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Abstract. Despite recent efforts in cardiac electrophysiology modelling,
there is still a strong need to make macroscopic models usable in planning
and assistance of the clinical procedures. This requires model personali-
sation i.e. estimation of patient-specific model parameters and computa-
tions compatible with clinical constraints. Fast macroscopic models allow
a quick estimation of the tissue conductivity, but are often unreliable in
prediction of arrhythmias. On the other side, complex biophysical mod-
els are quite expensive for the tissue conductivity estimation, but are
well suited for arrhythmia predictions. Here we present a coupled per-
sonalisation framework, which combines the benefits of the two models.
A fast Eikonal (EK) model is used to estimate the conductivity param-
eters, which are then used to set the parameters of a biophysical model,
the Mitchell-Schaeffer (MS) model. Additional parameters related to Ac-
tion Potential Duration (APD) and APD restitution curves for the tissue
are estimated for the MS model. This framework is applied to a clinical
dataset provided with an hybrid X-Ray/MR imaging on an ischemic pa-
tient. This personalised MS Model is then used for in silico simulation
of clinical Ventricular Tachycardia (VT) stimulation protocol to predict
the induction of VT. This proof of concept opens up possibilities of us-
ing VT induction modelling directly in the intervention room, in order
to plan the radio-frequency ablation lines.

1 Introduction

Cardiac arrhythmias are increasingly being treated by Radio-Frequency (RF)
ablation procedures. These procedures still have unsatisfactory success rates of
only 30−60% for VT, due to non availability of clinical consensus on optimum
RF ablation patterns [1]. There is still a need for substantial guidance in locating
the optimum ablation lines. This guidance can be provided by personalised in
silico cardiac electrophysiology models. Personalisation means estimation of the
patient-specific model parameters which best fit the clinical data. It is required
to reveal hidden properties of the tissue and to develop predictive models that
can be used to improve therapy planning and guidance. There are a variety of
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cardiac EP models developed at various scales. These models can be broadly
categorised into three main categories: Biophysical Models (BM), Phenomeno-
logical Models (PM) and Eikonal Models (EM). BM [2] model ionic currents
and are the most accurate and complex but hardly suitable for parameter es-
timation from clinical data. PM [3] are based on PDEs and mimic only the
shape of action potential and are on intermediate level. EM [4] describes only
the time at which a depolarisation wave reaches a given point. They can be very
fast in computation [5], but less reliable in arrhythmia predictions due to the
complexity of both refractoriness and curvature. To introduce models directly
in the intervention room, the requirements are a low computational complexity,
fast estimation of parameters and reliable predictions. These attributes cannot
be found in one single model, thus here we present a new approach, where we
combine two models to obtain these attributes and show an application to a
clinical dataset. We also show how such personalised model can then be used
to simulate in silico a clinical VT Stimulation protocol and can be potentially
used to plan optimum RF ablation lines. In this paper, we present a coupled per-
sonalisation framework, which is fast and combines the benefits of an Eikonal
(EK) model with those of a simplified biophysical model, the Mitchell-Schaeffer
(MS) model. The fast 3D EK model is used to estimate the tissue conductiv-
ity parameter over the ventricles from the non-contact mapping of endocardial
surface potential, using an adaptive iterative algorithm. This is then used to set
the conductivity parameter of the 3D MS model. Additional parameters related
to APD and APD restitution property of the tissue are then estimated locally
using directly the 3D MS model. This framework is applied to a clinical data
of an ischemic patient, containing of MR data for geometry and scar detection
and electrophysiological data obtained from non-contact mapping. This data is
obtained using Hybrid X- ray/magnetic resonance (XMR) suites [6]. The per-
sonalised 3D MS model is then used to simulate a clinical VT-Stim procedure
to show a potential application of VT induction modelling.

2 Simulation of Electrophysiology Models

Anisotropic Fast Marching Model (EK Model) : The EK model simulates
the propagation of the depolarization wave in quiescent tissue, ignoring repolari-
sation phase. The EK model is governed by eikonal-diffusion (ED) equation and
is based on Fast Marching Method (FMM), it can be written as

c0
√
D(x)

(√
∇T (x)tM∇T (x)

)
−∇ · (D(x)M∇T (x)) = τ(x) (1)

where the superscript t denotes transpose, c0 is a dimensionless constant, and
τ(x) is the cell membrane time constant. D(x) is the square of the tissue space
constant along the fiber and is related to the specific conductivity of the tissue in
the fiber direction. The anisotropicity is incorporated in the Diffusion tensor and
is given by M. The nonlinear term (Eq 1) is solved using a fixed point iterative
method combined with a very fast eikonal solver as explained in [7].

Biophysical Model (MS Model) : The MS model [8] is a 2-variable sim-
plified biophysical model derived from the 3-variable Fenton Karma (FK) ionic



model [9]. It models the transmembrane potential as the sum of a passive diffu-
sive current and several active reactive currents including a sodium ion (influx)
current and a potassium ion (outflux) current. Unlike FK model, it does not
model the Calcium ion current. The MS model is described by the following
system of Ordinary Differential Equations (ODE),

∂tu = div(D∇u) +
zu2(1− u)

τin − u
τout + Jstim(t)

∂tz =

 (1− z)
τopen if z < zgate
−z
τclose if z > zgate

(2)

where, u is a normalised transmembrane potential variable, and z is a gating vari-
able for sodium ion influx which makes the gate open and close, thus depicting
the depolarisation and repolarisation phase. Jin = (zu2(1 − u))/τin represents
the inward sodium ion current which raises the action potential voltage and
Jout = −u/τout represents the outward potassium ion current that decreases
the action potential voltage describing repolarisation. Jstim is the stimulation
current, at the pacing location. The diffusion term in the model is controlled
by the diffusion tensor D. This spatial diffusion can be related to a pseudo-
conductivity. In the longitudinal direction of the fibre, this pseudo-conductivity
is set to d which is one of the parameters we adjust, and to d/2.52 in the trans-
verse directions. The electrophysiology model is solved spatially using P1 Finite
Element Method (FEM), and in time using an semi-implicit scheme as Modi-
fied Crank-Nicolson/Adams-Bashforth (MCNAB) scheme, which is evaluated in
terms of accuracy, stability and computational time [10].

3 Coupled Personalisation Method

Apparent Conductivity Parameter Estimation : Cardiac tissue conductiv-
ity is a crucial feature for the detection of conduction pathologies. The Apparent
Conductivity (AC) of the tissue can be measured by the parameter D(x) in the
EK model. It is initially estimated on the endocardial surface as a global value
using a simple bisection method which matches the average conduction velocity
of the measured Depolarisation Time (DT) isochrones to the simulated ones.
Using it as an initial guess, an adaptive multi-level zonal decomposition algo-
rithm is used, which minimizes the mean-squared difference of the simulated
and measured DT isochrones at each level using a Brent’s Optimisation Algo-
rithm presented in [5]. Due to the absence of transmural electrical propagation
information, we assume no variation across the left ventricle myocardium (ex-
cluding LV endocardium and scars) and hence we prescribe a single value for
the myocardial tissue across the LV wall. The AC values for RV endocardium
and RV myocardial mass are set at 5.0 mm and 0.64 mm (from literature [4]).
The LV myocardial AC value is estimated by one-dimensional minimisation of
the following cost function (mean-squared difference of simulated and measured
isochrones at endocardium + squared difference of simulated and measured QRS
duration). The simulated QRS duration is calculated as the difference between
the maximum and the minimum depolarisation times in the biventricular mesh



and the measured QRS duration is estimated from the surface ECG.
Coupling of EK and MS Model Parameters : The AC parameter for

EK model dEK (D(x) in Eq 1) is a scale for the diffusion speed of the depolari-
sation wavefront in the tissue. The diffusion tensor used in Eq 1 is M = AD̄At,
where A is the matrix defining the fiber directions in the global coordinate sys-
tem and D̄ = dEKdiag(1, λ2, λ2). λ is the anisotropic ratio of space constants
transverse and along the fiber direction and is 0.4 in human myocardium [4].
The model Conduction Velocity (CV) is related to dEK as,

cEK =
c0
√
dEK
τ

in 1D and cEK = αEK
√
dEK + βEK in 3D (3)

where the constants αEK and βEK are introduced to take into account the
curvature effect and numerical diffusion and discretization errors in 3D. The
corresponding conductivity parameter for MS model, dMS is also a scale for
the wave diffusion speed in the tissue. The diffusion tensor D used in Eq 2 is
D = AD̄At, where A is the same as in EK model, but D̄ = dMSdiag(1, r, r) with
r as conductivity anisotropy ratio in the transverse plane and is set to λ2 as in
EK model. The model CV here is related to dMS as,

cMS ∝
√

d

τin
in 1D and cMS = αMS

√
dMS + βMS in 3D (4)

where the constants αMS and βMS are introduced for the same reasons as of
EK model, while τin is kept as a constant. The estimated AC parameter dEK
can then be used to estimate the parameter dMS . The parameter dEK gives
model CV cEK , which is similar to the actual measured data CV (cmsd) after
the parameter estimation step. Thus to have MS model CV (cMS) similar to
the measured data, it has to be similar to EK model CV (cEK). The constants
αEK and βEK represent numerical errors for EK model based on FMM. They
are different from the constants αMS and βMS , which is based on FEM. These
constants are determined in 3D for a mesh representing the slab of a tissue ([0
10] × [0 10] × [0 10]) (with a mean edge length of tetrahedra same as the ventric-
ular mesh). We performed several simulations with various dEK and dMS values
and noted the corresponding cEK and cMS values. Then, we fit the analytical
curves given in Eq 3 & 4 in least square sense and determine the constants. The
constants estimated are αEK = 5.21, βEK = 0.07, αMS = 3.12, βMS = 0.31.
Then, the personalised dMS values are computed from corresponding estimated
dEK values using the condition, that cmsd = cEK = cMS after personalisation.

Parameter Estimation for APD : APD for a single heart cycle is defined
by the model as, APDmax = τcloseln (1/hmin) where hmin = 4 (τin/τout) As we
have only one measured APD dependent on three parameters, We chose to es-
timate τclose, while keeping the other parameter values from the literature [8].
The reason is that τclose has no sensitivity towards the conductivity parameter
estimation [10], whereas τin and τout do have. This defined relationship remains
valid also in 3D thus allowing us to directly estimate locally at each vertex, the
parameter τclose without model simulations.To have a smooth gradation of APD
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Fig. 1. (a) shows the MR data, segmented mesh with scars (in red), (b) shows XMR
registration of Ensite LV surface with MR data mesh, with values projected from Ensite
to MR LV surface,(c) shows the fibre orientation used, (d) shows the unipolar electro-
grams for detection (black dots) of depolarisation time (upper) and repolarisation time
(lower) from positive(red), negative(blue) and biphasic(green) T waves

from epicardium to endocardium, we diffuse the τclose values spatially in the LV
myocardium from Endocardium to Epicardium. For RV, we fix one value mea-
sured from the QT interval given through surface ECG.

Parameter Estimation for APD Restitution : APD Restitution is a
property of a cardiac cell and defines its refractoriness. It is also heteroge-
neously distributed. It is a relationship between of the next cycle APD and
the Diastolic Interval (DI) of the previous cycle. The slope of these restitu-
tion curves is controlled by τopen and depicts the APD heterogeneity present
at multiple heart rates. APD restitution curve for MS model is explicitly de-
rived as, f(DIn) = τclose ln

(
1− (1− hmin)e−DIn/τopen/hmin

)
, where f(DIn)

is the succeeding APD and DIn is the preceding DI at cycle n. Here, we use
the τclose values estimated as defined before, as it controls the APD at nor-
mal sinus rythm. And, the slope parameter, τopen is estimated here with hmin
fixed with values from the literature [8]. Here we minimise a cost function
which minimises the error between model predicted APD (f(DIn)) and actual
measured APD (APDmsd

n+1) for a number of pacing frequency, where n is the
cycle number. The Diastolic Interval (DImsd) is measured from the data as
DImsdn = 1/f − APDmsd

n , where f is the heart rate, detected from the ECG
waveforms. The parameter optimisation method used here is a non-linear con-
strained Active-Set Algorithm, with constraints on τopen to be in the range of
literature values [8].

4 Application to clinical data

The coupled personalisation framework is applied on a clinical data obtained
during an electrophysiology study in the hybrid X-ray/MR environment. The
electrical measurements obtained using the Ensite system were registered to
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Fig. 2. Upper row shows the comparison of the measured Depolarisation Time (DT)
isochrones on the LV surface only with model simulated DT isochrones on the whole
heart, lower row shows the same for measured (LV surface only) and model simulated
(whole heart) APD maps

the patient anatomy using XMR registration. The electrical data was collected
with high pass filter settings for prominent QRS detection and with low pass
filter for T Wave detection. The depolarisation times were detected from the
dV/dtmax and d2V/dt2 of the unipolar electrograms V . And the repolarisation
times were detected using dV/dtmax for the negative T wave, at the dV/dtmin
for the positive T wave, and the mean time between dV/dtmax and dV/dtmin
for the biphasic T waves. The data was collected from an ischemic patient at
normal sinus rythm and 5 paced modes all at 100 beats per minute. The scars
were segmented manually from the Delayed Enhancement MR data.

Estimated Parameters : The AC parameters estimated using EK model
show a high conduction on the epicardium depicting the purkinje network and
shows a conduction block near the scar as shown in Fig 3(a). The coupled MS
model conductivity parameters are then estimated from AC. The mean absolute
error on simulated depolarisation times with measured, after personalisation is
7.1ms for EK model and 8.5ms for MS model (≈ 6 − 7% of depolarisation du-
ration (131ms)). The mean absolute error on APD is 8.71ms (≈ 2% of APD
(300ms)), showing a good fit as well. Fig 3 (b) (white contour) shows the het-
erogeneity of the measured APD in terms of the estimated parameter τclose, as
shorter on the lateral wall of the LV compared to the septum. Also near the scar
and the region between the two scars (called isthmus) Fig 3 (b) (black contour),
we have a longer APD compared to the neighbours. For the APD Restitution,
the mean absolute error after fitting the resitution curves is 1.13ms, showing a
good fit also seen from the Fig 3(a). There is a APD restitution heterogeneity
present for the lateral and septal walls as shown in Fig 3(c). Isthmus has flatter
restitution slopes compared to the neighbours, thus having a longer refractory
period and causing a unidirectional re-entry as seen in VT-Stim procedure.

Ischemic Ventricular Tachycardia Stimulation : Programmed ventric-
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Fig. 3. (a) shows the conduction velocity estimated from AC maps, (b) shows the
parameter τclose estimated for APD, lower τclose values has low measured APD (white
contour) and vice versa, (c) shows the parameter τopen estimated for APD restitution
and the heterogeneity of the restitution curves for the isthmus (black contour), low τopen
values (red) have steep slopes & high (blue) have flat slopes for restitution curves.

ular stimulation is a clinical protocol and consists of a number of extra stimuli
introduced at two ventricular sites (RV-Apex & RV-Outflow tract), using vari-
ous Cycle Lengths (CL), with varying coupling interval. This protocol is tested
directly on the patient, without any planning, to collect information about the
VT and to plan the RF ablation lines. It may be time consuming or fail, when
VT is not inducible and recurrent. We use the personalised 3D MS model of
the ischemic patient data to simulate in silico this protocol. Here we follow a
conventional VT-Stim protocol with RV-Apex pacing site, 2 extrastimuli and a
shortest coupling interval of 100 ms at 600 ms pacing cycle length. The results
on inducibility are shown in Fig 4 and the causes of rentry were pacing loca-
tion, restitution heterogeneity in isthmus compared to healthy Fig 3(c) and slow
conductivity near the scars.

5 Conclusion
This novel approach of coupling models for fast estimation of hidden parameters
related to the cardiac tissue such as conductivity, APD and APD restitution
could enable the clinical use of cardiac electrophysiology models. The parame-
ter estimation algorithm is used on a real interventional data and the obtained
results are very encouraging. The estimated conductivity, APD and APD resti-
tution parameters are able to identify the healthy areas from the pathological
ones (scar and isthmus). The personalised MS model was able to simulate a
clinical VT-Stim protocol in order to assess the risk of VT and fibrillation. This
opens up possibilities of introducing patient-specific models in clinics to provide
aid in treatment and planning of RF ablation procedures. In future, we need to
evaluate the prediction ability of the personalised models for arrhythmias.
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Fig. 4. (a) shows unipolar electrograms recorded for a clinical VT-Stim protocol, (b)
shows the simulated protocol for two extrastimuli, with coupling interval of 100 ms. (c)
show DT isochrones(in s) for S1 stimulus and (d) shows for S2, we have a unidirectional
block created in the isthmus. (e) shows DT isochrones for induced monomorphic VT
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