
transformation due to the registration process (for instance, teasors. Third, the FS is consistent with the Log-Euclidean
registration of the same heart at a different time of its cyclehetric used to compute statistics that do not depend on
we would prefer the PPD. On the other hand, if we want the reference geometry. Indeed, if the reference geometry is
preserve geometric features of the diffusion tensor field (famodified, all registered diffusion tensors in a voxel of this
instance, in the case of a resampling of the heart), we woukference geometry are transformed with respect to the same
prefer the FS. The strategy used to transform the diffusioatation. Since the Log-Euclidean metric is rotation invariant,
tensors will influence the statistics as follows and thus thehe statistics computed in two different reference geometries
interpretation. are equivalent. On the contrary, since the PPD reorientation

We know that the transmural variation of the fiber oriendepends on the original diffusion tensor, each of the regis-
tation is a common feature between hearts. In our casetefed diffusion tensors in a given voxel are transformed with
inter-subject comparison, we would prefer the FS to presemaspect to a different rotation. Thus, one can easily show that
this feature. statistics computed with the Log-Euclidean metric would not

2) Non-Rigid Transformation of Real Cardiac DatSet- be equivalent in two different reference geometries. Further
ting up a thorough experiment to validate the choice of siudies on the comparison between the Log-Euclidean metric
reorientation strategy in the case of non-rigid transformatioagd a metric more consistent with the PPD transformation
is not trivial. We propose here a basic experiment that coulebuld be necessary. Consequently, we think that one should
help to find practical arguments to guide the choice of thgefer the FS reorientation strategy in the context of inter-
reorientation strategy. First, we register the whole cardiatibject cardiac DT-MRI registration for statistical analysis to
dataset to a given heart. This reference heart is not transfornpeeiserve geometric features, whereas the PPD reorientation
to minimize the influence of the reorientation strategy in thgirategy is better suited to the mechanical deformation during
following comparisons. After registering a heart to the geom#ie cardiac cycle.
try of the reference heart, we compare the eigenvectors of the
transformed DT-MRI with those of the reference image. Since IV. DIFFUSION TENSORSTATISTICS

both of the reorientation strategies preserve the eigenvaluésynce the DT-MRIs are transformed into the same coordinate
the difference between them only relies on the orientatiglyme e compute their first- and second-order statistics to
of the transformed eigenvectors. To evaluate the accuracye Gt act relevant information about the average diffusion tensors
the registration to the reference DT-MRI, we compute the.y their variability within a given population. Since the
angular differences between the eigenvectors of the referera%sion tensor space does not form a vector space, we cannot
diffusion tensor and the transformed ones obtained from bcEBmpute their Euclidean mean and covariance and we have
of the reorientation strategies. .This experiment is limited i, nsen to use the Log-Euclidean framework to compute those
the sense that only a strong d|ﬁergnce between them wolldisgics, Similarly, the geometric and physical interpretation
help to conclude. Indeed, these differences can be blurigdine ¢ « 6 covariance matrix is not straightforward and
by the inter-subject variability. Gathering the comparisons gfe nhropose simple expressions to extract the variabilities of
16 registrations using 2 reference hears)% of all the e eigenvectors and eigenvalues by projecting the covariance
registered voxels are better registered with the FS than Wil irices onto proper directions. The proposed method extends

the PPD. Furthermore, the average angular difference of e\ ious work [34] that computes statistics on eigenvectors
eigenvectors i9).3 degrees over all the voxels. These resultgg, extracting them from each diffusion tensor.

show that the quality of the registration on experimental data
is similar in both cases. Thus, we will rely on theoretical ) )
arguments to give preference to a reorientation strategy. A L0g-Euclidean Mean and Covariance
There exists several methods to compute statistics on the
diffusion tensor information. A statistical framework based on
a dyadic tensor representation of eigenvalue-eigenvector pairs
Finally, we propose to rely on the three following theoreticdias been presented in [34] to reduce the bias in the estimation
arguments to decide which reorientation strategy is bettafrthe mean and variance of the eigenvalues and eigenvectors.
suited for our inter-subject statistical study. First, the F®his framework has been extended for building brain DT-
preserves the geometric features of the diffusion tensor field4RI atlas in [33] by computing the mean, median and mode
Thus, using the FS, we can directly compare these features diffusion tensors. These values are computed based on a

D. Choice of the Reorientation Strategy
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Var We are interested in gaining further insight of the vari-
ar(e1s) ability of the whole diffusion tensor with the variability of
Var(es1) meaningful features such as the eigenvalues and eigenvectors.

Var(e12) We propose here new efficient tools to extract the variability

Var(eay) of the eigenvalues and eigenvectors around their mean from

V3 V3  the covariance matrix of diffusion tensors. The basic idea is

: to project the covariance matrix onto the directions given by

¥ Var(eszo) —an appropriate orthonormal bagi8/;};—1 ¢ of the tangent
Vo Var(c23) space of the dlfqu|o_n tensors manlfpld at the mean diffusion
: tensor (see Appendix for more details):
4 , . . 1

i< averages,. [Second CotmnOrientaton varabily of the sgenvectors /1~ V17 V1' Wa = 75Va V' +V2-vsT)
described by an ellipsoidal cone of uncertainty. Wo = Vs - V2t Wy = %(Vs . V1t +vy - V3t)

W3 =vs3 - vst We = %(Vz Vit vy - voh)
Euclidean metric that is not consistent with the nature of the ,
diffusion tensor space. Different authors use the same aﬁiﬁf\éhere_ the {V;}(i=1,2,3 are the eigenvectors of the mean
invariant metric based on Riemannian geometry to compLHgfus'on tensor.
statistics on diffusion tensors for different applications: anal-
ysis of principal modes of sets of diffusion tensors [31], ne\g
anisotropic DTI index [27], [28], segmentation of diffusion €
tensor images [30] and the basis of a general and consist
set of algorithms for diffusion tensor processing [29]. Recently,
the Log-Euclidean metric [32] has been proposed to provid
simpler and faster framework to compute consistent statistics E(6)\?) = vedW;)! - X - ved W)

on diffusion tensors. Indeed, the Log-Euclidean metric Ieadsi%ese variances aive directly the relative variability of the
a closed form solution whereas the computation of the affine- 9 y y

invariant metric is based on a minimization process. :ngnvﬁr:léing}sﬁlfég Ir;rt'g?]ciuq:d?hzn Epiﬁgéz\:]e s?a:cgaz!lri/ce
Owing to its simplicity and low computational time, we udy ! ute varl ! uct P !

use the Log-Euclidean metric. We compute the mékgy of 6d; = d;.0X; at the first order:

the transformed diffusion tensot®; and its corresponding  E(5d;?) = d;*[E(6A:%)] = di*[vedW;)! - - ved W;)]
unbiased covariance matriX [29] in the Log-space within
each voxelX of the average geometry:

1) Eigenvalues VariabilityLet us considefo\;};—1 2,3 the
viation of the eigenvalues;, = log(d;) about their mean
{he Log-space. Their variance@(é)\f) can be directly
rmulated as the projection of the covariance matrix onto
e directions of thgW; }i=12,3:

The variances of the diffusion tensor eigenvalues in the Log-
spaceE(6)\;*) are also interesting to study since they can

_ 1 N be linked to the normalized scatter measure of the diffusion
Diog(X) = exp(5y Zlog(Di(X))) tensors about their mean [33]. Indeed, the normalized scatter
N =t measureS, describes a global dispersion of all the eigenvalues
N(X) = 7N1— 2> Ve AD; (X)) - ved AD; (X)) at the same time:
i=1

N
1 =112 2
where ve€¢AD;) is the minimal representation [29] of N_lz”Di_D” 2 ZE(MZ’)
5.2 i=1 _ E(9D])
7 2

AD; = log(D;) — log(Diy) and where N is the S = ”HEHQ ==Dr - =L
size of the dataset. The minimal representation of a Z ;
diffusion tensor D = (Dij)m,:m’3 is vedD) = =
(D11,V2D12, D3, V/2D31,V/2D3z, D3s)'. Thus, the classi- By contrast, the variance of the eigenvalues in the Log-
cal Euclidean norm of this vector representation is equal §ace extracted from the covariance matrix gives information
the classical Euclidean norm of the diffusion tensor. on the normalized dispersion of each eigenvalues about its
) . i Log-Euclidean mean independently:

B. A New Analysis of the Diffusion Tensor Covariance Matrix 9

The norm of the covariance matrix/Tr(X) is actually E(\?) = %
the square root of the unbiased mean square distance of the d;

- 1 N ) 2) Eigenvectors Variability:Let us considefe;;}; j—1,2,3
samples to the mean diffusion tensgr=— Z IADi||” = the coordinates of the deviatiofdv;},—1 25 of the eigen-
N i=1 vectors {V; };=1,23 in the frame of the mean eigenvectors

1 Zveo(ADi)t-veC(ADi). Since the covariance matrix(see Fig. 7). These coordlnaFes corresponq to the tangent of
N—-1&~ the angle{tan(; ;)}: j—1,2,3 with the mean eigenvector. The
is formulated in the Log-space, its norm is homogeneous tgeojections onto thg W} ;—4 5 6) represent the rotation vari-
ratio quantifying the relative variability of the whole diffusionability of the coupled orthonormal vectofs,vs), (v1,Vs)
tensor. and (va, V) respectively aroundy, vo andvs (see Fig. 7):
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E(€232) = m[vec(w4)t I VG((W4)] of ! '
of . —Heart 125 C)
E(€132) — %[Vec(w/%)t Sy Vqu5)] Background Noise Condine Fibers Heart2 (18 )
2(\ I A3) oL jrciac Fiber Heart3(18°C) |
E(6122) — 72[V€C(W6)t B Vqu6)] / —Heart 4 (19° C)
2(A1 — A2) L ---Heart5(19°C) |

xn
The advantage of this formulation compared to previom%é
works [33], [34], where they study independently the dyad.”,
tensor corresponding to each eigenvector, is to get the eig =
vectors variability knowing that they are coupled to maks |
an orthonormal frame. We notice that these orientation vaZ
ances are dependent on the distance between the eigenvaZ T
When two eigenvalues are close to each other, the associc .|
eigenvectors are not well defined. Thus, high variances
eigenvectors may correspond to two different situations: eith
a high variability of well defined eigenvectors, or a situatio uu/" B
where eigenvectors are not well defined. On the contrary, Ic Histogram of the trace of diffusion tensors (m?.s=1) =
variances have a unique interpretation: the eigenvectors are
well defined and their variability is low. This dependencéig- 8. Histograms of the trace of the diffusion tensors in each heart acquired

. . . - e iffi t t 1! . The DT-MRI li 1 1t 1! th
on the definition of the eigenvectors is not specific to oﬂtgr']s?ée\?angmﬁrzeﬂveesen he DTMRIs are normalized to beter capture the

methodology since the one developed by [34] needs also to

extract the eigenvectors to build their corresponding dyadic

tensors. The main difference between the two approaches lies ] ) )

in the order of the computation of statistics. The dyadic tensf@ @0 inter-species comparison between the canine hearts and
approach first extracts the eigenvectors before computing thjuman heart. It provides a preliminary evaluation of the
statistics whereas in our method the tensor statistics are fl@fvance to use canine hearts for clinical applications. This is
computed before extracting the eigenvectors. Thus, in g first step towards further studies with larger databases.

framework, we can compute statistics on the diffusion tensor
even in an isotropic case. A. Data Acquisition

) 9 :
Erom_ those three .vanancdé(glj. ), we can dgscrlbe the We used a DT-MRI dataset ek vivofixed normal hearts (9
variability of each eigenvector with an ellipsoidal cone of

uncertainty (see Fig. 7) around that eigenvector. This is fgnine and 1 human hearts) acquired by the Center of Cardio-

contrast to the dyadic coherenee proposed by [34] and vascqlar Biqinfor_matics and Modeling (CCBM.) at the Johns
. . . . . Hopkins University [18] and available on the interheEach
used in brain population analysis [33] to assess the onentanﬁgart was placed in an acrvli tainer filled with Eombli
dispersion around an average eigenvegtor P ACTYIIC container fiied with Fomblin, a
perfluoropolyether (Ausimon, Thorofare, NJ). Fomblin has a
w—1_ /B2tDs low dielectric effect and minimal MR signal thereby increasing
201 contrast and eliminating unwanted susceptibility artifacts near
where the{3; } j—1.2.5) are the eigenvalues of the mean dyadithe boundaries of the heart. The long axis of the hearts were
tensorsv; - V¢ of the diffusion eigenvectors; sorted from the aligned with the z-axis of the scanner. Images were acquired

largest to the smallest. This dyadic coherence can be relafélf! @ 4-element knee phased array coil ona 1.5 T GHICV
to a variances® = 1 — 8; = s + f33, and thus to the MRI Scanner (GE, Medical System, Wausheka, WI) using

radius of a cone of uncertainty around the eigenvestor & dradient system (from 14 to 28 gradients) with mT/m

Therefore, the dyadic coherence leads to a circular cone BfXimum gradient amplitude and a 150rii/s slew rate. The

uncertainty whereas the projection of the covariance matfigsolution of the images are arouﬁdil >,<.0'3 x 0.9 mmj per
leads to an ellipsoidal cone of uncertainty, which is a mopexel. The temperature during acquisition was different from
detailed description of variability. one heart to another in a range from 1825C.

Heart 6 (20° C)
Heart7(20°C) |
Heart 8 (20° C)
Heart9(20°C) -

1

V. EXPERIMENTAL RESULTS B. Pre-Processing Data

In this segtign, we use the presented framework to build "_’dee apply a basic threshold with the Log-Euclidean norm of
study a stat_lsncgl atlas Of DT-MRIs for a petter _unc_zl_erstand!qge diffusion tensors to separate the heart from the background
of the car_dlac f|b<_er archlfcecture and of its variability ‘_N't_h'rhoise. The histogram of the trace of the diffusion tensors shows
a pqpulauon. of nine canine hearts. V\_/e.propose prellmmatrp(at there is an important dispersion which is not necessarily
studies to bridge the gap between statistical models, synth to an intrinsic variability between hearts (see Fig. 8).

moqE’l.S and patlent-sfpemﬁc models. First, we construg:t tlt—‘gr instance, the temperature of acquisition can be different.
statistical atlas of canine hearts. Second, we compare this perform a global normalization of the mean value of

with a synthetic ”‘.Ode.' .Of r_nammahan hearts tp gvaluate tl?r?e diffusion tensors norm to minimize the influence of this
relevance of the simplifications made when building the syn-
thetic description of the fiber orientation. Finally, we proceed 2http://www.ccbm jhu.edu/research/DTMRIDS.php
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Fig. 9. [Upper Left Average geometry from the anatomical MRIQther§ <2
Top (Upper Righ}, side Lower Righ} and bottom lLower Lef) views of fiber E RE |
tracking computed on the average DT-MRI. The colors describe the orientatz”
of the primary eigenvector according to the color sphere (visualization a ’\,\-\'\' \
tensor processing were performed with MedINRIA available at http://www 1 o b
sop.inria.fr/asclepios/software/MedINRIA/). Atlas data are available on tt jii . ..
internet at http://www-sop.inria.fr/asclepios/data/heart. L L - |

Standard deviation of the (V;, V;) orientation
around V, (degrees)

Fig. 11. [First Row Histograms of the global variability /7'r(3) of the

whole diffusion tensor (homogeneous to a ratio and expressed as a percentage)
and the variability of the primary, secondary and tertiary eigenvalues in the
Log-space{\/E((S/\ﬂ)}i:m,g which are also the relative variability of

the eigenvalues in the Euclidean spacgedond RojvHistograms of the
standard deviations of th@/, V2) frame orientation arountls, the (V3, V1)

frame orientation around> and the(V>, V3) frame orientation around;
eigenvectors (angles in degrees).

Fig. 10. Global variabilityy /7'r(X) (homogeneous to a ratio and expressed
as a percentage) of the whole tensor in three different orthogonal viewsi acquisition and registration artifacts. The histogram of the
short axis view and 2 long axis views. . . .
norm of the covariance matrix (see Fig. 11) shows an average
variability of the whole diffusion tensor of around%.

In order to have a better interpretation of this covariance

dispersion. Thus, the inter-subject statistical analysis of they and to understand the origin of the variabilities, we
eigenvalues provides an information about the dispersion ject it onto the orthonormal basi§iV;},_, ¢ of the
tfi=1,...

the diffusion rates over the space. To include realistic avera gent space at the mean diffusion tensor. In Fig. 12, we

diffusion rates, we scale the eigenvalues of the DT-MRI aﬂ%%n observe the spatial distribution of the variability of the

with the Log-Euclidean mean (which is the geometric meaé]genvalues. The percentages of variability of i 2" and
in a one dimension space) of all these normalization factorgpd eigenvalues are mostly lower than% in the compact

myocardium (see Fig. 11). The variabilities of the diffusion

C. Statistical Atlas rates are homogeneous over the heart and stable within the
We applied the proposed framework to the dataset of niR@pulation.

canine hearts presented previously. We obtain an averag&xtracting the variability of the eigenvectors orientation is
geometry (see Fig. 9) and a smooth cardiac DT-MRI atlasaportant to evaluate the variability of the myocardial fiber
In Fig. 10, we can observe the norm of the covariance mati@xchitecture. As shown in Figs. 11 and 13, the mode of
showing a global stability of the compact myocardium anthe standard deviations afe9 and 7.7 degrees for the two
several variable regions, especially at the RV and LV endocaotations around the secondary and tertiary eigenvectors in the
dial apices where the fiber structure is probably less organizethnes containing the primary eigenvector. These two values
Some other variabilities at the surface of the heart are also diescribe the dispersion of the fiber orientation that appears to
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Fig. 12. Relative variabilities of the primary, secondary and tertiary eigefrig. 13. Standard deviation of th@/;, V2) frame orientation around’s,
values{\/ E(5);2)}i=1 2,3 about their respective mean. These variabilitie§e (V3, V1) frame orientation arount and the(1z, V) frame orientation

are shown in three different orthogonal views: a short axis view and 2 lo@§oundV: eigenvectors (angles in degrees). These variabilities are shown in
is Vi three different orthogonal views: a short axis view and 2 long axis views.
axis views. 9 g

be consistent within the population. soidal template geometry of the ventricles. Since this synthetic
The orientation of the laminar sheets described by tlieescription is simply a vector field of the fiber orientation,
rotation of the plane Sp&w,,vs) aroundv; shows a much we only use the primary eigenvector of the statistical atlas.
higher mode of the standard deviation wi#2.7 degrees. We compare the histograms of the angular difference and
Mostly located in the sub-epicardium and sub-endocardiumit§ Mahalanobis distance between the fiber orientations of
the left ventricle, these high variabilities of the laminar she#lte synthetic model and the atlas. In Table | and Figs. 14
orientations could be due to the presence of two populatioasd 15, we observe that the distribution modes of the synthetic
of symmetric laminar sheets in the same heart [18]. The exodel (9.6 degrees and.95 times the standard deviation) are
istence of these two populations was explained as the optirhidher than the distribution modes of the canine hed&s (
configurations of the fibers to maximize the systolic shear [53]egrees and.58 times the standard deviation). The synthetic
Second, since the secondary and tertiary eigenvalues are closedel is clearly outside of the population of canine hearts.
one to each other than to the primary eigenvalue, we cdhe ellipsoidal geometry and the fiber orientations of the
expect to have a low confidence in their definition. But aynthetic model are not accurate enough to catch all their
low confidence in their definition means either that there &ibtle variations. For instance, in the short axis view the
no laminar sheets structure, or that diffusion tensors canmtiscontinuity at the crossing of the two ventricular walls is
model the presence of two populations of laminar sheets niot realistic [54]. Moreover, the synthetic description reaches
the voxel. Beside these high variabilities in the sub-epicardiuits limits at the right ventricular and left ventricular apices
and sub-endocardium, the laminar sheet orientations are stitiere the modeling probably needs different analytical laws
globally less consistent within the population than the fibdérom the compact myocardium.
orientation.

E. Comparison of the Atlas with a Human Heart

D. Comparison of the Atlas with a Synthetic Model There is noin vivo access to high resolution data and
Synthetic models of the cardiac fiber architecture, formuormal hearts are preferred to be transplanted rather than
lated by analytical laws, are usually built from commomsed for research purposes. Since studies of cardiac fiber
features observed on mammalian hearts and formulated drghitecture are mainly based on dissections amdvivo
analytical laws that simplify the reality. The synthetic moddDT-MRI acquisitions of other mammalians, comparing the
proposed in [8] describes the fiber orientations in an elligtatistical canine atlas with a human data gives the opportunity
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Fig. 14. Normalized histograms of the angular difference (degrees) of th@. 15. Mahalanobis distance of the angular difference (times the standard
primary, secondary and tertiary eigenvectors between the atlas and: the cadmeation) of the primary, secondary and tertiary eigenvectors between the
hearts, the human heart and the synthetic model. atlas and: the canine hearts, the human heart and the synthetic model.

to provide preliminary results on the relevance of using prigent with the atlas building framework. Then, we perform a

knowledge from canine data in clinical applications. statistical comparison at each voxel. First, we compute the
Only one human heart is available in the JHU database, amstmalized Mahalanobis distange[29]:

even if it is a high quality acquisition, the quality of the heart

itself is not as good as the canine ones due to its previous

usage for clinical applications. It limits the conclusion of this o

study but since it is rare to have access to human data at highere AD = log(Dhuman — log(Diog) and M = 6 the

resolution, it is a first step towards a more exhaustive intettmension of the diffusion tensor space.

species comparison of the cardiac fiber architecture. The mode of the normalized Mahalanobis distancé.49
We register the human data on the statistical atlas accordimnbereas it is lower tharl for canine hearts of the dataset.

to the steps described in the Sections Il and Il to be consiEs have a better understanding of the origin of this differ-

1
9 _ ¢ -1
F Brog, Do) Mveo(AD) X~ 1.veqAD)
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Eigenvector/Heart | Canine Hearts| Human Heart| Synthetic Model| . . . . .
Primary 50°- 058 T T01° - 08T | 19.6°- 095 inter- and intra-species statistics. A better' understanding of
Secondary 11.6° - 0.57 | 36.2° - 1.15 - the inter-species differences would help for instance to extend
Tertiary 11.4°-0.46 | 29.1° - 1.09 - experimental results from one species to another. Building and
TABLE | comparing statistical atlases of normal and pathological hearts

DISTRIBUTION MODES OF THE ANGULAR DIFFERENCES BETWEEN THE COU'd also he|p in a better quantiﬁcation of the patho]ogy, for
LSEIECTORS(OEGREEY KD OF A CORRESPONDILE  instance in the remodeling process. |
Moreover, such a statistical atlas offers a valuable prior
knowledge in the context of electromechanical modeling of the
heart. The information about the laminar sheets is particularly
ence, we compare the eigenvalues and the orientation of tRtevant since it has been shown to influence significantly the
eigenvectors (see Figs. 14 and 15). The mode of the angutardiac motion [53], [56], in particular the wall thickening and
differences of the primary, secondary and tertiary eigenvectdhe apico-basal torsion [3]. A precise study of the impact of the
are respectivelyl0.1, 36.2 and 29.1 degrees. To comparecardiac fiber architecture on the electromechanical simulations
these differences with the variability of the canine populatiomould make it possible to design the best fiber model for
we compute the Mahalanobis distance of these orientatigimulation-based clinical applications.
parameters that are respectivélg1, 1.15 and1.09 times the
standard deviation (see Table I). These results confirm that the APPENDIXA
fiber orientations between human and canine hearts are more  ProJECTIONS OF THECOVARIANCE MATRIX

consistent than the laminar sheet orientations. . . .
Let us consider the dyadic tensor decomposition of the

average diffusion tensor in the Log-space:

3
W= IOg(ﬁk}g) = Z AV Vit

=1

VI. CONCLUSION AND PERSPECTIVES

We presented a computational framework to build a sta-
tistical atlas of cardiac fiber architecture based on DT-MRIs.
We used most recent advances in diffusion tensor statistics to ]
propose new complete and consistent tools to translate tHéffereA: = log (d;) and the{d; }i=1 » 5 are the eigenvalues of
covariance matrix into the variances of the eigenvectors al{tf diffusion tensojog. Considering the deviations\; and
eigenvalues. These tools are well-suited to study the variabilty: Of the eigenvalues,; and the eigenvectorg; around the
of cardiac fibers and laminar sheets within a population. Mean diffusion tensor, the previous expresion becomes:

The registration strategy we proposed for atlas building is 3
not the only one fitting to our framework. Studying the choice W+ 6W = Z()‘i +ON) (Vi 4 0Vy). (v + 6v;)*
of the registration algorithm on the diffusion tensor statistics i=1

could help in refining the quality of the results. Furthermore, Let us consider the incremeat; of each vectodv; in the
most recent advances in statistics on diffeomorphisms [Stame of the mean eigenvectofs; };—1 2 3
will improve the consistency of the registration framework.

One could also think about improving initialization step by 0V1 = £11V1 + €12V2 + €13V3
adding a polyaffine registration [55] to better match the main 0V2 = £21V1 + €22V2 + €23V3
cardiac structures as the ventricles and the atria. 0V3 = €31V1 + €32V2 + €33V

We emphasized the differences of two common diffefrhese coordinates;; in the frame of the mean eigenvectors
ent reorientation Stl’ategies when tranSfOfming the diﬂ:USiC{Q/j}jzl 2.3 Correspond to the tangent of the ang|e between

tensors. TheFinite Strain (FS) reorientation strategy is ay, + §v;, and v;. Sincev;,v, andvs form an orthonormal
geometric transformation preserving the gradient of diffusigfame of R3, g;j = —¢j; at the first order:

tensors. It seems more suited to the comparison of geometric
parameters of diffusion tensor fields. On the other hand, thdVi +0Vi)* - (V; +0V;) = (1 + &ii)eji + (L +€j5)ei5 =0
Preservation of the Principal Directio(PPD) is a mechanical (L +eii)eji + (1 +e55)eq5 + o(eiy,€51) =0
transformation of the underlying structure. This strategy is €ij +€ji = 0(€ij,€ji)
preferred for the comparison of diffusion tensor fields when Furthermore, thev; +6v; };—1 5.5 are unit vectors. It means
their regls_tratlon reaI.Iy has. an underly!ng mechanical meaningere is a relationship betweeml; 10 ande;s:

We believe that this statistical atfawill lead to a better un-
derstanding of the cardiac fiber architecture. For instance, the 1+ 52-1)2 + 5?2 + 533 =1
application of this framework to nine canine hearts confir
the already established stronger intra-species stability of fib
orientations than laminar sheet orientations. As preIiminaW/e )
results of an inter-species comparison between a human h a\t' _ S
and the statistical atlas of canine hearts, we observe the gg% wing expression:
inter-species stability of the fiber orientations. Of course, OW = AWy + 0 Wa + SA3 W3 + £23v2( A2 — A3) Wy
the access to a larger database will provide more reliable+613\/50‘1 = A3)Ws + €12V2(A1 — Ao)We .

where the{W,},—1 23 form an orthonormal basis of the
3available at http://www-sop.inria.fr/asclepios/data/heart tangent space at the mean diffusion tensor:

us,ei; = —3(e2, +¢€2,) + o(e2,,,€2,) which means that
can consider that;; = 0 at the first order.
nally, considering the first order terms we obtain the
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Wi =vy- vyt Wy = \%(V3 Vol + vy - v3!)
Wa =V - Vot W5 = %(Vs Vi’ + vy - vs') [1]

Thus, we can formulate the variancessef, €13, €23, d\1,
dXo and Az with respect to the projections of the covariance?
matrix onto the orthonormal bas{§V,},—.,. ¢ of the tangent
space:

E(5M\2) = ved W)t - X - vedT7) 8

E(6)\:%) = vedWa)t - = - ved W)
E(6)3%) = vedWs)t - 2 - vedWs) "

E(eds) = 5z Ve Wi)! - - ved(W,)]

2(A2 — A3)
E(E%z))) = m[veq‘/{/}))t Y. VedW5)] [5]
E(ely) = m[veo(WG)t - % - vedWs)]

[6]
APPENDIXB

AFFINE TRANSFORMATION OF APLANE 7

The affine transformation of the parameters of a plane is
known since a long time. We present here a simple demon-
stration provided in [57]. [

Let P be a plane and its normal The affine transforma-
tions preserve the parallelism and therefore the image of a
plane is plane. It means that every vectoin the planeP is
transformed through an affine transformatidninto a vector (g
v/ = Av in the image plane”’ (see Fig. 16). By definition,
every vectorv in the planeP is orthogonal to its normal:
vt.n = 0. We can writev’-n = 0 as follows:n(A=tA)v = 0.
A modification of this expression leads t@4~')'n)*- Av = 0
and thus to((A~1)tn)t - v/ = 0 which is the definition of a
vector orthogonal to the plang’. Finally, the normaln’ of

(10]

. . ) A l)tn [11]
the image planeé®’ is given byn’ = (77

[12]

T-. [13]

—

Affine Transformation A (14]

[15]
Fig. 16. Affine transformation of a plan® with normaln into a planeP’
with normaln’.

[16]
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