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Abstract. Personalisation, i.e. parameter estimation of a cardiac Elec-
troPhysiology (EP) model is needed to build patient-specific models,
which could then be used to understand and predict the complex dy-
namics involved in patient’s pathology. In this paper, we present an EP
model personalisation approach applied to an infarcted porcine heart, us-
ing contact mapping data and Diffusion Tensor MRI. The contact map-
ping data was gathered during normal sinus rhythm, on the ventricles
in-vivo, endocardially as well as epicardially, using a CARTO mapping
system. The Diffusion Tensor MRI was then obtained ex-vivo, in or-
der to have the true cardiac fibre orientations, for the infarcted heart.
Both datasets were then used to build and personalise the 3D ventricular
electrophysiological model, with the proposed personalisation approach.
Secondly, the effect of using only endocardial mapping or epicardial map-
ping measurements, on the personalised EP model was also tested.

1 Introduction

Modelling of the cardiac electrophysiology has been an important research in-
terest for the last decades, but in order to translate this work into clinical ap-
plications, there is an important need for personalisation of such models, i.e.
estimation of the model parameters which best fit the simulation to the clini-
cal data. Cardiac model personalisation is required to develop predictive models
that can be used to improve therapy planning and guidance.

There is a large variety of cardiac electrophysiology models for myocyte ac-
tion potential developed at cellular and sub-cellular scales [1–3]. Cardiac tissue
and whole-heart electrophysiological computations of these models are based on
the principles of reaction-diffusion systems [1]. According to the reaction term
computation, these models can be broadly categorised as Biophysical Models
(BM), Phenomenological Models (PM) and Generic Models (GM). BM [2, 3]
model ionic currents and are the most complete and complex but are less suit-
able for parameter estimation from clinical data due to a high computational
cost and to the lack of observability of their parameters. PM [4] are based on
PDEs and are of intermediate complexity level and less computationally expen-
sive. GM [5, 6] represent simplified action potentials and are the least complex.



Simple Eikonal Models (EM) [7] model the action potential propagation in the
cardiac tissue without modelling the action potential itself. They can be very fast
to compute [8], but less reliable in arrhythmia predictions due to the complexity
of both the refractoriness and the curvature of the wavefront.

In this paper, we present a coupled personalisation framework (EK-MS),
which is fast and combines the benefits of an Eikonal (EK) model with those of
a simplified biophysical model, the Mitchell-Schaeffer (MS) model. The fast 3D
EK model is used to estimate the tissue conductivity parameter over the ven-
tricles from the contact mapping of endocardial & epicardial surface potentials,
using an adaptive iterative algorithm. This is then used to set the conductivity
parameter of the 3D MS model, which could be then used for reliable arrhythmia
predictions.

In the past years, authors have focused on the personalisation of the PM and
MS model on 3D volumes [9, 10] using optical and MR data. Recently, we have
proposed the coupled personalisation approach (EK-MS), with an application
to a patient with infarction, using non-contact mapping and 3D MRI [11]. The
contributions of this paper are: 1) Application of the EK-MS personalisation
approach to an infarcted porcine heart, using contact mapping data and DT-
MRI, and 2) Study of the effect of using either endocardial only or epicardial
only measurements, on the EP model personalisation.

2 3D electrophysiology model with chronic infarction

The models used in the EK-MS personalisation approach are simple Eikonal
(EK) model and a simplified biophysical model, the Mitchell-Schaeffer (MS)
model.

The EK model simulates the propagation of the depolarization wave in quies-
cent tissue, ignoring repolarisation phase. The EK model is governed by eikonal-
diffusion (ED) equation and is based on anisotropic Fast Marching Method
(FMM). More detailed analysis can be found in [8]. The non-linear EK model
equation is solved using a fixed point iterative method combined with a very
fast eikonal solver, on the bi-ventricular geometry, as explained in [7].

The MS model [12] is a 2-variable simplified biophysical model derived from
the 3-variable Fenton Karma (FK) ionic model [13]. It models the transmem-
brane potential as the sum of a passive diffusive current and several active re-
active currents including a sodium ion (influx) current and a potassium ion
(outflux) current. Unlike FK model, it does not model the Calcium ion current.
More detailed analysis can be found in [12]. The MS model is modelled as re-
action diffusion equations and is spatially integrated using a linear tetrahedral
mesh of the bi-ventricular myocardium, taking into account the fiber orienta-
tion as well, and is temporally integrated using a semi-implicit time integration
scheme (MCNAB) [14].

In this paper, we focus only on conductivity estimation, thus chronic scars
are modelled with low conductivity in the ischemic zones. While the gray zones
(the regions around scars) had conductivity estimated from the data, as shown



later. However, we had shown the approach of modelling chronic scars along with
APD heterogeneity in [11].

3 Contact mapping and MR Dataset Processing

In this paper, we performed the adjustments on an infarcted porcine heart. The
acquired data consists of contact mapping data gathered on the ventricles in-
vivo during normal sinus rhythm, endocardially as well as epicardially, using a
CARTO mapping system, and a Diffusion Tensor MRI (DT-MRI) representing
geometry and fiber orientation ex-vivo.

The 3D mapping system (CARTO) localizes the extracellular potentials at
points in 3D space and on a 3D ventricular geometry acquired by connecting all
those points, during the interventional procedure, using invasive catheters. The
measurement of extracellular potentials could be unipolar or bipolar (Fig 2(b)).
The mapping system then extracts the local activation times (LAT) for the con-
tact points in 3D space and produces a local activation map on the 3D ventricular
geometry, representing the action potential wave propagation pattern, as shown
in Fig 2(a).

The DT-MRI is used to reconstruct the cardiac fibers using the principal
eigenvector of the diffusion tensor. It is also used to create the 3D ventricular
model, as shown in Fig 1.

The 3D ventricular geometry acquired using CARTO is then registered to
the 3D ventricular model. The measurement contact points of the CARTO, are
then projected on to the 3D ventricular geometry using closest points projections
(Fig 2(c & d)). Finally, the LATs measured at those points is then interpolated
on the endocardial and epicardial surface, to have a rough guess on the action
potential wave propagation, as shown in Fig 3.

The interpolated epicardial and endocardial LAT maps on the 3D ventricular
model, are then used as input for EP model personalisation. In order to penalise
the point projection and interpolation errors, we use the projection distance of
the points and the interpolated projection distance maps (Fig 4) as a spatial
penalising factor in the conductivity estimation procedure, as explained later.

4 Building personalised electrophysiological model

4.1 Coupled personalisation approach (EK-MS)

Cardiac tissue conductivity is a crucial feature for the detection of conduction
pathologies. The Apparent Conductivity (AC) of the tissue can be measured by a
parameter d in the EK model [8]. For computational affordability reasons, we use
the simplest EK model for fast tissue conductivity estimation, with an adaptive
iterative algorithm based on gradient free optimisation, as explained in details
in [8, 11]. For reliable pathological predictions with chronic scars, we couple
the personalised parameters of the EK model to a relatively more complicated
biophysical MS model. The coupling procedure is explained in details in [11].
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Fig. 1. (a) Volume rendering of DT-MRI to visualize scars (bright in intensity), (b)
3D ventricular model constructed from DT-MRI, with labelled scar zones (black), (c)
cardiac fiber construction from DT-MRI, showing the fiber disorientation in and around
scars (black contour).
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Fig. 2. (a) LAT map constructed on a 3D ventricular geometry using CARTO map-
ping system, (b) Unipolar & bipolar extracellular potentials measured using invasive
catheters, (c & d) measurement contact points (red - endocardial & blue - epicardial)
gathered in 3D space using CARTO, registered and then projected on the endocardial
(c) & epicardial (d) surface respectively, of the 3D ventricular model.
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Fig. 3. LAT maps construction from linear interpolation of the measurement contact
points (black) for (a) endocardial and (b) epicardial surfaces of the 3D ventricular
model.

The input to the algorithm are the linearly interpolated LAT maps on the
surface of the ventricular model (Fig 3). The cost function for each zone to
minimise, is adapted here, and is given as

J(dzone) =
∑

∀i∈S∩zone

(
PenaltyFactori ∗

(
LATi −DT sim

i (dzone)
))2

(1)
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Fig. 4. Projection distance calculated and interpolated from the contact points (black),
on to the endocardial surface.

with vertex i in zone, belonging to the surface S having measures, DT sim are the
simulated depolarisation times from the EK model, and PenaltyFactor is com-
puted from the normalisation of interpolated projection distance maps (Fig 4(b
& c)), with 1.0 representing lowest distance and 8.14e−9 representing the farthest
distance.

4.2 Application

In order to assess the influence of mapping (endocardial and epicardial) details
on the model personalisation, we tested model personalisation with various con-
figurations as follows.

With endocardial and epicardial mapping In the state of the art in clin-
ics, simultaneous endocardial and epicardial mappings are the finest amount of
acquisition details possible for capturing the action potential wave propagation
dynamics during normal sinus rhythm. Thus we use the apparent conductivity
estimated using this mapping data, as the closest approximation of the true
tissue conductivity distribution, with the proposed personalisation approach.
The mean error on activation times, after model personalisation was 15.93 ms.
Fig 5(a & b) shows the activation isochrones after personalisation, and Fig 6(a
& b) shows the AC distribution, along with the residual activation time error
after optimisation.

With endocardial mapping Now we use only the endocardial mapping, to
estimate the AC distribution. The mean error on activation times, after person-
alisation was 15.26 ms. Fig 5(e) shows matching of the LV endocardial isochrones
with Fig 5(a) and data (Fig 3(a)), but has a large misfit of the epicardial
isochrones (Fig 5(f) compared against Fig 5(b) and Fig 3(b)). Thus the repro-
ducibility of the isochrones on the epicardial side is highly prone to errors. This
is confirmed by the large prediction errors on the epicardial surface, as shown in
Fig 7(c).



With epicardial mapping Here we use the epicardial mapping, to estimate
the AC distribution. The mean error on activation times, after personalisation
was 9.59 ms. Fig 5(c & d) shows good matching of the LV endocardial isochrones,
as well as epicardial isochrones with Fig 5(a & b) and data (Fig 3(a & b)). Thus
epicardial mapping could be sufficient enough to reproduce the true wave prop-
agation dynamics, as compared to endocardial mapping data. This is confirmed
by the low prediction errors on the endocardial surface, as shown in Fig 7(b).
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Fig. 5. Volumetric activation times after personalisation using endocardial & epicar-
dial mapping (top row), only epicardial mapping (middle row) and only endocardial
mapping (bottom row).

5 Conclusion

In this work, we have shown the application of a proposed coupled personal-
isation framework to the contact mapping data of an infarcted porcine heart.
The cardiac fibre orientations estimated from DT-MRI were incorporated inside
the model personalisation for a more accurate tissue conductivity estimation.
We also tested the influence of mapping details on the model personalisation
algorithm. We found that personalisation using epicardial mapping gave a con-
ductivity estimation closest to the one obtained with personalisation using both
endocardial and epicardial mapping, and also showed a low prediction error. On
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Fig. 6. The first two columns show estimated AC distributions and last two columns
show residual error after personalisation, for various configurations explained.
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Fig. 7. Graph: mean and standard deviation of the difference of AC values estimated
for the 3 configurations. Zero mean with low standard deviation shows good agreement
between the AC values for a given data point. Other figures show the prediction error
on the endocardial side, for personalisation with epicardial mapping (b) and on the
epicardial side, for personalisation with endocardial mapping.

the other hand, the personalisation with endocardial mapping had an important
deviation from the estimated distribution obtained with both endocardial &
epicardial mapping. It also had an important prediction error on the epicardial



surface. Thus, within this experimental setting, epicardial mapping proved to
be a sufficient acquisition to reproduce a tissue conductivity distribution, closer
to the one estimated using both endocardial and epicardial mapping. This was
also the case when the personalisation was done on similar data from a clinical
case [15]. Such finding has to be tested on other configurations, for different
healthy and pathological cases.

Acknowledgements

The research leading to these results was partially funded by the the euHeart
project (FP7/2007-2013 under grant agreement n 224495). We thank Dr. Mihaela
Pop and Dr. Graham Wright both of Sunnybrook Research Institute, (Toronto
- Canada) for providing the EP-CARTO and DT-MRI data, and to Dr. Thomas
Mansi (Siemens Corporate Research, Princeton, NJ, USA) for the mesh gener-
ation and fibre extraction for the infarct heart, and to Dr. Maxime Sermesant
(INRIA, Asclepios project - Sophia Antitpolis France) for mesh generation and
fibre extraction for the normal heart”.

References

1. Fenton, F.H., Cherry, E.M.: Models of cardiac cell. Scholarpedia 3(8) (2008) 1868
2. Noble, D., Varghese, A., Kohl, P., Noble, P.: Improved guinea-pig ventricular cell

model incorporating a diadic space, IKr and IKs, and length-and tension-dependent
processes. The Canadian journal of cardiology 14(1) (1998) 123

3. Ten Tusscher, K., Noble, D., Noble, P., Panfilov, A.: A model for human ventricular
tissue. American Journal of Physiology- Heart and Circulatory Physiology 286(4)
(2004) H1573

4. Bueno-Orovio, A., Cherry, E., Fenton, F.: Minimal model for human ventricular
action potentials in tissue. Journal of theoretical biology 253(3) (2008) 544–560

5. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve
membrane. Biophysical Journal 1(6) (1961) 445–466

6. R. Aliev, R., V. Panfilov, A.: A simple two-variable model of cardiac excitation.
Chaos, Solitons & Fractals 7(3) (1996) 293–301

7. Sermesant, M., Konukoglu, E., Delingette, H., Coudiere, Y., Chinchapatnam, P.,
Rhode, K., Razavi, R., Ayache, N.: An anisotropic multi-front fast marching
method for real-time simulation of cardiac electrophysiology. Volume 4466 of
LNCS., Springer (2007) 160–169

8. Chinchapatnam, P., Rhode, K., Ginks, M., Rinaldi, C., Lambiase, P., Razavi, R.,
Arridge, S., Sermesant, M.: Model-based imaging of cardiac apparent conductiv-
ity and local conduction velocity for diagnosis and planning of therapy. Medical
Imaging, IEEE Transactions on 27(11) (2008) 1631–1642

9. Lepiller, D., Sermesant, M., Pop, M., Delingette, H., Wright, G., Ayache, N.: Car-
diac electrophysiology model adjustment using the fusion of MR and optical imag-
ing. Volume 5241 of LNCS., Springer (2008) 678–685

10. Relan, J., Pop, M., Delingette, H., Wright, G., Ayache, N., Sermesant, M.: Per-
sonalisation of a cardiac electrophysiology model using optical mapping and mri
for prediction of changes with pacing. Biomedical Engineering, IEEE Transactions
on (2011)



11. Relan, J., Chinchapatnam, P., Sermesant, M., Rhode, K., Ginks, M., Delingette,
H., Rinaldi, C., Razavi, R., Ayache, N.: Coupled personalization of cardiac elec-
trophysiology models for prediction of ischaemic ventricular tachycardia. Interface
Focus 1(3) (2011) 396

12. Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac mem-
brane. Bulletin of mathematical biology 65(5) (2003) 767–793

13. Fenton, F., Karma, A.: Vortex dynamics in three-dimensional continuous my-
ocardium with fiber rotation: filament instability and fibrillation. Chaos 8(1)
(1998) 20–47

14. Relan, J., Sermesant, M., Delingette, H., Pop, M., Wright, G., Ayache, N.: Quanti-
tative comparison of two cardiac electrophysiology models using personalisation to
optical and mr data. In: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09.
IEEE International Symposium on, IEEE (2009) 1027–1030

15. Konukoglu, E., Relan, J., Cilingir, U., Menze, B., Chinchapatnam, P., Jadidi, A.,
Cochet, H., Hocini, M., Delingette, H., Jäıs, P., Häıssaguerre, M., Ayache, N., Ser-
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