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ABSTRACT

In multiple sclerosis (MS) research, burden of disease and
treatments efficacy are mainly evaluated with lesion load and
atrophy. The former being poorly correlated with patient’s
handicap, it is of interest to evaluate accurately the latter.
A lot of methods to measure the brain atrophy as the brain
parenchymal fraction (BPF) are available in the literature.
The BPF needs a precise segmentation of the brain and of the
Cerebro-Spinal Fluid. However artefacts like partial volume
effects (PVE) can impair this classification. According to
some articles, the BPF may also be less precise in longitudi-
nal studies. To address these points, this article proposes a
new method to evaluate the BPF thanks to an Expectation-
Minimization framework taking into consideration PVE.
Modifications of the pipeline are also proposed to improve
its reliability in longitudinal study. Experiments have been
conducted on simulated pathological images that validate the
different measures.

Index Terms— Biomedical Image Processing, Biomed-
ical Magnetic Resonance Imaging, Multiple Sclerosis, Atro-
phy

1. INTRODUCTION

According to the modified Mc Donald criteria [1], MRI le-
sions number and location evaluations are mandatory to diag-
nose Multiple Sclerosis (MS). Lesions load measurements is
also used in follow-up studies and pharmaceutical research as
surrogate markers. Except for clinically isolated syndromes,
clinical studies have shown that T2 lesions load is poorly cor-
related with patient’s handicap [2]. In consequence, other ap-
proaches like global atrophy measurement are studied.

Different techniques to quantify brain atrophy in MS are
available [3]. One currently used method is the evaluation
of the brain parenchymal fraction (BPF) [4]. This method
required a precise segmentation of the cerebro-spinal fluid
(CSF) compartment or of the brain (gray matter (GM), white
matter (WM) and lesions). However some voxels can con-
tain a mixture of two classes (e.g. CSF and GM) because
of image resolution: this Partial Volume Effect (PVE) may
impair greatly the classification and subsequently the atrophy

measurement. For example, sulci introduce a lot of GM/CSF
PVE and this effect is one of the main problems to take in
consideration to obtain a reliable CSF volume evaluation.

The BPF evaluation presents also other difficulties like
variation of the segmentation results caused by the inter-
and intra-image inhomogeneities or the skull-stripping step.
Moreover the BPF is presented as more appropriate in group
study (e.g. MS patients vs. healthy controls) than in longitu-
dinal studies in [3]. Indeed the use of methods like SIENA1

[5] is presented as a better choice for this kind of study.
SIENA uses the local shifts in brain edges to evaluate the
percentage brain volume change between two instants.

To improve the robustness of the atrophy measurement
result and to address the PVE in CSF volume evaluation,
we propose here a novel method to evaluate the BPF. First
the segmentation algorithm is presented and is validated
with simulated data for which the ground truth is available.
Then we propose a method to improve the robustness of
the measurement in longitudinal study and we compare our
method with SIENA method. The remainder of this arti-
cle is organized as follows: in Section 2, we describe the
method pipeline; sections 3 validates the different steps of the
method; perspectives are discussed in Section 4.

2. METHOD

Our new atrophy measurement method is divided in different
steps. The different MRI sequences have to be preprocessed.
Then a multi channel Expectation Maximization (EM) classi-
fication method is applied. From this classification, different
segmentations are generated. The computation of these seg-
mentations volume allows to evaluate atrophy.

2.1. MRI sequences coregistration

When diagnosing MS, three MRI sequences are classically
acquired: T1, T2 and Proton Density (PD) weighted images.
T2 and PD are intrinsically coregistered but this is not the
case of T1. As T1 has a higher resolution than T2 and PD, we

1http://www.fmrib.ox.ac.uk/fsl/



register T1 on T2 [6] to limit the partial volume effect caused
by the resampling.

2.2. Intensity correction

MR images can suffer from bias [7]. We estimate and correct
it with the Expectation/Conditional Maximization algorithm
proposed in [8].

2.3. Skull-stripping

Classification step is sensitive to a preliminary step, called
skull stripping, which aimed at isolating the brain in the im-
age. Indeed, if this step is too restrictive, voxels belonging
to the brain may be discarded, or conversely if it is too per-
missive, part of the meninx may be retained and subsequently
misclassified. Different automatic skull stripping methods are
available in the literature. As explain in [9], we use a combi-
nation of Dugaset al. method [10], BET [11] and 3dIntracra-
nial [12] to segment the brain.

2.4. EM classification method

The EM framework is currently used to classify brain MRI
voxels. To take into consideration the different artefacts
which are present in MS patients brain MRI, we decided to
classify voxels into ten classes: WM, GM, CSF, six GM/CSF
PVE classes (with different proportions), and an outlier class,
that will contain vessels and some MS lesions [10]. The
probability density function (PDF) of each class is modelled
by Gaussians,µ andσ denoting respectively the mean and
standard deviation. Our PVE model approximates the in-
tensity of a voxel which contain a proportionα of tissuex
with the intensityIx and a proportion(1 − α) of tissuey by
IPV E = α ∗ Ix + (1 − α) ∗ Iy. PVE classes PDF follows
then a Gaussian PDF with a mean of(αµx + (1− α)µy) and
a standard deviation of

√
α2σx + (1− α)2σy.

Following an initialization thanks to an affine registration
of the MNI probabilistic atlases [13], our EM framework is
then composed of three steps which are iterated:

• the Expectation step which consists in the labelization
of all classes (including PVE classes),

• the Maximization step which consists in the estimation
of the CSF, GM, WM, Outliers Gaussians parameters
by maximizing the likelihood of the whole image,

• the computation of PVE classes’ parameters.

After algorithm convergence, the final segmentations are
obtained by classifying each voxel to the most probable class.
MS lesions are classified mainly in the GM or outlier classes.

2.5. Volume and Brain parenchymal fraction computa-
tion

To include PVE segmentation into volumes computation, we
generate CSF and brain repartition maps. These maps are not
a probabilistic segmentation of a compartment but give the
proportion of the considered class (or compartment) in each
voxel. CSF and brain repartition maps (RM(CSF ), RM(B))
are obtained by equations 1 and 2 whereSEG(PV Eα) repre-
sents the segmentation of the PVE class with the proportion
α of GM.

RM(CSF ) =
6∑

i=1

7− i

7
× SEGPV Ei + SEGCSF (1)

RM(B) =
6∑

i=1

i

7
×SEGPV Ei +SEGGM +SEGWM (2)

CSF and brain volumes are then obtained by the addi-
tion of all the voxels values of the considered repartition map,
multiplied by the volume of one voxel. Thanks to the volume
computation, the BPF can be computed (see equation 3).

BPF = 100× Brain Volume
Brain Volume + CSF Volume

(3)

2.6. Atrophy computation

As defined in the previous section, the BPF allows to compare
different groups of population (e.g. MS patients vs. healthy
controls). If acquisitions at different timepoints are avail-
able, the atrophy is given by the difference of successive BPF.
However some part of the pipeline process has to be changed.
All the images are co-registered on the T2 sequence of the first
timepoint. The intensities of images of the same sequence
are equalized. The skull-stripped mask of the first timepoint
is used for the following ones. In the EM classification, the
classes parameters are computed from the images of all time-
points. Then the obtained parameters are used to give the
corresponding segmentation at each timepoint. Since outliers
are not considered in BPF, this may bias the atrophy measure:
to handle this, we consider as outliers for all the timepoints
the union of all outliers detected in each timepoint.

3. VALIDATION

It is not realistic to validate the segmentation of PVE classes,
since their PDF have a significant overlap. In consequence,
an expert has first realized a qualitative validation by visual
inspection of the results on real MRI but no significant error
has been identified. Secondly, we realize a quantitative com-
parison of the obtained segmentations on simulated data with
the ground truth.



Table 1. Segmentation comparison criteria
Criteria Conventional criteria Generalized criteria

Similarity
Index
(SI)

2Card(Ref×Seg)
Card(Ref)+Card(Seg)

2
P

i min(Ref(i),Seg(i))P
i Ref(i)+

P
i Seg(i)

Sensitivity
(SEN)

Card(Ref×Seg)
Card(Ref)

P
i min(Ref(i),Seg(i))P

i Ref(i)

Specificity
(SPE)

Card(Ref×Seg)

Card(Ref)

P
i min(1−Ref(i),1−Seg(i))P

i(1−Ref(i))

3.1. Segmentation comparison criteria

The first step of a validation is to identify comparison criteria.
The used classification method gives GM and CSF repartition
maps but not binary segmentations (see section 2.5). To com-
pare these maps, we use the approach presented in [14] to
define a generalize version of the Similarity Index (SI), of the
sensitivity (SEN) and the specificity (SPE). These criteria are
given in Table 1 for a segmentation (Seg) with a reference
image (Ref).Ref(i) andSeg(i) represents the intensity of the
voxel i in the corresponding image. The obtained equations
give the same results than the conventional equation on binary
images and their values remain between 0 and 1.

3.2. Segmentation comparison results

The method segmentations have been validated thanks to
BrainWeb1 simulated images. Images from the moderate MS
lesions brain anatomical model have been generated (Noise:
3%, Intensity non-uniformity: 20%). The ground truth is
made of images with a slice thickness of 1 mm: from it, we
also generate ground truth images with a slice thickness of
3 mm that are then repartition maps. We evaluate then our
method with images generated by BrainWeb with slice thick-
nesses of both 1 and 3 mm. The results of this evaluation are
given in table 2.

Table 2. Segmentations comparison results for Brainweb MS
anatomical model.

Slide Tissues SI SEN SPE
thickness
MS 1mm CSF 0.81 0.79 0.99
MS 1mm Brain 0.98 0.98 0.99
MS 3mm CSF 0.82 0.81 0.99
MS 3mm Brain 0.95 0.98 0.97

The obtained results yield correct segmentations (SI >
0.8). The sensibility values are correct (SEN > 0.79) even if
they seem to indicate a slight under segmentation. The speci-
ficity values (SPE > 0.97) indicate that there are few false

1http://www.bic.mni.mcgill.ca/brainweb/

Table 3. Obtained relative volume errors
CSF GM WM Brain

MS 1mm -4 % +9 % -11 % +1 %
MS 3mm -5 % +16 % -9 % +5 %

positive voxels. The CSF results are slightly weaker than
Brain results. This can be explained by the fact that CSF
compartment compared to gray matter (GM) or white mat-
ter (WM) represents the smallest volume. This explains that
any misclassified voxels will introduce a larger relative error
to CSF classification than to Brain (GM+WM) classification.

3.3. Volume measurements validation

Table 3 gives the relative error in CSF and brain volume mea-
surements. GM and WM volume estimation errors are rele-
vant but the error on the brain volume is acceptable. More-
over we have a good estimation of the CSF volume. Indeed
the average CSF volume error is equal to 4.5% whereas the
CSF volume is the smallest compared to GM or WM or brain
volumes.

3.4. Atrophy measurements validation

Fig. 1. Measured atrophy vs simulated atrophy, with respect
to the initial timepoint T0.

A simulation of normal aging atrophy which uses Brain-
Web images has been realized by Camaraet al. in [15]. We
use this simulation to validate our global atrophy measure-
ment which is obtained by the difference of the BPF (see
equation 3) between two timepoints. Figure 1 shows the mea-
sured atrophy versus the simulated atrophy for our method
without modification for longitudinal study, for our method



with modification and for SIENA. To realize this experiment
SIENA have been use with its default parameters.

We can observe that our method without modification
for longitudinal study yield incorrect results. Our method
with longitudinal study modifications underestimates atro-
phy while SIENA overestimates it (a perfect measure will
yield a slope equal to one), our measures being closest to
the simulated atrophy. Both methods exhibit a good corre-
lation with the simulated atrophy, ours being a little higher
(R2 = 0.99, p < 0.05). It should also be noticed that the lin-
ear approximation resulting from our measures goes through
the origin (the point(0, 0)), which is expected, while SIENA
does not. This could suggest a slight superiority of our
method with respect to SIENA, but this has to be confirmed
with further experiments.

4. CONCLUSION AND FUTURE WORK

The proposed method allows to obtain repartition maps of the
different brain compartments. From these repartition maps
which give the proportion of the different compartments in
each voxel, the volume of CSF and of the brain (GM+WM)
can be computed. These volume evaluations are robust to
artefacts like PVE and MS lesions in the images thanks to the
inclusion of PVE classes and of an outlier class in the clas-
sification process. From these robust and reliable volumes
computation, a BPF can be computed. In the case of longi-
tudinal study, the difference of the two obtained BPF give an
atrophy value which has been shown to be strongly correlated
to the real brain atrophy (on simulated data). In this case, the
BPF was not less precise than SIENA.

Because of the lack of simulated image with MS brain
atrophy, the next step will consist in comparing of the at-
rophy measurements of our method against other methods
(e.g. SIENA) on real MS patient MR images. To that end,
we are currently collecting MR images from a multi-center
study. For the moment, we do not have enough patients with
several acquisitions to present statistically significant results.
Preliminary results on a few patients are promising. Obtained
segmentations were qualitatively validated by experts and the
obtained volumes and atrophy measurements are realistic ac-
cording to the literature [16, 3].
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