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ABSTRACT

We introduce a new surface representation for recognizing curved objects. Our approach
begins by representing an object by a discrete mesh of points built from range data or from
a geometric model of the object. The mesh is computed from the data by deforming a stan-
dard shaped mesh, for example, an ellipsoid, until it fits the surface of the object. We
define local regularity constraints that the mesh must satisfy. We then define a canonical
mapping between the mesh describing the object and a standard spherical mesh. A surface
curvature index that is pose-invariant is stored at every node of the mesh. We use this
object representation for recognition by comparing the spherical model of a reference
object with the model extracted from a new observed scene. We show how the similarity
between reference model and observed data can be evaluated and we show how the pose
of the reference object in the observed scene can be easily computed using this representa-
tion.

We present results on real range images which show that this approach to modelling and
recognizing three-dimensional objects has three main advantages: First, it is applicable to
complex curved surfaces that cannot be handled by conventional techniques. Second, it
reduces the recognition problem to the computation of similarity between spherical distri-
butions; in particular, the recognition algorithm does not require any combinatorial search.
Finally, even though it is based on a spherical mapping, the approach can handle occlu-
sions and partial views.
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1  Introduction

Recognition of curved objects is one of the key issues in computer vision. It is a problem
not only in traditional applications such as industrial object recognition and face recogni-
tion but also in emerging applications such as navigation and manipulation in natural envi-
ronments. To aid in overcoming this problem, we have designed a new approach that uses
as a starting point a combination of several traditional object recognition and representa-
tion methods.

Traditionally, there are two ways to represent objects for recognition: local and global.
Local methods attempt to represent objects as a set of primitives such as faces or edges.
Most early local methods handle polyhedral objects and report effective and encouraging
results. Representative systems include [13][21][15]. Few systems can handle curved sur-
faces. Some systems include early work in which primitive surfaces enclosed by orienta-
tion discontinuity boundaries are extracted  from range data [22]. Other systems determine
primitive surfaces which satisfy planar or quadric equations [10]. Techniques based on dif-
ferential geometry such as [3] segment range images using Gaussian curvatures. More
recent local techniques use points of interest and edges of surfaces to match observed sur-
faces with stored representation [24]. These local methods, however, are noise-sensitive
and are still limited in reliably extracting primitives of curved objects from input images.

The global methods assume one particular coordinate system attached to an object and
represent the object as an implicit or parametric function in this coordinate system. The
resulting representation is global in that the implicit function represents the entire shape of
the object or of a large portion of the object. The generalized cylinder (GC) is representa-
tive of this group. A generalized cylinder is defined as an axis, a cross-sectional shape and
its sweeping rule along the axis. Although encouraging results have been obtained in rec-
ognizing GCs in intensity images by minimizing the distance between observed and pre-
dicted occluding edges, using generalized cylinders for recognition is difficult due to the
difficulty of extracting GC parameters from input images.

Superquadrics (SQ) representation also belongs to the class of global representations
[23]. Superquadrics are generalizations of ellipsoids. Object representations are built by
fitting an implicit equation to a set of input data points. Recognition using SQs proceeds
by comparing the parameters of the SQs extracted from the scene with the SQs stored in
the model. The SQs represent a limited set of shapes which can be extended by adding
parameters to the generic implicit equation of SQs. This limitation has the undesirable
effect of making the fitting process much more expensive and numerically unstable. A
possible extension is to segment objects into sets of superquadrics [11], although the com-
putational complexity of the scene analysis may become prohibitive. An interesting
attempt to handle a large class of natural objects in discussed in [4] in which multiple sur-
face representations, ranging from quadrics to superquadrics to generalized cylinders, are
used. The type of representation is selected based on the level of detail available from the
range image.

EGI and CEGI map surface orientation distributions to the Gaussian sphere [14][19][16].
Since the Gauss map is independent on translation, the representation is quite suitable to
handle convex curved objects. In this case, recognition proceeds by finding the rotation
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that maximizes the correlation between two EGIs [14][7]. However, when part of the
object is occluded, those techniques cannot reliably extract the representation.

Recently, new approaches for modeling objects have been developed. These approaches
are based on the idea of fitting a bounded algebraic surface of fixed degree to a set of data
points [25][26]. With this representation, recognition proceeds by comparing the polyno-
mials describing observed and stored surfaces, although it is not yet clear how the compar-
ison would be performed. Using algebraic surfaces is convenient because powerful tools
can be used to compute limbs and other properties of the object. Recognition proceeds by
comparing invariant properties computed from the algebraic equations of observed and
reference surfaces [12]. Although encouraging results have been obtained in this area,
more research is needed in the areas of bounding constraints, convergence of surface fit-
ting, and recognition before this approach becomes practical. Occlusion remains a prob-
lem since there is no guarantee that the polynomial computed from a partial view is
similar to the polynomial computed from a complete model of the object. For a survey of
other techniques that can be used for global surface fitting, see [5].

All these approaches attempt to fit some known parametric surface, either locally or glo-
bally, to the object. Consequently, these approaches tend to limit the set of shapes that can
be represented and recognized. Moreover, the cost of building the representations from
data sets increases rapidly as parameters are added to expand the set of allowable shapes.
To address these two problems, another class of approaches attempts to match sets of
points directly without any prior surface fitting. An example is the work by Besl [2] in
which the distance between point sets is computed and minimized to find the best transfor-
mation between model and scene. This approach has many advantages since it does not
require any surface segmentation or surface fitting and it does not require a search for an
explicit correspondence between model and scene features for recognition. Recent results
show that these algorithms can perform remarkably well by using new numerical tech-
niques for minimizing distances between two arbitrary point sets. The main drawback of
this approach is that, like any minimization technique, it is not guaranteed to find the glo-
bal optimum, especially if the scene contains occlusions, different point density in model
and scene representation, and large number of extra points from different objects.

Our approach begins with a combination of the point set matching and the original EGI
approach. As in the case of the point set matching, we want to avoid fitting analytical sur-
faces to represent an object. Instead, we use a representation that simply consists of a col-
lection of points, or nodes, arranged in a mesh covering the entire surface of the object.
This has the advantage that the object can have any arbitrary shape, as long as that shape is
topologically equivalent to the sphere. To avoid problems with variable density of nodes
on the mesh, we need to define regularity constraints that must be enforced when the mesh
is built. Constructing meshes that fit input data and that satisfy some constraints is possible
based on the optimization techniques originally introduced in [27] and [17]. We use an
extension of the deformable surface algorithms introduced in [9] to compute the meshes.
As in the EGI algorithms, each node of the mesh is mapped onto a regular mesh on the
unit sphere, and a quantity that reflects the local surface curvature at the node is stored at
the corresponding node on the sphere. Instead of using a discrete approximation of the
curvature, we develop a new curvature indicator, the simplex angle, which is entirely
defined from a node and its neighbors in the mesh without any reference to the underlying
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continuous surface. We call the corresponding spherical representation the Spherical
Attribute Image (SAI). Finally, we define the regularity constraints such that if M is the
mesh representing an object, and M’ is the mesh representing the same object after trans-
formation by a combination of rotation, translation, and scaling, then the corresponding
distributions of simplex angles on the spherical representations S and S’ are the same up to
a rotation. In other words, the SAI is an invariant representation. Therefore, to determine
whether two objects are the same, we need only compare the corresponding spherical dis-
tributions. The overall approach is illustrated in Figure 1: A regular mesh is computed
from input object description, sensor data or CAD model; a simplex angle is computed at
each node of the meshes and the meshes are mapped onto a sphere, the SAI. If a rotation
between the two spherical images exists, the two meshes correspond to the same object.
This approach is similar in principle to the EGI approach. However, one fundamental dif-
ference is that a unique mesh, up to rotation, translation and scale, can be reconstructed
from a given SAI. In the case of the EGI, this property is true only for convex objects.
Another fundamental difference is that the SAI preserves connectivity in that patches that
are connected on the surface of the input object are still connected in the spherical repre-
sentation. The latter is the main reason why our approach can handle arbitrary non-convex
objects. Connectivity conservation is also the reason why the SAI can be used for recogni-
tion even in the presence of significant occlusion (as we will see later in the paper)
whereas EGI and other global representations cannot.

Figure 1: Object recognition using SAIs.

Another way to describe the properties of the SAI is in terms of intrinsic coordinate sys-
tems. An intrinsic coordinate is one such that any given surface point has the same coordi-
nates regardless of the orientation, position, and scale of the underlying object. In the case
of two-dimensional contours, intrinsic coordinate systems are very easy to define. For
example, they are the basis of geometric hashing techniques [18]. For three-dimensional
surfaces, a general definition of intrinsic coordinate systems on curved objects is much
more difficult to define. For example, the geodesics of a surface can be used to define an
intrinsic coordinate system. Still other efforts focus on lines of curvatures and other differ-
ential geometry invariants [6]. The problem with these approaches is that they are based
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on definitions and properties that are valid for continuous surfaces, whereas we typically
have to handle discrete surfaces from sensor data.

To describe our approach, we have organized the paper as follows. In Section 2.1, we
describe a simple representation of closed 2-D curves which we then extend to three
dimensional surfaces in Section 2. In both sections, we investigate the notions of global
and local regularity, and of simplex angle. The two-dimensional representation is fairly
standard and is used here only as an introduction to the definition of the equivalent repre-
sentation in three dimensions. In Sections 2 to 4 we describe the fundamentals of the SAI
algorithms in the case of complete object models. In Section 3, we show how to obtain
SAIs from range data. In Section 4, we describe the SAI matching. We address the prob-
lem of occlusion and partial models in Section 5. In that section, we also present several
results of recognition in complex scenes and a discussion of performance and robustness
of the recognition algorithm.

2  Intrinsic Representation of 3-D Surfaces

In this section we extend the concepts of curvature indicator, local and global regularity,
and circular representation to three-dimensional surfaces. We consider the case of repre-
senting surfaces topologically equivalent to the sphere. (Cases in which only part of the
surface is visible will be addressed in Section 5.) The representation cannot handle at this
point surfaces such as the torus. We follow the same approach as for two-dimensional con-
tours. We first develop the intuition behind the representation by describing a simple rep-
resentation for 2-D curve in Section 2.1. We define a discrete representation of surfaces,
the equivalent of the polygonal representation, in Section 2.2. We introduce the three-
dimensional equivalent of the concepts of global and local regularity in Sections 2.3 and
2.4, respectively. In Section 2.5, we propose a new indicator of curvature, the simplex
angle, that is a direct extension of the angle used in the two-dimensional case. Finally, we
define an intrinsic spherical representation as an extension of the circular representation of
contours in Section 2.6. At the end of this section, we will have defined a representation
that is invariant by translation and scale and is unique for a given object and a given reso-
lution up to a rotation of the representation space. Detailed presentations of the basic
results on semi-regular tessellations, triangulations, and duality can be found in
[20][28][29].

2.1  Intrinsic Representation of 2-D Curves

A standard approach to representing and recognizing contours is to approximate con-
tours by polygons, and to compute a quantity that is related to the curvature of the underly-
ing curve. The similarity between contours can then be evaluated by comparing the
distribution of curvature measurement at the vertices of the polygonal representations.
Under certain conditions, the curvature distribution can be mapped unambiguously on the
unit circle, allowing for a representation that is independent of orientation and position of
the contour. In this section, we introduce the basic concepts that can be used to manipulate
polygonal representations of contours. Starting with the definition of a curvature indicator,
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we then define conditions of local and global regularity for building intrinsic representa-
tions of contours.

Rather than attempting to approximate the curvature of a discrete curve at each node of
the polygonal approximation, we use a different quantity, the angle ϕ between consecutive
segments (Figure 2), which is related to the curvature but has more desirable properties in
dealing with discrete representations. The relation between ϕ and the curvature k is

 as l becomes small, or, equivalently, as the density of points increases. Like the
curvature, the angle ϕ is independent of rotation and translation. Unlike the curvature, ϕ is
also independent of scaling.

Figure 2: Discrete curvature measure of a 2-D curve.

One problem is that if the lengths of the segments representing the curve are allowed to
vary, the value of ϕ depends not only on the shape of the curve but also on the distribution
of points on the curve. In particular, it is important for the same curve shape to generate
the same value of ϕ to enable the comparison of discrete curves. One way to avoid this
problem is to impose a local regularity condition on the distribution of vertices. The local
regularity condition states that all the segments must have the same length. Another geo-
metric definition of this condition is illustrated in Figure 3. The condition that the length
of the two segments PP1 and PP2 are the same is equivalent to the condition that the pro-
jection of node P on the line joining its two neighbors P1 and P2 coincides with the center
of P1 and P2. One consequence of the regularity condition is that there is only one degree
of freedom in the polygonal representation in that, for a given number of vertices, specify-
ing one vertex on the curve uniquely determines the locations of all the other nodes along
the curve.

Figure 3: Geometric definition of local regularity.

The last step in representing two-dimensional contours is to build a circular representa-
tion that can be used for recognizing contours. Let us assume that the contour is divided
into N segments with vertices P1,.,PN, and with corresponding angles ϕ1,.,ϕN. Let us
divide the unit circle using N equally spaced vertices C1,.,CN. Finally, let us store the angle
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ϕi associated with Pi at the corresponding circle point Ci (Figure 4). The circular represen-
tation of the contour is invariant by rotation, translation, and scaling. This property allows
for comparing contours by deciding that two contours are identical if there exists a rota-
tion of the unit circle that brings the contours representation in correspondence (Figure 5).
The unicity property is true because of the local regularity condition and because of the
invariance of ϕ.

Figure 4: Mapping between shape and circular representation space.

Figure 5: Comparing contours in representation space.

2.2  Triangulation and Duality

The most natural discrete representation of a surface is a triangulation, that is, a polyhe-
dron with triangular faces whose vertices are on the surface. Each face defines a plane
which is the local approximation of the surface. It is desirable for many algorithms to have
a constant number of neighbors at each node. We use a class of meshes such that each
node has exactly three neighbors. Such meshes can always be constructed as the dual of a
triangulation. The dual of a triangulation is a graph with one node for each face of a trian-
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gulation. Nodes are connected in the dual graph if they correspond to connected faces in
the original triangulation. Figure 6 shows a triangulation and its dual. In switching from a
triangulation to its dual, the property of planarity of the faces is lost since faces, defined as
the cycles with the minimum number of vertices, may have more than three vertices.
Therefore, the dual mesh should be viewed as a graph of points with the desired connec-
tivity; the triangulation may be viewed as a polyhedral approximation of the object. The
dual of any triangulation is a graph of degree three. In the remainder of this paper, we will
use only dual meshes with the understanding that they can be derived from an initial trian-
gulation.

Figure 6: Triangulation and dual mesh.

2.3  Global Regularity and Mesh Topology

As mentioned in the previous section, global regularity can easily be achieved in two
dimensions since a curve can always be divided into an arbitrary number of segments of
equal length. The equivalent in three dimensions would be a mesh covering a closed sur-
face such that the distance between vertices is constant and is the dual of a triangulation,
that is, each node has exactly three neighbors. Extending the notion of global regularity to
a mesh covering a two dimensional plane, there are three possible topologies: The triangu-
lar and hexagonal meshes which are dual of each other, and the square mesh which is its
own dual. The problem is that, even though these meshes provide global regularity for an
open surface, they cannot be extended to a closed surface. In fact, the tetrahedron, cube
and dodecahedron (Figure 7) are the only regular triangulation-dual tessellations of a
closed surface, corresponding to the triangular, square, and hexagonal topologies, respec-
tively. Therefore, only approximate global regularity can be achieved in three dimensions.

The approach that we use is recursive subdivision of the dodecahedron which yields a
mesh that is “almost” regular in that all but 12 pentagonal cells have hexagonal connectiv-
ity. If the number of cells is large enough, typically several hundred to a few thousand, the
ratio of the number of regular hexagonal cells to the number of singular pentagonal cells
becomes very small. Therefore, the mesh is almost regular for a large number of cells. In
practice, a triangulation with the appropriate number of nodes is first constructed. The tri-
angulation is built by subdividing each triangular face of a 20-face icosahedron into N2

smaller triangles. The final mesh is built by taking the dual of the 20N2 faces triangulation,
yielding a mesh with the same number of nodes. Figure 8 shows the mesh obtained by
recursive subdivision of the dodecahedron for N = 2, 3, and 5. For the experiments pre-

Dual

Triangulation
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sented in this paper, we used a subdivision frequency of N = 7 for a total number of nodes
of 980.

Figure 7: Regular meshes.

Figure 8: Meshes from recursive subdivision of dodecahedron.

2.4  Local Regularity

The next step in going from two to three dimensions is to define a notion of local regular-
ity that leads to invariance properties of the mesh and curvature indicator definition similar
to the properties used for 2-D curves. The definition of local regularity in three dimensions
is a straightforward extension of the definition of Section 2.1. Let P be a node of the mesh,
P1, P2, P3 be its three neighbors, G be the centroid of the three points, and Q be the projec-
tion of P on the plane defined by P1, P2, and P3 (Figure 9). The local regularity condition
simply states that Q coincides with G. This is the same condition as in two dimensions,
replacing the triangle (P1, P2, P) of Figure 3 by the tetrahedron (P1, P2, P3, P). The local
regularity condition is invariant by rotation, translation, and scaling because it is purely
local and involves only relative positions of the nodes with respect to each other, not abso-
lute distances.

(a) N = 2 (b) N = 3 (c) N = 5
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Figure 9: Local regularity in three dimensions.

2.5  Discrete Curvature Measure: Simplex Angle

The last step in building a discrete surface representation is to define an indicator of cur-
vature that can be computed from a mesh with the appropriate regularity properties.We
propose a definition in terms of angular variation between neighbors in the mesh accord-
ing to the definition of Figure 2. We need to define some notation (Figure 10 (a)). Let P be
a node of the mesh, P1, P2, P3 its three neighbors, O the center of the sphere circum-
scribed to the tetrahedron (P, P1, P2, P3), Z the line passing through O and through the
center of the circle circumscribed to (P1,P2,P3). Now, let us consider the cross section of
the surface by the plane Π containing Z and P. The intersection of Π with the tetrahedron
is a triangle. One vertex of the triangle is P, and the base opposite to P is in the plane
(P1,P2,P3) (Figure 10 (b)). We define the angle ϕo as the angle between the two edges of
the triangle intersecting at P. By definition, ϕo is the discrete curvature measure at node P.
It is easy to see that this definition is consistent with the 2-D definition since the geometry
in the plane Π is the same as the initial geometry for a two dimensional curve illustrated in
Figure 2. We call ϕo the simplex angle at P, since it is the extension to a three-dimensional
simplex, the tetrahedron, of the notion introduced for a two-dimensional simplex, the tri-
angle.

Figure 10: Definition of the simplex angle.
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The simplex angle varies between -π and π. The angle is 0 for a flat surface, and is large
in absolute value if P is far from the plane of its three neighbors. The simplex angle is neg-
ative if the surface is locally concave, positive if it is convex, assuming that the set of
neighbors is oriented such that the normal to the plane they form is pointing toward the
outside of the object (Figure 11). This behavior of the simplex angle corresponds to the
intuitive notion of local “curvature” of a surface. Another desirable property is that the
simplex angle is sphere-invariant in that ϕo remains the same no matter where P is located
on the circumscribed sphere. In particular, this implies that if the nodes of the mesh are on
a surface whose curvature is constant in a region, then the simplex angle will also be con-
stant in this region no matter what the distribution of the points is. Finally, it is clear that
the simplex angle is invariant by rotation, translation, and scaling.

Figure 11: Typical values of the simplex angle.

Other measures could be used for characterizing surface curvature. For example, the
angle κ = θ1+θ2+θ3, where qi is the angle between PPi and PPi-1, is often used as a mea-
sure of curvature. We chose the definition of the simplex angle based on its robustness and
its ability to discriminate between points. An experimental comparison of ϕo with κ and
other measures is described in [9].

In the rest of the paper, we will denote by g the function that maps a node to its simplex
angle; the simplex angle ϕo at a node P will be denoted by g(P).

2.6  Spherical Attribute Image

We have extended the notions of regularity and simplex angle to three-dimensional sur-
faces; we can now extend the circular representation developed in two dimensions to a
spherical representation in three dimensions. Let M be mesh of points on a surface such
that it has the topology of the quasi-regular mesh of Section 2.3. Let S be a reference mesh
with the same number of nodes on the sphere of unit one. We can establish a one-to-one
mapping h between the nodes of M and the nodes of S. The mapping h depends only on the
topology of the mesh and the number of nodes. Specifically, for a given size of the mesh M
= 20xN2, where N is the frequency of the mesh (Section 2.3), we can define a canonical
numbering of the nodes that represents the topology of any M-mesh. In other words, if two
nodes from two different M-meshes have the same index, so do their neighbors. With this
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indexing system, h(P), where P is a node of the spherical mesh, is the node of the object
mesh that corresponds to the same index as P.

In the current implementation, the nodes are stored in a two-dimensional array. The first
dimension of the array, sometimes called the major index, is between 1 and 20; the second
dimension, sometimes called the minor index, is between 1 and N2. For any node
P(major,minor), h(P) is the point stored at the same location, (major,minor), in the object
mesh table. The connectivity table is computed only once for any given frequency.

Given h, we can store at each node P of S the simplex angle of the corresponding node on
the surface g(h(P)). The resulting structure is a quasi-regular mesh on the unit sphere, each
node being associated with a value corresponding to the simplex angle of a point on the
original surface. As an analogy to the Extended Gaussian Image, we call this representa-
tion the Spherical Attribute Image (SAI)1. In the remainder of the paper, we will denote by
g(P) instead of g(h(P)) the simplex angle associated with the object mesh node h(P) since
there is no ambiguity.

If the original mesh M satisfies the condition of local regularity, then the corresponding
SAI has several important properties. First, the SAI is invariant by translation and scaling
of the original object, given a mesh M. This condition is because the simplex angle itself is
invariant by translation and scaling (Section 2.6), and because M still satisfies the local
regularity condition after translation and scaling (Section 2.4).

The fundamental property of the SAI is that it unambiguously represents an object up to
a rotation. More precisely, if M and M’ are two meshes on the same object with the same
number of nodes both satisfying the local regularity condition, then the corresponding
SAIs S and S’ are identical up to a rotation of the unit sphere. Strictly speaking, this is true
only as the number of nodes becomes very large because the nodes of one sphere do not
necessarily coincide with the nodes of the rotation version of the other sphere. (This prob-
lem is addressed in Section 4.1.) One consequence of this property is that two SAIs repre-
sent the same object if one is the rotated version of the other.

From this definition of the mapping h, we can now easily see the origin of the property of
connectivity conservation mentioned in the Introduction. If two nodes P1 and P2 are con-
nected on the spherical mesh, then the two corresponding nodes M1=h(P1) and M2=h(P2)
on the object mesh are also connected by an arc of the object mesh. The property holds
because of the definition of h which depends only on the topology of the mesh, not on the
positions of the nodes.

Another way to look at these properties of SAIs is in terms of unicity of representation.
A given SAI defines a mesh size and a distribution of simplex angles. The unicity property
is that an SAI represents a unique object mesh up to rotation, translation, and scale. The
unicity property holds even in the case of arbitrary non-convex objects because of the con-
nectivity conservation property. In fact, we will show in Section 3.4 that the object can be
explicitly reconstructed from its SAI.

1.  Older papers refer to this representation as the Simplex Angle Image. The new name is chosen to reflect
the fact that other attributes besides curvature could be stored in the spherical image, although we limit our-
selves to the simplex angle in this paper.
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3  Building Intrinsic Representations from 3-D Data

In the previous sections, we have defined the notion of locally regular mesh and its asso-
ciated SAI. In this section, we describe the algorithm developed for computing such a
mesh from an input object. We assume that we have some input description of an object.
The only requirement is that the input description allows for computing the distance
between an arbitrary point in space and the surface of the object. Therefore, input object
representations such as polynomial surface patches and polyhedra from CAD models, or
arbitrary triangulations of the surface are acceptable. Even unstructured sets of points
from raw range data can be used provided that the density of points is high enough that the
distance to the surface can be estimated with reasonable accuracy.

The general approach is to first define an initial mesh near the object with the topology
described in Section 2.3 and to slowly deform it by moving its nodes until the mesh satis-
fies two conditions: It must be close to the input object, and it must satisfy the local regu-
larity condition. The first condition ensures that the resulting mesh is a good
approximation of the object, while the second condition ensures that a valid SAI can be
derived from the mesh. Section 3.1 describes the basic algorithm for deforming the mesh.
Section 3.2 describes the construction of the mesh used to initiate the deformation algo-
rithm. Section 3.3 describes the algorithm for converting the final mesh to a spherical rep-
resentation and gives examples of building meshes and SAIs from range data and from
CAD models. Finally, Section 3.4 shows how the same algorithm can be used to perform
the inverse operation, that is, reconstructing an object from a given SAI.

3.1  Mesh Deformation

The problem now is to deform the mesh such that all the nodes satisfy two fundamental
properties:

• Mesh nodes must be as close as possible to the original surface.

• Mesh nodes must satisfy the normal constraints: a node is on the line parallel to the nor-
mal vector of the plane formed by its three neighbors and passing by the center of the
neighbors.

These two conditions ensure that the mesh is a good approximation of the surface while
guaranteeing that it is an intrinsic representation. The formalism of deformable surfaces
[9] is applied to deform the mesh until it satisfies these criteria. Specifically, each node is
subject to two types of forces. The first type of forces brings a node closer to the input sur-
face, while the second type forces the node to satisfy the normal constraint. Let Fo be the
force of the first type applied at a given node N, and Fg be the force of the second type at
the same node. Node P is iteratively moved according to those forces. If Pt+1, Pt, and Pt-1
are the positions of node P at three consecutive iterations, the update rule is defined as:

(1)

This expression is simply the discrete version of the fundamental equation describing a
mechanical system subject to two forces and to a damping coefficient D. D must be
between 0 and 1 to ensure convergence. As long as it is within these bounds, D affects

Pt 1+ Pt Fo Fg D Pt-Pt 1–( )+ + +=
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only the rate of convergence. A typical value is D = 0.5. Theoretically, the combination of
forces brings the mesh to a state such that  and . In practice, the iterative
update of the mesh is halted when the relative displacements of the nodes from one itera-
tion to the next are small.

Fo is defined by calculating the point Pc from the original surface that is closest to the
node, that is:

(2)

k is the spring constant of the force which must be between 0 and 1. The effect of the
force is negligible if the node is already very close to the surface. Conversely, the force
pulls nodes that are far from the surface, the strength of the force increasing with distance.
When the points are far away, it is desirable to limit the strength of the force to avoid
unstable situations in which a node would move toward the surface too quickly and over-
shoot the optimal position by a large distance. In practice, k varies between 0.01 at the
beginning of the iterations to 0.4 at the end of the iterations, that is, when the nodes of the
mesh have reached a stable position.

The curvature force Fg is calculated by computing the point Pg that is on the line normal
to the triangle formed by the three neighbors of P and containing G (Figure 9), and such
that the mesh curvature at P and Pg are the same: . Those two conditions
ensure that Pg satisfies the local regularity condition while keeping the original mesh cur-
vature. Fg is defined as a spring force proportional to the distance between P and Pg:

(3)

To avoid unstable behavior of the system, the spring constant a should be between 0 and
1/2. In practice, .

3.2  Initialization

For the iterative mesh update to converge, the mesh must be initialized to some shape
that is close to the initial shape. We use two different approaches depending on whether
the input data is a set of data measured on the object by a sensor, or a synthetic CAD
model.

In the case of sensor data, we use the techniques presented in [9] using deformable sur-
faces to build a triangulated mesh that approximates the object. The deformable surface
algorithm fits a discrete surface to the input data, interpolating over the unknown regions,
retaining salient features of the surface, if any, and smoothing the input data. When the
representation is to be computed from sensor data, this technique is particularly effective
because the deformable surface algorithm tends to filter out noise in the data. This algo-
rithm is also effective in performing segmentation by separating an object from its sur-
roundings in a complex scene. Once a triangulation is obtained, the mesh is initialized by
tessellating the ellipsoid of inertia of the input shape. The ellipsoid of inertia is easily
computed from the input surface, while the tessellation is computed by deforming a sphere
tessellated using the topology defined in Section 2.3. Although the ellipsoid is only a

Fo 0≈ Fg 0≈

Fo kPPc=

g Pg( ) g P( )=

Fg aPPg=

a 1 2⁄≈
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crude approximation of the object, it is close enough for the mesh deformation process to
converge. The distance between a node and the triangulated surface is computed by find-
ing the closest vertex of the triangulation and by computing the minimum distance from
the mesh node to the set of triangles around the vertex.

In the case of a synthetic CAD model as input, for example, a polyhedron, the ellipsoid
of inertia is computed directly from the synthetic model. A regular mesh is mapped on the
ellipsoid in the same manner as in the previous case. In this case, the intermediate repre-
sentation using the deformable surface algorithm is not necessary since there is no noise to
filter out. In fact, using an intermediate model would degrade the model by smoothing out
corners and eliminating high curvature features.

Once the initial ellipsoid is generated, the mesh generation is completely independent of
the actual format of the input data. In particular, the mesh generation algorithm can handle
a variety of representations as input, including triangulations, curved or polyhedral CAD
models, and sets of data points from range images. The only operation that is data-depen-
dent is the computation of the object point closest to a given node.

3.3  From Mesh to SAI

Once a regular mesh is created from the input data, a reference mesh with the same num-
ber of nodes is created on the unit sphere. The value of the angle at each node of the mesh
is stored in the corresponding node of the sphere.

The sequence of operations from input surface description to SAI is summarized in Fig-
ure 12. The SAI building algorithm is illustrated in Figure 13 with range data as input and
in Figure 14 with a polyhedral model as input. Figure 13 (a) shows three views of a green
pepper from which three 240x256 range images were taken using the OGIS range finder.
The images are merged and an initial description of the object is produced using the
deformable surface algorithm. In this example, the three views of the object are precisely
calibrated with respect to a common coordinate system. As result, the coordinates of the
data points from all three images are expressed in the same reference frame, thus avoiding
a difficult registration problem. In general, it would be important to automatically register
views to build the models. This could be done using the SAI formalism as well. In the con-
text of this paper, however, we concentrate on the recognition aspects rather than on the
model building aspects. Figure 13 (b) and Figure 13 (c) show the initial mesh mapped on
the ellipsoid and the mesh at an intermediate stage. Figure 13 (d) shows the final regular
mesh on the object. Figure 13 (e) shows the corresponding SAI. The meshes are displayed
as depth-cued wireframes.The SAI is displayed by placing each node of the sphere at a
distance from the origin that is proportional to the angle stored at that node. Figure 14 (a)
to Figure 14 (d) show the same sequence in the case of an object initially described as a
polyhedron as generated by the VANTAGE CAD system. However, the initial surface is
computed using the faces of the CAD model rather than a set of data points as in Figure
13. Once this intermediate representation is generated, the mesh deformation and SAI
generation algorithms proceed in the same manner. The arrow between Figure 14 (c) and
Figure 14 (d) shows the correspondence between the object mesh and its SAI. The vertical
crease in the middle of the SAI corresponds to the concave region between the two cylin-
ders. The top and bottom regions of the SAI exhibit large values of the angle correspond-
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ing to the transition between the cylindrical and planar faces at both extremities of the
object. In this example, the SAI exhibits some noise in regions that are near the edges
between faces of the object. In practice, the SAI is smoothed before being used for recog-
nition.

Figure 12: Summary of building SAI from input object description.

Pt 1+ Pt Fo Fg D Pt-Pt 1–( )+ + +=
input object
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Figure 13: Building SAI from range data.

(a) Three views of an object

(b) Initial ellipsoid (c) Mesh after 10 iterations

(e) SAI(d) Final mesh
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Figure 14: Building the SAI from a polyhedral model.

(a) Input object description

(b) Initial ellipsoid (c) Mesh after 10 iterations

(d) Final mesh (e) SAI
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3.4  Reconstructing Shape from SAI

A fundamental property of the SAI representation is that the original shape can be recon-
structed from its SAI up to a rigid transformation and a scale factor. In fact, the same algo-
rithm that is used for building the mesh from an input surface can be used to perform the
inverse operation. Starting with the standard regular mesh on the sphere, iteratively apply
the deformation given by (1) until the mesh settles in a stable configuration. There are two
differences between the inverse and the direct algorithm. First, the point Pg of (3) is
defined as the point on the line normal to the triangle formed by the neighbors that has the
same angle as the angle stored in the SAI, whereas in the direct algorithm it is defined as
the point that has the same angle as the mesh. Second, Fo = 0 since there is no reference
surface to attract the node.

4  Matching Objects

We now address the matching problem: Given two SAIs, determine whether they corre-
spond to the same object. If so, find the rigid transformation between the two instances of
the object. As discussed in Section 2, the representations of a single object with respect to
two different reference frames are related by a rotation of the underlying sphere. There-
fore, the most straightforward approach is to compute a distance measure between the
SAIs for every possible rotation. Once the rotation yielding minimum distance is deter-
mined, the full 3-D transformations can be determined. Because this approach requires the
testing of the entire 2-D space of rotations, it is expensive. We discuss strategies to reduce
the search space in Section 4.3.

4.1  Finding the Best Rotation

Let S and S’ be the spherical representations of two objects. Denoting by g(P), resp.
g’(P), the value of the simplex angle at a node P of S, resp. P of S’, S and S’ are representa-
tions of the same object if there exists a rotation R such that:

(4)

for every point P of S’. Since the SAI is discrete, g(RP) is not defined because, in gen-
eral, RP will fall between nodes of S’. We define a discrete approximation of g(RP),
G(RP), as follows: Let P1, P2, P3, and P4 be the four nodes of S’ nearest to RP. G(RP) is
the weighted sum of the values g(Pi). Formally:

(5)

where W(d) is a weighting function that is 1 if d = 0 and 0 if d is greater than the average
distance between nodes. This definition of G amounts to computing an interpolated value
of g using the four nearest nodes.

g' P( ) g RP( )=

G RP( ) W RP-Pi( )g Pi( )
1

4

∑=
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The problem now is to find this rotation using the discrete representation of S and S’.
This is done by defining a distance D(S, S’, R) between SAIs as the sum of squared differ-
ences between the simplex angles at the nodes of one of the spheres and at the nodes of the
rotated sphere. Formally, the distance is defined as:

(6)

The minimum of D corresponds to the best rotation that brings S and S’ in correspon-
dence. The simplest strategy is to sample the space of all possible rotations, represented by
their angles (ϕ,θ,ψ), and to evaluate D for each sample value (ϕi,θi,ψi). The convention
used for the rotation angles is shown in Figure 15: θ is the rotation about the X axis, ϕ is
the rotation about the Z axis, and ψ is the rotation about the new Z axis. This approach is
obviously expensive; Section 4.3 presents better strategies.

It is important to note that the rotation is not the rotation between the original objects; it
is the rotation of the representations. An additional step is needed to compute the actual
transformation between objects as described below.

Figure 15: Rotation angles.

4.2  Computing the Full Transformation

The last step in matching objects is to derive the transformation between the actual
objects, given the rotation between their SAIs. The rotational part of the transformation is
denoted by Ro, the translational part by To. Given a SAI rotation R, for each node P’ of S’
we compute the node P of S that is nearest to RP’. Let M, resp. M’, be the point on the
object corresponding to the node P of S, resp. P’. A first estimate of the transformation is
computed by minimizing the sum of the distances between the points M of the first object
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and the corresponding points RoM’+To of the second object. Formally, the expression to
minimize is:

(7)

The sum in this expression is taken over the set of all the nodes of the mesh. The trans-
formation derived by minimizing (7) is only an approximation because it assumes that the
nodes from the two meshes correspond exactly. Due to the discretization, the assumption
is not true in general. Furthermore, the fact that P’ is the node nearest to P in the SAI does
not necessarily mean that M’ is the node nearest to M on the object. Therefore, the initial
estimate needs to be refined to take into account this discretization effect. A more accurate
criterion would be to require that each transformed node RoM’+To be as close as possible
to the plane defined by the point M and the estimated normal vector N at M. This defini-
tion is more liberal in that it does not require RoM’+To and M to correspond exactly.
Instead, the definition requires RoM’+To to be near the tangent plane at M. Denoting by
(R1, T1) the new estimate of the transformation, this definition amounts to finding the min-
imum of the function:

(8)

An iterative technique is used to find the minimum of E1 using (Ro,To) as a starting
point.

4.3  Reducing the Search Space

As mentioned in Section 4.1, the computational cost of the exhaustive search approach to
finding the best mesh rotation is a limitation in practical applications. However, several
strategies can be used to make it more efficient. The first strategy is to use a coarse-to-fine
approach to locating the minimum of the function D of (6). In this approach, the space of
possible rotations, defined by three angles of rotation about the three axis, (ϕ,θ,ψ), is
searched using large angular steps (Δϕ, Δθ, Δψ). After this initial coarse search, a small
number of locations around which the minimum may occur are identified. The space of
rotations is again searched around each potential minimum found at the coarse level using
smaller angular steps (δϕ, δθ, δψ). Typical values are Δϕ= Δθ= Δψ= 10o, corresponding to
a 36x18x36 search space at the coarse level. The rotation space is then searched in an 18o

wide interval around each potential minimum found at the coarse level. More levels of
search may be more efficient, although we have not yet tried to determine the best combi-
nation of coarse-to-fine levels.

A more general approach is based on the observation that the only rotations for which
D(S, S’, R) should be evaluated are the ones that correspond to a valid list of correspon-
dences {(Pi, P’j)} between the nodes Pi of S and the nodes P’j of S’. Figure 16(a) illustrates
the idea of correspondences between nodes: Node P1 of the first SAI is put in correspon-
dence with node P’i1 of S’ and its two neighbors, P2 and P3, are put in correspondence
with two neighbors of P’i1, P’i2 and P’i3, respectively. This set of three correspondences
defines a unique rotation of the spherical image. It also defines a unique assignment for the

Eo Ro To,( ) RoM' To-M+ 2∑=

E1 R1 T1,( ) N R1M' T1-M+( )⋅( )2∑=
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other nodes, that is, there is a unique node P’ij corresponding to a node Pi of S, given the
initial correspondences. Moreover, there is only a small number of such initial correspon-
dences, or, equivalently, there is a small number of distinct valid rotations of the unit
sphere. In fact, the number of rotations is 3K if K is the number of nodes.

Based on this observation, the SAI matching algorithm can be decomposed into two
stages: a pre-processing phase and a run-time phase. During pre-processing, we generate
the data structure shown in Figure 16(b). The data structure is a two dimensional array in
which each row corresponds to a possible rotation of the SAI, and in which column j of
row i is the index of the node Pij corresponding to node Pj and correspondence number i.
At run-time, the distance is evaluated for each row of the array:

The row that produces the minimum Di gives the best correspondence between nodes of
the mesh, {(Pj, P’ij)}, which is used for computing the full transformation between the
object meshes as described in the next section. It is important to note that this algorithm
tries all possible rotations of the SAIs up to the resolution of the mesh. Consequently, it is
guaranteed to find the global optimum of D and it does not require an initial estimate of
the transformation. This validates our initial claims of global optimality and pose-indepen-
dence of the algorithm. This is an efficient algorithm because all that is required at run
time is to look up the correspondence table, to compute sum of square differences of cor-
responding nodes and to sum them. Our preliminary implementation of this approach
shows that the computation time can be reduced to 7 seconds on a Sparc workstations for
K = 980. Initial results also show that the resulting optimal pose is the same as the one
obtained by exhaustive search.

Figure 16: Efficient matching algorithm; (a) Valid correspondence between nodes; (b) Table of
correspondences.

4.4  Example

Figure 17 shows three views of the same object as in Figure 13 placed in a different ori-
entation. A model is built from the three corresponding range images using the approach
described in Section 3.3. Figure 18 illustrates the difference of pose between the two mod-
els computed from the two sets of images. Figure 18 (a) (resp. Figure 18 (b)) shows the
superimposition of the cross sections of the two models in the plane YZ (resp. XY). Figure
19 shows the value of the SAI distance measure. The distance measure is displayed as a
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function of ϕ and θ only since the distance is a function of three angles that cannot be dis-
played easily. The displayed value at (ϕ,θ) is the minimum value found for all the possible
values of ψ. The resolution of the graph is 10o in both ϕ and θ, and the angles are defined
using the convention of Figure 15. This display shows that there is a single sharp mini-
mum corresponding to the rotation that brings the SAI in correspondence. Figure 20 (a)
and (b) show the superimposition of the cross-sections of both models after the second
was transformed using the transformation computed from the SAI correspondence using
the algorithms of Section 4.2. Figure 21 shows one of the models backprojected in the
image of the other using the computed transformation. Figure 21 (a) is the original image;
Figure 21 (b) is the backprojected model. These displays show that the transformation is
correctly computed in that the average distance between the two models after transforma-
tion is on the order of the accuracy of the range sensor. This example demonstrates the use
of SAI matching in the case of complete models. In the next section, we address the prob-
lem of dealing with partial views.

Figure 17: Three views of the object of Figure 13 in a different orientation.

Figure 18: Relative positions of the models before matching.

(a) Cross-Section in X (b) Cross-Section in Z
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Figure 19: Graph of distance between SAIs as a function of ϕ and θ.

Figure 20: Relative positions of the models after matching.

Figure 21: Display of the model in the computed pose.

θ
ϕ

minimum

(a) Cross-section in X (b) Cross-section in Z

(a) Image of first model (b) Second model displayed using computed pose
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5  Partial Views and Occlusion

Up to now we have assumed that we have a complete model of the object, as in Figure
14, or that we have data covering the entire surface of the object, as in Figure 13. This
assumption is appropriate for building reference models of objects. During the recognition
phase, however, only a portion of the object is visible in the scene. The matching algo-
rithm of Section 4 must be modified to allow for partial representations. The algorithm
used for extracting the initial surface model is able to distinguish between regions of the
mesh that are close to input surfaces or to data points, and parts that are interpolated
between input data. The first type of region is the visible part of the mesh, and the second
type is the occluded part of the mesh. Therefore, even though the representation is always
a mesh mapped on a closed surface, it is always possible to determine which nodes of the
mesh represent valid data.

The situation is illustrated in Figure 22 in the case of a two dimensional contour. In Fig-
ure 22 (a) a contour is approximated by a mesh of eight points. The mesh is assumed to be
regular, that is, all the points of the mesh are equidistant. Let L = 8l be the total length of
the mesh. Figure 22 (b) shows the same contour with one portion hidden. The occluded
portion is shown as a shaded curve. The visible section is approximated by a regular mesh
of eight nodes of length L1 = 8l1. Since the occluded part is interpolated as a straight line,
the length of this mesh is smaller than the total length of the mesh on the original object: L
> L1. Conversely, the length of the part of the representation corresponding to the visible
part, L2 shown in Figure 22 (d), is greater than the length of the same section of the curve
on the original representation, L* shown in Figure 22 (c). In order to compute the distance
measure of Section 4, the SAI of the observed curve must be scaled so that it occupies the
same length on the unique circle as in the reference representation of the object. If L* were
known, the scale factor would be:

(9)

In reality, L* is not known because we do not yet know which part of the reference curve
corresponds to the visible part of the observed curve. To eliminate L*, we use the relation:

(10)

This relation simply expresses the fact that the ratios of visible and total length in object
and representation spaces are the same, which is always true when the mesh is regular.
Since the left-hand side involves only known quantities, total length of model and
observed visible length, L* can be eliminated by combining (9) and (10):

(11)

The situation is the same in three dimensions except that lengths are replaced by areas A,
A1, A2, A*, with obvious notations. Relation (11) becomes:

k
L*

L2
-----=

L1

L
----- L*

2π
------=

k
2π
L2
------

L1

L
-----=
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(12)

The direct extension from two to three dimension is only an approximation because the
equivalent of relation (10), A1/A = A/4π, holds only if the area per node is constant over
the entire mesh. In practice, however, the area per node is nearly constant for a mesh that
satisfies the local regularity condition.

Once k is computed, the appropriate scaling needs to be applied to the SAI. The scaling
algorithm is illustrated in Figure 23: if C is the center of the visible region on the represen-
tation sphere, a node P such that θ is the angle (OP, OC) is moved to the point P’ on the
great circle that contains P and C such that:

(13)

where θ’ is the angle (OP’, OC) and k is the scale factor. This mapping is chosen because
it guarantees that the area of the visible region is scaled exactly by k if the region is circu-
lar. Even if the region is not circular, the mapping is a reasonable approximation.

Figure 22: Matching partial representation in two dimensions.
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Figure 23: SAI scaling algorithm.

The key in this algorithm is the previously mentioned connectivity conservation property
of the SAI. Specifically, if a connected patch of the surface is visible, then its correspond-
ing image on the SAI is also a connected patch on the sphere. This property allows us to
bring the two connected patches into correspondence using a simple scaling. Establishing
the correspondence is not possible in the case of the EGI representation, in which the
spherical representations of an object and of a patch on the object may be completely dif-
ferent. If the object is represented by an implicit equation, e.g., algebraic function or
superquadrics, then the coefficients of the equation computed from the entire object sur-
face may be completely different from the ones computed from only a patch on the object
surface.

We now show two examples of recognition in the presence of occlusion. In the first
example, a range image of an isolated object is taken. Then a complete model of the object
is matched with the SAI representation from range data. Figure 24 shows the intensity
image of the object. Only about 30% of the object is visible in the image. The remaining
70% of the representation built from the image is interpolated and is ignored in the estima-
tion of the SAI distance. Figure 25 (a) shows the set of three registered views used to build
the reference model, and Figure 25 (b) shows the SAI of the reference model used for
matching. Figure 26 shows the superimposition of scene points and reference model after
transformation. Figure 27 displays the graph of the distance between SAIs as function of
rotation angles. Figure 27 (a) shows two views of the distance as a function of ϕ and θ.
Figure 27 (b) shows the same function displayed in ϕ-ψ space. These displays demon-
strate that there is a well-defined minimum at the optimal rotation of the SAIs. Figure 28
shows the model backprojected in the observed image using the computed transformation.
In this example, the reference model was computed by taking three registered range
images of the object as in the example of Figure 13.

In the second example, the reference model is the CAD model of Figure 14. The
observed scene is shown in Figure 29. The result of the matching is shown in Figure 30
and Figure 31. Only part of the object is visible in the image because about of self occlu-
sion and because of occlusion from other objects in the scene.

In both examples, the deformable surface algorithm is used to separate the object from
the rest of the scene and to build an initial surface model. If there is no data point in its
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vicinity, the visible portion of the object mesh and the corresponding SAI are identified by
marking a node of the mesh as interpolated. Using the algorithms presented in this section,
the SAI of the observed object was scaled based on the size of the visible area. As an
example, Figure 32 (a) shows the SAI computed from the image of Figure 24; Figure 32
(b) shows the SAI after the scaling is applied to compensate for occlusions. The density of
points increases in the region that corresponds to the visible part of the object (indicated
by the solid arrow). Conversely the density of points decreases in the region corresponding
to the occluded part of the object (indicated by the shaded arrow). These examples show
that the SAI matching algorithm can deal with occlusions and partial views, even when
only a relatively small percentage of the surface is visible.

Figure 24: Input image.

Figure 25:  Reference model.

(a) Images Used to Build the Model (b) SAI of Reference Model



29

Figure 26: Cross sections of registered model and scene using the image of Figure 24 and the model
from Figure 25.

Figure 27: Sum of squared dfferences of SAIs as function of rotation angles.

(a) Distance as function of ϕ and θ
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θ
θ ϕ
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(b) Distance as function of ϕ and ψ
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Figure 28: Display of model using the pose computed from the matching.

Figure 29: Input Image.

(a) Input Image (b) Model after Transformation
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Figure 30: Cross sections of registered model and scene using the image of Figure 29 and the model of
Figure 14.

Figure 31: Display of model using the pose computed from the matching.

(a) Input Image (b) Model after Transformation
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Figure 32: Effect of occlusion-compensating scaling on SAI of observed object.

6  Performance

Figure 33 shows a first example of the error distribution after matching. In this case, the
mesh and SAIs of two unregistered views of a face are constructed and matched using the
algorithms described above. Figure 33(b) shows an intensity image of the face used in this
example. Figure 33(c) shows the superimposition of the two sets of points from the two
range images. This display shows that there is a significant error in the transformation.
Figure 33(d) shows the superimposition of the same two sets of data points after matching
and pose computation. This display shows qualitatively that the pose is correctly recov-
ered. In order to have a better view of the distribution of errors in the registration, Figure
33(a) shows views of the mesh used for performing the registration in three different ori-
entations. The error at each node of the mesh, that is, the distance between the node and
the closest point of the data set, is displayed as a needle, the length of which is propor-
tional to the error. This display shows that the error is reasonably uniform across the mesh.
The largest values of the error occur at the edge of the mesh. This is because there is poor
overlap between mesh and data at those points.

A second example is shown in Figure 34. In this case, a complete model of an object is
matched against a set of data points from a set of range images of the same object and the
pose is computed. This is different from the example of Figure 33 in that a full model is
used instead of partial views. Figure 33(b) shows the superimposition of the data points
from the range images and of the registered mesh. Figure 33(a) shows three views of the
mesh with, a every mesh node, a needle of length proportional to the distance between the
mesh node and the closest range data points. This example illustrates the uniform distribu-
tion of error across the surface and the quality of the registration.

For a more quantitative evaluation of the quality of the registration, Figure 35 lists error
statistics computed on the examples of Figure 33 and Figure 34. The table lists the mini-
mum, maximum, average, and standard deviation of the registration error at the nodes of

(a) SAI from scene (b) SAI after scaling

occluded region
visible region
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the mesh. The registration error is defined as the distance between a mesh node and the
closest data point after registration. The errors are listed in millimeters in the table. In both
examples, the mean error is on the order of 0.1mm which is also the maximum resolution
of the range sensor. The standard deviation is on the order of 0.2mm, reflecting the fact
that the error is distributed in a relatively uniform manner. The large maximum error is due
to “border effects”. Specifically, a node at the edge of the visible part of the mesh may not
overlap exactly with a region of the data set, thus causing a large error to be reported. This
occurs only at a few isolated nodes at the border. This effect is more noticeable in the case
of the face because only partial views are used, in which there is a larger number of border
points. Finally, the minimum error is very small, on the order of 0.01mm, but this is really
meaningless because it occurs only at a very few isolated points and is the result of acci-
dental alignment between mesh nodes and data points.

Figure 33: Illustration of the error distribution after matching two views of a face.

(a) Distribution of error between registered mesh and range data displayed as a needle map.

(b) Intensity image of surface, (c) Superimposition of range data
before matching.

(d) Superimposition of range
data after matching.
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Figure 34: Error distribution after registration a complete model with a set of range data points.

These numbers show that the overall behavior of the registration error is on the order of
the resolution of the sensor, in this case 0.1mm. This shows, in particular, that the node
correspondences found through SAI matching are correct and the estimation of the pose
based on the correspondences is basically as accurate as it can be given the finite sensor
resolution.

Only the nodes of the mesh that are visible, as determined by the geometry of the sensor,
are actually used in the error computation. The errors at the other nodes is meaningless
since they are interpolated and not fit to the data. The errors were computed from 869 vis-
ible nodes on the object out of 980 nodes on the entire mesh and from 998 nodes out of a
total of 1620 in the case of the face. The ratio of number useful of useful nodes to total
number of nodes is lower in the case of the face because only partial views are used.

(a) Distribution of error between registered mesh and range data displayed as a needle map.

(b) Superimposition of range data points and registered mesh.
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Figure 35: Matching and pose estimation error statistics for the examples of Figure 33 and Figure 34.
The error values are expressed in millimeters.

7  Conclusion

In this paper, we introduced a new approach for building and recognizing models of
curved objects. The basic representation is a mesh of nodes on the surface that satisfies
certain regularity constraints. We introduced the notion of a simplex angle as a curvature
indicator stored at each node of the mesh. We showed how a mesh can be mapped into a
spherical representation in canonical manner, and how objects can be recognized by com-
puting the distance between spherical representations.

The SAI representation has many desirable properties that make it very effective as a tool
for 3-D object recognition:

• The SAI is invariant with respect to translation, rotation, and scaling of the object. This
is not true of most other commonly used representations. This invariance allows the
recognition algorithm to compare shapes through the computation of distances between
SAIs without requiring explicit matching between object features or explicit computa-
tion of object pose.

• The SAI preserves connectivity between parts of the object in that nodes that are neigh-
bors on the object mesh are also neighbors on the SAI. Thus the SAI does not exhibit
the same ambiguity problem for non-convex objects as the EGI and CEGI representa-
tions.

• The SAI representation can handle partial views and occluded objects. The basic
approach is to measure the area of the visible portion of an object observed in a scene,
and deform the SAI mesh model so that the percentage of the sphere corresponding to
the visible area is the same in both model and scene SAIs. This approach to recognition
of occluded objects is practical thanks to the property of connectivity conservation
described above. Specifically, a connected visible region of an object corresponds to a
connected region on the corresponding SAI.

Results show that the SAI representation is successfully used to determine the pose of an
object in a range image including occlusion and multiple objects. This approach is partic-
ularly well suited for applications dealing with natural objects. Typically, conventional

Face Object

Min 0.006 0.0086

Max 2.46 1.11

Mean 0.167 0.105

Standard deviation 0.215 0.115

Number of points 998 869
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object modeling and recognition techniques would not perform well due to the variety and
complexity of shapes that may have to be handled. The approach is general enough that it
can also convert manually built models to the SAI representation.

Many issues remain to be addressed. First, we need to improve the search for the mini-
mum distance between SAIs during the recognition phase. This improvement can be
achieved by improving the coarse-to-fine approach to extrema localization, and by pre-
computing correspondences between discrete spheres. Preliminary results using the latter
show that the computation time of the matching phase can be reduced to a few seconds on
a standard workstation. Another important direction of research is the parallel implemen-
tation of the algorithm which should be possible since computations at each node of the
sphere and for each possible rotation are independent of each other. A third issue is the
extension of those techniques to objects that are not topologically equivalent to the sphere,
such as, for example, torus-shaped objects or open-surfaced objects. This extension
requires the definition of mesh topology and global regularity for those classes of shapes.
To apply the technique to more complex scenes, additional range image processing needs
to be developed to isolate objects in the scene from one another. Currently, the algorithm
introduced in [9] uses a fixed window around the center of each potential object in the
scene. A better initial segmentation is needed to deal with complex scenes. Finally, an
important issue is to determine the appropriate mesh resolution, as defined by the number
of nodes, needed for a particular application. Currently, the empirical selection of the size
of the mesh can lead to two possible problems. If the size of the mesh is too small, impor-
tant details of the object may be undersampled. On the other hand, if the mesh is too large,
computation time for both model building and recognition becomes prohibitive. The den-
sity of nodes should be computed based on the average and maximum curvatures of the
surface.
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