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Abstract

Multiple sclerosis diagnosis and patient follow-up can be helped by an evaluation of the lesion load in
MRI sequences. A lot of automatic methods to segment these lesions are available in the literature.
The MICCAI workshop Multiple Sclerosis (MS) lesion segmentation Challenge 08 allows to test and
compare these algorithms. This paper presents a method designed to detect hyperintense signal area on
T2-FLAIR sequence and its results on the Challenge test data. The proposed algorithm uses only three
conventional MRI sequences: T1, T2 and T2-FLAIR. First, images are cropped, spatially unbiased and
skull-stripped. A segmentation of the brain into its different compartments is performed on the T1 and
the T2 sequences. From these segmentations, a threshold for the T2-FLAIR sequence is automatically
computed. Then postprocessing operations select the most plausible lesions in the obtained hyperintense
signals. Average global result on the test data (80/100) is close to the inter-expert variability (90/100).
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Multiple Sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the Central Nervous System
(CNS). In people affected by MS, patches of damage called lesions appear in seemingly random areas of
the CNS. An MRI exam is required to establish MS diagnosis using McDonald criteria [12]. In addition
they are often used in patients follow-up (for therapeutic decision) and clinical studies [10]. MRI analysis
uses currently Barkhof/Tintore criteria [1, 20] which include lesions number, location enhancement and are
taking into account spinal cord lesions [15].

These lesions can appear as a hyperintense signal or as a hypointense signal depending on its properties and
on the used MRI sequence. Lesions are hyperintense signals in T2 and proton density sequences. Active
lesions are a piece of evidence of blood-brain barrier leakage and are the only lesion subtype in hyperintense
signals in the T1 sequence with Gadolinium. Necrotic lesions are hypointense signal in T1 sequence. Ex-
cept for necrotic lesions, T2-FLAIR sequence allows a better lesion-healthy tissue differentiation but bony
artefacts and flow artefacts are present in the image.

A binary segmentation of the lesions can help to the MS diagnosis and patient follow-up. Manual lesion
segmentation is a fastidious task and depends on intra and inter-expert variabilities. For this reason, a lot
of automatic lesion segmentation algorithms have been developed in the past 20 years [19]. The Multiple
Sclerosis (MS) lesion segmentation Challenge 081 offers the possibility to compare these methods. First, a
set of train data (with manual segmentation of expert) is available to optimize the different methods. Then,
lesion segmentation has to be performed on a set of test data. Results are then compared with manual
segmentation by an expert.

The method which is proposed in this article segments automatically the hyperintense signal in the T2-
FLAIR sequence. First, the method is described. Then results on the test data of the workshop are given and
discussed.

1 Method

The challenge dataset are co-registered and isotropically resampled images of T1, T2, T2-FLAIR, DTI-
FA and DTI-MD data. The method proposed in this article segments T2-FLAIR lesions from three MRI
sequences (T1, T2 and T2-FLAIR) and is divided in different steps. First, preprocessing steps allow to
normalize images and to focus on a region of interest. Secondly, a classification of the brain is performed
thanks to an expectation-maximization algorithm [4] applied on the T1 and T2 sequences. These steps are
similar to [7]. In a third step, information given by the obtained segmentations and morphological operations
allow to extract lesions.

1.1 Preprocessing

MRI sequences of the MS lesion segmentation Challenge 08 are already co-registered. This means that a
same voxel in the different sequences represents the same location in the brain. However, different prepro-
cessing steps have to be performed before segmenting the images (Figure1).

1http://www.ia.unc.edu/MSseg
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Preprocessing steps on CHBtest1 Case01 test data: (a) given T2 sequence, (b) cropped
T2 sequence, , (c) skull-stripped and unbiased T2 sequence, (d) given T1 sequence, (e) cropped T1
sequence, (f) skull-stripped and unbiased T1 sequence, (g) given T2-FLAIR sequence, (h) cropped
T2-FLAIR sequence, (i) skull-stripped and unbiased T2-FLAIR sequence.
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Image cropping

This step aims to decrease the number of voxels belonging to the background. It also improves the compu-
tation speed of following processes. It is performed using the MNI2 atlas [9, 8] and an affine registration
algorithm [14]. First, the average T2 sequence of the atlas is registered on the T2 sequence. Then, the
obtained transformation is applied on all the images of the atlas. The obtained information allow to crop the
MRI sequences focussing on a region of interest.

Skull-stripping

This step extracts the intracranial space from the image. Many methods such as [17, 18] are described in
the literature. Our method is described in [7]. A first expectation-maximization algorithm is performed on
the couple of sequences T1 and T2 and leads to a first segmentation of the brain. Morphological operations
(detection of the largest connected component, holes filling ...) allow to get the brain mask.

Intensity Normalization

The aim of this step is to correct the fact that two voxels with the same biological composition may not
have the same intensity. This difference in intensity is called bias and is caused by RF acquisition field
inhomogeneities [13] or biological tissues bias reflecting that the intensity of a same biological structure has
a variability around a mean value [16]. In our case, we estimate and correct these inhomogeneities with the
Expectation/Conditional Maximization algorithm proposed in [16].

1.2 Segmentation of the brain

To segment the brain, the algorithm presented in [5] is applied on the T1 and T2 sequences. This algorithm
uses the principle of the EM algorithm [4] to maximize the log-likelihood between the MRI data and a gaus-
sian model of ten classes: white matter (WM), grey matter (GM), cerebro-spinal fluid (CSF), six GM/CSF
partial volume classes (with different proportions), and an outlier class (additional class that corresponds
mainly to the vessels). First, the probability of belonging to the different classes of each voxel is initialized
thanks to thea priori information of the MNI registered atlas [9, 8]. Second two steps are iterated:

• In the maximization step, the parameters (meanµk, covariance matrixΣk) of each class,k, are com-
puted from the voxels intensities and their probabilities of belonging to the different classes.

• In the expectation step, the probability of belonging to the different classes of each voxel is updated
depending on the classes parameters.

Finally, outliers that do not follow the intensity gaussien model are detected thanks to the computation of
the Mahalanobis distance (Equation1) between the intensity vector,v, of each voxel and the mean vector of
each class.

dk = (v−µk)TΣ−1
k (v−µk) (1)

2http://www.mni.mcgill.ca/
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If this distance is greater than a threshold the voxel is considered as an outlier. The probability segmentations
given by this algorithm are then binarize. Each voxel belongs to the class with the highest probability. At
the end of this step 11 binary images (GM, WM, CSF, 6 partial volume classes, outliers corresponding to
vessels, others outliers) are obtained (Figure2).

(a) (b) (c) (d) (e)

Figure 2:Obtained classification on CHB test1 Case01 test data: (a) CSF, (b) GM, (c) WM, (d) all 6
partial volume classes, (e) all outliers.

1.3 Lesion extraction from the T2-FLAIR

Except for necrotic lesions, lesions are hyperintense signals on the T2-FLAIR. The following steps use this
property to segment the lesions.

Segmentation from T2-FLAIR sequence

The application of the binary segmentations of the brain (Section1.2) on the T2-FLAIR sequence gives the
properties (mean,µ, standard deviation,σ) of healthy compartments on this sequence. As lesions are hyper-
intense signals on the T2-FLAIR sequence, a sensitive threshold, T, which gives a preliminary segmentation
of the lesions can be compute automatically from the properties of the GM class (Equation2).

T = µGM +2σGM (2)

The application of this threshold on the T2-FLAIR sequence can help us to ”detect” lesions (most of the
lesion have at least a voxel with an intensity higher than the threshold). However lesion voxel intensities are
inhomogeneous and the ”delineation” of the lesion is not simple even if a voxel of this lesion is known. For
this reason, we enhance the contrast in the T2-FLAIR sequence before applying the threshold T (Figure3, a
et b). This is realized with the algorithm1. The application of T on the T2-FLAIR sequence with enhanced
contrast gives a candidate lesion segmentation,S1.

Refinement using classification results

S1 contains lesions but also others hyperintense signals like bony artefacts and flow artefacts. To eliminate
the voxels corresponding to these false positives, a region of interest is defined. Like in [11, 21], we are
looking for lesions in the ”supposed WM”. This ”supposed brain compartment” correspond to the WM that
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Algorithm 1 Enhancing contrast algorithm.
Require: T2-FLAIR sequence, ima.

Dima= a grey level dilation of ima
Eima= a grey level erosion of ima
Cima= an empty image of the same size of ima
for all Voxel, i do

if Dima(i)− ima(i) ≤ ima(i)−Eima(i) then
Cima(i) = Dima(i)

else if ima(i)−Eima(i) ≤ Dima(i)− ima(i) then
Cima(i) = Eima(i)

else
Cima(i) = ima(i)

end if
end for
Return Cima, the T2-FLAIR sequence with enhanced contrast.

we should observed if there was no lesion in the sequence. A segmentation of this class can be approximated
by the mask of WM (given by the EM algorithm) in which cavities (holes in the segmentation) have been
filled. This is realized thanks to morphological operations. The application of this mask onS1 gives a second
preliminary lesion segmentation,S2.

According to [6], lesions may be classified as outliers, GM/CSF partial volumes or ”pure” GM in the seg-
mentations given by the EM algorithm. Consequently, they are not included in the WM mask or in the
”pure” CSF mask. Voxels belonging to one of these masks are removed fromS2.

Finally, the holes that are present in the segmentation are filled thanks to morphological operations to im-
prove lesion delineation (Figure3, c).

(a) (b) (c)

Figure 3: Extraction of T2-FLAIR lesions: (a) T2-FLAIR sequence, (b) T2-FLAIR sequence with
enhanced contrast, (c) Final segmentation of the lesions.
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Limitation of the region of interest

We used the property that lesions are hyperintense signals in the T2-FLAIR sequence. In fact, this is not
correct for infra-tentorial lesions. In this case, lesion intensities are close to healthy tissues (GM, WM)
intensities. Consequently, infra-tentorial lesions are not included inS1 andS2 in most of the cases. To avoid
false positive in this region, all voxel ofS2 included in the infra-tentorial region are removed. The mask of
the sus-tentorial region is perform with a locally affine registration [3] of an atlas [2] on the data, followed
by morphological operations (Figure 4).

Figure 4:Contours of the sus-tentorial mask on the T2-FLAIR sequence.

2 Results

Results of the method have been sent to the the Challenge managers. A comparison between the automatic
segmentations and manual segmentations performed by two experts has been realized with different criteria :

• The volume difference captures the absolute percent volume difference to the expert rater segmenta-
tion.

• The average distance captures the symmetric average surface distance to the expert rater segmentation.

• The true positive rate corresponds to the number of lesions in the automatic segmentation that over-
laps with a lesion in the expert segmentation divided by the number of overall lesions in the expert
segmentation.

• The false positive rate is the number of lesions in the automatic segmentation that do not overlap
with any lesion in the expert segmentation divided by the number of overall lesions in the automatic
segmentation.

• The sensitivity is the ratio of true positives to the sum of true positives and false negatives.

• The specificity is the ratio of true negatives to the sum of true negatives and false positives.

• The positive predictive value is the ratio of true positives to the sum of true positives and false posi-
tives.
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Figure 5: Box-and-whisker plot of the total
score of the 24 patients: one outlier (with the
value 46) is observed.

Step time (min)
Atlas based image cropping 24

Skull-stripping 2
Intensity Normalization 30

Segmentation of the brain 16
Segmentation from T2-FLAIR 3

Refinement using classification results 3
Limitation of the region of interest 12

Total 90 (1h30)

Figure 6: Example of execution time on
CHB test1 Case01.

For the true positive rate and the false positive rate criteria, the counted elements are the lesions (connected
regions of the segmentation). For sensitivity, specificity and positive predictive value, the counted elements
are the voxels.

Table1 gives the results of our method on the test data of the challenge. Figure 5 present the Total score of
each patient repartition with a box-and-whisker plot. Figure 6 gives an example of execution time for the
patient CHB test1 Case01.

3 Discussion and future work

The analysis of individual criteria is complex because of their interdependencies. For example, the true
positive rate give the number of lesion correctly detected but its value does not take into consideration the
volume of the missed lesions. For this reason, our discussion is only based on the global scores.

The comparison of UNC rater and CHB rater is given to be around 90/100. Our method with a global result
of 80/100 is near this inter-expert variability. The box-and-whisker plot (Figure2) shows that the method
scores are between 66 and 91 except for one outlier. Indeed, our method result is only 46 for the patient
UNC test1 Case09. This can be explained by the fact that this patient seems to have necrotic lesions,
a lesion subtype which is not detected by the proposed method. Indeed, necrotic lesions are hypointense
signals in T1 but are not visible in T2-FLAIR. In addition, no lesion is observed on the T2-FLAIR and
the WM appear ”dirty”. Consequently, the proposed method detects a lot of false positives. This is also
observed for UNCtest1 Case04, CHBtest1 Case06 and CHBtest1 Case12. In these three cases, the
score of our method is under 80.

Moreover, our method has a score under 80 for three other data sets: UNCtest1 Case06,
UNC test1 Case10 and CHBtest1 Case03. Without the segmentation of reference, the best explanation
seems to be that these data correspond to patients with few lesions. Therefore, any error of segmentation
decreases dramatically the score. This assertion has to be further validated with a comparison between the
automatic segmentation and the segmentation of reference. In addition, even if we do not know the acquisi-
tion resolution of the challenge T2-FLAIR sequence, this sequence has usually a resolution weaker than the
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Table 1:Results of this method on MS lesion Challenge 08 Test data

G
ro

un
d

T
ru

th
U

N
C

R
at

er
C

H
B

R
at

er
ST

A
P

L
E

A
ll

D
at

as
et

V
ol

um
e

D
iff

.
A

vg
.
D

is
t.

T
ru

e
P
os

.
Fa

ls
e

P
os

.V
ol

um
e

D
iff

.
A

vg
.
D

is
t.

T
ru

e
P
os

.
Fa

ls
e

P
os

.
T
ot

al
Sp

ec
ifi

ci
ty

Se
ns

it
iv

it
y

P
P

V
[%

]
Sc

or
e

[m
m

]S
co

re
[%

]S
co

re
[%

]S
co

re
[%

]
Sc

or
e

[m
m

]S
co

re
[%

]S
co

re
[%

]S
co

re
U

N
C

te
st

1
C

as
e0

1
56

.6
92

4.
8

90
51

.2
81

75
.7

64
36

.5
95

5.
3

89
53

.1
82

69
.2

68
82

0.
99

36
0.

32
48

0.
70

49
U

N
C

te
st

1
C

as
e0

2
7.

7
99

4.
1

92
54

.4
82

72
.5

65
87

.8
87

3.
5

93
40

.9
75

31
.9

90
85

0.
99

49
0.

17
82

0.
83

73
U

N
C

te
st

1
C

as
e0

3
46

.2
93

1.
5

97
53

.5
82

49
.4

80
30

.5
96

1.
3

97
55

.9
83

40
.6

85
89

0.
99

47
0.

65
29

0.
87

08
U

N
C

te
st

1
C

as
e0

4
90

.6
87

8.
6

82
34

.2
71

86
.4

57
85

.5
87

7.
1

85
48

.1
79

86
.4

57
76

0.
99

55
0.

05
87

0.
51

61
U

N
C

te
st

1
C

as
e0

5
53

.4
92

6.
0

88
52

.4
81

75
.2

64
5.

3
99

6.
4

87
78

.3
96

77
.9

62
84

0.
99

06
0.

36
95

0.
61

64
U

N
C

te
st

1
C

as
e0

6
81

.1
88

7.
0

86
41

.4
75

71
.4

66
15

.5
98

19
.4

60
62

.5
87

86
.9

57
77

0.
99

32
0.

14
38

0.
57

70
U

N
C

te
st

1
C

as
e0

7
45

.6
93

2.
6

95
55

.7
83

58
.3

74
26

.2
96

6.
4

87
80

.0
97

71
.5

66
86

0.
98

83
0.

54
12

0.
64

63
U

N
C

te
st

1
C

as
e0

8
21

.1
97

3.
9

92
63

.8
88

65
.2

70
28

.9
96

10
.6

78
94

.4
10

0
76

.1
63

85
0.

98
65

0.
59

83
0.

55
87

U
N

C
te

st
1

C
as

e0
9

15
7.

9
77

44
.0

9
33

.3
70

96
.6

51
26

3.
9

61
53

.0
0

0.
0

51
10

0.
0

49
46

0.
97

33
0.

11
10

0.
08

73
U

N
C

te
st

1
C

as
e1

0
73

.0
89

13
.0

73
45

.0
77

85
.2

58
52

5.
2

23
22

.5
54

83
.3

99
93

.8
53

66
0.

98
47

0.
60

41
0.

58
92

C
H

B
te

st
1

C
as

e0
1

70
.3

90
3.

9
92

52
.0

81
27

.6
93

57
.6

92
2.

6
95

83
.9

99
35

.3
88

91
0.

99
90

0.
20

75
0.

84
62

C
H

B
te

st
1

C
as

e0
2

32
.7

95
6.

2
87

63
.6

88
84

.1
58

71
.3

90
2.

3
95

63
.2

87
41

.3
84

86
0.

99
65

0.
29

60
0.

81
38

C
H

B
te

st
1

C
as

e0
3

48
.9

93
11

.6
76

50
.0

80
87

.7
56

75
.3

89
12

.2
75

33
.3

70
90

.4
55

74
0.

99
58

0.
22

82
0.

45
62

C
H

B
te

st
1

C
as

e0
4

50
.2

93
5.

2
89

72
.7

93
81

.0
60

76
.1

89
3.

8
92

72
.2

93
50

.0
79

86
0.

99
92

0.
17

35
0.

91
93

C
H

B
te

st
1

C
as

e0
5

36
.8

95
8.

8
82

48
.1

79
92

.5
53

74
.0

89
3.

2
93

69
.6

91
71

.0
66

81
0.

99
40

0.
14

92
0.

56
90

C
H

B
te

st
1

C
as

e0
6

69
.9

90
6.

7
86

16
.7

61
93

.0
53

68
.6

90
6.

6
86

27
.3

67
90

.6
54

73
0.

98
19

0.
02

84
0.

10
01

C
H

B
te

st
1

C
as

e0
7

62
.7

91
5.

5
89

48
.3

79
85

.6
58

77
.3

89
4.

8
90

55
.3

83
74

.0
65

80
0.

99
13

0.
10

85
0.

48
56

C
H

B
te

st
1

C
as

e0
8

49
.6

93
2.

1
96

81
.5

98
74

.8
64

66
.3

90
2.

3
95

61
.8

87
62

.9
71

87
0.

99
64

0.
31

29
0.

82
19

C
H

B
te

st
1

C
as

e0
9

56
.3

92
3.

6
92

34
.9

71
69

.6
67

63
.1

91
2.

6
95

35
.8

72
55

.4
76

82
0.

99
49

0.
27

81
0.

79
49

C
H

B
te

st
1

C
as

e1
0

3.
4

10
0

7.
4

85
68

.4
90

93
.4

53
49

.4
93

3.
9

92
79

.3
97

76
.4

63
84

0.
99

08
0.

19
84

0.
51

23
C

H
B

te
st

1
C

as
e1

1
16

.3
98

6.
0

88
47

.7
79

91
.4

54
72

.9
89

3.
6

93
51

.7
81

81
.7

60
80

0.
99

20
0.

16
57

0.
53

17
C

H
B

te
st

1
C

as
e1

2
86

.0
87

7.
1

85
12

.0
58

81
.7

60
86

.1
87

6.
8

86
15

.4
60

77
.7

62
73

0.
98

72
0.

02
00

0.
11

41
C

H
B

te
st

1
C

as
e1

3
50

.0
93

5.
4

89
50

.0
80

85
.4

58
69

.3
90

4.
6

91
76

.2
95

64
.6

70
83

0.
99

38
0.

30
95

0.
75

06
C

H
B

te
st

1
C

as
e1

5
71

.9
89

2.
6

95
53

.4
82

44
.6

82
62

.9
91

1.
9

96
57

.4
84

49
.7

79
87

0.
99

65
0.

26
39

0.
89

47
A

ll
A

ve
ra

ge
55

.8
92

7.
4

85
49

.4
80

76
.2

63
86

.5
87

8.
2

84
57

.5
84

69
.0

68
80

0.
99

19
0.

26
34

0.
60

89
A

ll
U

N
C

63
.3

91
9.

5
80

48
.5

79
73

.6
65

11
0.

5
84

13
.5

73
59

.7
85

73
.4

65
78

0.
98

95
0.

35
83

0.
60

04
A

ll
C

H
B

50
.4

93
5.

9
88

50
.0

80
78

.0
62

69
.3

90
4.

4
91

55
.9

83
65

.8
70

82
0.

99
35

0.
19

57
0.

61
50



References 10

other sequences. This may decrease the precision of the obtained segmentations.

STAPLE results show that our method is more specific than sensitive. This show an undersegmentation of
the lesions. This effect can also be observed in Figure3.

The proposed method needs around 1 hour 30 minutes to segment the lesion of the Challenge data (Figure
6). This is often less than manual segmentation. Moreover, the method algorithm has not been optimized.

We have developed a method to detect T2-FLAIR lesions. This method is known to be unable to detect
necrotic lesions and infra-tentorial lesions. This method is also based on a good estimation of the different
class parameters. In case of severe MS, we can suppose that this estimation may be biased. However, we
did not observe this effect on the segmented MRI. Results on test data are close to inter-expert variability.
Future work should segment necrotic and infra-tentorial lesions from information given by other sequences.
This method will also be included in SepINRIA3 (a software allowing analysis of MS MRI).
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