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Abstract. In this paper, a statistical atlas of DT-MRIs based on a pop-
ulation of nine ex vivo normal canine hearts is compared with a human
cardiac DT-MRI and a commonly used synthetic model of the fibre ori-
entation. The aim of this paper is to perform an statistical inter-species
comparison of the cardiac fibre architecture and to assess the quality of a
synthetic description of the fibre orientation. First, we present the frame-
work to build a statistical atlas of cardiac DT-MRIs providing a mean
and a covariance of diffusion tensors at each voxel of an average geom-
etry. According to the registration steps of this framework, we register
the human and synthetic data on the statistical atlas. Finally, for each
eigenvectors of the diffusion tensors, we compute the angular difference
with the average atlas and its Mahalanobis distance to the canine popu-
lation. The results show a better consistence of the fibre orientation than
the laminar sheet orientation between the human and the canine heart,
while the homogeneous synthetic model appears too simple compared to
the complexity of real cardiac geometry and fibre architecture.

1 Introduction

The cardiac fibre architecture plays a key role in normal and pathological heart
functions. For many years, the orientation of these fibres and their arrangement
in laminar sheets have been studied with histological slices [13,22]. Recently, the
measurements of fibre structure have been eased with diffusion tensor magnetic
imaging (DT-MRI) since a correlation between the myocardium fibre architec-
ture and diffusion tensors has been shown [10, 19]. The acquisition of high res-
olution in vivo DT-MRI is a very challenging task due to cardiac motion [8].
Hence, modeling the cardiac fibre architecture [4, 12, 18] is essential for clinical
applications such as the planning of patient-specific cardiac therapies [21]. This
architecture has been included into an electromechanical model based on a single
canine DT-MRI acquisition of an ex vivo heart [20] or a synthetic model [21] reg-
istered on the patient data. These electromechanical models are usually limited



to the cardiac fibre orientation whereas the laminar sheets have been shown to
contribute to the cardiac motion [3, 7, 14, 24], especially for a better electrome-
chanical modeling of the wall thickening and the apico-basal torsion.

We propose here to compare a statistical atlas of the complete cardiac fibre
architecture of a population of nine ex vivo canine hearts with a human heart
and a synthetic model used in [21]. The inter-species comparison of the cardiac
fibre architecture is a first step to assess the relevance of a canine statistical atlas
for clinical applications. A one-to-one comparison between the synthetic model
and the canine hearts has already been performed [23] but the quantification
of their differences was limited to the percentage of angular differences below a
given threshold. We propose here to extend these studies comparing the synthetic
model with a statistical atlas including an information about the variability of
the population. We also study the spatial distribution of their differences to
know where the synthetic model needs to be improved.

First, we present an extension of the framework for building a statistical atlas
of the cardiac fibre architecture proposed in [17]. Second, we perform an inter-
species comparison of the cardiac fibre architecture between a human heart and
a population of canine hearts. Finally, we compare the synthetic model used for
electromechanical modeling with the statistical atlas.

2 Data Acquisition

We used a DT-MRIs dataset of ex vivo fixed normal hearts (9 canine and 1
human) acquired [11] by the Center of Cardiovascular Bioinformatics and Mod-
eling (CCBM) at the Johns Hopkins University and available on the internet5.
Each heart was placed in an acrylic container filled with Fomblin, a perfluo-
ropolyether (Ausimon, Thorofare, NJ). Fomblin has a low dielectric effect and
minimal MR signal thereby increasing contrast and eliminating unwanted sus-
ceptibility artifacts near the boundaries of the heart. The long axis of the hearts
were aligned with the z-axis of the scanner. Images were acquired with a 4-
element knee phased array coil on a 1.5 T GE CV/i MRI Scanner (GE, Medical
System, Wausheka, WI) using a gradient system (from 14 to 28 gradients) with
40 mT/m maximum gradient amplitude and a 150 T/m/s slew rate. The reso-
lution of the images are around 0.3× 0.3× 0.9 mm3 per voxel. The acquisition
temperature was different from one heart to another in a range from 18 to 25◦C.

3 Construction of the Statistical Atlas

The construction of the statistical atlas of the cardiac fibre architecture is based
on a framework [17] using the Log-Euclidean metric [2]. We modified this frame-
work providing an average cardiac geometry that includes both atria and where
diffusion tensors are normalized to minimize the influence of acquisition param-
eters on statistics. We also preferred another reorientation strategy [1] in the
diffusion tensor registration process.
5 http://www.ccbm.jhu.edu/research/DTMRIDS.php



Pre-Processing: First, we apply a basic threshold to the DT-MRIs based on
the Log-Euclidean norm [2] to segment the meaningful cardiac structures in
terms of cardiac fibre architecture. While our previous work [17] was focusing
on the compact myocardium of the ventricles, we extend the construction of
the atlas to the atria. To avoid any influence of the dispersion of the diffusion
rates that are not due to an intrinsic variability between hearts such as the
temperature of acquisition, we perform a global normalization of each diffusion
tensor field to equalize the average value of the histogram of the norm of diffusion
tensors of each heart. The statistical analysis of the diffusion rates can still
give an information about the spatial variability of diffusion rates. The resulting
normalized atlas is finally scaled by the average of all these normalization factors
to include realistic averaged diffusion rates.

Fig. 1. [Left ] Registration of anatomical MRIs using an iterative process averaging the
intensities (light and dark grey) and the shape (circles and squares) of the dataset
(from Guimond et al. [9]). [Right ] The iterative registration process uses the average
geometry as a reference for the next step. The deformation field T n

i is a composition
of an affine transformation S (in our case a non-uniform scaling transformation) and
a non-rigid deformation.

Registration of the anatomical MRIs: The core of the registration algo-
rithm is exactly the same as the one we already presented [17]. First, we proceed
to a global registration based on a non-uniform similarity transformation de-
fined by three manually located landmarks: the apex and the two corner points
in the valve plane. Secondly, to find the residual non-rigid deformation we use
a hybrid intensity- and landmark-based registration algorithm [5]. With this al-
gorithm we can interactively select pairs of landmarks which will constrain the
non-rigid intensity-based registration. This hybrid algorithm can be used with
any intensity-based registration algorithm and in this case, we combine it with
a diffeomorphic registration algorithm [6] based on the mutual information.

In this framework, the geometry of the average anatomical MRI is the ge-
ometry of a chosen reference heart. We propose here to add to this framework
an iterative process that converges to an average geometry and intensities of



anatomical MRIs. We based this modification on the brain averaging strategy
proposed by Guimond et al. [9]. We iteratively build an average geometry while
we register the dataset on it. We first register the dataset of images {Ii}i=1,...N

on the current reference image In
mean (the initial reference image I0

mean is cho-
sen among the dataset) according to the steps described at the beginning of
this section. The resulting deformation fields Tn

i registering the initial images Ii

to the current reference image In
mean are averaged. The inverse of this average

deformation field Tn
mean is applied to the current reference image In

mean which
then gets closer to a barycentric geometry of the dataset (see Fig. 1). Finally,
the intensities are averaged in this new average geometry. Therefore through
the deformation fields Tn

i , the original geometry and intensities of each heart
are taken into account in the new average heart In+1

mean. One iteration can be
summarized in the following equation:

In+1
mean(x) =

1
N

N∑
i=1

Ii

(
Tn

i ◦ [Tn
mean]−1(x)

)
where:
x is the voxel position,
Ii is the anatomical MRI of the sample i where i = 1 · · ·N (N = 9 in our case),
In

mean is the current average anatomical MRI at the step n,
T n

i is the deformation field matching the current average image In
mean to Ii,

T n
mean = 1

N

NX
i=1

T n
i is the average deformation field at the step n.

These steps are repeated using the new average heart In+1
mean as the reference

geometry until it converges. In practice, a few iterations are sufficient to get a
stable geometry. Finally, the outputs of this process are an average geometry
and intensities of the anatomical MRIs and a dense deformation field for each
heart of the dataset.

Registration of the DT-MRIs: Since the anatomical MRIs and the DT-MRIs
are co-acquired, we can apply directly the deformation fields obtained in the pre-
vious section to the DT-MRIs. We use the Log-Euclidean metric to interpolate
diffusion tensors, and the Finite Strain (FS) reorientation strategy is preferred
to the Preservation of the Principal Direction (PPD) [1] to transform the ten-
sors. Indeed, the FS has the property to preserve the gradient of the diffusion
tensor field and thus the transmural variations of the fibre and laminar sheet
orientations known to be common features between hearts. Furthermore, this
reorientation strategy is consistent with the similarity-invariant Log-Euclidean
metric used afterwards. The statistics computed with the Log-Euclidean metric
should not depend on the reference geometry which would not be the case with
the PPD where the reorientation depends on the original tensor.

Statistics: The Log-Euclidean framework [2] provides a consistent and rigor-
ous framework to study the statistical variability of diffusion tensors. Indeed,



Fig. 2. [Upper Left ] Average geometry of the canine hearts. [Upper Middle] Side view
of fibre tracking computed on the average DT-MRI. [Upper Right ] Fibre tracking on a
few slices of the average DT-MRI to show the transmural variation of fibre orientation.
[Down] Transmural variation of the laminar sheet orientation. Tensor visualization with
cylinders. The base of the cylinder is the plane given by the primary and secondary
eigenvectors. The height of the cylinder shows the laminar sheet orientation. The colors
describe the orientation of the primary eigenvector according to the color sphere.

in this framework the space of diffusion tensors becomes a vector space where
the statistics are consistent with the positivity constraint of the diffusion ten-
sors. We compute the Log-Euclidean mean Dlog of all the registered DT-MRIs
{Di}i=1,...N and the corresponding unbiased covariance matrix Cov of the whole
diffusion tensors [15] at each voxel x of the average geometry:

Dlog(x) = exp
(

1
N

N∑
i=1

log
(
Di(x)

))
Cov(x) = 1

N − 1

N∑
i=1

vec
(
∆Di(x)

)
.vec

(
∆Di(x)

)t

where:

N is the size of the dataset,

∆Di(x) = log
“
Di(x)

”
− log

“
Dlog(x)

”
,

vec(D) = (D11,
√

2D12, D22,
√

2D31,
√

2D32, D33)
t is the minimal representation [15]

of the diffusion tensor D = (Dij)i,j=1,2,3

We project this covariance matrix of diffusion tensors along specific directions
in the tangent plane at the mean diffusion tensor to extract the variances of the
eigenvalues and eigenvectors orientations [16].



Resulting Statistical Atlas: We applied this framework to the dataset of 9
canine hearts presented previously in Section 2. We obtain an average geometry
and a smooth cardiac DT-MRI atlas describing the whole cardiac fibre archi-
tecture: the fibre and laminar sheet orientations (see Fig. 2). The norm of the
covariance matrix, homogeneous to a ratio, shows a global stability of the car-
diac fibre architecture among the population of canine hearts (see Fig. 3). The
average variability of the whole diffusion tensor is around 10%. A higher norm
of the covariance matrix at the RV and LV endocardial apices and in the pap-
illary muscles reveals regions where the fibre structure is probably not as much
structured as the compact myocardium.

Fig. 3. Global variability
p

Tr(Cov) (homogeneous to a ratio and expressed as a per-
centage) of the whole tensor in three different orthogonal views: a short axis and 2 long
axis views.

4 Comparisons of Cardiac Fibre Architectures

4.1 Comparison Measures

Any given new dataset can be registered with the atlas using the presented
methodology. Then we perform the comparison using different measures:

– the normalized Mahalanobis distance µ̃ to the atlas at each voxel, given
by the formula [15]: µ̃2(Dlog, Dheart) = 1

dvec(∆D)t.Cov−1.vec(∆D) where
d = 6 is the dimension of the diffusion tensors space.

– the spatial distribution of the angular difference of the primary eigenvector
(see Fig. 5).

– the histograms of the angular difference of the eigenvectors with the atlas,
for a qualitative statistical comparison (see Fig. 6, left column).

– the histograms of the Mahalanobis distance of the eigenvectors orientation
to the atlas, for a quantitative statistical comparison (see Fig. 6, right col-
umn). This gives the angular differences of the eigenvectors normalized by
the variance of the statistical atlas at each voxel. Thus, we measure the dif-
ference of the eigenvectors orientation according to its dispersion among the
population used to build the atlas.

A synthetic view of the comparison of the histograms is then given by the mode
of the distributions (see Table 1).



4.2 Atlas Comparisons with a Human Heart and a Synthetic Model

We proceed to a limited inter-species comparison of the fibre architecture be-
tween human and canine hearts. Indeed, the difficulty to obtain normal human
hearts for research purpose (normal hearts are preferably used for transplanta-
tion) is the main obstacle to the building of a human atlas. In our case, only one
human heart is available in the JHU database, and the quality of this heart is
lower than that of canine DT-MRIs. The mode of the normalized Mahalanobis
distance is 1.49 whereas it is lower than 1 for canine hearts of the dataset. Most
of the important differences are located in the right ventricular wall and part of
the septum. In Fig. 6 and Table 1, we observe that the fibre orientation of the
human heart is closer to the canine population than its laminar sheet orientation.

Fig. 4. [Left ] Geometry of the synthetic model. [Middle and Right ] Elevation angle of
the synthetic fibre orientation in short axis and long axis views (from Sermesant et
al. [21]).

Fig. 5. [Up] Angle between the primary eigenvector of the atlas and the human heart.
[Down] Angle between the primary eigenvector of the atlas and the fibre orientation of
the synthetic model. (one short axis and two long axis views).

The synthetic model proposed in [21] describes the fibre orientation in an
ellipsoidal template geometry of the ventricles(see Fig. 4). The orientation dif-
ference of the primary eigenvector of the atlas and the fibre orientation of the
synthetic model has a mode of 19.6 degrees while the mode for the canine hearts
is 6.9 degrees, and respectively 0.95 and 0.58 for the mode of its Mahalanobis



distance (see Fig. 6 and Table 1). The synthetic model is clearly different from
the population of canine hearts. For instance, we observe in the short axis view
a modeling problem at the crossing of the two ventricular walls. Indeed, the
synthetic model has an important discontinuity in this region. Furthermore, the
synthetic approach reaches its limits at the right ventricular and left ventricular
apices (see Fig. 5) where the fibre organization modeling probably needs dif-
ferent analytical laws from the compact myocardium. The ellipsoidal geometry
and the fibre orientation of the synthetic model are too simple to be realistic in
catching all the subtle variations of the fibre orientation.

Eigenvector/Heart Canine Hearts Human Heart Synthetic Model

Primary 6.9◦ - 58% 10.1◦ - 81% 19.6◦ - 95%

Secondary 11.6◦ - 57% 36.2◦ - 115% -

Tertiary 11.4◦ - 46% 29.1◦ - 109% -
Table 1. Modes of the distributions of the angular differences of the eigenvectors and
their Mahalanobis distances (respectively in degrees and % of the variance).

5 Conclusion and Perspectives

We presented here a framework for building a statistical atlas of cardiac fibre
architecture in an average geometry. This statistical framework can be extended
to comparison between specimen or species. The resulting atlas has been com-
pared to a human heart and a synthetic model of the fibre orientation. In the
case of the human heart, we observed more differences on the laminar sheet
orientation than on the fibre orientation. The synthetic model seems to need
some improvements for a better description of the fibre organization, especially
adding an accurate description of the laminar sheet orientation. Having access to
canine and human heart databases of greater size should help in improving the
relevance of the statistical atlas and the inter-species comparisons. The effects
of these differences on the electromechanical behavior still remain to be studied
for a complete evaluation of the relevance to use such atlases in patient-specific
clinical applications.
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Fig. 6. [Left Column] Normalized histograms of the primary, secondary and tertiary
eigenvectors variations around their mean. [Right Column] Mahalanobis distance of the
primary, secondary and tertiary eigenvectors variations around their mean.
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