
Soft Tissue Modeling for Surgery Simulation
Hervé Delingette and Nicholas Ayache

Contents
1 General Issues in Surgery Simulation 2

1.1 Surgical Simulators . 2
1.1.1 Medical Impact of Surgical Simulators 2
1.1.2 Classi�cation of Surgical Simulators 3

1.2 Simulator Architecture . 4
1.2.1 Geometric Modeling . 5
1.2.2 Interaction with a Virtual Instrument 5
1.2.3 Visual Feedback . 6
1.2.4 Haptic feedback . 6
1.2.5 Implementation of a simulator 7

1.3 Constraints of Soft Tissue Models 7
1.3.1 Visualization Constraints 8
1.3.2 Real Time Deformation Constraints 8
1.3.3 Tissue Cutting and Suturing 12

1.4 Computational Methods for Soft-tissue Modeling 12

2 The INRIA Hepatic Surgery Simulator 13
2.1 Objectives . 13
2.2 Liver Anatomy . 14
2.3 Creation of an anatomical model of the liver 14
2.4 Liver Boundary Conditions . 18
2.5 Material Characteristics . 18

3 Linear Elastic Models for surgery Simulation 21
3.1 Main features of our approach . 21

3.1.1 Using Volumetric Models 21
3.1.2 Using Continuum mechanics 21
3.1.3 Using Finite Element Modeling 22
3.1.4 Using Linear Tetrahedron Finite Element 23
3.1.5 Using large approximations of Dynamic Behavior 24

3.2 Tridimensional Linear Elasticity 24
3.2.1 De�nition of in�nitesimal strain 25
3.2.2 De�nition of in�nitesimal stress 26
3.2.3 Isotropic Linear Elastic Materials 27
3.2.4 Transversally Anisotropic Linear Elastic Materials 27
3.2.5 Principle of Virtual Work 29

i

4 Finite Element Modeling 29
4.1 Linear Tetrahedron Element . 29
4.2 Properties of area vectors . 33
4.3 Computation of Sti�ness Matrix : Isotropic case 34

4.3.1 Local Vertex Sti�ness Matrix 35
4.3.2 Local Edge Sti�ness Matrix 35
4.3.3 Global Sti�ness Matrix 36
4.3.4 Global Vertex Sti�ness Matrix 36
4.3.5 Global Edge Sti�ness Matrix 36

4.4 Physical Interpretation of Isotropic Sti�ness Matrix 37
4.5 Computation of Sti�ness Matrix : Transversally Anisotropic case 41

4.5.1 Local Vertex Sti�ness Matrix 41
4.5.2 Global Sti�ness Matrix 42

4.6 Work of gravity forces . 42
4.7 Work of External Surface Pressure 43
4.8 Mass Matrix . 43
4.9 Boundary Conditions . 45
4.10 Equilibrium equations . 46
4.11 Solution of equilibrium equations 48

5 Quasi-static Precomputed Linear Elastic Model 48
5.1 Introduction . 48
5.2 Overview of the Algorithm . 49
5.3 Precomputation stage . 50

5.3.1 Description of the Algorithm 50
5.3.2 Other Methods for Computing the Compliance matrix . . 51

5.4 On-line Computation . 53
5.4.1 Data Structure . 53
5.4.2 Algorithm description and collision processing 53
5.4.3 Imposing displacements 55
5.4.4 Results . 56
5.4.5 Discussion . 58

6 Dynamic Linear Elastic Model 59
6.1 Tensor-Mass Model . 59

6.1.1 Introduction . 59
6.1.2 Mass Matrix . 60
6.1.3 Numerical Integration . 61
6.1.4 Data Structure . 62
6.1.5 Cutting and Re�nement Algorithms 63
6.1.6 Algorithm Description . 65
6.1.7 Comparison between Spring-mass and Tensor-mass models 67

6.2 Relaxation-based elastic models 68
6.2.1 Introduction . 68
6.2.2 Overview of the Algorithm 69
6.2.3 Algorithm Description . 70

6.3 Hybrid Models . 71
6.3.1 Motivation . 71
6.3.2 Description . 72
6.3.3 Examples . 73

ii

7 Large Displacement Non-Linear Elastic Model 74
7.1 Shortcomings of linear elasticity 74
7.2 St Venant-Kirchho� Elasticity . 78
7.3 Finite Element Modeling . 79
7.4 Non-linear Tensor-Mass Model 80
7.5 Incompressibility constraint . 82
7.6 Results . 83
7.7 Optimization of non-linear deformations 86

8 Conclusion 88

iii

iv

Foreword
In this chapter, we address a speci�c issue belonging to the �eld of biomechan-
ics : modeling living tissue deformation with real-time constraints. This issue
was raised by the emergence, in the middle of the 1990's, of a very speci�c ap-
plication : the simulation of surgical procedures. This new concept of surgery
simulation was in large part advocated by the American Department of De-
fense [93], for which this concept was a key part of their vision of the future of
emergency medicine.
Since then, the concept of having surgeons being trained on simulators (just
like pilots on �ight simulators) has been re�ned. First, the development of com-
mercial simulators has proved that there was a demand for products that help
to optimize the learning curve of surgeons1. Second, the emergence of medical
robotics and more precisely of minimally invasive surgery robots, has reinforced
the need for simulating surgical procedures, since these robots require a very
speci�c hand-eye coordination. Third, there is a large consensus among the
medical community that current simulators are not realistic enough to provide
advanced gesture training. In particular, the modeling of living tissue, and their
ability to deform under the contact of an instrument is one of the important
aspect of simulators that should be improved.
In this chapter, we present di�erent algorithms for modeling soft tissue defor-
mation in the context of surgery simulation. These algorithms make radical
simpli�cations about tissue material property, tissue visco-elasticity and tis-
sue anatomy. The �rst section of this chapter describes the principles and the
components of a surgical simulator. In particular, we insist on the di�erent
constraints of soft tissue models in this application, the most important being
the real-time computation constraint. In section 2, we present the process of
building a patient-speci�c hepatic surgery simulator from a set of medical im-
ages. The di�erent stages of computation leading to the creation of a volumetric
tetrahedral mesh from a medical image are especially emphasized. In section 3,
we detail the �ve main hypotheses that are made in the proposed soft tissue
models. Furthermore, we recall the main equations of isotropic and transver-
sally anisotropic linear elasticity in continuum mechanics. The discretization of
these equations are presented in section 4 based on �nite element modeling. Be-
cause we rely on the simple linear tetrahedron element, we provide closed form
expressions of local and global sti�ness matrices. After describing the types
of boundary conditions existing in surgery simulation, we derive the static and
dynamic equilibrium equations in their matrix form. In section 5, a �rst model
of soft tissue is proposed. It is based on the o�-line inversion of the sti�ness
matrix, and can be computed very e�ciently as long as no topology change is
required. In such case, in section 6, a second soft tissue model allows to perform
cutting and tearing but with less e�ciency as the previous model. A combina-
tion of the two previous models, called �hybrid model� is also presented in this
section. Finally, in section 7, we introduce an extension of the second soft tissue
model that implements large displacement elasticity.

1This curve represents the number of incidents occuring during the performance of surgery
as a function of time. This curve is generally monotonically decreasing under the e�ect of
training and usually reaches an asymptotic value after a certain number N of real interventions.
The objective of the simulators is to reduce this number N as much as possible.

1

1 General Issues in Surgery Simulation
1.1 Surgical Simulators
1.1.1 Medical Impact of Surgical Simulators

Surgery simulation aims at reproducing the visual and haptic senses experienced
by a surgeon during a surgical procedure, through the use of computer and
robotics systems. The medical interest of this technology is linked with the de-
velopment of minimally invasive techniques especially video-surgery (endoscopy,
laparoscopy,...). More precisely, laparoscopy consists in performing surgery by
introducing di�erent surgical instruments in the patient abdomen through one
centimeter-wide incisions. The surgeon can see the abdominal anatomy with
great clarity by watching a high resolution monitor connected to an endoscope
introduced inside the patient abdomen. This technique bears several advantages
over traditional open surgery. On one hand, it decreases the trauma entailed
by the surgical procedure on the patient body. This allows to decrease the pa-
tient stay in hospitals and therefore decreases the cost of health care. On the
other hand, it reduces the morbidity as demonstrated by the Hunter and Sackier
study [51].
However, if these minimally invasive techniques are clearly bene�cial to the
patients, they also bring new constraints on the surgical practice. First, they
signi�cantly degrade the surgeon access to the patient body. In laparoscopy
for instance, the surgical procedure is made more complex by the limited num-
ber of degrees of freedom of each surgical instrument. Indeed, they must go
through �xed points where the incisions in the patient's abdomen were done.
Furthermore, because the surgeon cannot see his hand on the monitor, this
technique requires a speci�c hand-eye coordination. Therefore, an important
training phase is required before a surgeon acquires the skills necessary to ade-
quately perform minimally invasive surgery (corresponding to a plateau in the
learning curve).
Currently, surgeons are trained to perform minimally invasive surgery by us-
ing mechanical simulators or living animals. The former method is based on
�endotrainers� representing an abdominal cavity inside which are placed plastic
objects representing human organs. These systems are su�cient for acquiring
basic surgical skills but are not realistic enough to represent fully the complexity
of the human anatomy and physiology (respiratory motion, bleeding,...). The
latter training method consists in practicing simple or complex surgical proce-
dures on living animals (often pigs for abdominal surgery). This method has
two limitations. First, the similarity between the human and animal anatomy
is limited and therefore certain procedures cannot be precisely simulated with
this technique. Also, the evolution of the ethical code in most countries may
forbid the use of animals for this speci�c training, as it is already the case in
several European and North American countries.
Because of the limitations of current training methods, there is a large inter-
est in developing video-surgery simulation software for providing e�cient and
quantitative gesture training systems [3]. Indeed, such systems should bring a
greater �exibility by providing scenarios including di�erent types of pathologies.
Furthermore, thanks to the development of medical image reconstruction algo-
rithms, surgery simulation allows surgeons to verify and optimize the surgical

2

strategy of a procedure on a given patient.

1.1.2 Classi�cation of Surgical Simulators
Satava et al. [94] proposed to classify surgical simulators into three categories
(see �gure (1)). The �rst generation simulators are solely based on anatomical
information, in particular on the geometry of the anatomical structures included
in the simulator. In these simulators, the user can virtually navigate inside the
human body but has a limited interaction with the modeled organs. Currently,
several �rst generation surgical simulators are available including commercial
products linked to medical imaging systems (CT or MRI scanners) that are
focusing on virtual endoscopy (colonoscopy, tracheoscopy,...). In general, they
are used as a complementary examination tools establishing a diagnosis (for
instance when using virtual endoscopy) or as a surgical planning tool before
performing surgery.
In addition to geometrical information, second generation simulators describe
the physical properties of the human body. For instance, the modeling of soft
tissue biomechanical properties enables the simulation of basic surgical gestures
such as cutting or suturing. Currently, several prototypes of second generation
simulators are being developed including the simulation of cholecystectomy [26,
59], of arthroscopy of the knee [43] and of gynecological surgery [105]. Section 2
will shortly describe the hepatic surgery simulator being developed at INRIA.

Pathology

Shape

Deformation

Blood Cells Brain

Liver Cells

Liquid/Solid

Temperature

Forces

Surface Volume

Physiology

Physics

Anatomy

Third Generation

Medical Simulator

Second Generation

Medical Simulator

First Generation

Medical Simulator

Morphology

Figure 1: The di�erent generations of medical simulators.

Third generation of surgical simulators provides an anatomical, physical and
physiological description of the human body. There are very few simulators
including these three levels of modeling, essentially because of the di�culty to
realistically describe the coupling between physiology and physics. A good ex-
ample of an attempt in this direction is given by the work of Kaye et al. [57]
who modeled the mechanical cardiopulmonary interactions. Another important
example is the study of the contraction of the right and left vectricles of the
heart under the propagation of the action potential which is being carried out

3

by the group of Pr. McCulloch (this work is published in this book) but also by
the INRIA ICEMA group [96, 97]. Finally, it should be noted that a compre-
hensive e�ort for creating computational physiological models has been recently
launched in the international Physiome Project [5].

1.2 Simulator Architecture
In this section, we present the basic components of simulators for surgical ges-
ture training and especially in the context of minimally invasive therapy. For the
acquisition of basic skills, it is necessary to simulate the behavior of �living� tis-
sues and therefore to develop a second generation surgical simulator. However,
it raises important technical and scienti�c issues. The di�erent components of
these simulators are summarized in Figure (2).

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Keyboard

Surgery

Screen

Input Devices

Output Devices

Simulator

Force Feedback device

Force Feedback device

Haptic Rendering Visual Rendering

Physical ModelingGeometric Modeling

Collision Detection and Processing

Figure 2: The di�erent components of a second generation surgery simulator.

The input devices in such simulators usually consist of one or several mechanical
systems that drive the motion of virtual surgical tools or of virtual endoscopes.
In fact, as input devices they do not need to be motorized and they are usually
equipped with simple optical encoders or position trackers. A keyboard and
electronic mouse are also useful to modify the scenario of the simulation.
The core of a simulator consists of several modules. For instance, a �rst module
provides the enabling tools for the creation of geometric models from medical
images (see section 1.2.1). Another module, detailed in section 1.3, computes
the deformation of soft tissues under the action of virtual instruments. These

4

interactions between virtual instruments and virtual organs, performed in a
separate module, mainly consists in detecting collisions followed with modeling
contact forces and displacements (see section 1.2.2).
Finally, a surgical simulator must provide an advanced user interface that in-
cludes visual and force feedback (respectively presented in sections 1.2.3 and
1.2.4). Last but not least, it is necessary to rely on advanced software engineer-
ing methodology to make these di�erent modules communicate within the same
framework : some of these implementation issues are introduced in section 1.2.5.

1.2.1 Geometric Modeling

In general, the extraction of tridimensional geometric models of anatomical
structures are based on medical imagery: CT scanner images, MRI images,
cryogenic images, 3D ultrasound images,... Because medical image resolution
and contrast have greatly improved over the past few years, the tridimensional
reconstruction of certain structures have become possible by using computerized
tools. For instance, the availability in 1995 of the �Visible Human� dataset pro-
vided by the National Library of Medicine has allowed the creation of a complete
geometric human model [1]. However, the automatic delineation of structures
from medical images is still considered an unsolved problem. Therefore a lot of
human interaction is usually required for reconstructing the human anatomy.
In [35, 2], Duncan and Ayache provide a survey on the past and current research
e�ort in medical image analysis.

1.2.2 Interaction with a Virtual Instrument

A key component of a surgery simulation software is the user interface. The
hardware interface that drives the virtual instrument essentially consists in one
or several force-feedback devices having the same degrees of freedom and appear-
ance as the actual surgical instruments used in minimally invasive therapy (see
�gure (3)). In general, these systems are force-controlled, sending the instru-
ment's position to the simulation software and receiving reaction force vectors.
Once the position of the virtual instrument is known, it is necessary to detect
possible collisions with other instruments or surrounding anatomical structures.
In this case, it is particularly di�cult to obtain a computationally e�cient
collision detection algorithm because the geometry of objects may change at
each iteration. Therefore, algorithms based on pre-computed data structures
(such as the approach proposed in [45]) are not appropriate. In [64], Lombardo
et al. proposed an original collision detection method based on the OpenGL
graphics library which is especially well-suited for elongated instruments shaped
like those used in laparoscopic surgery. Although this technique cannot be
used for the detection of self-collisions, several algorithms have been proposed
recently [106, 58] to tackle this complex task.
When a collision is detected, a set of geometrical or physical constraints are
applied on soft tissue models. However, modeling the physics of contacts can
lead to complex algorithms and therefore purely geometric approaches are often
preferred.

5

Figure 3: A force feedback system suited for surgery simulation

1.2.3 Visual Feedback
A surgery simulator must provide a realistic visual representation of the surgical
procedure. Visual feedback is especially important in video-surgery because it
helps the surgeon to acquire a tridimensional perception of his environment. In
particular, the e�ects of shading, shadows and textures are important clues that
must be reproduced in a simulator.
The quality of visual feedback is directly related to the availability and perfor-
mance of graphics accelerators. In the past few years, the market of graphics
cards has evolved in three directions : improved price-performance ratio, in-
creased geometric transformation and rasterization performance and the emer-
gence of programmable pixel rendering. Combined with the development of
more e�cient computer graphics algorithms, we can foresee that realistic visual
feedback for surgery simulation could be achieved in the next few years if this
additional graphics rendering is focused on the three-dimensional clues used by
surgeons to understand the surgical �eld.

1.2.4 Haptic feedback
Haptic display serves at least two purposes in a surgical simulator : kinesthetic
and cognitive. First, it provides the sensation of movement to the user and
therefore it signi�cantly enhances it surgical performance. Second, it helps to
distinguish between tissues by testing their mechanical properties.
However, the addition of a haptic display in a simulation system increases by
a large factor its complexity and the required computational power [71] : it
leads to an increase by a factor 10 of the required bandwidth, synchronisation
between visual and haptic displays, force computation, . . . Only a few papers
have assessed the importance of haptic feedback in surgery [70]. In general, it

6

is accepted that the combination of visual and haptic displays is optimal for
surgery training or pre-planning.
In video-surgery, the surgical instruments slide inside a trocard and are con-
strained to enter the abdomen through a �xed point. This entails substantial
friction, speci�cally for laparoscopy where airtightness must be enforced. The
friction of the instruments inside trocards perturbes the forces sensed by the
end-user. Despite those perturbations, it appears that it is still necessary to
provide force-feedback for realistic user immersion.

1.2.5 Implementation of a simulator

Most of the di�culties encountered when implementing a surgical simulator
originate from the trade-o� that must be found between real-time interaction
and the necessary surgical realism of a simulator.
The �rst constraint indicates that a minimum bandwidth between the computer
and the interface devices must be available in order to provide a satisfactory
visual and haptic feedback. If this bandwidth is too small, the user cannot
properly interact with the simulator and it becomes useless for surgery gesture
training. However, the �real-time� constraint can be interpreted in di�erent
ways. Most of the time, it implies that the mean update rate is high enough
to allow a suitable interaction. However, it is possible that during the simu-
lation, some events (such as the collision with a new structure) may increase
the computational load of the simulation engine. This may result in a lack of
synchronicity between the user gesture and the feedback the user gets from the
simulator. When the computation time is too irregular, the user may even not
be able to use the simulator properly. In order to guarantee a good user inter-
action, it is necessary to use a dedicated �real-time� software that supervises all
tasks executed on the simulator.
The second constraint is related to the targeted application of a simulator :
training surgeons to new gestures or procedures. To reach this goal, the user
must �believe� that the simulator environment corresponds to a real procedure.
The level of realism of a simulator is therefore very dependent on the type of
surgical procedures and is also connected with physio-psychological parameters.
In any case, increasing the realism of a simulator requires an increase of compu-
tational time which is contradictory with the constraint of real-time interaction.
The main di�culty in implementing a simulator is to optimize its credibility,
given an amount of graphics and computational resources. Therefore, an anal-
ysis of the training scenario should be performed to �nd the most important
elements that contribute to the realism of the simulation.

1.3 Constraints of Soft Tissue Models
In the scope of a surgical simulator, it is not possible to model the biomechani-
cal complexity of living soft tissue. Instead, authors have resorted to simpli�ed
models to decrease the implementation complexity and to optimize computa-
tional e�ciency. A survey on soft tissue modeling can be found in [30].
Before presenting the main features of our approach (available in section 3.1),
we list three constraints that should be taken into account when specifying a
soft tissue model for surgery simulation.

7

1.3.1 Visualization Constraints
To obtain high quality visual rendering, two techniques are traditionnally used :
surface and volume rendering. A comparison between these two rendering tech-
niques for surgery simulation is described in [100]. Surface rendering is by far
the most commonly used technique, and uses basic polygonal elements (trian-
gles, quads, . . .) to achieve the rendering of an entire scene. A rule of thumb in
surface rendering states that the quality of rendering is proportional to the num-
ber of polygonal elements. Unfortunately, the screen refresh rate of a graphics
display is inversally proportional to the number of elements.
Therefore, an important concern arises when specifying a soft tissue model :
is it compatible with high quality visual rendering ? For some models, it is
clearly not the case. For instance the chain-mail algorithm [43] represents soft
tissue with the help of cubic lattices that are allowed to move slightly with
respect to their neighbors. For this representation, as well as for particle-based
representations [40, 33] and multigrid representations [28], authors use a two-
layer strategy : a volumetric soft tissue model is combined with a surface model
dedicated to visual rendering. These two models are often coupled with a linear
relationship based on barycentric coordinates : once the shape of a soft tissue
model is modi�ed, the surface model is updated is an e�cient manner. Similarly,
the collision detection is performed on the surface model, but contact forces and
displacements are imposed on the volumetric model. However, this approach has
two limitations. First, the modeling of contact between a virtual tool and a soft
tissue model is usually not satisfactory because the mapping between surface
and volumetric model is complex (though mapping from volumetric to surface
models is often trivial). Second, this approach makes the modeling of tissue
cutting very complex where the surface and volumetric topology is altered.
For soft tissue models based on tetrahedral or hexahedral meshes, the problem
of high quality visual rendering is posed in a di�erent manner since the shell of
these meshes (made of triangular or quadrangular elements) can be used direcly
for rendering. However, in general, coarse volumetric meshes are used in order to
achieve real-time performances (see next section). Therefore, it is often required
to compensate the poor geometrical quality by using speci�c computer graphics
algorithms such as subdivision surfaces [112], using avatars [29] or by replacing
elements with texture [98]. In the case of the hepatic surgery simulator, we
have used the PN triangles algorithms [108] in order to provide a smooth visual
rendering of the liver. The idea behind PN triangles is to subdivide each triangle
and its normal vector into subtriangles in order to produce a smoother looking
surface (see �gure 4 for an example).

1.3.2 Real Time Deformation Constraints
A surgical simulator is an example of a virtual reality system. To succeed in
training surgeons, a simulator must provide an advanced user interface that
leads to the immersion of surgeons into the virtual surgical �eld. To reach this
level of interaction, three basic rules must be formulated :

Rule 1 Minimum bandwidth for visual and haptic feedback An acceptable
bandwidth for visual display is in the range of 20-60Hz while the acceptable
bandwidth for haptic display is on the range of 300-1000Hz (300Hz is the
free hand gesture frequency). In fact, this notion of minimal bandwidth

8

(a) (b) (c)

Figure 4: Display of a liver being resected : (a) Display of the triangles corre-
sponding to the shell of the liver tetrahedral mesh; (b) Surface Rendering based
on Gouraud Shading without PN triangles; (c) Surface Rendering based on PN
triangles with two levels of subdivisions.

depends on the nature of the scene to be displayed : for objects moving
slowly on the screen, an update rate of 20 Hz is su�cient. Similarly, a
frequency of 300 Hz may be enough to render the contact with very soft
objects.

Rule 2 Low latency Latency measures the time between measurements per-
formed by the sensor (for instance the position of the surgical instru-
ment) and action (visual or haptic display). Latency is critical for user
immersion. The hardware con�guration of the system can greatly in�u-
ence latency since communication between elements may be responsible
for additional delays. In �gure 5, the architecture of the simulation system
used at INRIA [24] in 1996 is presented. It is composed of one haptic dis-
play, a Personal Computer and a graphics workstation. There are several
causes contributing to latency : communication delays between the hap-
tic display and the PC, communication between the PC and the graphics
workstation, the delay caused by the graphics display, the computation
time for collision detection, force feedback and deformation. Since some
of the communication links between elements are asynchronous, the to-
tal latency is not the sum of those delays but it is important to reduce
them to their minimum values. The latency depends greatly on hardware,
speci�cally on computation and graphics performance.

Rule 3 Realistic motion of soft tissue It is important that the dynamic behav-
ior of a deformable tissue is correctly simulated. To assess the visco-elastic
behavior of a material, one can measure the speed at which an object re-
turns to its rest position after it is perturbed. Soft tissue undergoes a
damped motion whereas sti� objects react almost instantaneously to any
perturbation. At the limit, very sti� objects can be considered to have
a quasi-static motion, implying that static equilibrium is reached at each
time-step (see section 5 for a discussion about quasi-static motion).

In terms of soft tissue modeling, two parameters are important for real-time
deformation constraints. The �rst parameter is the update frequency fu which
controls the rate at which the shape of a soft tissue model is modi�ed. If we
write Xt as the position of the tissue model at iteration t, the computation
time Tc = 1

fu
is the time needed to compute the new position Xt+1. The

9

(Fx, Fy, Fz)

(x, y, z)
Positions

Forces

Workstation (PC)

500 Hz

Force Feedback Device

Computation
of the

Deformation

Collision Detection

Computation
of the forces

Positions
(x, y, z)Shared Memory

Graphic Workstation

Figure 5: Architecture of a simulator composed of a Personal Computer driving
an haptic device and a graphics workstation.

second parameter is the relaxation time Trelaxation which is the time needed for
a material to return to its rest position once it has been perturbed.
To reach the required bandwith for haptic and visual rendering (rule num-
ber 1) it is necessary that the computation time Tc is bounded by a constant
Tinteraction that depends on the architecture of the simulator. For instance, in
�gure 6 we display three di�erent software architectures for handling soft tissue
deformation, visual and haptic feedback.
In a �rst architecture (Figure 6 (a)), all three tasks are performed sequencially,
one after the other. The advantage of this approach lies in its simplicity of
implementation. However, it has two drawbacks. The main problem is that the
computation time Tc must be short enough to follow the minimum frequency for
haptic feedback : 300 to 1000 Hz. This implies that Tinteraction ≈ 2ms which
is a very high requirement for a soft tissue model of reasonable size. In fact, to
the best of our knowledge, only methods based on pre-computation of the static
solution such as the one proposed in section 5 can comply with this constraint.
The second problem with this approach is that a delay in any of the three tasks
perturbs the other tasks. For instance, when the user performs tissue cutting,
an additional task is needed to update the mesh topology which translates into
a delay in the visual and haptic rendering.
The second architecture shown in Figure 6 (b) is the most commonly used in
today's surgical simulators : the haptic rendering is performed in a di�erent
process or di�erent thread than the visual rendering and soft tissue modeling
tasks. Its purpose is to sharply decrease the real-time constraint on the soft tis-
sue computation from haptic frequency (≈ 500Hz, Tinteraction ≈ 2ms) to visual
frequency (≈ 25Hz, Tinteraction ≈ 40ms). In order to keep a satisfactory force
feedback, a separate thread or process, running at haptic frequency, computes
the force intensity for the haptic device based on a simpli�ed local model. This

10

local model, that may consist of a sphere [73] or a plane [37] is updated by the
soft tissue modeling loop while the position of the virtual surgical tool, necessary
to compute its contact with soft tissue, is updated by the haptic rendering pro-
cess and sent to the process. This asynchronous communication between haptic
and visual rendering gives satisfactory results when some temporal smoothing
is performed during the computation of force intensity. The main drawback of
this approach is that it increases software complexity compared to the previous
architecture. However, since only little information must be shared between the
two processes, it has been adopted in several simulators, including the current
version of the INRIA hepatic surgery simulator.

Soft Tissue Deformation

Visual Rendering

Haptic Rendering

(a) One synchronous loop

Haptic Rendering

Soft Tissue Deformation

Visual Rendering

Local Haptic Model

Virtual tool Position

(b) Two asynchronous loops

Surface position

Visual
Rendering

Soft Tissue
Deformation

Virtual tool Position

Local Haptic Model

Haptic
Rendering

(c) Three asynchronous loops

Figure 6: Di�erent software architecture for handling visual rendering, haptic
rendering and soft tissue modeling.

In the third architecture described in Figure 6 (c), the visual and haptic ren-
dering tasks are performed in separate processes or threads in order to remove
the latency caused by graphics hardware. Furthermore, this architecture makes
the computation of soft tissue deformation more e�cient (decrease of Tc) when
compared to previous solutions. However, it has little e�ect on the maximum
computation time per iteration Tinteraction ≈ 40ms since the geometric model
still requires to be updated at 25 Hz for visual rendering. This approach is
more di�cult to implement because the amount of information to transmit to
the visual rendering task is quite large. Furthermore, a change in mesh topol-
ogy during simulation requires to modify the data structure of the computer

11

graphics algorithm. An example of such architecture is provided in [10].
To summarize, we can state that a soft tissue model in a surgical simulator must
essentially meet two constraints : computation time Tc per iteration less than a
constant Tinteraction, and relaxation time Trelaxation de�ned by the visco-elastic
behavior of the material.

1.3.3 Tissue Cutting and Suturing

The ability to cut and suture tissue is of primary importance for designing a
surgery simulation system. The impact of such operations in terms of tissue
modeling is considerable since it implies changing tissue topology over time.
The cost of such a topological change depends largely on the chosen geometric
representation but also on the numerical method that is adopted to compute
tissue deformation (see discussion in previous section).
In addition, the tissue behavior must be adapted at locations where cutting or
suturing occurs. Little is known about the stress/strain relationship occuring
during and after cutting. The basic assumption that is made is that the physical
properties of tissue are only modi�ed locally. However, in practice, cutting can
modify the boundary conditions signi�cantly between tissue and the surrounding
organs which implies considerable change with respect to their ability to deform.

Finally, when cutting volumetric or surface models, it is very likely that the new
geometric and physical representation of tissue leads to self-intersections. The
detection of self-intersections is very computationally expensive and, therefore
repulsive force between neighboring vertices are sometimes added to prevent
self-intersections.

1.4 Computational Methods for Soft-tissue Modeling
Several computational methods can be employed for modeling the deformation
of soft tissue. We simplify the taxonomy of these methods by proposing the
three classes of algorithms most commonly used :

• Direct Methods This category contains all methods that solve the static
or dynamic equilibrium equation at each iteration (quasi-static motion).
To reach such performance, some kind of pre-computation is performed.
The algorithm presented in section 5 is a direct method as well as the
algorithm described in [28, 90]

• Explicit Iterative Methods. With iterative methods, the deforma-
tion is computed as the limit (in �nite time) of a converging series that
have been initialized. The closer the initial value is from the solution the
faster the convergence. Iterative methods can be implemented based on
implicit or explicit schemes. With explicit schemes, the next position of
the tissue model Xt+1, is obtained from the application of internal forces
estimated at iteration t. These methods encompass the most common
algorithms found in the literature for modling soft tissue deformation,
including spring-mass model [60], Tensor-Mass models [23] (presented in
section 6), the �chain-mail� algorithm [43] and others [12].

12

• Semi-Implicit Iterative MethodsWith implicit or semi-implicit schemes,
the next position of the tissue model Xt+1, is obtained from the applica-
tion of internal forces estimated at iteration t + 1. Therefore, a linear
system of equations needs to be solved entirely or partially [4].

In table 1, we present the general features of these three types of numerical
methods with respect to the constraints enumerated in section 1.3. More pre-
cisely the time of computation, the relaxation time (inversely proportional to
the speed of convergence towards the rest position) and the ability to support
any change of mesh topology during the simulation of cutting or suturing is
estimated qualitatively for each method.
Direct methods can support high frequency update fu and may have a low
relaxation time to model sti� material : but they cannot simulate tissue cutting
since they rely on the precomputation of some parameters.

Direct Methods Explicit Iterative Implicit Iterative
Scheme Scheme

Computation time low low high
Relaxation Time low high low
Cutting simulation Very di�cult possible di�cult

Table 1: Comparison between the three soft tissue models: direct methods (
pre-computed quasi-static model), explicit iterative schemes (Tensor-Mass and
spring-mass models) and implicit iterative schemes (Houbolt or Newmark meth-
ods).

On the other hand, explicit iterative methods are well suited for the simulation
of cutting, but these method often su�er from a high relaxation time, which
makes their dynamic behavior somewhat unrealistic (jelly-like behavior). This
high relaxation time originates from a lack of synchronicity, where the time step
∆t used in the discretization of the explicit scheme, is much smaller than the
computation time Tc. To obtain satisfactory results, it is often required to use
a mesh with a small number of nodes (typically less than 1000 vertices on a
standard PC).
Finally, with implicit iterative methods, the time step ∆t can be increased by
an order of magnitude compared to the explicit case. This allows to obtain
much better dynamical behavior, but, on the other hand, they su�er from a
higher computation time than explicit methods since a (sparse) linear system of
equations needs to be solved at each iteration. Again, to achieve real-time per-
formance, these methods are limited to meshes with a small number of vertices.

2 The INRIA Hepatic Surgery Simulator
2.1 Objectives
In the sequel we use the hepatic surgery simulator developped at INRIA in the
Epidaure project2 as a case study to illustrate the di�erent algorithms and the
practical issues involved when building soft tissue models.

2Description of the Epidaure project is provided at http://www.inria.fr/epidaure/

13

The INRIA Hepatic Surgery Simulator was initiated in 1995 as a part of the
European project MASTER in collaboration with the IRCAD research center3
which hosts the European Institute of Tele-Surgery (EITS). The motivations
that led us to propose the development of an hepatic surgery simulator were
twofold.
First, hepatic pathologies are among the major causes of death worldwide. For
instance, hepatocellular carcinoma (HCC) is a primary liver cell cancer and it
accounts for most of cancer tumors. It causes the death of 1 250 000 people
mainly in Asia and Africa. Furthermore, hepatic metastases (secondary tumor-
ous cells) are mainly caused by colorectal cancers (in 30% to 50% of cases) and
patients have little chance to survive hepatic carcinoma without any therapy
(0 to 3% of survival for a 5 year period with an average survival period of 10
months).
The second motivation is related to the nature of hepatic resection surgery.
Indeed, this surgical procedure involves many generic surgical gestures (large
displacement motion, grasping, cutting, suturing) that can be useful in the
simulation of di�erent procedures. Also, because of the presence of hepatic
parenchyma, the tissue models must be of volumetric nature which departs
signi�cantly from previously developped simulators simulating hollow organs
like the gall bladder. Finally, tissue being a soft material allows to employ low-
end force feedback systems for simulating contact forces between surgical tools
and hepatic tissue.
This work has greatly bene�ted from the INRIA incentive action AISIM4 which
gathered di�erent INRIA teams working in the �elds of medical image analysis
(Epidaure), robotics (Sharp) [11], computer graphics (Imagis) [28] and numerical
analysis (Sinus, Macs) [107].

2.2 Liver Anatomy
The liver is the largest gland (average length of about 28 cm, average height
of about 16 cm and average greatest thickness of about 8 cm) in the human
body. It has numerous physiological functions: to �lter, metabolize, recycle,
detoxify, produce, store and destroy. It is located in the right hypochondriac and
epigastric regions. The liver has a �brous coat, the so-called Glisson's capsule.
Its rheological behavior is quite di�erent from the glandular parenchyma. Five
vessel types run through the liver parenchyma: biliary and lymphatic ducts
on one hand, blood vessels (internal portal supply, hepatic arterial tree and
collecting venous network) on the other hand. The portal vein, which conveys
blood from the digestive tract to be detoxi�ed and metabolized, is deep to the
proper hepatic artery and common bile duct. This hepatic triad runs to the
liver; it enters the liver via the hilum. This region is thus supposed to be wholly
stable.

2.3 Creation of an anatomical model of the liver
In order to produce a model of the liver with anatomical details, the Visible
Human dataset [1] provided by the National Library of Medicine was used. This

3Institut de Recherche Contre le Cancer de l'Appareil Digestif, 1, Place de l'Hôpital, 67091
STRASBOURG Cedex, http://www.ircad.com/, funded by Pr. J. Marescaux

4http://www-sop.inria.fr/epidaure/AISIM/

14

Figure 7: Description of the liver anatomy with its neighboring structures
(source Children's Liver Disease Foundation)

dataset consists of axial MRI images of the head and neck and longitudinal
sections of the rest of the body. The CT data consists of axial scans of the
entire body taken at 1 mm intervals. The axial anatomical images are scanned
pictures of cryogenic slices of the body. They are 24-bit color images whose size
is 2048 by 1216 pixels. These anatomical slices are also at 1 mm interval and
are registered with the CT axial images. There are 1878 cross-sections for each
modality.
To extract the shape of the liver from this dataset, we used the anatomical
slices (cf. �gure 8), which give a better contrast between the liver and the
surrounding organs. The dataset corresponding to the liver is reduced to about
180 slices. After contrast enhancement, we apply an edge detection algorithm
to extract the contours of the image, and then using a simple thresholding
technique, we retain only those with higher-strength contours are considered for
further processing. Next, we use semi-automatic deformable contour [55, 32] to
extract a smooth two-dimensional boundary of each liver slice. These contours
are �nally transformed into a set of twodimensional binary images (cf. �gure 8).
The slices generated are then stacked to form a tridimensional binary image [75]
(cf. Figure 9).
In order to capture the shape of the external surface of the liver, one could use a
sub-voxel triangulation provided by the marching-cubes algorithm [65], however
the number of triangles generated is too large for further processing. Moreover,
a smoothing of the surface is necessary to avoid staircase e�ects (see �gure 9).
A possible solution consists in decimating an iso-surface model by using a mesh
simpli�cation tool [95]. However, for more �exibility, in both the segmentation
and simpli�cation processes, liver reconstruction was performed using simplex
meshes.
Simplex meshes are an original representation of tridimensional objects devel-
oped by Delingette [31]. A simplex mesh is a deformable discrete surface mesh
that is well suited for generating geometric models from volumetric data. A
simplex mesh can be deformed under the action of regularizing and external
forces. Additional properties like a constant connectivity between vertices and

15

Figure 8: Slice-by-slice segmentation of the liver. The initial data (left) is a high
resolution photography of an anatomical slice of the abdomen. The binary image
(right) corresponds to the segmented liver cross-section.

Figure 9: After segmentation, the binary images are stacked (left) to give a 3D binary
image. We see the step-e�ect on the shape of the liver (right) when extracted using
the marching-cubes algorithm.

16

a duality with triangulations have been de�ned. Moreover, simplex meshes
are adaptive, for example by concentrating vertices in areas of high curvature
(thereby achieving an optimal shape description for a given number of vertices).
The mesh may be re�ned or decimated depending on the distance of the ver-
tices from the dataset. The decimation can also be interactively controlled.
Figure 10 shows the e�ect of the mesh adaptation and where the vertices are
nicely concentrated at highly high curvature locations of the liver.
By integrating simplex meshes in the segmentation process, we have obtained
smoothed triangulated surfaces, very close to an iso-surface extraction, but with
fewer faces to represent the shape of the organs. In our example, the liver model
has been created by �tting a simplex mesh to the tridimensional binary image
previously described. Thanks to the adaptation and decimation properties of
the simplex meshes, this model is composed of only 14,000 triangles, whereas
the marching-cubes algorithm produced 94,000 triangles (cf. Figures 9 and 10).

Figure 10: Di�erent representations of the geometric liver model. The simplex
mesh [75] �tting the data (top left) with a concentration of vertices in areas of high
curvature, the triangulated dual surface (top right) and a texture-mapped model with
anatomical details (gall bladder and ducts) from an endoscopic viewpoint (bottom).

17

Although this approach is very useful for building a �generic� liver model, it
is essential to integrate �patient-based� models in the simulator. In the frame-
work of this research project, Montagnat and Delingette [75] have developped a
method for extracting liver models from CT scan images. The principle of this
algorithm is to deform a generic simplex mesh (for instance the one extracted
from the Visible Human dataset) such that its surface coincides with the liver
boundary in the image. The work of Soler et al. [102, 101] has extended this
work by additionnally extracting the main bifurcations of the portal and hepatic
veins but also the hepatic lesions and gall-bladder (see �gure 11).

2.4 Liver Boundary Conditions
In the scope of the AISIM project, a reference liver model was created by M.
Thiriet and M. Vidrascu [107]. They de�ne the liver environment [107] in order
to set up the boundary conditions associated to computational models. The
right liver extremity is thick and rounded while the left one is thin and �attened.
Both extremities are not submitted to speci�c loads. The anterior border is
thin, sharp and free. The posterior border is connected to the diaphragm by
the coronary ligament. The upper surface, covered by the peritoneum, is divided
into 2 parts by the suspensory ligament. However, this ligament does not a�ect
the biomechanical behavior of the liver. The lower surface is connected with
the gall-blader (GB) within the GB fossa, the stomach, the duodenum,the right
kidney and the right part of the transverse colon. These organs are in contact
with the liver surface, but they do not interact strongly with the liver; they can
not be considered as being supporting organs. The inferior vena cava (IVC)
travels along the posterior surface, very often in a groove. The connection
implies another strong �tting condition (clamp).

2.5 Material Characteristics
The literature on the mechanical property of the liver is relatively poor, but
during the past four years, there has been a renewed attention on soft tissue
characterization due to the development of new robotics tools and new imaging
modalities. The published materials concerning liver biomechanical properties
usually include two distinct stages. In a �rst stage, experimental curves relat-
ing strain and stress are obtained from speci�c experimental setups and in a
second stage, parameters of a known constitutive law are �tted to these curves.
Concerning the �rst stage, there are three di�erent sources of rheological data :

• ex-vivo testing where a sample of a liver is positioned inside a testing
rig,

• in-vivo testing where a speci�c force and position sensing device is in-
troduced inside the abdomen to perform indentation,

• image-based elastometry where an imaging modality like ultrasound [111],
Magnetic Resonance Elastometry [69] or CT-scan [78, 46] provides rele-
vant information to assess the Young Modulus of living materials.

A non-comprehensive list of articles describing the liver material characteristics
is provided in table 2. From this wide variety of studies, it is di�cult to pick one

18

(a)

(b) (c)

(d) (e)

Figure 11: (a) Original CT-scan images of the liver; (b) reconstructed liver model; (c)
outline of the liver surface model in a CT-scan image; (d) Segmentation of the portal
vein [101]; (e) reconstruction of the eight anatomical segments (Couinaud segmenta-
tion).

19

particular constitutive model since each of experimental setup has its advantages
and drawbacks. For instance, the rich perfusion of the liver a�ects deeply its
rheology (the liver receives one �fth of the total blood �ow at any time) and
therefore it is still an open question whether ex-vivo experiments can assess
the property of living liver tissue, even when speci�c care is taken to prevent
the swelling or drying of the tissue. Conversely, data obtained from in-vivo
experiments should also be considered with caution because the response may be
location-dependent (linked to speci�c boundary conditions or non-homogeneity
of the material) and the in�uence of the loading tool caliper on the deformation
may not be well understood. Furthermore, both the respiratory and circulatory
motions may a�ect in-vivo data.

First Author Experimental Technique Liver Origin Young
Modulus (kPa)

Yamashita [111] Image-Based Human Not Available
Brown [15] in-vivo Porcine Liver ≈ 80
Carter [17] in-vivo Human Liver ≈ 170
Dan [27] ex-vivo Porcine Liver ≈ 10
Liu [62, 61] ex-vivo Bovine Liver Not Available
Nava [76] in-vivo Porcine Liver ≈ 90
Miller [74] in-vivo Porcine Liver Not Available
Sakuma [92] ex-vivo Bovine Liver Not Available

Table 2: List of published articles providing some quantitative data about the
biomechanical properties of the liver.

Furthermore, little is known about the variability of liver characteristics between
species (does a porcine liver behave like a human liver ?) but also between pa-
tients. For instance, studies from Nava et al. [76] suggest that a 20% di�erence
in sti�ness between normal and diseased livers whereas Brown [15] et al. show
signi�cant di�erences between in-vivo pig livers and ex-vivo cow livers.
Another important source of uncertainty in those measurements is the strain
state of the liver during indentation. Indeed, as pointed out by Brown [15],
most researchers precondition their liver samples by applying several cycles of
indentation in order to have more consistent estimates of sti�ness and hysteresis.
However, during surgery, (rightfully) surgeons do not precondition living tissues
which may imply that only measurements obtained in-vivo and in-situ through
modi�ed surgical instruments (like those developed in [17, 15, 76]) are relevant
for modeling soft tissue in a surgical simulator.
Finally, the rheology of the liver is not only in�uenced by its perfusion, but also
by the Glisson's capsule. For instance, Carter [17] et al. have showed that the
sti�ness of cylindrical samples of liver parenchyma with part of Glisson's capsule
is twice the one without Glisson's capsule, using similar rheological tests [17].
To conclude, more experimental studies are needed to reach a good understand-
ing of the liver biomechanical properties. Methods based on in-vivo and in-situ
indentations seem to be the most promising ones for building realistic soft tis-
sue models in surgery simulation. All studies demonstrate that the liver is a
strongly visco-elastic material, while Liu [62] et al. suggest that the liver can be
considered as linear elastic for strains smaller than 0.2 %.

20

Fortunately, in many surgical simulators, the boundary conditions governing the
deformation of soft tissues, consist of imposed displacements only. In such case,
the computation of soft tissue deformation requires to solve an homogeneous
system of equations FU = 0 which is not sensitive to the absolute value of
sti�ness materials but to the relative sti�ness between materials [44]. Hopefully,
we can expect that the relative sti�ness between the liver and its neighboring
organs is less variable and easier to assess, for instance through medical imagery.

3 Linear Elastic Models for surgery Simulation
3.1 Main features of our approach
In the next sections, we propose three di�erent soft tissue models that are
well-suited for the simulation of surgery and which are compatible with the
constraints described in section 1.3. These models bear many common features
that are listed below :

• Volumetric Structures

• Continuum mechanics based deformation

• Finite Element Modeling

• Linear Tetrahedron Finite Element

• Strong Approximation in Dynamical Modeling

We explain the motivations of such characteristics in the next sections.

3.1.1 Using Volumetric Models
We can classify the geometry of anatomical structures depending on their �ide-
alized� dimensionality, even though they all consist of an assembly of tridimen-
sional cells. For instance, at a coarse scale, a blood vessel can be thought as
a one-dimensional structure [89] whereas the gall-blader can be represented as
a two-dimensional structure [60] (a closed surface �lled with bile). Similarly,
the behavior of most parenchymatous organs such as the brain, lungs, liver or
kidneys are intrinsically volumetric. But one should notice that at a �ne enough
scale, all anatomical structures can be considered as volumetric.
In surgical simulators, it is frequent to rely on such dimensionality simpli�cation
in order to speed-up computation : tubular surfaces, such as the colon, are
modeled as a deformable spline [39] whereas deformable volumetric structures,
such as the liver, are represented with their surrounding surface envelope [60].
However, such arti�ces cannot be used in a hepatic resection simulator when
the removal of hepatic parenchyma is performed.

3.1.2 Using Continuum mechanics
We have chosen to rely on the theory of continuum mechanics to govern the
deformation of our volumetric soft tissue models. Other alternative representa-
tions exist such as spring-mass models [60], chain-mail [43] or long element mod-
els [20]. Spring-mass models correspond to small deformation one-dimensional

21

elastic elements (see section 6.1.7 for an extended comparison) but are no longer
valid for two or three-dimensional elasticity. These models are especially pop-
ular in computer graphics since they are easy to implement and are based on
straightforward point mechanics. The chain-mail [43] is an original quasi-static
deformable model based on a hexahedral mesh which is well suited for sti�
material but does not allow any topological change. Long element models [20]
correspond to valid tridimensional cylindrical elastic models but are used to
approximate the deformation of general volumetric shapes.
We chose to base our soft tissue models on continuum mechanics since it o�ers a
well-studied and validated framework for modeling the deformation of volumet-
ric objects unlike the methods cited above. Furthermore, it o�ers the following
advantages :

• Scalability : when modifying the mesh topology (re�nement or cutting
for instance), the behavior of the mesh is guaranteed to evolve continu-
ously.

• Physical Parameter Identi�cation: the elastic parameters of a bioma-
terial (Young modulus for instance) can be estimated from various meth-
ods (incremental rheological experiments, elastography or solving inverse
problems). Parameter identication for spring-mass models is known to be
more di�cult and requires stochastic optimization (genetic algorithms [66]
or simulated annealing [34]).

3.1.3 Using Finite Element Modeling

Finite Element Modeling (FEM) is certainly the most popular technique for the
computation of structure deformation based on the elasticity theory. Further-
more, it is well formalized and understood and there exists many software imple-
mentations although none of them deals with real-time deformation. Nonethe-
less there exists alternative approaches such as Boundary Element Modeling
(BEM) or the Finite Di�erence Method (FDM).
The BEM is well suited for the simulation of linear elastic isotropic and ho-
mogeneous materials (for which there exists a Green function) and is indeed a
good alternative to FEM when the mesh topology is not modi�ed. In fact BEM
has the important advantage over FEM of not requiring the construction of a
volumetric mesh. A more thorough discussion is provided in section 5.3.2 but
this approach is not well suited when cutting is simulated.
The FDM is well-suited when the domain is discretized over a structured grid
in which case partial derivatives can be easily discretized. They often lead
to the same equation as FEM when speci�c �nite elements (based on linear
interpolation) are employed [6]. On unstructured meshes such as tetrahedral
meshes, some extensions of the �nite di�erence method have been proposed [28]
also leading to a similar equation as FEM (see discussion in section 4.4). With
non-linear elasticity however, FEM [82] and FDM [28] di�er signi�cantly and no
formal proof has been given that the FDM converges towards the right solution
as the mesh resolution increases.

22

3.1.4 Using Linear Tetrahedron Finite Element
For all �nite element models described in the remainder, a simple �nite element
is used : a 4-node tetrahedron with linear interpolation (P1). The Linear
Tetrahedron (LT) is known to be a poor element (in terms of convergence)
compared to the Linear Hexahedron (LH) for static linear and non-linear elastic
analysis [8]. Also this paper shows that LH performs better than the Quadratic
Tetrahedron (10 nodes) even in a static linear elastic analysis.
The motivation for using tetrahedra rather than hexahedra clearly comes from
a geometrical point of view. Indeed, meshing most anatomical structures with
hexahedra is known to be a di�cult task especially for structures having highly
curved or circumvoluted parts such as the liver or the brain parenchyma. To
obtain a smooth surface envelope, it is then necessary to employ many hexa-
hedra where a smaller number of tetrahedra would su�ce. Furthermore, there
exist several e�cient commercial and academic software [99, 79] to �ll automat-
ically a closed triangulated surface with tetrahedra of high shape quality [81].
A second motivation for using tetrahedra rather than hexahedra is related to
the simulation of cutting soft tissue that involves removing and remeshing of
local elements. With hexahedral meshes, it is not possible to simulate general
surface of cut without resorting to add new element types (such as prismatic
elements). Such multi-element models [6] would make the matrix assembly and
local remeshing algorithms more complex to manage.

Figure 12: Example of liver meshed with hexahedra (courtesy of ESI SA)

Regarding the choice of the interpolation function (linear versus quadratic), our
choice has been mainly governed by computational issues. Given that a min-
imum number of tetrahedra is necessary to get a realistic visual rendering of
a structure, the QT element involves one additional node per edge compared
to the LT element which on a typical tetrahedral mesh implies at least a six-
fold increase of the number of nodes. Furthermore, we believe that the loss of

23

accuracy in the deformation computation entailed by the use of LT elements re-
mains small compared to the large uncertainty on the physical parameter values
(Young modulus,..) existing for most soft tissues.
Finally, by using linear elements, the computation of local sti�ness matrices
can be done explicitely (analytically) even for non-linear elasticity. Also, the
gradient of the displacement �eld which is constant inside each element (constant
strain) has a simple geometric interpretation using area vectors (see section 4.2).
A signi�cant speed-up is therefore obtained when compared to higher order
elements that require numerical integration methods such as Gauss quadrature
for estimating sti�ness matrices.

3.1.5 Using large approximations of Dynamic Behavior
Despite the development of new in vivo rheological equipment [56], the dynami-
cal behavior is only known quantitatively for a few anatomical structures : skin,
muscle, myocardium, . . . The viscoelastic properties of liver tissue have been
studied by Liu et al. [61] but for most organs, constitutive laws of dynamics
and their parameters must be hypothesized and validated qualitatively.
In a surgical simulator, the boundary conditions caused by the contact with
surgical instruments can change between two iterations. Given that surgeons
typically move their instruments at low speed (typically a few milimiters per
second) and making the hypothesis that the mass of these instruments is the
same or smaller than the mass of anatomical structures, we chose to neglect
the dynamics of soft tissue models in two di�erent ways. For a �rst class of
models described in section 5, we solve the static problem F = KU (where F is
the force vector, K the sti�ness matrix and U the displacement vector) at each
iteration thus leading to a quasi-static approximation.
For a second class of models, described in sections 6.1 and 7, we solve the New-
tonian equation of motion MÜ + CU̇ = −KU with the following hypotheses :
the mass matrix M is proportional to the identity matrix while the damping
matrix C is diagonal. Furthermore, in some cases, the computational time Tc

is longer than the time step ∆t which creates a lack of synchronicity in the
simulation.

3.2 Tridimensional Linear Elasticity
The fast computation of soft tissue deformation in a surgical simulator requires
that some hypotheses are made about the nature of the tissue material. A �rst
hypothesis, which leads to the two soft tissue models described in section 5 and
6, assumes that soft tissue can be considered as linear elastic. The rationale
behind this hypothesis is clear : the linear relation between applied forces and
node displacements leads to very computationally e�cient algorithms. But,
linear elasticity is not only a convenient mathematical model for deformable
structures : it is also a quite realistic hypothesis. Indeed, all hyperelastic mate-
rials can be approximated by linear elastic materials when small displacements
(and therefore small deformations) are applied [41, 72]. It is often admitted as
reasonable to consider that a material is linear elastic when observed displace-
ments are less than 5 % of the typical object size. In the case of hepatic tissue,
a recent publication [61] indicates that the linear domain is only valid for strain
less than 0.2%.

24

Whether this constraint on the amount of displacement is valid or not in a surgi-
cal simulator depends both on the anatomical structure and the type of surgery.
For instance, when simulating the removal of the gall bladder (cholelysectomy),
the liver undertakes small displacements but it is not the case when simulating
hepatic resection or any other surgical procedure that requires a large motion
of the left lobe.
When large displacements are applied to a linear elastic material, the approxi-
mation of hyperelasticity is no longer valid and large errors in the computation
of deformation and reaction forces can be perceived both visually and haptically.
Section 7.1 describes the shortcomings of linear elasticity in such cases.
To summarize the general equations of linear elastic materials, we proceed in
four steps. In section 3.2.1, we provide some general de�nitions whereas sections
3.2.3 and 3.2.4 give the main equations of isotropic and transversally anisotropic
material. Finally, the principle of virtual work is formulated in section 3.2.5.

3.2.1 De�nition of in�nitesimal strain

We consider a three dimensional body de�ned in a tridimensional Euclidian
space IR3. We describe the geometry of this body in its rest position Mrest by
using material coordinates X = (x, y, z)T de�ned over the volume of space Ω
occupied by Mrest.

X=(x,y,z)T

φ (φ,χ,ψ)
T

(X)=

e
1

e
2

e 3

Displacement U=(u,v,w)T

Rest Position

Domaine Ω

Deformed Position

Figure 13: De�nition of deformation and displacement between rest and de-
formed positions

This body is deformed under the application of boundary conditions : these
may be either geometric boundary conditions (also called essential boundary
conditions [6]) or natural boundary conditions i.e. prescribed boundary forces.
We note Mdef the body in its deformed state and Φ(x, y, z), the deformation
function that associates to each material point X located in the body at its rest

25

position, its new position Φ(X) after the body has been deformed :

Φ : Ω ⊂ IR3 7−→ Φ(Ω)

X −→ Φ(X) =

φ(x, y, z)
χ(x, y, z)
ψ(x, y, z)

The displacement vector �eld U is de�ned as the variation between the deformed
position and the rest position (see �gure 13) :

U(X) : Ω 7−→ IR3

X −→ U =

u(x, y, z)
v(x, y, z)
w(x, y, z)

The observed deformation can be characterized and quanti�ed through the anal-
ysis of the spatial derivatives of the deformation function Φ(X). More precisely,
the right Cauchy-Green strain tensor C(X) which is a symmetric 3× 3 matrix
(therefore has 3 real eigenvalues) is simply computed from the deformation gra-
dient :

C(X) = ∇ΦT∇Φ (1)
The Green Lagrange strain tensor E(X), derived from the right Cauchy-Green
strain tensor, allows to analyze the deformation after rigid body motion has
been removed :

E(X) =
1
2
(C− I3) =

1
2
(∇U +∇UT +∇UT∇U) (2)

where I3 is the 3× 3 identity matrix.
In the the linear elasticity framework, applied displacements are considered as
in�nitesimal and the Green Lagrange strain tensor E(X) is linearized into the
in�nitesimal strain tensor EL(X). This symmetric 3×3 tensor is simply written
as :

EL(X) = [eij] =
1
2
(∇U +∇UT) =

exx exy exz

exy eyy eyz

exz eyz ezz

 (3)

The diagonal elements eii of the symmetric matrix describe the relative stretch
in the direction of the reference frame, whereas o�-diagonal elements eij describe
shearing quantities.

3.2.2 De�nition of in�nitesimal stress
The deformation of a tridimensional body is caused by applying external forces
: these forces may be either body forces FB (such as gravity forces) or surface
forces FS (applied pressure) or concentrated forces FP . As a reaction to external
forces, internal forces are created inside the elastic body material.
Through Cauchy theorem [18], it is demonstrated that for each volume element
inside the deformed body, the force per unit area t(X,n) at a point X and along
the normal direction n is written as :

t(X,n) = T(X)n

26

where T(X) is the Cauchy stress tensor. The Cauchy stress tensor is a 3 × 3
symmetric tensor and can be written as :

Σ(X) = [σij] =

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

The Cauchy stress Σ and in�nitesimal strain EL are conjugated variables [6]
which implies the following relations :

σij =
∂W

∂eij
(4)

eij =
∂W

∂σij

where W (X) is the amount of elastic energy per unit volume.

3.2.3 Isotropic Linear Elastic Materials
For an isotropic linear elastic material, the elastic energy W (X) is a quadratic
function of the �rst two invariants of the in�nitesimal strain tensor [18] :

W (X) =
λ

2
(trEL)2 + µ trE2

L (5)

where λ and µ are the two Lamé coe�cients characterizing the material sti�ness.
These two parameters are simple functions of Young modulus E and Poisson
coe�cients ν, which belong to the material's physical properties :

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)

E =
µ(3λ + 2µ)

λ + µ
ν =

λ

2(λ + µ)

Through equation 4, we can derive the linear relationship, known as Hooke's
law, between the stress and the in�nitesimal strain tensors :

Σ = λ(trEL)I3 + 2µEL (6)

Note that, the elastic energy can be written simply as a function of the linearized
strain and stress tensors :

W =
1
2

tr(ELΣ)

3.2.4 Transversally Anisotropic Linear Elastic Materials
Most anatomical structures like muscles, ligaments or blood vessels are strongly
anisotropic material. This anisotropy is caused by the presence of di�erent
�bers (colagen, muscle, . . .) that are wrapped together within the same tissue.
For instance, anisotropic materials have been successfully used to model the
deformation of the eye [54], of the heart [49, 48, 80] or the knee ligaments [109,
87]. In the scope of our hepatic surgery simulator, we have added an anisotropic

27

behavior where the �rst branches of the portal vein are located inside the hepatic
parenchyma.
We have chosen to focus only transversally anisotropic material only where there
is one direction a0 along which the material sti�ness di�ers from the sti�ness
in the orthogonal plane. Indeed, one major obstacle when modeling anisotropic
material is to get reliable data from rheological experiments regarding the direc-
tions of anisotropy and the Young modulus in all directions. With transversal
anisotropy, it is su�cient to provide a single direction a0 and an additional pair
of Lamé coe�cients λa0 and µa0 (see Figure 14).
The theoretical description of elastic energy of transversally anisotropic material
is largely based on the work of Spencer [103, 104], and Fung [41]. For the sake
of clarity, we introduce the notion of direction invariant and the concept of
anisotropic stretching and shearing.

a 0
a 0

λ
a 0(, µ)

(, µλ)

Figure 14: De�nition of Lamé coe�cients along the direction a0 are λa0 and
µa0 .

We decompose the elastic energy of a transversally anisotropic material as the
sum of the isotropic energy, provided by equation 5 and by a corrective term
∆WAni which only depends on the variation of Lamé coe�cients :

∆λ = λa0 − λ

∆µ = µa0 − µ

WTransv.Ani(X) = W (X) + ∆WAni(X, ∆λ,∆µ)

Without loss of generality, we can assume that a0 coincides with the z direction
of the reference frame. The isotropic elastic energy can then be written as a
function of the stretch ezz and shear (exz, eyz) in the direction a0 :

W (X) = (
λ

2
+µ)(e2

xx+e2
yy+e2

zz)+λ(exxeyy+exxezz+eyyezz)+2µ(e2
xy+e2

yz+e2
xz)

The purpose of the corrective term ∆WAni is to modify the isotropic Lamé
coe�cients in the direction of anisotropy :

∆WAni(X) = (−∆λ

2
+ ∆µ)e2

zz + ∆λ ezz(trEL) + 2∆µ(e2
yz + e2

xz)

28

The equation above can be written using the two parameters I4 and I5 which
characterize the strain tensor in the direction a0 [84] :

I4 = aT
0 ELa0 (7)

I5 = aT
0 E2

La0 (8)

The �rst parameter I4 is simply the amount of stretch in the direction a0 whereas
the total amount of shearing e2

xz +e2
yz is given by I5−I2

4 . With these notations,
the corrective term can be written as :

∆WAni(X) = ∆λ I4 trEL + 2∆µ I5 − (
∆λ

2
+ ∆µ)I2

4 (9)

In [84], Picinbono et al. proposed to decompose the anisotropic term ∆WAni(X)
into a stretching and shearing part :

∆WAni(X) = ∆WStr.Ani + ∆WSh.Ani

∆WSt.Ani = (−∆λ

2
+ ∆µ)I2

4 + ∆λ I4 trEL

∆WSh.Ani = 2 ∆µ(I5 − I2
4)

In Figure 15, the distinction between stretching and shearing e�ects of a transver-
sally anisotropic material is pictured by applying a force F1 and F2 on a cylinder
respectively along and orthogonal to the direction.

3.2.5 Principle of Virtual Work
The equilibrium equation of a deformed body is derived through the principle
of virtual displacements. This principle states that for any compatible virtual
displacement û(X) applied on a body Mdef , the total internal virtual work is
equal to the total external work. The total internal work is given by the integral
of elastic energy over the body volume whereas the external work is created by
the application of body and surface forces :

∫

Ω

Ŵ (X) dV =
∫

Ω

ûT fB dV +
∫

∂Ω

ûT fS dS (10)

where fB and fS are the applied body and surface forces. Note that in equa-
tion 10, the virtual displacement �eld û(X) is supposed to be compatible with
the geometric boundary constraints (imposed displacements). Furthermore, this
relation is only valid for small virtual displacements such that the linearized
strain hypothesis still holds.

4 Finite Element Modeling
4.1 Linear Tetrahedron Element
As justi�ed in section 3.1.4, the computation of soft tissue deformation is based
on the �nite element method. Anatomical structures of interest are spatially
discretized into a conformal tetrahedral mesh. Conformality implies that the
intersection of two tetrahedra of that mesh is either empty or consists of a vertex
or an edge or a triangle.

29

a b c d

F1 -F 1

F2

F2

Figure 15: Comparison between isotropic (a and c) and anisotropic (b and d)
cylinders [82]. The same horizontal (resp. vertical) loads F1 (resp F2) are
applied in the two leftmost (resp. rightmost) �gures.

Let Mrest be a conformal tetrahedral mesh at its rest position. The initial
position of each vertex is written as pi while its position in the deformed position
is written as qi (see Figure 16). The displacement at each node is then de�ned
as ;

ui = qi − pi

We use a linear tetrahedron �nite element, denoted in the literature as P1.
This amounts to assuming a C0 continuity of the displacement vector across
the domain and equivalently assuming constant strain inside each tetrahedron
(since the gradient matrix is constant inside each tetrahedron).
More precisely, if T is a tetrahedron de�ned by its four vertices pj , j = 0, . . . , 3,
in their rest position, then the displacement vector at a given point X =
(x, y, z) ⊂ T is de�ned as :

u(X) =
3∑

j=0

hj(X)uj

where hj(X) , j = 0, . . . , 3 are the shape functions that correspond to the linear
interpolation inside tetrahedron T . These shape functions hj(X) correspond to

30

q
0

q

q

q
1

2

3

Displacement u
2

φ (x)p

p

p

p

1

2

3

0

Figure 16: Notations for the position and displacement vectors of a tetrahedron.

the barycentric coordinates of point X with respect to vertices pi. The analytical
expression of these shape functions is obtained from the linear relation :

x
y
z
1

 =

px
0 px

1 px
2 px

3

py
0 py

1 py
2 py

3

pz
0 pz

1 pz
2 pz

3

1 1 1 1

h0

h1

h2

h3

 = P H

where pi = (px
i ,py

i ,pz
i)

T are the coordinates of each tetrahedron vertex. The
matrix P completely encapsulates the shape of the tetrahedron T at its rest po-
sition. Since its determinant |P| = 6V (T) is the volume of T , for non degenerate
tetrahedra P can be inverted :

[
P−1

]
=

−1
6V (T)

mx
0 my

0 mz
0 −V0

mx
1 my

1 mz
1 −V1

mx
2 my

2 mz
2 −V2

mx
3 my

3 mz
3 −V3

where :

• mi = (mx
i , my

i ,mz
i)

T is the ith area vector opposite to vertex pi (see
description below),

• Vi = (−1)i+1 |pi+1,pi+2,pi+3| can be interpreted5 geometrically as 6
times the volume of the tetrahedron made by the origin o and vertices
pi+1, pi+2 and pi+3. To simplify notations, the index i + k should be
understood as (i + k)mod 4.

Area vectors mi have a very simple interpretation : they are directed along the
outer normal direction of the triangle Ti opposite to pi and their norm is equal

5|a,b, c| is the triple product of vectors a, b and c

31

Pi

Triangle T i
Area Vector mi

Figure 17: De�nition of area vector mi on the triangle Ti opposite to vertex pi

in tetrahedron T

to twice the area of that triangle (see Figure 17). More precisely, they can be
computed as :

mi = (−1)i+1 (pi+1 × pi+2 + pi+2 × pi+3 + pi+3 × pi+1) (11)
where pi+1 × pi+2 is the cross product between the two vectors pi+1 and pi+2.
Because they are computed from the inverse of matrix P, these area vectors also
capture the shape of T completely, and thus play a key role when computing
the sti�ness matrix K. Further properties of area vectors are described in
section 4.2.
The shape functions hi(X) can then be written as :

hi(X) = −mi ·X− Vi

6V (T)
(12)

where mi ·X is the dot product between the two vectors mi and X.
If we note that elementary volumes Vi can be expressed as :

Vi = mi · pi+1

then the interpolation of displacement vectors can be written as :

u(X) = −
3∑

i=0

mi · (X− pi+1)
6V (T)

ui (13)

Finally, the interpolation matrix H(X) widely used in the �nite element litera-
ture is de�ned as :

u(X) = H(X)

u0

u1

u2

u3

H(X) =

h0 0 0 h1 0 0 h2 0 0 h3 0 0
0 h0 0 0 h1 0 0 h2 0 0 h3 0
0 0 h0 0 0 h1 0 0 h2 0 0 h3

32

4.2 Properties of area vectors

Area vectors have a major signi�cance with respect to the geometry of a tetra-
hedron for instance through the law of cosine. To write essential geometric
relations, we need to introduce the following quantities :

• normal vector ni of triangle Ti de�ned as the normalized area vector :
ni = mi

‖mi‖ . The normal vector is pointing outward if the tetrahedron T is
positively oriented, i.e. if its volume V (T) is positive.

• dihedral angle θi,j existing between triangle Ti and Tj and therefore be-
tween their normal vectors ni and nj .

• triangle area Ai, area of triangle Ti

• edge length li,j is the length between vertex pi and pj (see Figure 18).

• foot height fi is the height of vertex pi above triangle Ti (see Figure 18).

Pi

Pj

Edge l i,j

Foot f i

Figure 18: De�nition of foot height fi and edge length li,j in tetrahedron T

The de�nition of area vectors gives the relation :

mi = 2Aini

Noting that the tetrahedron volume is simply related to the foot height and
area, we get :

mi =
2V (T)

3fi
ni

33

From the relations
[
P−1

]
[P] = I3 and [P]

[
P−1

]
= I3, the following relations

are obtained :
∑

i

mi = 0 (14)
∑

i

mi · pi = −18V (T) (15)
∑

i

mi · pi+1 = 6V (T)

(pi+1 − pi) ·mi = 6V (T)∑

i 6=j,i<j

mi ·mj l
2
i,j = 108V (T)2

|mi,mi+1,mi+2| = (−1)i+1 36V (T)2

The most important result is that all area vectors sum to zero. A result of this
property is the law of cosine :

A2
0 = A2

1 + A2
2 + A2

3 − 2A1A2cosθ1,2 − 2A1A3cosθ1,3 − 2A2A3cosθ2,3 (16)

In fact, area vectors sum to zero for any closed trianguled surface. Indeed,
through Green's formulae [14], the sum of area vectors can be interpreted as the
total �ow of a constant �eld accross a closed surface.

4.3 Computation of Sti�ness Matrix : Isotropic case
We use a displacement based �nite element method which is equivalent to the
classical Ritz analysis [6]. On a single tetrahedron, the (linear) isotropic elastic
energy is equal to :

W (T) =
∫

T

(
λ

2
(trEL)2 + µ trE2

L

)
dV

The gradient of the displacement ∇u(X) is constant inside T :

∇u(X) = −
3∑

i=0

∇mi · (X− pi+1)
6V (T)

ui

= −
3∑

i=0

1
6V (T)

mi ⊗ ui

where mi ⊗ ui = miuT
i is the tensor product of the two vectors :

mi ⊗ ui =

mx
i u

x
i mx

i u
y
i mx

i u
z
i

my
i u

x
i my

i u
y
i my

i u
z
i

mz
i u

x
i mz

i u
y
i mz

i u
z
i

The in�nitesimal strain tensor EL is also constant inside T :

EL =
1
2
(∇u +∇uT) =

−1
12V (T)

3∑

i=0

(mi ⊗ ui + ui ⊗mi)

34

The �rst invariant (trEL)2 is simply :

(trEL)2 =
1

144V (T)2

(
3∑

i

mi · ui

)2

=
1

144V (T)2

3∑

i,j=0

uT
i [mi ⊗mj]uj

The second invariant is slightly more complex to obtain :

trE2
L =

1
144V (T)2

tr
(3∑

i,j=0

(mi ⊗ uj)(ui ·mj) + (ui ⊗mj)(mi · uj) +

(mi ⊗mj)(ui · uj) + (ui ⊗ uj)(mi ·mj)
)

=
1

72V (T)2

3∑

i,j=0

uT
i [(mj ⊗mi) + (mj ·mi)I3]uj

Finally the linear elastic energy , is a quadratic function of the displacement
and is written as :

W (T) =
1

72V (T)

3∑

i,j=0

uT
i [λ(mi ⊗mj) + µ(mj ⊗mi) + µ(mi ·mj)I3]uj

W (T) =
1
2

3∑

i,j=0

uT
i [BT

ij]uj (17)

where [BT
ij] is the 3× 3 sti�ness matrix of tetrahedron T between vertices i and

j. Noting that [mi ⊗mj]a = mi(mj · a), we can write the local elastic energy
in terms of dot products :

W (T) =
1

72V (T)

3∑

i,j=0

(
λ(ui ·mi)(mj · uj) + µ(ui ·mj)(mi · uj) +

µ(mi ·mj)(ui · uj)
)

Since mi ⊗ mj = (mj ⊗ mi)T , it is clear that local tensors are symmetric
matrices : [BT

ij] = [BT
ji]

T . Therefore, there are only 10 distinct local sti�ness
matrices with four vertex matrices [BT

ii] and six edge matrices [BT
ij], i 6= j.

4.3.1 Local Vertex Sti�ness Matrix
Vertex sti�ness matrices take the simple form with normal vector ni :

[BT
ii] =

A2
i

9V (T)
((λ + µ)(ni ⊗ ni) + µI3) (18)

These matrices have eigenvalues (λ + 2µ, µ, µ), ni being the �rst eigenvector,
and two directions orthogonal to ni being the two other eigenvectors.

4.3.2 Local Edge Sti�ness Matrix
The sti�ness matrix between vertex i and j is :

[BT
ij] =

1
36V (T)

(λ(mi ⊗mj) + µ(mj ⊗mi) + µ(mi ·mj)I3) (19)

35

This matrix has the edge direction pj−pi

‖pj−pi‖ as �rst eigenvector associated with
eigenvalue µ(mi·mj)

36V (T) . The existence of the other two eigenvectors depends on
the sign of the following matrix determinant :

∣∣∣∣
(λ + µ)(mi ·mj) µ‖mi‖2

λ‖mj‖2 2µ(mi ·mj)

∣∣∣∣ = λµA2
i A

2
v

(
2(1 +

λ

µ
) cos2 θi,j − 1

)

4.3.3 Global Sti�ness Matrix
The elastic energy of the whole deformed body is then computed by summing
equation (17) over all tetrahedra. This total energy W (Mdef) may be written
with the displacement vector U, gathering all displacement vectors ui, and a
global sti�ness matrix K :

W (Mdef) =
1
2
UT KU (20)

This sti�ness matrix K is built by assembling local sti�ness matrices [BT
ij].

Because these local matrices are symmetric with respect to the swap of indices
[BT

ij] = [BT
ji], the global sti�ness matrix K is symmetric.

4.3.4 Global Vertex Sti�ness Matrix
The 3×3 submatrix [Ki,j] associated with vertices i (row index) and j (column
index) is computed as the sum of local sti�ness matrices for all tetrahedra
containing both vertices. The set of tetrahedra adjacent to a given vertex (resp.
edge) is called the shell S(i) of this vertex (resp. edge). In particular for diagonal
submatrices, we get :

[Ki,i] =
∑

T ∈S(i)

1
36V (T)

(
(λT + µT)(mi ⊗mi) + µT A2

i I3

)

In fact, we can provide a rather simple interpretation of this matrix expression.
Its �rst term can be seen as the inertial matrix (second order moment) of area
vectors mi weighted by (λT +µT)

72V (T) (see �gure 19). Indeed, on a manifold tetrahe-
dral mesh (but not on all conformal tetrahedral meshes), the shell of an interior
vertex is homeomorphic to a sphere and it can be easily proved that the sum
of its area vectors is null (Minkowsky's sum). Therefore mi ⊗ mi represents
the local contribution to an inertia matrix. If vertex pi is surrounded by semi-
regular tetrahedra, then the matrix of inertia is proportional to identity. Note
also that because it is weighted by the inverse of the tetrahedron's volume, it is
very sensitive to the disparity in tetrahedra size. The second part is simply the
sum of the second Lamé coe�cient weighted with the inverse of the tetrahedron
volume.

4.3.5 Global Edge Sti�ness Matrix
The o�-diagonal terms [Ki,j] of the sti�ness matrix correspond to edge sti�ness
matrices that are the sum of local edge sti�ness matrices. The edge direction
pj−pi

‖pj−pi‖ is an eigenvector of [Ki,j] associated with the eigenvalue ki,j :

ki,j =
∑

T ∈S(i,j)

µT (mi ·mj)
36V (T)

36

m i

p
i

Figure 19: Shell of a vertex pi in a tetrahedral mesh : only the opposite triangle
is drawn. For each triangle the area vector mi is pointing outward. The sum
of these area vectors is null and their weighted matrix of inertia determines the
global sti�ness matrix at pi.

where S(i, j) is the set of tetrahedra adjacent to that edge (its shell). The
tetrahedron volume V (T) can be written as a function of triangle areas V (T) =

2
3lopp

i,j
AiAj sin θi,j where lopp

i,j is the length of the opposite edge in tetrahedron T
(see Figure 20).

ki,j =
1
6

∑

T ∈S(i,j)

µT lopp
i,j cot θi,j

4.4 Physical Interpretation of Isotropic Sti�ness Matrix
Equation (17) describes the local sti�ness matrices and it can be interpreted as
the sum of discrete di�erential operators. Indeed, the isotropic elastic energy
related to the �rst invariant of the in�nitesimal strain tensors, can be written
as a quadratic functional of the displacement vector :

W (X) =
λ

2
(trEL)2 + µ trE2

L =
λ

2
(div u)2 + µ tr(∇uT∇u)− µ

2
‖ curlu‖2

The �rst variation of the elastic force −δW can be interpreted as the density of
linear elastic force per unit volume, and is given by the Lamé equation :

−δW = (λ + µ)∇(div u) + µ∆u

It is therefore natural to compare the Lamé equation with the expression of the
discrete elastic force Fi(T) acting on a vertex i of tetrahedron T :

Fi(T) = −
3∑

j=0

[BT
ij]uj =

−1
36V (T)

3∑

j=0

[λ(mi ⊗mj) + µ(mj ⊗mi) + µ(mi ·mj)I3]uj

The three terms of the local rigidity matrix may be interpreted as follows :

37

P i

P j

l
opp
i,j

Figure 20: Shell of an edge linking vertices pi and pj in a tetrahedral mesh :
the adjacent tetrahedra are drawn with dashed lines whereas opposite edges to
that edge are drawn with solid lines. One of the eigenvalues of edge sti�ness
matrix depends on the weighted sum of the lengths lopp

i,j .

Fi(T) =
−1

36V (T)

3∑

j=0

[
λ(mi ⊗mj)︸ ︷︷ ︸

T1

∇(div u)
operator

+ µ(mj ⊗mi)︸ ︷︷ ︸
T2

∇(div u)
pseudo− operator

+ µ(mi ·mj)I3︸ ︷︷ ︸
T3

∆u
operator

]
uj

The �rst term of the local rigidity matrix, corresponds to the integral of the
operator ∇(div u) over a subdomain of tetrahedron T . Indeed through Green's
second formulae [14], the integral over a domain D of that operator can be
evaluated along its boundary ∂D :

∫

D

∇(div u) =
∫

∂D

(div u)n dS

However the divergence operator is actually constant over T and is equal to :

−1
6V (T)

3∑

j=0

mj · uj

Furthermore, since the integral
∫

n dS over each triangle of T is equal to 1
2mi,

T1 is equal to one third of the �ux of (divu n) through the face of T opposite
to vertex pi :

T1 =
−1

36V (T)

3∑

j=0

[(mi ⊗mj)]uj =
1
3

1
6V (T)

3∑

j=0

mj · uj

 mi

2

Thus, we can provide a straightforward interpretation on the �rst term of the
local rigidity tensor : it corresponds to the integration of the ∇(div u) operator

38

over a subdomain Di for which
∫
T Di

n dS = mi

6 . A natural choice for this
subdomain is to consider the shell Si of vertex pi homothetically scaled down
by a ratio of 1/

√
3. This subdomain is sketched in Figure 21 (a) and (b): the

vertices of the subdomain are located at distance of 1/
√

3 times the original
edge length from vertex pi. Unfortunately since 1/

√
3 > 0.5, the subdomain of

two neighboring vertices overlap.
To obtain a non-overlapping subdomain Di, one should consider the subdo-
main de�ned by the middle of each edge, the barycenters of each triangles,
and the barycenter of the tetrahedron, as proposed by Putti et al. [88]. More
precisely, as shown in Figure 21 (c), the subdomain consists in the six trian-
gles (FAG,GAB,BGC, CGD, DGE,EGF) where A,C, E are the centers of the
three triangles adjacent to pi, B, D,F are the centers of the three adjacent edges
and G is the tetrahedron barycenter. This subdomain is called the barycentric
dual cell in [19].

(a)

Pi the edge length
1

3

(b)

Triangle center

Edge middle

Tetrahedron Center A

B
C

D

G

F

E

(c)

Pi the edge length
1

2

(d)

Figure 21: De�nitions of two subdomains for which
∫

n dS is equal to one third
the value through triangle 4i, opposite of vertex pi in tetrahedron T ; (a) and
(b) : front and side view of the �rst subdomain consisting of a single triangle
corresponding to the homothety4i with a ratio of 1√

3
; (c) and (d) front and side

view of the second non-overlapping subdomain consisting of 6 triangles linking
the edge middles, triangle centers and tetrahedron center.

Indeed, the �ux over the six triangles may be written as a sum of cross products :
∫

Di

n dS = A×B + B × C + C ×D + D × E + E × F

Since A,B, C, D, E, F,G are simple barycentric coordinates of the four tetra-
hedron vertices pi,pj ,pk,pl, it can be simply evaluated as a function of these

39

vertices : ∫

Di

n dS =
1
6

(pj × pk + pk × pl + pl × pj) =
mi

6

Thus, to summarize, we have proved so far that term T1 is the integral of the
∇(div u) operator over a non-overlapping subdomain centered on pi.
The second term T2 of the local rigidity matrix is the transposed matrix of the
�rst term T1 but cannot be interpreted in terms of a linear di�erential operator.
In fact, if we write T2 as

∑
(mi ·uj)mj we can state that T2 corresponds to the

�ux of a scalar �eld equal to 1
12V (T) (mi · uj) over each face of the subdomain

Di. It should be noticed that T2 has no equivalent in the continuous formulation
(the Lamé equation) and is produced by the evaluation of ‖ curlu‖2.
The third term T3 corresponds to the discrete Laplacian operator and its ex-
pression originates from the evaluation of 1

2 tr(∇uT∇u). The same approach as
for the ∇(div u) can be applied. First, the integral of the Laplacian operator
is integrated over a domain D using the integral Gauss theorem. For the x
component ux of the displacement �eld, it gives :

∫

D

∆ ux dV =
∫

D

∇ · (∇ ux) dV =
∫

∂D

(∇ ux) · n dS

If the domain D is included inside a tetrahedron, then the gradient of the
displacement �eld is a constant vector :

∇ux =
−1

6V (T)

3∑

j=0

mju
x
j

If we suppose that the domain boundary coincides with triangle 4i, opposite
to pi in tetrahedron T , then we get :

∫

D

∆ ux dV =
−1

6V (T)

3∑

j=0

mj
1

6V (T)

3∑

j=0

mju
x
j ·

mi

2

Therefore, T3 corresponds to the integral of the Laplacian operator over a do-
main D for which

∫
∂DT n dS = mi

2 , for instance the subdomain de�ned in Fig-
ure 21 (c), corresponding to the barycentric dual cell of vertex pi in tetrahedron
T . The Finite Element approximation of the Laplacian operator on tetrahedra
was previously studied by Putti et al. [88], Debunne [28] and Cosmi [19].
To summarize, we have proved that the variational formulation of linear elastic-
ity over tetrahedral meshes is not completely equivalent to the Finite Di�erence
and Finite Volume methods. Indeed, the latter methods are equivalent to the
di�erential formulation of Finite Element method which leads to the following
equation of the elastic force :

Fi(T) =
−1

36V (T)

3∑

j=0

[(λ + µ)(mi ⊗mj) + µ(mi ·mj)I3]uj (21)

The variational formulation of the FEM creates the sti�ness matrix from the
expression of the elastic energy whereas the di�erential formulation of the FEM
is based on the Lamé di�erential equation.

40

4.5 Computation of Sti�ness Matrix : Transversally Anisotropic
case

From section 3.2.4, the density of elastic energy for a transversally anisotropic
material can be derived from the isotropic case by adding a corrective term :

W (X)Transv.Ani = W (X) + ∆WAni(X)

W (X)Transv.Ani = W (X) + ∆λI1I4 + 2∆µ I5 −
(

∆λ

2
+ ∆µ

)
I2
4

where ∆λ and ∆µ are the variation of Lamé coe�cient in the direction of
anisotropy a0 and where I4 and I5 are the constants de�ned in equations 7 and
8. The evaluation of I4 and I5 with the linear tetrahedron �nite element gives :

I4 =
−1

6V (T)

3∑

i=0

(a0 ·mi)(a0 · ui)

(trEL)I4 =
1

72V (T)2
uT

i [(a0 ·mj)(mi ⊗ a0)]uj

I2
4 =

1
36V (T)2

3∑

i,j=0

uT
i [(a0 ·mi)(a0 ·mj)(a0 ⊗ a0)]uj

Similarly for I5 :

I5 =
1

144V (T)2

3∑

i,j=0

uT
i

[
(a0 ·mj)(a0 ⊗mi) + (a0 ·mi)(mj ⊗ a0) +

(mi ·mj)(a0 ⊗ a0) + (a0 ·mi)(a0 ·mj)I3

]
uj

Thus the additional elastic energy term ∆W (T)Ani due to transversal anisotropy
can also be written as a bilinear function of vertex displacements :

∆W (T)Ani =
1
2

3∑

i,j=0

uT
i [AT

ij]uj (22)

with the local 3× 3 matrix [AT
ij] being de�ned as :

[AT
ij] =

1
144V (T)

(
∆λ(a0 ·mj)(mi ⊗ a0)− (∆λ + 2∆µ)(a0 ·mi)(a0 ·mj)(a0 ⊗ a0) +

∆µ(a0 ·mj)(a0 ⊗mi) + ∆µ(a0 ·mi)(mj ⊗ a0) + ∆µ(mi ·mj)(a0 ⊗ a0) +

∆µ(a0 ·mi)(a0 ·mj)I3

)

4.5.1 Local Vertex Sti�ness Matrix
When i = j, the vertex sti�ness matrix is written as :

[AT
ii] =

1
144V (T)

[
(∆λ + ∆µ)(a0 ·mi)(mi ⊗ a0)− (∆λ + 2∆µ)(a0 ·mi)2(a0 ⊗ a0) +

∆µ(a0 ·mi)(a0 ⊗mi) + ∆µ‖mi‖2(a0 ⊗ a0) + ∆µ(a0 ·mi)2I3

]

41

This matrix has c0, the unit vector orthogonal to both a0 and mi as �rst eigen-
vector with eigenvalue ∆µ(a0 ·mi)2. The existence of the other two eigenvectors,
in the plane de�ned by a0 and mi, depends on the sign of (2∆µ+∆λ)(a0 ·mi)2−
∆λ‖mi‖2.

4.5.2 Global Sti�ness Matrix

For a transversally anisotropic material, the global sti�ness matrix K is assem-
bled as the sum of local isotropic and anisotropic sti�ness matrices :

[Ki,j] =
∑

T ∈S(i,j)

[Bi,j] + [Ai,j] (23)

One should note that the global matrix [Ki,j] contains non-null values only if
vertices i and j are linked by an edge of the tetrahedral mesh.

4.6 Work of gravity forces
We calculate the potential energy of gravity forces when a displacement �eld
u(X) is applied on the body Mdef . If we write g the gravity vector (‖g‖ =
9.8m/s2), and ρ the density of the material (assumed constant for the whole
body), then the potential energy of a tetrahedron T is a simple function of the
center of mass T :

Wg(T) =
∫

T
ρX · gdV = ρ

∫

T
XdV · g = ρV (T)

q0 + q1 + q2 + q3

4
· g

If we drop the constant part of this energy, which is equivalent to consider the
work of gravity forces when a displacement �eld u(X) is applied, then we get :

Wg(T) = ρV (T)
u0 + u1 + u2 + u3

4
· g =

ρV (T)g
4

[
u0 u1 u2 u3

]

1
1
1
1

The potential energy of the whole modelMdef is the dot product of the following
two vectors :

Wg =
∑

T
Wg(T) = UT Rg = UT

. . .
rg

i

. . .

where Rg is a vector of size 3N . More precisely, the sub-vector rg
i of Rg asso-

ciated with vertex i is proportional to the gravity vector, the coe�cient being
the volume of its neighboring tetrahedra :

rg
i = ρ

 ∑

T ∈S(i)

V (T)
4

g (24)

42

4.7 Work of External Surface Pressure
Among external forces acting on deformable soft tissue models, we include a
pressure force fp which is applied on a part of its surface. We consider that such
pressure force has a constant intensity ‖fp‖ = p but its direction may be either
constant (contact with a stream of gas) or directed along the surface normal
(contact with a solid, �uid or gas at low speed). In the latter case, the force
applied on a triangle T is :

fp(T) = p n(T)

For a tetrahedral mesh, we consider that such constant pressure fp is applied on
a set C of surface triangles. If we consider a triangle T ∈ C consisting of vertices
(pi,pj ,pk), the work of fp on this triangle is :

Wp(T) =
∫

T

fp · u(X) dA = A(T) fp ·
(

ui + uj + uk

3

)

The work of external surface pressure on the whole model Mdef is then :

Wg = UT Rp = UT

. . .
rp

i

. . .

 (25)

where rp
i is null if vertex pi is not adjacent to any triangles in C and is propor-

tional the sum of triangles area otherwise :

rp
i =

∑

pi ∈ T
T ∈ C

A(T)fp(T)
3

If the pressure force is applied along the surface normal, then vector rp
i has an

intuitive formulation. The nodal force, resulting from the pressure applied on
neighboring triangle, is proportional to the area sum of surrounding triangles
and is directed along the surface normal ni at vertex pi (see Figure 22) :

rp
i =

p

3

∑

pi ∈ T
T ∈ C

A(T)

ni

where ni is computed as the average of surrounding triangle normals n(T)
weighted by their area :

ni =
∑

T∈C n(T)A(T)∑
T∈C A(T)

4.8 Mass Matrix
The mass matrix is derived from the evaluation of the kinetic energy E(Mdef)
on the whole body Mdef . The density of kinetic energy w(X) = ρ (u̇(X))2

43

n(T)
r i

p

n i

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Triangle T

Figure 22: The pressure applied on neighboring triangles results in a force
directed along the surface normal at a vertex and proportional to the sum of
neighboring triangle area. The vertex surface normal ni is computed as the
weighted average of triangle normals.

where u̇(X) = du
dt is the speed of the material point X. It follows that the

kinetic energy of tetrahedron T is a bilinear form of the speed of nodal vertices
u̇i :

E(T) =

U̇0

U̇1

U̇2

U̇3

T

MT
0,0 MT

0,1 MT
0,2 MT

0,3

MT
1,0 MT

1,1 MT
1,2 MT

1,3

MT
2,0 MT

2,1 MT
2,2 MT

2,3

MT
3,0 MT

3,1 MT
3,2 MT

3,3

U̇0

U̇1

U̇2

U̇3

This tetrahedron mass matrix has size 12 × 12 and is composed of 4 × 4 local
mass matrix between vertex i and j, MT

i,j that are 3× 3 diagonal matrices :

MT
i,j = ρ

(∫

T
hi(X)hj(X)dV

)
I3

To evaluate the integral, we use the 3 barycentric coordinates (h0, h1, h2) as
integration variables. Based on equations 13 and 14, the determinant of the
Jacobian matrix is equal to the inverse of 6V (T) :

∣∣ ∂h0
∂X

∂h1
∂X

∂h2
∂X

∣∣ =
1

216V (T)3
∣∣ m0 m1 m2

∣∣ =
1

6V (T)

Thus the integral can be computed explicitely using the expression below :
∫

T
hi(X)hj(X) dV = 6V (T)

∫ 1

0

∫ 1−h0

0

∫ 1−h0−h1

0

hi hjdh0 dh1 dh2

=
V

10
if i=j

=
V

20
if i 6= j

44

Thus the local mass matrix MT
i,j is equal to ρV (T)

10 I3 if i = j and to ρV (T)
20 I3 oth-

erwise. If we perform mass lumping by considering only diagonal elements equal
to the sum of row values, then we naturally get ρV (T)

4 I3, as if the tetrahedron
mass is evenly spread over its four vertices.
The kinetic energy of the whole body can be written as a function of the global
mass matrix built by assembling the local matrices MT

i,j :

E(Mdef) =
1
2
U̇T MU̇ =

1
2
U̇T [Mi,j]U̇

where Mi,j , the global 3 × 3 mass matrix between vertex i and j, depends on
the volumes of tetrahedra adjacent to vertex i (if i = j) or tetrahedra adjacent
to edge (i, j) if i 6= j :

Mi,i = ρ
∑

T ∈S(i)

V (T)
10

I3 (26)

Mi,j = ρ
∑

T ∈S(i,j)

V (T)
20

I3 if i 6= j (27)

If we perform mass lumping to get a diagonal mass matrix M (and therefore
easily invertible), then the vertex mass is equal to one fourth of the mass of its
adjacent tetrahedra :

(Mi,i)lumping = ρ
∑

T ∈S(i)

V (T)
4

I3

4.9 Boundary Conditions
In a surgical simulator, the boundary conditions of a soft tissue model are related
to the existence of contacts with either its neighboring anatomical structures or
with surgical tools.
We simplify the interaction with other physical material by considering that
such an interaction can be represented either in terms of imposed displacements
or elastic forces or surface pressure forces. If the material is sti�, or if it is sig-
ni�cantly sti�er than the material of interest, we model the contact by imposing
given displacements on a set of vertices. For instance, in the case of the liver
model, we consider that vertices located near the veina cava (a sti� vessel) are
stable (zero displacement).
If neighboring materials are as sti� (or less) than the material of interest, then
we model the interaction as a linearized spring force. More precisely for a
boundary vertex pi, the applied force re

i is directed along a given direction d,
with sti�ness ke and rest displacement ue

i :

re
i = −ke ((ui − ue

i) · d)d = −ke(d⊗ d)(ui − ue
i) (28)

Using a linearized spring allows to compute the static equilibrium by solving a
linear system of equation. Indeed, the sti�ness caused by the spring ke(d⊗ d)
can be added to the global sti�ness matrix while the residual force ke(d⊗d)ue

i

is added to the nodal load at node i. Furthermore, since the sti�ness ke is lower

45

than the Young modulus of the material, the condition number of the updated
sti�ness matrix is not signi�cantly modi�ed.
In the sequel, we do not consider linearized spring boundary conditions ex-
plicitely. Instead, we modify the global sti�ness matrix K into K?, and we
consider that a nodal force rb

i is applied to vertex pi :

[K?
i,i] = [Ki,i + ke(d⊗ d)]

rb
i = ke(d⊗ d)ue

i

When a soft tissue model is in contact with some �uids (bile, water, blood,. . .)
or gas (carbon dioxide, air, . . .) we make the hypothesis that a constant pressure
is applied along the normal direction of the contact surface. The computation
of the nodal forces is detailed in section 4.7.
Finally, the contact between surgical tools and a soft tissue model may be
posed, in theory, either as imposed displacements (geometric method [6]) or
as prescribed forces (penalty method [6]). However, in practice, the motion of
surgical tools is controlled by the end-user through a force-feedback device. To
decrease their cost, these devices are force-controlled and follow a simple open
loop : the positions of surgical tools can be sent to a computer while they receive
the force level that should be felt by the end-user. In other words, despite the
low speed of a surgeon hands the position of a surgical tool varies signi�cantly
between two iterations (dt = 20ms) and therefore we found that the penalty
method was not suited for deforming a soft tissue model.
Thus, after detecting the collision between soft tissue models and surgical tools,
a set of imposed displacements at the collision nodes is computed. This com-
putation is obviously ill-posed since it relies only on geometry (surface-volume
intersection) rather than physical principles (Coulomb friction for instance).
Furthermore, a major challenge is to design a stable contact algorithm where a
small displacement of the tool entails a small variation of node position. The
geometric contact algorithm used in our hepatic surgery simulator, can be found
in [84].
To summarize, we consider only 2 types of boundary conditions in the remain-
der :

1. Imposed Displacement We write Vd the set of vertices pi for which
the displacement ub

i is known. In the scope of surgery simulation, these
vertices are always lying on the surface of the mesh.

2. Applied Nodal Forces We write Vf the set of vertices pi where an
external force rb

i is applied. Again, we make the hypothesis that applied
forces may exist only on surface nodes.

4.10 Equilibrium equations
We apply the principle of virtual displacements described in section 3.2.5 to
obtain the �nite element formulation of equilibrium equations. In a �rst stage,
we only consider the static equilibrium by neglecting inertial forces. Thus, based
on equation 10, we can state that the virtual elastic energy is equal to the sum
of the virtual work of gravity and boundary forces :

1
2
ÛT KÛ = ÛT Rg + ÛT Rb

46

���

��

Force
Spring

Linearized

Force
Pressure
Constant

Displacement
Imposed

Displacement
Imposed

structure
Neighboring

tool
Surgical

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

d

���

���

Figure 23: The three di�erent boundary conditions resulting from interaction
with neighboring structures or with surgical tools.

Since this equation must hold for any set of compatible displacements, the static
equation of equilibrium becomes :

KU = Rg + Rb (29)

It is important to note that equation 29 is written for all nodes including the
Vd nodes where the displacement is imposed. Therefore, in order to compute
the unknown displacement vectors (where no displacement is imposed), it is
important to write equation 29 with a distinction between free nodes (subscript
f) and constrained nodes (subscript c) :

[
Kff Kfc

Kcf Kcc

] [
Uf

Uc

]
=

[
Rg

f + Rb
f

Rg
c + Rb

c

]

thus leading to :
KffUf = Rg

f + Rb
f −KfcUc (30)

In the case of a linear tetrahedron �nite element, KfcUc is non zero only for free
nodes that are neighbors to �xed nodes. In the remainder, we used simpli�ed
notations by dropping the subscript f for the sti�ness matrix and displacement
vector and by gathering all applied nodes into a single vector :

KU = R (31)

To get the dynamic law of motion, the work of inertial forces − 1
2U̇

T MU̇ should
be added to the work of body forces. By adding the work of damping forces,
the following classical equation is obtained :

MÜ + CU̇ + KU = R (32)

47

where C is the damping matrix. In general, we assume that C follows Rayleigh
damping :

C = γ1M + γ2K (33)

This assumption is important for performing modal analysis but also for ensur-
ing that the damping matrix, as the sti�ness matrix, is also sparse.

4.11 Solution of equilibrium equations
The static equilibrium given by equation 31 is a linear system of equations
with a symmetric positive de�nite sti�ness matrix. Since this matrix is sparse,
the classical method to solve this equation is to use the conjugated gradient
algorithm [91].
More precisely, when solving the complete system KU = R, we perform the
following steps :

• Node Renumbering by using the reverse cutting McKee algorithm [91]
in order to decrease the bandwidth of the sti�ness matrix.

• Matrix Preconditioning based on Cholesky factorisation or incomplete
LU decomposition [91].

• Application of the Conjugated Gradient Algorithm for solving the
linear system of equation. We rely on the Matrix Template Library [67]
for an e�cient implementation of these algorithms in C++. When the
sti�ness matrix is poorly conditioned, for instance for nearly incompress-
ible materials, it is possible that the conjugated gradient algorithm fails.
In which case, we resort to using direct methods for solving the system of
equation, such as Gauss pivoting [91].

Despite optimizing the bandwidth and the condition number of the sti�ness
matrix, the time required for solving the static equation is still too large for
real-time computation. For instance, with a liver model composed of a mesh
consisting of 1313 vertices, the solution of the linear system of size 3939 ×
3939 requires 9s on a PC Pentium II (450 Mhz) with 140 iterations of the
preconditioned conjugated gradient in order to reach an accuracy of 0.001mm.
Therefore, solving directly the static equation with the conjugated gradient
algorithm does not satisfy the real-time constraints mentioned in section 1.3.2
since Tc > Trelaxation. As an alternative, we propose in the next sections, three
soft tissue models that satisfy either hard or soft real-time constraints.

5 Quasi-static Precomputed Linear Elastic Model
5.1 Introduction
Since the complete solution of the static equilibrium equation is too compu-
tationally expensive for real-time constraint, a straightforward solution is to
perform only few iterations of the conjugated gradient at each time step in or-
der to increase the update rate. This approach, proposed by Bara� et al. [4]
is well suited in the context of computer animation but is not applicable for
surgery simulation where boundary conditions are constantly changing and are

48

formulated in terms of imposed displacements. Indeed, using a conjugated gra-
dient method would require to modify the sti�ness matrix frequently as well as
its preconditioning which would considerably reduce its e�ciency.
Instead, we propose a quasi-static precomputed linear elastic model [21] that
is based on a simple concept which consists in partially inverting the sti�ness
matrix in a precomputation stage before the simulation.
This model has the following characteristics :

• It is computationally very e�cient : the computation complexity dur-
ing the simulation is proportional to the cube of the number of imposed
displacements.

• Only the position of surface nodes is updated during the simulation. In
fact, only the data structure of the triangulated surface corresponding to
the shell of the tetrahedral mesh is needed online.

• During the simulation the reaction forces at the nodes where the virtual
instruments collide are also computed.

• The model is quasi-static, i.e. it computes the static equilibrium position
at each iteration.

However, it relies on the following hypotheses :

• the mesh topology is not modi�ed during the simulation. Thus, no simu-
lation of cutting or suturing can be performed on this model.

• The interaction with neighboring tissues or with instruments is translated
into modi�ed boundary conditions (displacements or forces) only on sur-
face nodes but not on the boundary conditions of internal nodes.

Therefore the main limitation of this precomputed model comes from the �rst
hypothesis which states that it is not suited for the simulation of tissue cutting.

5.2 Overview of the Algorithm
One important feature of the model consists in making a distinction between
surface and interior nodes. Thus, for the sake of clarity, we decompose the
displacement and load vectors as well as the sti�ness matrix according to surface
and interior nodes with the S and I subscripts :

[
Kss Ksi

Kis Kii

] [
Us

Ui

]
=

[
Rs

Ri

]

It is important to note that only free vertices appear in this matrix as discussed
in section 4.10.
The solution of static equation can be obtained by multiplying the compliance
matrix [G], corresponding to the inverse of the sti�ness matrix [K], with the
load vector. This compliance matrix can also be decomposed into surface and
interior nodes : [

Us

Ui

]
=

[
Gss Gsi

Gis Gii

] [
Rs

Ri

]
(34)

The load vector Rs that applies on free surface nodes can be decomposed into
two parts. A �rst part R0

s, corresponds to loads that will not evolve during the

49

simulation for instance gravity forces (see 4.6), constant pressure forces (see 4.7),
applied nodal forces (see 4.9) or the presence of a non-zero imposed displacement
vertex in its neighborhood (see equation 30). The second part RC

s corresponds
to loads that are created by the contact of the soft tissue with surgical tools.
The principle of this soft tissue model, is to compute the surface node positions
Us directly from the contact loads RC

s by multiplying this vector with the
compliance matrix Gss :

Us = GssRC
s + U0

s (35)
U0

s = GssR0
s + GsiRi

Since the loads on interior nodes Ri do not evolve during the simulation, U0
s

is a displacement o�set that is computed as the displacement of surface nodes
when no contact loads are applied : RC

s = 0.
The goal of the precomputation stage is to compute the compliance matrix
[Gss].

5.3 Precomputation stage
5.3.1 Description of the Algorithm
In the remainder, we write [Gij

ss] the 3×3 submatrix of Gss associated to vertex
i and j. More precisely, a force Rj

s applied on vertex j entails an additional
displacement of vertex i equal to : [Gij

ss]Rj
s.

Algorithm 1 Computation of the compliance matrix Gss

1: Set Ri = 0
2: for all Surface Vertex i do
3: for all j such that 0 ≤ j ≤ 2 do
4: Set Rs = 0
5: Set to 1.0 the jth component of the load Ri

s applied to vertex i
6: Solve the static equilibrium equation KU = R
7: for all Surface Vertex k do
8: Store the computed displacement Uk of vertex k into the jth column

of matrix [Gki
ss]

9: end for
10: end for
11: end for

The algorithm for computing the compliance matrix Gss is described above as
Algorithm 1. It consists in solving 3×Ns times the linear system of equations
KU = R, where Ns is the number of surface vertices. Note that the size of the
sti�ness matrix K is N = Ns + Ni whereas the size of the compliance matrix
Gss is 3Ns × 3Ns.
The solution of equation KU = R is performed using the steps described in
section 4.11 including node renumbering and matrix preconditioning. Since the
rigidity matrix K is the same for all 3 × Ns systems of equations, these two
steps are performed only once, which signi�cantly speeds-up the computation.
Each time a linear system of equation is solved, the displacement of all surface

50

nodes Us corresponds to a column of matrix Gss. The storage of matrix Gss,
requires only 8×9(Ns)2

2 bytes (each element being stored as a double), since it is
a symmetric matrix, as the inverse of a symmetric matrix.
The algorithm presented above can be slightly improved in the following way :

• Applying a unitary force successively along the X, Y and Z directions may
cause a loss of accuracy in computing the compliance matrix, because the
resulting displacement may be very large or very small depending on the
size of the mesh. To obtain meaningful displacements, it is possible to
apply a force fref and then divide the resulting displacement by fref to
compute Gss. A good choice for fref is ‖[Ki,i]‖∗0.1∗ l, where [Ki,i] is the
block diagonal sti�ness matrix of vertex i, and l is the estimated diameter
of the object. This choice of force scale, produces displacements which are
roughly equal to 10% of the diameter.

• It is sometimes necessary to obtain the displacement of some interior nodes
during the simulation. This is the case for instance when vessels or tumors,
located inside an organ, need to be displayed during the simulation. In
this case, it is possible in the �nal loop of the algorithm (lines 7, 8 and 9
of Algorithm 1) to add these inside vertices to the list of surface vertices.
Thus, it does not entail the solution of any additional system of equations,
but only an additional storage requirement since the compliance matrix
becomes a rectangular matrix of size 3Ns × 3(Ns + N?

i) where N?
i is the

number of additional interior nodes.

This precomputation stage is quite computationally expensive and requires be-
tween a few minutes up to several hours depending on the number of the mesh
vertices and the sti�ness of the material. For instance, the liver model presented
in Figure 24 is composed of 1394 vertices, 8347 edges and 6342 tetrahedra. Its
triangulated surface is composed of 1224 triangles and 614 vertices which is
enough to produce a smooth visual rendering. The Poisson ratio of the mate-
rial is set to 0.45 while its Young Modulus is E = 1000kPa. In this case, the
precomputation time required nearly 4 hours on a Pentium Pii 450 Mhz, while
the compliance matrix is stored in a �le of size 13 Mb.

5.3.2 Other Methods for Computing the Compliance matrix
At least two alternative methods have been proposed in the literature to com-
pute the compliance matrix Gss. The �rst one, proposed by Bro Nielsen et
al. [13] is based on matrix condensation [68]. More precisely, the compliance
matrix Gss can be directly obtained from the inversion of the sti�ness matrix
Kii of interior nodes. From equation 34, we can derive the following equations :

KiiUi = Ri −KisUs

KssUs + Ksi

(
K−1

ii Ri −K−1
ii KisUs

)
= Rs(

Kss −KsiK−1
ii Kis

)
Us = Rs −KsiK−1

ii Ri (36)

From equation 36, we can deduce the expression of the compliance matrix :

Gss = (K?
ss)

−1 =
(
Kss −KsiK−1

ii Kis

)−1 (37)

51

(a) Wireframe rendering (b) Gouraud shaded rendering

(c) Volumetric wireframe rendering

Figure 24: Visualization of a liver model with 1394 vertices and 6342 tetrahedra

Therefore, the computation of Gss requires the inversion of two matrices : the
�rst one of size 3Ni × 3Ni and the second one of size 3Ns × 3Ns. This method
has the disadvantage of requiring the additional storage of 9(Ni)2 numbers in
double format, which in general is greater than the size of the compliance matrix
: for large meshes, this method may become unpractical. Furthermore, this
method is slightly more complex to implement whereas the method proposed
in the previous section only requires to solve equation KU = R with a sparse
matrix K. However, the condensation method is well suited when the rigidity
matrix is very ill-conditioned (Poisson ratio very close to 0.5) in which case the
preconditioned conjugated gradient algorithm may fail.
The second algorithm for computing the compliance matrix Gss is to use the
Boundary Element Method (BEM) [16] instead of the Finite Element Method
(FEM). The algorithm proposed by James and Pai [52] creates the sti�ness
matrix K?

ss directly from the triangulated surface of the object.
The di�erences between BEM and FEM are well understood [50]. The main
advantage of BEM techniques is that they do not require a volumetric tetra-
hedral mesh but only its triangulated surface. While there exist several free
software 6 for automatically creating tetrahedral meshes from triangulated sur-
faces [99, 79, 53], having a control over the �nal number of vertices and the
quality of tetrahedral elements is still an issue.

6A list of available software can be found at the following two URLs :
http://www-users.informatik.rwth-aachen.de/∼roberts/meshgeneration.html and
http://www.andrew.cmu.edu/user/sowen/softsurv.html

52

On the other hand, BEM techniques have several disavantages over FEM. First,
they make strong hypotheses about the nature of the elastic material : only ho-
mogeneous and isotropic linear elastic materials can be modelled. Second, the
computation of the compliance matrix, and above all its diagonal elements, is
di�cult to implement and often numerically unstable because singular integrals
must be evaluated over each triangle. The quality of the triangle geometry can
in�uence the stability of this computation. Third, this method cannot com-
pute the displacement of any interior point, which can be a limitation when the
displacement of internal structures (vessels, tumors, . . .) is needed. Finally, the
BEM presented in [52] uses centroid collocation to compute the sti�ness matrix.
Thus, this matrix allows to compute the displacements of the centroids of all
triangles but not the displacements of the triangulation vertices. Therefore, the
mesh being deformed is not the original triangulated mesh but its dual mesh
which is called a simplex mesh [31]. Mapping the displacements of triangle
centroids into the displacements of vertices is not trivial since the duality be-
tween triangulation and simplex meshes is not a one-to-one mapping from the
geometrical standpoint [31].
To conclude, the algorithm proposed by James et al. is more di�cult to im-
plement than our method and it is only suitable for simple material. However,
when there is no software program for creating tetrahedral meshes from trian-
gulations, this approach should be used.

5.4 On-line Computation
5.4.1 Data Structure
Before starting the simulation, the compliance matrix Gss, previously stored
into a �le as described in 5.3.1, is loaded into a speci�c data structure. Indeed,
this data structure only describes the triangulated surface shell of the volumetric
tetrahedral mesh with a list of surface vertices and a list of surface triangles.
Note that the number of surface vertices is usually greater than Ns because
some surface vertices have an imposed displacement. For display purposes, the
triangulated data structure may contain additional information such as 2D or
3D texture coordinates as well as parameters describing the rendered material.
Finally, the data structure contains a list of imposed displacements and applied
nodal forces as a storage of boundary conditions.
For each free vertex of index i, an array of 3 × 3 matrices [Gji

ss], for all j ∈
{0, . . . , Ns − 1}, is stored inside the vertex data structure. These Ns matrices
[Gji

ss] allow to compute the displacement of all surface vertex j, once a force is
applied on vertex i.
The data structure optimizes the computation time of deformation but at the
cost of being less e�cient in terms of memory requirement. Indeed, the com-
pliance matrix Gss is a symmetric matrix, but it is stored as a non-symmetric
matrix in this data structure. To optimize memory at a small additional com-
putational cost, one could alternatively store the symmetric matrix as a double
array of 3× 3 compliance matrices [Gji

ss] which is �lled only if i < j.

5.4.2 Algorithm description and collision processing
The sketch of the algorithm is given in the Algorithm 2 and includes two inde-
pendent parts. The �rst part, between lines 1 and 8, consists in detecting and

53

computing the contact between the soft tissue model and each virtual surgical
instrument. In Figure 25, we present an example of contact between a liver
model and a tool. The collision detection algorithm [63] makes the assump-
tion that the handle and the tool extremity can be approximated by a set of
cylinders with rectangular section. Its e�ciency depends on the availability of
graphics cards since it relies on the OpenGL [110] library. Once a collision has
been detected, the collided triangles must be moved such that the tissue model
is no longer in contact with the surgical tool. This computation turns out to
be quite complex since it not only depends on the tool position but also on its
trajectory. The algorithm is described in [84]. The outcome of this computation
is a list ldisplacement of imposed displacements that should apply on each vertex
of the collided triangles.

(a) (b)

Figure 25: Example of collision computation between the handle (a) and the
extremity (b) of a surgical tool and a liver soft tissue model [84]. The position
of triangles displayed in light gray have been displaced such that the tool is
tangent to the liver surface.

Algorithm 2 On-line computation of mesh deformation
1: Reset the list of imposed displacement ldisplacement to the empty list
2: Reset the list of applied forces lforce to the empty list
3: Reset the position of free surface vertices to their rest position + U0

ss

4: for all Surface Tools STi do
5: if collision between the soft tissue model and STi then
6: Add imposed displacement to the list ldisplacement

7: end if
8: end for
9: if ldisplacement is not empty then
10: Compute the list of applied forces lforce from ldisplacement

11: for all Applied forces F?
j on vertex j in lforce do

12: for all Free surface vertex k do
13: Add to current position of vertex k, the displacement [Gkj

ss]F?
j

14: end for
15: end for
16: end if

54

5.4.3 Imposing displacements
The second part of Algorithm 2, between lines 9 and 16 computes the position
of all surface vertices, given the list of imposed displacements.
The �rst task corresponding to line 10 consists in computing the set of forces
{F?

j} that should be applied to each vertex j of ldisplacement in order to bring
the displacement of these vertices to Ub

j .
To be more didactic, we �rst consider that only one vertex displacement Ub

j is
imposed on a vertex of index j. Without any collision with a surgical tool, this
vertex has a displacement U0

j under the application of the normal boundary
conditions (gravity forces, pressure forces, . . . described in section 4.9). Because
the material is linear elastic, it follows the superposition principle : the dis-
placements resulting from the application of two sets of nodal forces is the sum
of the displacements resulting from the application of each set of forces. Thus
the force F?

j to be computed is the force that should be applied on vertex j in
order to create a displacement of that vertex equal to Ub

j −U0
j . Because the

quantity [Gjj
ss]F

?
j gives the additional displacement of vertex j resulting from

the application of force F?
j , the force F?

j is given by :

F?
j = [Gjj

ss]
−1

(
Ub

j −U0
j

)

G
SS

[]ii F*
i

[]G
SS

F*
j

ji

P
Pi

j

[]G
SS

F*
j

jjG
SS

[]F*
i

ij

Figure 26: Principle of superposition when applying two forces F?
i and F?

j to
the two nodes i and j

When the displacements of two vertices i and j are imposed, the problem is
slighty more complex. Indeed the application of force F?

i on vertex i not only
displaces vertex i of the amount [Gii

ss]F
?
i , but it also moves vertex j by the

amount [Gij
ss]F

?
i (see �gure 26). Since F?

j also displaces vertex i of [Gij
ss]F

?
j , to

compute the applied force, a 6× 6 symmetric linear system of equations needs
to be solved : { [

Gii
ss

]
F?

i +
[
Gij

ss

]
F?

j = Ub
i −U0

i[
Gji

ss

]
F?

i +
[
Gjj

ss

]
F?

j = Ub
j −U0

j

Similarly, when the list of imposed displacements ldisplacement contains p ele-
ments, then a symmetric linear system of equations of size 3p× 3p needs to be
solved to �nd the set of nodal forces. If we use the set of indices ij , j ∈ [1 . . . p]
to denote the set of vertices where a displacement Uij is imposed, then this
linear system of equations can be written as :

55

[
Gi1,i1

ss

] [
Gi1,i2

ss

] · · ·
[
Gi1,ip

ss

]

[
Gi2,i1

ss

] [
Gi2,i2

ss

] · · · ...
...

...[
Gip,i1

ss

]
· · · · · ·

[
Gip,ip

ss

]

F?
i1...
...

F?
ip

=

Ub
i1
−U0

i1...
...

Ub
ip
−U0

ip

(38)

In Figure 27, we show an example of a mesh where the same displacement is
imposed on three vertices. In this particular case, the direction of computed
forces departs strongly from the direction of the prescribed displacement.

ForcesDisplacements

Figure 27: (Right) The same displacement is imposed on the three vertices of a
triangle; (Left) From equation 38 we compute, the three forces that should be
applied on these three vertices to move them of the given displacement.

5.4.4 Results
Once the set of nodal forces is computed, the additional displacement on all
surface (and potentially internal) nodes are computed as described in lines 11
to 15 of Algorithm 2. The number of matrix-vector operations is p × Ns for p
applied forces. In general, p, the number of vertices collided with the surgical
tools, is small (from 3 to 20) when compared to Ns (see Figure 28). This is why
we chosed to store the Ns array of compliance matrix [Gji

ss] at vertex j, in order
to optimize the inner loop (lines 12 to 14).
The computational e�ciency of this quasi-static precomputed model on the liver
mesh shown in Figure 24 is presented in table 3. These performances, measured
on three di�erent hardware platforms, correspond to the frequency update that
can be achieved when running Algorithm 2 in a loop without any computation
for visual and haptic rendering.
When applying one nodal force, corresponding to the execution of lines 12 to
14 in Algorithm 2, the computation time is nearly equal to 0.3 ms. The time
required to compute the mesh deformation when applying p forces is strictly
proportional to this value : 0.3× p ms.
When imposing p displacements, which is what occurs in practice in a surgical
simulator, the additional computation is the solution of a 3p × 3p linear sym-
metric system of equations. For p = 1, the overhead is very small and hardly
perturbs the simulation frequency. However, for larger value of p, the overhead
becomes dominant. For 20 vertices for instance, solving the system of equa-

56

Simulation Frequency
(Liver model with
614 surface nodes)

Pentium PIII
600 MHz

Force applied on 1 node 3772 Hz
Force applied on 5 nodes 754 Hz
Force applied on 10 nodes 377 Hz
Force applied on 20 nodes 188 Hz

Imposed

displacements

on

1 node

5 nodes

10 nodes

20 nodes

3759 Hz

561 Hz

185 Hz

40 Hz

Table 3: Computation e�ciency of quasi-static precomputed linear elastic model
for di�erent boundary conditions : either when applying nodal forces or when
imposing displacements.

tions of size 60× 60 is 3 times more costly than computing the 20 ∗ 614 = 1280
matrix-vector products and additions.

Figure 28: Liver deformation based on a linear elastic pre-computed model [22].
Solid lines indicate the imposed displacements.

57

5.4.5 Discussion
As a whole, the proposed method is �very e�cient�, since it allows real-time
visual rendering even for large meshes. When the material is soft enough and
when the number of collided vertices remains small (typically less than 15), this
model can also be compatible with real-time haptic rendering. In fact, it is
one of the few algorithms which are suitable for the �rst software architecture
described in section 1.3.2 (see also Figure 6 (a)) consisting of one synchronous
loop including visual and haptic rendering. Furthermore, our approach has one
major advantage for haptic rendering computation : it already provides the
nodal reaction forces through the algorithm described in 5.4.3. Indeed the set
of forces F?

ij
, corresponds to the set of physical forces that have been applied

on each node of index ij in order to deform the soft tissue model : thus, −F?
ij

corresponds to the nodal reaction force. From this set of forces, one can easily
compute the reaction force along the direction of the tool, as well as the torque
at the extremity of the tool.
Using the terminology introduced in section 1.3.2, we can also state that the
quasi-static precomputed linear elastic model has a very low relaxation time
(or equivalently that it has a high speed of convergence). Indeed, each time
algorithm 2 is run, the soft tissue is deformed to its static equilibrium position.
Because, this algorithm can be run at a high frequency, as seen in table 3,
this implies that the relaxation time is very low. In fact, for some soft tissue,
this time is too low and degrades the visual realism of the simulation. This
is the case, for instance, when the operator grasps and displaces some soft
tissue and suddenly ceases the grasping. Because the model has no longer
any displacements imposed on its surface, it returns in one iteration to its rest
position, while in reality, it takes several milliseconds.

Algorithm 3 Additional part of algorithm 2 that adds a visco-elastic behavior
controlled by delay parameter γ

1: for all Free surface vertex k do
2: if k 6∈ ldisplacement then
3: Let pk be the position of vertex k after algorithm 2
4: Let pprevious

k be the position of vertex k at the previous iteration.
5: pk ⇐ γpk + (1− γ)pprevious

k

6: end if
7: pprevious

k ⇐ pk

8: end for

To add some visco-elastic behavior, one can increase the relaxation time arti�-
cially by using a delay function. This approach is described in the Algorithm 3.
For vertices which are not colliding with a surgical tool, the �nal vertex posi-
tion is a weighted sum between the position computed by algorithm 2 and the
vertex position at the previous iteration. The weight parameter 0 ≤ γ ≤ 1
controls the damping of the material deformation: for γ = 1, the deformation
is not damped (quasi-static motion) while for γ = 0, the motion is in�nitely
damped (no motion). Any intermediate value of γ modi�es the relaxation time
of the material. Note that this damping is not applied to vertices colliding with
tools because the collision would otherwise appear visually unrealistic. The
algorithm 3 assumes that the model has a damping matrix C which is propor-

58

tional to the identity matrix : more sophisticated hypotheses (but often more
computationnaly intensive) could be proposed.

6 Dynamic Linear Elastic Model
In this section, we describe two di�erent soft tissue models that are able to
address with the limitation of the previous model : the simulation of tissue
cutting. Using the terminology de�ned in section 1.3.2, these two methods can
be quali�ed as "Explicit Iterative Methods" sharing the advantage of requiring
a small computation time for each iteration but with the drawback of having a
low speed of convergence.
The main di�erence between these two models is that the �rst can model the
visco-elastic behavior of the soft tissue properly whereas the second does not
require the evaluation of any time step and is unconditionally stable.
Finally, we propose in section 6.3 a hybrid model which combines any of the two
previous models with the precomputed linear elastic model seen in section 5.

6.1 Tensor-Mass Model
6.1.1 Introduction

The Tensor-Mass model is based on the dynamic law of motion described in
equation 32 :

MÜ + CU̇ + KU = R

This second order di�erential equation couples the motion of tissue under the
in�uence of inertia MÜ, of visco-elasticity CU̇, elasticity KU and external
loads R.
The most e�cient way to solve the equation above is by far to use modal anal-
ysis [6]. By making simple assumptions about the damping matrix C, it is
possible to simplify the above PDE into a small set of ordinary di�erential
equations with an appropriate change of basis. The proper basis is given by the
eigenvectors associated to the largest eigenvalues of the generalized eigenprob-
lem Kφ = ω2Mφ.
However, the eigenproblem must be solved each time the rigidity matrix is
modi�ed. Therefore, this approach is not suitable for simulating tissue cutting,
since the computation cost to solve the eigenproblem is very high.
Instead, a classical method to solve equation 32, is to use integration methods :
the time dimension is uniformly discretized with a time step ∆t, and each term
of that equation is supposed to be constant during each time interval. There
is an important distinction between implicit integration schemes and explicit
integration schemes depending whether the position of the model at time t+∆t
requires the solution or not of a global linear systems of equations (see also the
discussion in section 1.3.2).
Implicit schemes are unconditionally stable which allows the use of large time
steps. In structural analysis, the Houbolt method [47, 6] and the Newmark
method [77, 6] are the most commonly used. However, these schemes require
either to inverse a sparse matrix or to solve at each iteration a linear system
of equations. Considering the time required to solve such a linear system (a

59

few seconds for a small-size mesh), these implicit schemes cannot be used for
real-time interaction.
Instead, we chose to use explicit integration schemes which have several nice
properties (ease of implementation, low computational cost) compared to im-
plicit schemes but with the drawback of being conditionally stable : the time
step must be smaller than a critical time step ∆tcritical. Therefore, smaller time
step ∆t must be used for explicit schemes which yields a larger relaxation time
and a longer time for convergence.

6.1.2 Mass Matrix
Regarding the mass matrix, a common choice consists in replacing the symmetric
positive de�nite matrix M with a diagonal matrix, where each diagonal element
is the sum of all row elements in the original matrix : this lumped mass matrix
is detailed in section 4.8.
In order to keep the time step ∆t large enough during the simulation, we propose
a further simpli�cation of the mass matrix M by considering that the nodal mass
is constant for all nodes, which makes M proportional to the identity matrix :

M = m0I3

where m0 is the average mass per node computed as the total mass of the tissue
divided by the number of nodes in the initial mesh.
Indeed, the critical time step ∆t of the iterative scheme is inversely proportional
to the highest eigenvalue of the matrix M−1K, while the speed of convergence is
related to the ratio between the largest to the smallest eigenvalues of the same
matrix, also called the condition number of that matrix.
From the equation of the nodal sti�ness matrix [Ki,i], we can state that the
nodal sti�ness is proportional to the size (for instance the largest foot height)
of all the tetrahedra surrounding each node :

[Ki,i] =
∑

T ∈S(i)

1
36V (T)

(
(λT + µT)(mi ⊗mi) + µT A2

i I3

)

Thus, the largest eigenvalue of K is determined by the largest tetrahedra while
the condition number is given by the size ratio between the largest and smallest
tetrahedra. On the other hand, when performing mass lumping, as in [12],
the nodal mass of M−1 is inversely proportional to the volume of tetrahedra
surrounding each node. Therefore, the power spectrum of M−1K largely di�ers
from that of K : the largest eigenvalue of M−1K now becomes related to the
tetrahedron of smallest size while the condition number is related to the square
ratio between the largest and smallest tetrahedra. These properties of M−1K
have two consequences for the simulation of tissue cutting : both the speed
of convergence and the time step ∆t decrease as tetrahedra of small size are
created.
By choosing a mass matrix proportional to the identity matrix, we keep the
spectral properties of the rigidity matrix : the creation of small tetrahedra does
not entail any decrease of the time step and limits the decrease of the speed of
convergence. However, this choice is a gross approximation of physics since the
total mass of the tissue increases as the number of elements increases. As claimed
in section 3.1.5, we prefer to satisfy real-time constraints of the simulation (by

60

keeping a large value of ∆t) at the expense of coarse approximations of the
tissue dynamic behavior.

6.1.3 Numerical Integration

Several explicit iterative schemes can be proposed from equation 32 depending
on the choice of damping matrix and discretization of time derivatives. Below,
we propose three explicit schemes that are of interest in the context of surgery
simulation. In the remainder, we write tU the displacement vector at time t.

Euler Method This method uses central �nite di�erences to estimate accel-
eration but right �nite di�erence to estimate speed. Furthermore, sophisticated
damping matrix such as Rayleigh damping can be employed in this scheme :

m0

∆t2
(t−∆tU− 2tU +t+∆t U) +

1
∆t

(γ1m0I3 + γ2K)(tU−t−∆t U) + KtU =t R

The displacement at time t + ∆t can be computed through the recurrent equa-
tion :

t+∆tU =t U+(1−∆tγ1)
(
tU−t−∆t U

)−K
(

∆t2

m0

tU +
γ2∆t

m0
(tU−t−∆t U)

)
+

∆t2

m0

tR

Euler Method with central �nite di�erence In this case, central �nite
di�erences are used to estimate both acceleration and speed, while constant
damping is used γ2 = 0 :

m0

∆t2
(t−∆tU− 2tU +t+∆t U) +

γ1m0

2∆t
(t+∆tU−t−∆t U) + KtU =t R

which leads to the following update equation :

t+∆tU = tU +
2− γ1∆t

2 + γ1∆t
(tU− t−∆tU)− 2∆t2

m0(2 + γ1∆t)
(KtU−t R) (39)

Runge-Kutta Method of order 4 The Runge-Kutta method [85] is an inte-
gration method of fourth order of accuracy, but which requires four evaluations
of the Euler recurrent equation. To describe this method, it is necessary to write
the original equation as a �rst order di�erential equation :

d

dt

[
U̇
U

]
=

[
Ü
U̇

]
=

[− C
m0

− K
m0

1 0

] [
U̇
U

]
+

[
R
m0

0

]

Now, the state of a soft tissue model at time t is described by two vectors :
displacement vector tU and the velocity vector tU̇. Applying the simple Euler
method on this system gives the following relation :

[
t+∆tU̇
t+∆tU

]
−

[
tU̇
tU

]
= ∆t

[
1

m0
(−CtU̇−KtU +t R)

tU̇

]
=

[
δv(tU,t U̇)
δu(tU,t U̇)

]

61

The fourth order Runge-Kutta method, requires to compute the following eight
incremental displacement and velocity vectors :

δv1 = δv(tU,t U̇) δu1 = δu(tU,t U̇)

δv2 = δv(tU +
δu1

2
,t U̇ +

δv1

2
) δu2 = δu(tU + δu1

2 ,t U̇ + δv1
2)

δv3 = δv(tU +
δu2

2
,t U̇ +

δv2

2
) δu3 = δu(tU + δu2

2 ,t U̇ + δv2
2)

δv4 = δv(tU +
δu3

2
,t U̇ +

δv3

2
) δu4 = δu(tU + δu3

2 ,t U̇ + δv3
2)

Finally, the velocity and displacement for the next time step are given by the
following equation :

[
t+∆tU̇
t+∆tU

]
=

[
tU̇
tU

]
+

1
6

[
δv1

δu1

]
+

1
3

[
δv2

δu2

]
+

1
3

[
δv3

δu3

]
+

1
6

[
δv4

δu4

]

Comparison between the three methods We summarized in table 4 the
properties of the three methods described above. Three qualitative criteria were
proposed to outline the advantages and drawbacks of each method. In terms of
computation time required to update the position of a model, the �rst two Euler
methods are equivalent while the Runge Kutta method is at least four times
slower. As far as damping is concerned, only the �rst Euler method allows
to use Rayleigh damping while the two other methods can only use diagonal
damping matrices. Having a non-diagonal damping matrix helps in keeping
a continous �eld of velocity throughout the model which improves the visual
realism of the simulation. Finally, the Runge-Kutta method is more stable than
the Euler Method and our experience showed that a tenfold increase of the time
step can be observed in the former case. The Euler method with central �nite
di�erences allows larger time steps than the Euler Method because the velocity
computation leaps over position computation by one time step.

Euler Euler Central Runge-Kutta
Method Finite Di�erences Method

Computation time low low high
Damping Rayleigh Basic Basic
Time Step small medium high

Table 4: Comparison between three explicit integration methods for soft tissue
modeling.

6.1.4 Data Structure
With explicit schemes, the update of the mesh position can be performed locally,
at the vertex level, without creating any global matrix. Indeed, for each free
vertex of index i, we can take advantage of the sparse nature of the rigidity
matrix K, in order to compute the matrix-vector product KU. More precisely,
from equation 23, it is clear that the o�-diagonal sti�ness matrices [Ki,j] are
non-null matrices only when there is an edge connecting vertices i and j in the

62

T41
T21

T31

T42

T43

T22

T33

T32

44

11T

T
4

3

2

1

Figure 29: Representation of the data structure of a Tensor-Mass model. The 3 × 3

rigidity matrices are stored at each edge and each vertex. The symmetry of the rigidity
matrix enables to store only one tensor per edge.

tetrahedral mesh. Therefore, only the set N (i) of vertices connected to vertex i
by an edge is involved when computing the elastic force Fi applied on vertex i.
For instance, the update equation 39 can be computed for a vertex i as :

t+∆tui = tui +
2− γ1∆t

2 + γ1∆t
(tui − t−∆tui)−

2∆t2

m0(2 + γ1∆t)

 ∑

j∈N (i)

[Ki,j]tuj + [Ki,i]tui −t Ri

The data structure that is suitable for performing this computation follows
the data structure required for storing a tetrahedral mesh. The basic structure
consists in a double-linked list of vertices, edges and tetrahedra. For each vertex,
we store its current position tqi, its rest position pi and the symmetric tensor
[Ki,i]. For each edge, we store its two adjacent vertices (vertex i and vertex
j) as well as the tensor [Ki,j], as sketched in Figure (29). We therefore take
advantage of the symmetric nature of the sti�ness matrix by storing the o�-
diagonal rigidity matrix only once.
Finally for each tetrahedron, we store its four vertices and its six edges as well
as the Lamé coe�cients λi, µi, the area vectors mi and if required the direction
of anisotropy a0.

6.1.5 Cutting and Re�nement Algorithms
One of the basic tasks in surgery simulation consists in cutting and tearing
soft tissue. With the dynamic linear elastic model, these tasks can be achieved
e�ciently.
To perform an hepatectomy (partial resection of the liver), the use of scalpel
instruments is not appropriate because of the important vascularization of the
liver. Instead, surgeons usually proceed with a set of pliers that smash hepatic
cells or with a cavitron device that destroys the hepatic parenchyma with ultra-
sound energy : in both cases, the resection is performed by removing soft tissue.

63

It is therefore important to simulate the removal of bits of soft tissue located at
the vicinity of a surgical tool. To perform this simulation, two basic meshing
techniques must be implemented : removal of tetrahedra and local re�nement.
At �rst sight, removing a single tetrahedron from a tetrahedral mesh is straight-
forward. However, in order to obtain a visually realistic simulation, one should
avoid to produce isolated or self-intersecting tetrahedra or even tetrahedra con-
nected through a single vertex. A proper way to keep �visually appealing�
meshes is to constrain the mesh to be a manifold mesh in addition to being a
conformal mesh. Indeed, in a manifold mesh, the shell of a vertex located on the
mesh surface is homeomorphic a half-sphere (the shell is a sphere for interior
vertices) which allows to de�ne unambiguously a surface normal at that vertex.
However, by adding this topological constraint, even removing a single tetrahe-
dron is not straightforward as discussed in [38]. The detailed description of the
topological issues relevant to the operation of tetrahedron removal falls outside
the scope of this chapter; instead we present brie�y the algorithms related to
the computation of soft tissue deformation.

Figure 30: To remove the tetrahedron whose external triangle has been selected
(dark gray), it is necessary to update the local rigidity matrices stored at the
vertices and edges of that tetrahedron.

Once a collision between a surgical tool and a set of tetrahedra has been de-
tected, each tetrahedron of the set is removed one after the other. After up-
dating the topological structure of the mesh, the local vertex and edge sti�ness
matrices must also be updated (see Figure 30). When removing tetrahedron
T , its 6 edge tensors [BT

i,j] and 4 vertex tensors [BT
i,i] are computed based on

equations 18 and 19 and are substracted from the current edge and vertex local
rigidity matrices :

[Ki,i] = [Ki,i]− [BT
ii] [Ki,j] = [Ki,j]− [BT

ij]

These ten local operations are performed e�ciently because of the speci�c data
structure associated with a tetrahedron.
The second meshing technique, local re�nement, can be used in two cases. First,
it can be used o�ine (before the simulation), to increase the mesh resolution at
places of high curvature or near structures of interest (tumors, gall blader,...).
Second, it is often necessary to re�ne the mesh locally during the removal of
soft tissue when the tetrahedra to be removed are too large. In the former case,
sophisticated meshing techniques can be employed while in the latter case, real-
time constraints allow the application of only basic re�nement algorithms. An
example of such a basic algorithm consists in adding a vertex at the middle of an
edge and then splitting all tetrahedra adjacent to that edge into two tetrahedra
(see Figure 31). In this case, the edge and vertex tensors of all tetrahedra

64

adjacent to that edge are �rst removed and the contributions from all newly
created tetrahedra are then added. A more sophisticated re�nement algorithm
can be found in [38].

Figure 31: Local re�nement of a tetrahedral mesh. An edge is split into two
edges by inserting a vertex. The rigidity matrices must be updated for vertices
and edges that already existed (drawn in dark grey) while these matrices must
be computed for newly created vertices and edges (drawn in light grey).

The proper adjustment of sti�ness matrices during the removal of soft tissue
reinforces the visual realism of the simulation signi�cantly: this is especially the
case when the tissue is cut while being stretched. For instance in Figure 32, we
show the deformation of a cylinder being cut : the cylinder is �xed at its upper
part and is under the in�uence of gravity forces along its main axis.

6.1.6 Algorithm Description
Before describing the deformation algorithm for a Tensor-Mass model, we shortly
describe the initialization stages in Algorithm 4. Once the vertex and edge sti�-
ness matrices have been assembled, it is necessary to estimate a time step ∆t
that allow the stability of the iterative schemes described in section 6.1.3. Find-
ing the critical time step (i.e. the highest possible time step) is actually a
di�cult task because of the lack of a closed-form expression. However, a prac-
tical approach is to estimate the critical time step as a product of an unknown
constant with the time step given by the Courant-Friedrich-Levy condition [86] :

(∆t)Courant = lmax

√
ρ

λ + 2µ

Algorithm 5 presents the di�erent loops required to update a Tensor-Mass
model. Unlike the precomputed quasi-static model, it is not necessary to main-
tain an explicit list of vertices that are displaced by the collision with a surgical
tool : it is su�cient (see line 7) to raise a �ag stating that these vertices are
not free vertices. A second important feature of this algorithm is the existence
of a loop on the mesh edges in order to compute the matrix-vector products∑

j∈N (i)[Ki,j]tuj . This approach is more e�cient than scanning iteratively
the neighbors N (i) for each vertex i. When using the fourth order Runge-
Kutta algorithm, the algorithm from lines 10 to 21 must be modi�ed since it

65

Figure 32: Deformation of a cylinder subject to gravity forces : some tetrahe-
dra are progressively being removed at its center leading to a separation into
independent solids.

Algorithm 4 Matrix Assembly for the Tensor-Mass model performed before
any simulation
1: for all Tetrahedron T do
2: Compute the 4 area vectors mi

3: for all Vertex i of T do
4: Compute the local rigidity matrix [BT

ii]
5: [Ki,i] ⇐ [Ki,i] + [BT

ii]
6: end for
7: for all Edge between vertices i and j of T do
8: Compute the local rigidity matrix [BT

ij]
9: [Ki,j] ⇐ [Ki,j] + [BT

ij]
10: end for
11: end for
12: Estimate time step ∆t.

66

is then necessary to scan four times the edges and vertices of the mesh. For
the Euler method, only lines 11 and 12 must be modi�ed in order to compute
K

(
∆t2

m0

tU + γ2∆t
m0

(tU−t−∆t U)
)
instead of KtU.

Algorithm 5 On-line computation of Tensor-Mass model
1: for all Surface Tools STi do
2: if collision between the soft tissue model and STi then
3: if STi represent a cavitron device then
4: Eventually re�ne locally the mesh near the collision
5: Remove tetrahedra located near the extremity of STi

6: end if
7: Impose displacements on vertices near the contact zone and raise a �ag

on these vertices
8: end if
9: end for
10: for all edge e connecting vertex i and j do
11: add elastic force [Ki,j]tui to vertex i
12: add elastic force [Ki,j]T tuj to vertex j
13: end for
14: for all vertex i do
15: if vertex i is free (�ag not raised) then
16: compute elastic force [Ki,i]tui

17: update vertex position tpi based on one of the three iterative schemes
described in 6.1.3

18: else
19: reset �ag
20: end if
21: end for

6.1.7 Comparison between Spring-mass and Tensor-mass models
We have used the word �Tensor-Mass model� to designate a �nite-element model
based on Newtonian dynamics and discretized with an explicit scheme. This
word has been chosen in order to stress the similarity between a �Tensor-Mass
model� and a �spring-mass model�. In particular, it is the purpose of this section
to oppose to the widely spread belief stating that ��nite element models are
slower and more complex to implement than spring-mass models�.
A spring-mass model [4] consists of a set of masses and a set of springs connecting
these masses. The force applied to a point pi in a spring-mass system, is given
by the relation:

Fi =
∑

j∈N (i)

kij(‖pipj‖ − l0ij)
pipj

‖pipj‖ (40)

where kij is the sti�ness coe�cient between vertices i and j, l0ij is the length at
rest.
Similarly, on a Tensor-Mass model, the elastic force applied on vertex i is given
by :

Fi = [Ki,i]ui +
∑

j∈N (i)

[Ki,j]uj (41)

67

By comparing equations 40 and 41, it is clear that both dynamic models have
the same computational complexity which is linear in the number of edges. In
practice, we have observed a slight computational advantage for the Tensor-Mass
model, mostly because it does not include any square root evaluation.
However, both approaches di�er substantially in terms of biomechanical model-
ing. Spring-mass systems constitute a discrete representation of an object and
their behavior strongly depends on the topology of the spring network. Adding
or removing a spring may change the elastic behavior of the whole system dras-
tically. Conversely, a �nite element model is a continuous representation of the
object and its behavior is independent of the mesh topology (it mostly depends
on the mesh resolution). This is an advantage when mesh cutting is performed
since it produces continuous and natural deformations.
Because all biomechanical data related to biological soft tissue are formulated as
parameters found in continuum mechanics (such as Young's modulus or Poisson
coe�cients), it is a priori di�cult to model realistic soft tissue deformations with
a spring-mass system. However, several authors [66, 34] have developed genetic
or simulated annealing algorithms to identify spring parameters (sti�ness and
damping) from a set of known deformations of an object.
Finally as previously mentioned, the Tensor-Mass model is only valid for small
displacements. This model is invariant under the application of a global trans-
lation, but if a global rotation is applied to the rest shapeMrest, then the forces
applied to all vertices will not be null. On the opposite, a spring-mass model
under the same displacement would not deform, since the length of the springs
are preserved under a rigid transformation. The di�erence between these three
soft tissue models is summarized in Table 5.

Pre-computed Tensor-Mass Spring-Mass
Computational e�ciency +++ + +
Biomechanical Realism + + -
Cutting simulation - ++ +
Large displacements - - +

Table 5: Comparison between the three soft tissue models: pre-computed quasi-
static, Tensor-Mass and spring-mass models.

6.2 Relaxation-based elastic models
6.2.1 Introduction
In this section, we introduce an alternative algorithm to the Tensor-Mass model.
This algorithm is based on Gauss-Seidel relaxation and has the following prop-
erties :

• Its iterative scheme is unconditionally stable. It does not require the
estimation of any critical time step.

• The relaxation algorithm is fairly e�cient (small computation time re-
quired for one iteration) but it is slightly less e�cient than a Tensor-Mass
model.

68

• The algorithm is based on static equilibrium equations whereas Tensor-
Mass models are based on the dynamic law of motion.

• The position of each vertex is updated asynchronously, one vertex after
the other.

However, when compared to Tensor-Mass models, relaxation-based elastic mod-
els have two drawbacks. First, their implementation requires the following prop-
erty for the mesh data structure : each vertex should be able to access e�ciently
its adjacent edges. This topological �vertex-edge� relationship can be stored in
two ways inside a data structure. In a �rst approach, a list of edges can be
stored explicitly at each vertex. After removing or adding tetrahedra, the edge
list must be updated for all vertices belonging to these tetrahedra. To achieve
this update, each edge must have a list of adjacent tetrahedra which should also
be explicitly updated upon the removal or addition of tetrahedra.
In a second approach, the list of edges adjacent to a vertex is recovered through
the knowledge of a single tetrahedron adjacent to this vertex. This approach
is only applicable if we constrain the tetrahedral mesh to be a manifold mesh
(see [38] for more details). Indeed, in such case, the neighborhood of a vertex
is homeomorphic to a topological sphere or half-sphere. By marching around a
vertex from a given tetrahedron, it is possible to obtain all tetrahedra adjacent
to a given vertex and consequently the list of all adjacent edges. In this case
as in the former case, we do store a list of adjacent edges for each vertex in
order to avoid duplicating the search algorithm. However when a tetrahedron is
removed or added, this topological list is reseted and the pointer to the adjacent
tetrahedron is eventually updated.
The second drawback of relaxation algorithms is that they require in average
3 times more storage than the Tensor-Mass model. Indeed, in addition to the
symmetric stifness matrix, a non-symmetric sti�ness matrix must be stored.

6.2.2 Overview of the Algorithm
Following the notations of equation 41 the static problem KU = R can be
written at the level of each vertex i as :

[Ki,i]ui +
∑

j∈N (i)

[Ki,j]uj = Ri (42)

For relaxation algorithms, the displacement of a vertex ui is updated inde-
pendently from other vertices. Therefore, the notation t+∆tui to describe the
position of vertex i at the next time step cannot be used, since formally there
is no temporal evolution (and no temporal variable t) in relaxation algorithms.
Thus, we note +ui the next position of vertex i and ui its current position.
The principle of relaxation algorithms is quite straightforward : each vertex is
moved in order to locally solve equation 42. Thus the displacement +ui is given
by :

+ui = −
∑

j∈N (i)

[Ki,i]−1 [Ki,j]uj + [Ki,i]−1Ri (43)

This is equivalent to minimizing the total mechanical energy by successively
optimizing each variable ui. It is therefore similar to the Iterative Conditional
Mode (ICM) algorithm [9] used in statistical analysis.

69

If all displacements {ui} are successively updated according to equation 42, then
this method is equivalent to the Gauss-Seidel relaxation method [91]. More pre-
cisely, we can decompose the sti�ness matrix K as the sum of three terms :KD

a 3× 3 block diagonal matrix, KC the lower triangle matrix of K and KT
C the

upper triangle matrix of K :

K =

[K1,1] 0 · · · 0

0 [K2,2]
. . . 0

...
0 0 · · · [KN,N]

︸ ︷︷ ︸
KD

+

0 0 · · · 0

[K2,1] 0
. . . 0

...
[KN,1] [KN,2] · · · 0

︸ ︷︷ ︸
KC

+ KT
C

With this notation, the Gauss-Seidel relaxation consists in the application of an
iterative equation :

k+1U = (KD + KC)−1 (−KT
C

kU + R
)

(44)

where kU is the displacement vector at iteration k.
To speed-up convergence, we use over-relaxation (known as the Simultaneous
Over-Relaxation algorithm [91]) that consists in anticipating future correction
with an overrelaxation parameter ω :

k+1U = (KD + ωKC)−1 (−ωKT
C

kU + (1− ω)KD
kU + ωR

)
(45)

This equation translates at the vertex level with the recursion :

+ui = (1− ω)ui − ω
∑

j∈N (i)

[Ki,i]−1 [Ki,j]uj + ω[Ki,i]−1Ri (46)

If ω = 1, then the SOR algorithm is equivalent to the Gauss-Seidel relaxation.
Convergence is guaranteed for values of ω comprised between 1 and 2, while
fastest convergence is obtained for a critical value :

ωoptimal =
2

1 +
√

1− ρGS

where ρGS is the spectral radius (the modulus of the largest eigenvalue) of the
matrix (KD + ωKC)−1 KT

C .
The overelaxation parameter ω controls the dynamics of the soft tissue model.
With ω ≡ 2, the model tends to overshoot around the solution whereas with
ω ≡ 1, the motion is very damped. In practise, we chose a value of ω = 1.2 as
a trade-o� between these two behaviors.

6.2.3 Algorithm Description
The application of the SOR recursive equation 46 requires the computation of
matrices [Ki,i]−1 [Ki,j] and [Ki,i]−1. For speed-up purposes, these matrices are
stored respectively at each vertex and edge. Because the matrix K−1

D K is no
longer symmetric, at each edge linking vertices i and j, we store the two 3× 3
matrices [Ki,i]−1 [Ki,j] and [Kj,j]−1 [Ki,j]T .

70

The algorithm of the relaxation-based elastic model is presented as Algorithm 6.
A large part is dedicated to the update of these additional matrices each time
a topological change of the mesh occurs. A �ag is positionned at each vertex
and edge in order to indicate whether matrices [Ki,i]−1 [Ki,j] and [Ki,i]−1 are
up-to-date or not. This �ag is raised each time a topological change takes place
at a vertex or edge level and it is lowered once these matrices are updated.

Algorithm 6 On-line computation of the relaxation-based model
1: for all Surface Tools STi do
2: if collision between the soft tissue model and STi then
3: if STi represents a cavitron device then
4: Possibly re�ne locally the mesh near the collision
5: Remove tetrahedra located near the extremity of STi

6: end if
7: Impose displacements on vertices near the contact zone
8: end if
9: end for
10: for all free vertex i do
11: if �ag raised at vertex i then
12: compute and store [Ki,i]−1

13: lower �ag at vertex i
14: end if
15: u?

i ⇐ (1− ω)ui + ω[Ki,i]−1Ri

16: for all edge e connecting vertex i and j do
17: if �ag raised at edge e then
18: if �ag raised at vertex j then
19: compute and store [Kj,j]−1

20: lower �ag at vertex j
21: end if
22: compute and store [Ki,i]−1 [Ki,j] and [Kj,j]−1 [Ki,j]T

23: lower �ag at edge e
24: end if
25: u?

i ⇐ u?
i − ω[Ki,i]−1 [Ki,j] uj

26: end for
27: ui ⇐ u?

i

28: end for

6.3 Hybrid Models
6.3.1 Motivation

We have previously described two types of linear elastic models :

1. a quasi-static pre-computed elastic model which is computationally e�-
cient but that does not allow any change of topology(cutting, tearing) (see
section 5).

2. two dynamic elastic models (Tensor-Mass and relaxation based models)
that have lower convergence speed but that allow topology changes (see

71

Model

Tensor-Mass

Interface Node

Pre-computed
Linear Elastic

Model

(a) (b)

Figure 33: (a) De�nition of the interface nodes in a hybrid elastic model; (b)
Hybrid elastic model with eight interface nodes [23].

sections 6.1 and 6.2). In the remainder, we use Tensor-Mass models as
the method for deforming

To combine these two approaches, we make a distinction between two types of
anatomical structures that usually appear in a surgical simulation:

• anatomical structures which are the target of the surgical procedure. On
these structures, tearing and cutting need to be simulated. In many cases,
they correspond to pathological structures and only represent a small sub-
set of the anatomy that needs to be visualized during the simulation.

• Anatomical structures which only need to be visualized or eventually de-
formed but which are not submitted to any surgical action.

Thus, in a hybrid model, we propose to model the former type of anatomical
structures as Tensor-Mass models whereas the latter type of structures should
be modeled as a pre-computed linear model. However, this method is only
e�cient if the number of Tensor-Mass elements is kept as low as possible.

6.3.2 Description
A hybrid elastic model Mhybrid is composed of two di�erent types of elements :
let Mdynamic be the set of Tensor-Mass elements and let Mquasi−static be the
set of pre-computed linear elastic elements. The model Mdynamic is connected
to Mquasi−static by a set of common vertices called interface nodes. These
interface nodes de�ne additional boundary conditions for each model. As seen
in Figure 33, the two models may not be completely connected along their entire
boundaries. In fact, a way to reduce the number of Tensor-Mass elements,
is to associate a �ne pre-computed elastic model with a coarse Tensor-Mass
model. As shown in Figure 33-b , this incomplete interface causes some visual
artifacts due to the non-continuity between two neighboring parts. However,
if the interface zone between the two elastic models is not an important visual
cue, a di�erent mesh resolution can be used.
Since both linear elastic models follow the same physical law, their combination
should behave exactly as a global linear elastic model. Thus, the additional

72

Precomputed Linear Elastic Model

Tensor−Mass Model

Displacements

User Interaction

User Interaction

Displacements

ForcesDisplacements
at Interface Nodes at Interface Nodes

Figure 34: Interaction loop for a hybrid elastic model. Both models are updated
alternatively while allowing for user interaction.

boundary conditions imposed at the interface nodes must be consistent with
respoin terms of forces and displacements for both models.
Figure 34 summarizes the computation loop of a hybrid model. Since the pre-
computed model Mquasi−static is more e�cient with force boundary conditions
than with imposed displacements (see section 5.4.3), its update is based on
forces applied at interface nodes by Mdynamic but also on imposed displace-
ments resulting from the contact with surgical tools. The applied forces orig-
inating from Mdynamic are computed as reaction forces (opposite of elastic
force) at interface nodes. At this stage, the displacement of all surface nodes
of Mquasi−static is computed and the position of interface nodes becomes new
displacement constraints for Mdynamic. After Mquasi−static, Mdynamic is up-
dated based on displacements imposed at the interface nodes by Mquasi−static

and the displacements imposed by the user interaction.

6.3.3 Examples
In Figure 35, we present an example of a hybrid cylinder model undergoing
deformation caused by gravity forces. The di�erent stages of the deformation
process are shown. When the equilibrium is reached, as shown in the rightmost
Figure, forces applied at the interface nodes are null and displacement vectors
stabilize to a constant value. In this example, both quasi-static and dynamic
models have the same elastic properties and we veri�ed that the equilibrium
position is the same as the one that would have been reached by a single quasi-
static or dynamic elastic model. Furthermore, this hybrid model converges
signi�cantly faster than the corresponding dynamic elastic model.
The second example is related to the simulation of hepatectomy, i.e the removal
of one of the eight anatomical segments � known as Couinaud segments [25] � of a
liver. In this example the segment number six has to be removed. A tetrahedral

73

Figure 35: Deformation of a hybrid elastic model under a gravity force: the
upper cylinder consists of a pre-computed linear elastic model whereas the lower
part is a Tensor-Mass model. The leftmost �gure corresponds to the initial
position of the mesh and the rightmost �gure to the equilibrium state.

mesh of a liver has been created from a CT scan image. It is composed of
1537 vertices and 7039 tetrahedra � see Figure 36. The tetrahedra of the sixth
anatomical segment, which represent 18% (280 vertices and 1260 tetrahedra)
of the global mesh, are modelled with a Tensor-Mass model and the remaining
tetrahedra with a pre-computed linear elastic model.
In Figure 37, we show di�erent stages of the hepatectomy simulation. The �rst
six pictures show the deformation of the model when the tool collides with the
dynamic model. Since both models have the same elastic characteristics, it is
not possible to visually distinguish the interface between the two di�erent elastic
models.
The last six pictures show the cutting of the liver segment by removing addi-
tional tetrahedra. The cutting occurs for the tetrahedron being collided by the
tool. One can notice that each part of the hybrid model deforms naturally itself
during the resection simulation.

7 Large Displacement Non-Linear Elastic Model
7.1 Shortcomings of linear elasticity
The physical behavior of a soft tissue may be considered as linear elastic for
small displacements and small deformations [41, 72]. The hypothesis of small
displacements corresponds to displacements that are typically less than 10% of
the mesh size.

74

Figure 36: Display of a hybrid liver model. The part displayed in blue cor-
responds to the pre-computed quasi-static elastic model whereas the red part
corresponds to the Tensor-Mass model. The interface nodes ensure the visual
continuity between the two elastic models.

75

Figure 37: Di�erent stages of the simulation of hepatectomy. In this simulation,
we have included lineic models of the main bifurcations of the portal vein [38]. The
simulation consists in removing some hepatic parenchyma but also to clamp and cut
each vessel.

76

In the context of surgery simulation, this hypothesis is often violated. For
instance, the lobes of the liver are often folded to access underlying structures
such as the gall bladder. Also during the resection of a soft tissue, it is common
that pieces being cut undergo large rotations either under the action of gravity
or under the action of surgical instruments.
In such cases, linear elasticity is not an appropriate physical model because it
makes the assumption of in�nitesimal strain instead of �nite strain. To ex-
hibit the shortcomings of linear elasticity we produced two examples pictured
in Figures 38 and 39.
In a �rst example, we illustrate the action of a global rotation on a linear
elastic model. When an object (an icosahedron in Figure 38) undergoes a global
rotation, its elastic energy increases, leading to a large variation of volume (as
seen in the wireframe mesh of the rightmost �gures). Indeed, the in�nitesimal
strain tensor EL(X) = 1

2 (∇U +∇UT) is not invariant when a global rotation
R is applied since in this case ∇U = R − I3 and therefore EL(X) = 1

2 (R +
RT)− I3 6= [0]. The two invariants (trEL)2 and trE2

L increases under rotation
as does the elastic energy.

���
�

Figure 38: Global rotation of the linear elastic model (wireframe)

(a) (b) (c) (d)

Figure 39: Successive deformations of a linear elastic cylinder [42]. (a) and (b):
side view. (c) and (d): top view

The second example shows the e�ect of linear elasticty when only one part of
an object undergoes a large rotation (which is the most common case). The
cylinder pictured in Figure 39 has its bottom face �xed while a force is being

77

applied at the central top vertex. The arrows correspond to the trajectories of
some vertices : because of the linear elastic hypothesis, these trajectories are
straight lines. This results in unrealistic distortions of the mesh. Moreover,
abnormal deformations are not equivalent in all directions since the object only
deforms itself in the rotation plane (�gure 39(c) and 39(d)).

7.2 St Venant-Kirchho� Elasticity
To overcome the limitations of linear elasticity, we proposed to adopt the St Venant-
Kirchho� elasticity. The St Venant-Kirchho� model is a generalization of the
linear model for large displacements, and is a particular case of hyperelastic ma-
terials. It has been used to model various materials (table 3.8.4 of Ciarlet [18]
provides the constants for materials like steel, glass, lead or rubber) including
facial soft tissue [44] and trabecular bone [7]. A St Venant Kirchho� material
relies on the Hooke's law as the de�nition of elastic energy (see equation 5 in sec-
tion 3.2.3) but the linearized strain tensor EL is replaced by the Green-Lagrange
strain tensor E :

E(X) =
1
2
(∇U +∇UT +∇UT∇U) (47)

WNL(X) =
λ

2
(trE)2 + µ trE2 (48)

The Green-Lagrange strain tensor E is no longer a linear function of the dis-
placement �eld. A �rst property is that the elastic energy becomes invariant
under the application of rotations. Indeed, when a rigid transformation (with
rotation matrix R) is applied to an object, the gradient of the displacement
�eld is ∇U = R − I3 and therefore the Green-Lagrange strain tensor remains
zero (since R RT = I3) :

E(X) =
1
2

(
R− I3 + RT − I3 + (RT − I3)(R− I3)

)

=
1
2

(
R + RT − 2I3 + RT R−R−RT + I3

)

= [0]

A second property is that the elastic energy WNL (section 3.2.3), which was a
quadratic function of ∇U in the linear case, is now a fourth-order polynomial
function with respect to U:

WNL =
λ

2
(trE)2 + µ trE2 (49)

=
λ

2

[
(div U) +

1
2
‖∇U‖2

]2

+ µ ‖∇U‖2 − µ

2
‖rot U‖2

+ µ(∇U : ∇Ut∇U) +
µ

4
‖∇Ut∇U‖2

WNL = WLinear +
λ

2
(div U)‖∇U‖2 +

λ

8
‖∇U‖4

+ µ (∇U : ∇Ut∇U) +
µ

4
‖∇Ut∇U‖2,

where WLinear is given by equation 5, and A : B = tr(AtB) =
∑

i,j aij bij

is the dot product of two matrices.

78

Furthermore, we can extend this isotropic non-linear elastic energy to take into
account "transversally isotropic" materials as performed in section 3.2.4 for the
linear elastic model. In fact, equation 9, which de�nes the additional anisotropic
term, still holds for St Venant-Kirchho� elasticity. However, for the sake of
clarity, we chose to keep only the anisotropic contribution which penalizes the
material stretch in the direction given by unit vector a0:

WTrans_iso = WNL +
(
−∆λ

2
+ ∆µ

) (
a0

t E a0

)2
,

where ∆λ and ∆ are the variations of Lamé coe�cients along the direction of
anisotropy.

7.3 Finite Element Modeling
By adopting the same methodology as the one presented in section 4.3, we
provide a closed form expression of the elastic energy of a linear tetrahedron
�nite element :

WNL(T) =
1
2

∑

j,k

Ut
j

[BTjk

]
Uk +

1
2

∑

j,k,l

(
Uj .CTjkl

)
(Uk.Ul) (50)

+
1
2

∑

j,k,l,m

DTjklm (Uj .Uk) (Ul.Um) ,

where the terms BTjk, CTjkl, and DTjklm, called "sti�ness parameters", are given
by:

• BTjk is a (3x3) symmetric matrix (which corresponds to the linear compo-
nent of the energy):

36V (T)BTjk = λ (mj ⊗mk) + µ [(mk ⊗mj) + (mj .mk) I3]

+
(
−∆λ

2
+ ∆µ

)
(a0 ⊗ a0)(mj ⊗mk)(a0 ⊗ a0),

• CTjkl is a vector:

216(V (T))2CTjkl =
λ

2
mj (mk.ml) +

µ

2
[ml (mj .mk) + mk (mj .ml)]

+
(
−∆λ

2
+ ∆µ

)
(a0 ⊗ a0)(mj ⊗mk)(a0 ⊗ a0)ml,

• and DTjklm is a scalar:

1296(V (T))3DTjklm =
λ

8
(mj .mk) (ml.mm) +

µ

4
(mj .mm)(mk.ml)

+
1
4

(
−∆λ

2
+ ∆µ

)
(a0.mj)(a0.mk)(a0.ml)(a0.mm).

79

• The last term of each sti�ness parameter models the anisotropic behavior
of the material.

The elastic force applied at each vertex pi of tetrahedron T is obtained as the
derivation of the elastic energy WNL(T) with respect to the displacement pi:

Fi(T) =
∑

j

[BTij
]
Uj

︸ ︷︷ ︸
F1

i (T)

+
∑

j,k

(Uk ⊗Uj) CTjki +
1
2

(Uj .Uk) CTijk

︸ ︷︷ ︸
F2

i (T)

(51)

+ 2
∑

j,k,l

DTjkli Ul Ut
k Uj

︸ ︷︷ ︸
F3

i (T)

.

The �rst term of the elastic force (F1
i (T)) corresponds to the linear elastic case

presented in section 4.4.

7.4 Non-linear Tensor-Mass Model
In this section, we generalize the Tensor-Mass model introduced in 6.1 to the
case of large displacement elasticity. The only changes in the Tensor-Mass
algorithm are related to the computation of the elastic force Fi applied at vertex
i.
In the case of linear elasticity, this force was computed by a �rst scan of all
edges to compute the terms [Kij]uj followed by a scan of all vertices to add the
terms [Kii]ui.
We proposed to apply the same principle to the quadratic term (Fp

2(T) of equa-
tion 51) and the cubic term (Fp

3(T)). The former requires sti�ness vectors
for vertices, edges, and triangles, and the latter requires sti�ness scalars for
vertices, edges, triangles, and tetrahedra.
The task of assembling global sti�ness parameters is slightly more time consum-
ing than in the linear case, since 31 parameters must be assembled instead of
2 ; these parameters are presented in table 6.
For vertex, edge and triangle parameters, one needs to add the contributions
of all neighboring tetrahedra. For instance, the vertex rigidity vector Cppp is
computed at vertex p as :

Cppp =
∑

T ∈S(p)

CTppp

For the 6 scalar parameters Djklp stored at each tetrahedron, no assembly is
required since there is no other contribution originating from another tetrahe-
dron.
The computation of the elastic force is performed by successively scanning tetra-
hedra, triangles, edges and vertices of the mesh. When scanning triangles for
instance, the contributions from the three triangles are computed and added to
the elastic force of each of its three vertices. The contribution for each element
is summarized in equation 51.

Fi = Fvertex
i + Fedge

i + Ftriangle
i + Ftetrahedron

i (52)

80

Sti�ness parameters
distribution Tensors Vectors Scalars

Vertex p Bpp Cppp Dpppp

Edge (p, j) Bpj Cppj Cjpp

Cjjp Cpjj
Djppp Djjjp Djpjp

Dpjjp Djjpp

Triangle (p, j, k)
Cjkp

Ckjp

Cpjk

Djkpp Djpkp Dpjkp

Djjkp Djkjp Dkjjp

Dkkjp Dkjkp Djkkp

Tetrahedron (p, j, k, l) Djklp Djlkp Dkjlp

Dkljp Dljkp Dlkjp

Table 6: Storage of the sti�ness parameters on the mesh

with :

Fvertex
i =

Vertex contribution

[Bpp]Up

+
[
(Up ⊗Up) + 1

2 (Up.Up) I3

] Cppp

+ 2Dpppp Up Ut
p Up

Fedge
i =

∑

edges(p,j)

Edge contribution
[Bpj

]
Uj

+ [(Uj ⊗Up) + (Uj .Up) I3] Cppj + (Up ⊗Uj) Cjpp

+(Uj ⊗Uj) Cjjp + 1
2 (Uj .Uj) Cpjj

+ 2
[Djppp

(
2Up Ut

p Uj + Uj Ut
p Up

)
+Djjpp Up Ut

j Uj

+
(Djpjp +Dpjjp

)
Uj Ut

j Up +Djjjp Uj Ut
j Uj

]

81

Ftriangle
i =

∑

faces(p,j,k)

Triangle contribution
[
(Uk ⊗Uj) Cjkp + (Uj ⊗Uk) Ckjp + (Uj .Uk) Cpjk

]
+2

[(Dpjkp +Djpkp
) (

Uj Ut
k Up + Uk Ut

j Up

)
+ 2Djkpp Up Ut

j Uk

+
(Dkjjp +Djkjp

)
Uj Ut

j Uk +Djjkp Uk Ut
j Uj

+
(Djkkp +Dkjkp

)
Uk Ut

k Uj +Dkkjp Uj Ut
k Uk

]

Ftetrahedron
i =

∑

tetra(p,j,k,l)

Tetrahedron contribution

2
[(Djklp +Dkjlp

)
Ul Ut

j Uk +
(Djlkp +Dljkp

)
Uk Ut

j Ul

+
(Dkljp +Dlkjp

)
Uj Ut

k Ul

]

In terms of data structure, the non-linear Tensor-Mass model requires the ad-
dition of triangles in the mesh topological description. In our case, we chose
to store triangles in a hash table which is hashed by the three indices of its
vertices in lexicographic order. Furthermore, each tetrahedron owns pointers
towards its four triangles and reversely, each triangle owns pointers towards its
two neighboring tetrahedra.
During the simulation of resection, tetrahedra are iteratively removed near the
extremities of virtual cavitron instruments. When removing a single tetrahe-
dron, 280 �oating point numbers are updated to suppress the tetrahedron con-
tributions to the sti�ness parameters of the surrounding vertices, edges, and
triangles :

4 ∗ (1 tensor + 1 vector + 1 scalar)
+ 6 ∗ (1 tensor + 4 vectors + 5 scalars)
+ 4 ∗ (3 vectors + 9 scalars)
= 280 real numbers

By locally updating sti�ness parameters, the tissue has exactly the same prop-
erties as if the corresponding tetrahedron had been removed at its rest position.
Because of the volumetric continuity of �nite element modeling, the tissue de-
formation remains realistic during cutting.

7.5 Incompressibility constraint
Living tissue, which is made essentially of water is almost incompressible, a
property which is di�cult to model and which, in most cases, leads to insta-
bility problems. This is the case with the St Venant-Kirchho� model: the
material remains incompressible when the Lamé constant λ tends towards in-
�nity. Taking a large value for λ would impose to decrease the time step and
therefore to increase the computation time. Another reason to add an external
incompressibility constraint to the model is intrinsic to the model itself : the
St Venant-Kirchho� model relies on the Green-Lagrange strain tensor E which
is invariant with respect to rotations. But it is also invariant with respect to
symmetries, which could lead to the reversal of some tetrahedra under strong
constraints.

82

We chose to penalize volume variation by applying to each vertex of the tetra-
hedron a force directed along the normal of the opposite face Np (see �gure 40),
the norm of the force being proportional to the square of the relative volume
variation:

Fp
incomp = sign(V − V0)

(
V − V0

V0

)2

~Np. (53)

Fincomp
p

Figure 40: Penalization of volume variation

Since the volume V is proportional to the height of each vertex facing its opposite
triangle, when V is greater than V0 then the force Fp

incomp tends to decrease
V by moving each vertex along the normal of the triangle triangle facing it.
These forces act as an arti�cial pressure inside each tetrahedron. This method
is closely related to Lagrange multipliers, which are often used to solve problem
of energy minimization under constraints.

7.6 Results
In a �rst experiment, we wish to highlight the contributions of our new de-
formable model in the case of partial rotations. Figure 41 shows the same
experience as the one presented for linear elasticity (section 7.1, Figure 39). On
the left we can see that the cylinder vertices are now able to follow non-straight
trajectories (�gure 41(a)), leading to much more realistic deformations than in
the linear (wireframe) case (�gures 41(b) and 41(c)).
The second example presents the di�erences between isotropic and anisotropic
materials. The three cylinders of �gure 42 have their top and bottom faces
�xed, and are submitted to the same forces. While the isotropic model on the
left undergoes a "snake-like" deformation, the last two, which are anisotropic
along their height, sti�en in order to minimize their stretch in the anisotropic
direction. The rightmost model, being twice as sti� as the middle one in the
anisotropic direction, starts to squeeze in the plane of isotropy because it cannot
stretch anymore.

83

(a) (b) (c)

Figure 41: (a) Successive deformations of the non-linear model [82]. Side (b)
and top (c) view of the comparison between linear (wireframe) and non-linear
model (solid rendering)

���
���
���
���

���
���
���

���
���
���

λ = 2.105 kg/cm2 λ = 2.105 kg/cm2 λ = 2.105 kg/cm2

µ = 105 kg/cm2 µ = 105 kg/cm2 µ = 105 kg/cm2

- λL = 106 kg/cm2 λL = 2.106 kg/cm2

- µL = 5.105 kg/cm2 µL = 106 kg/cm2

Figure 42: Shearing deformation of tubular structures under the action of the
force indicated by the arrow. The leftmost �gure corresponds to an isotropic
non-linear material while the center and rightmost �gures correspond to a non-
linear anisotropic material, the direction of anisotropy being the cylinder axis.

84

In the third example (�gure 43), we apply a force to the right lobe of the
liver (the liver is �xed in a region near the center of its back side, and Lamé
coe�cients are: λ = 40kPa and µ = 10kPa). Using the linear elastic model,
the right part of the liver undergoes a large (and unrealistic) volume increase,
whereas with non-linear elasticity, the right lobe is able to rotate partially, while
adopting a more realistic deformation.

Figure 43: Linear (upper mesh in wireframe), non-linear (Gauraud shaded)
liver models, and rest shape (lower mesh in wireframe). In both cases, the same
forces showed in solid lines are applied to three surface nodes lying on the left
lobe [82].

Adding the incompressibility constraint on the same examples decreases the
volume variation even more (see table 7), and also stabilizes the behaviour of
the deformable models in highly constrained areas.

Volume variation (%) Linear Non-linear Non-linear incomp.

Cylinder left middle right 7 28 63 0.3 1 2 0.2 0.5 1

Liver 9 1.5 0.7

Table 7: Volume variation results. For the cylinder: left, middle and right stand
for the di�erent deformations of Figures 42 and 43.

The last example is the simulation of a typical laparoscopic surgical gesture
on the liver. One tool is pulling the edge of the liver sideways while a bipolar
cautery device cuts it. During the cutting, the surgeon pulls away the part of
the liver he wants to remove. This piece of liver undergoes large displacements
and the deformation appears fairly realistic with this new non-linear deformable
model (�gure 44).
Obviously, the computation time of this model is larger than for the linear model
because the force equation is more complex (equation 51 in section 7.3 to be

85

Figure 44: Simulation of laparoscopic liver surgery

compared with equation 41 in section 6.1.7). With our current implementation,
the simulation refresh rate is �ve times slower than with the linear model. Nev-
ertheless, with this non-linear model, we can reach an update cycle of 25 Hz on
meshes made of about 2000 tetrahedra (on a PC Pentium PIII 500M Hz). This
is enough to achieve real-time visual feedback with quite complex objects, and
even to provide a realistic haptic feedback using force extrapolation as described
in [83].

7.7 Optimization of non-linear deformations
We showed that non-linear elasticity allows to simulate much more realistic
deformations than linear elasticity when the model undergoes large displace-
ments. However, non-linear elasticity is more computationally expensive than
linear elasticity. Since non-linear elastic forces tend to linear elastic forces as
the maximum vertex displacement decreases to zero, we propose to use non-
linear elasticity only at parts of the mesh where displacements are larger than
a given threshold, the remaining part using linear elasticity. Thus, we modi�ed
the force computation algorithm in the following manner : for each vertex, we
�rst compute the linear part of the force, and we add the non-linear part only
if its displacement is larger than a threshold. Figure 45 shows a deformation
computed with this optimization (same model as in �gure 43). This liver model
is made of 6342 tetrahedra and 1394 vertices. The threshold is set to 2 cm while
the mesh is about 30 cm long. The points drawn on the surface identify vertices
using non-linear elasticity. With this method, we reach an update frequency of
20 Hz instead of 8 Hz for a fully non-linear model. The same deformation is
presented on �gure 46 for di�erent values of the threshold. With this method,
we can choose a trade-o� between the bio-mechanical realism of the deformation
and the update frequency of the simulation. The diagram on �gure 47 shows the
update frequencies reached for each value of the threshold, in comparison with

86

Figure 45: Adaptable non-linear model deformation compared to its rest posi-
tion (wireframe)

(a) Threshold = 4 cm. (b) Threshold = 2 cm

(c) Threshold = 1 cm (d) Threshold = 0.5 cm

Figure 46: Deformation of the adaptive non-linear model for several values of
the threshold.

87

the fully linear and the fully non-linear models. Even when this threshold tends
towards in�nity, the adaptable model is slower than the linear model, because
the computation algorithm of the non-linear force is more complex. Indeed, the
computation of non-linear forces requires to visit all vertices, edges, triangles,
and tetrahedra of the mesh, whereas only vertices and edges need to be visited
for the linear model. For the simulation example of �gure 44, this optimization

�
���
���
���
���
� �

	

���

���

� �

�

���

�

� �

�

���

�

� �

���������������! #"%$'&)(

*�����+�,��.-/$'01"3254�(

6 �798;:<79=��>�?&@�� ��.�
A5��-�BC�>DE-F��79��&@�; ;�.�
GHD>-���7��I&J�; ;���

Figure 47: Updating frequencies of the adaptable model for several values of
the threshold

leads to update frequencies varying between 50 and 80 Hz, depending on the
number of points modeling non-linear elasticity (�gure 48). The minimal fre-
quency of 50 Hz is reached at the end of the simulation, when all vertices of the
resected part of the liver are using large displacement elasticity (on the right of
�gure 48).
In general, two strategies can be used to set the value of this threshold. In
the �rst strategy, the threshold is increased until a given update frequency
is matched as demonstrated previously. The second strategy is physically-
motivated and sets the threshold to 10 % of the typical size of the mesh since
it corresponds to the extent of displacement for which linear elasticity remains
a valid constitutive law.

8 Conclusion
In this chapter, we have presented several algorithms for computing in real-time
the deformation of soft tissues in a surgical simulator. We wish to stress two
important aspects of these algorithms. First of all, using linear tetrahedra as
�nite elements helped us to write closed-form expressions of the elastic energy
and its derivatives, even in the case of large displacement elasticity. These
expressions nicely decouple the physical parameters (Lamé coe�cients) from the
geometry of each tetrahedron both in its rest position (direction of anisotropy,
rest volume, area vectors) and in its deformed state (displacement vectors).
Furthermore, it enables to quickly assemble local and global sti�ness matrices
when the mesh topology has been modi�ed during a cutting simulation.
Second, in the context of surgery simulation, soft tissue deformation algorithms
are closely tied with the visualization, collision detection and haptic rendering
algorithms. Furthermore, the traditional stages of matrix assembly, matrix
preconditioning, system solution and post-processing, cannot be easily decou-
pled like in classical software packages available in structural mechanics. This

88

Figure 48: Simulation of hepatectomy based on a non-linear adaptable elastic
model. non-linear elastic force are applied on vertices outlined with a box.

implies that the data structure and the �ow chart must be carefully designed in
order to achieve a reasonable trade-o� between these performances. Therefore,
building a successful simulator can only be achieved by a multidisciplinary e�ort
covering the �elds of biomechanics, numerical analysis, robotics and computer
graphics.
An hepactectomy simulator based on the quasi-static precomputed linear elastic
model (introduced in section 5) and the large displacement non-linear elastic
models (introduced in section 7) has been built where the following three basic
surgical gestures can be rehearsed : touching soft tissue, gripping soft tissue, and
cutting parenchyma with a cavitron. Furthermore we recently added a physical
model of the portal vein [36], which allows the user to simulate the clamping
and cutting of vessels during the hepatic resection.
However, to increase the training impact and realism of the simulation, it is
important to simulate the contact between the liver and neighboring structures
such as the gall-bladder, the di�erent ligaments, the right kidney, the peri-
toneum, etc. These additional surface and volumetric models require to extend
the soft tissue models introduced in this chapter in two ways.
First, it is necessary to extend the precomputed linear elastic model to include
large-displacement non-linear elasticity. Indeed, the linear domain of biological
soft tissue is usually rather small, and therefore many surgical gestures can only
be simulated by using large-displacement elasticity (like rotating the lobe of the
liver or resecting the gall-bladder). The precomputation of non-linear elastic
material is not a trivial task since it implies solving a complex third-order al-

89

gebraic equation in the case of St Venant-Kirchho� elasticity (see section 7.2).
Instead, it may be possible to �nd suitable approximations which can be com-
puted e�ciently.
Second, it is necessary to extend the concept of hybrid models (introduced in
section 6.3) in order to cope with the deformation of models including several
tens of thousands of vertices. Ideally, we would like to provide accurate but
computationnally expensive soft tissue models in the center of the surgical �eld
where the user performs complex gestures and at the same time to provide less
expensive models but potentially less accurate, away from the center of the
surgical �eld. Of course during surgery, the focus of the surgeon may switch
from the gall-bladder to the hepatic parenchyma which implies that those tis-
sue models should evolve dynamically from one level of accuracy to the other.
Achieving this level of scalability with the constraint that the topology of these
models may change over time, is the main challenge of soft tissue modeling for
surgery simulation.
Finally, we would like to stress the importance of validating the di�erent com-
ponents of a surgical simulator. Concerning soft tissue models, there are at least
three levels of validation that need to be achieved. A �rst validation consists in
comparing the soft tissue deformation algorithms that rely on strong hypothe-
ses against well-known �nite element packages in order to evaluate the range
of approximations that are performed. In the second level of validation, the
biomechanical behavior of each anatomical structure must be compared to ex-
perimental dataset. Ideally, one would like to validate both boundary conditions
and the constitutive law of each biological tissue. However, in practice, this val-
idation is made di�cult by the lack of quantitative experimental information.
The third level of validation consists in evaluating the dynamic behaviour of
each soft tissue during the simulation since some models that appear too soft
or too sti�. Finally, and most importantly, it is required to validate the whole
simulation system by assessing its ability to succeed in training young residents
to perform a given surgical task.
Despite these remaining issues to be solved, we believe that practical surgery
simulators will be fully operational and actually part of the surgical studies in
the near future.

Acknowledgments
We would like to thank Matthias Teschner, Denis Laurendeau and Jean-Marc
Schwartz for their priceless comments and for proofreading this article.
The work presented in this paper is a joint work between the authors and
mainly two former PhD students : Stéphane Cotin and Guillaume Picinbonno.
Stéphane Cotin developped the precomputed linear elastic model of section 5
as well as a �rst version of the Tensor-Mass model described in section 6.1.
Guillaume Picinbonno proposed the extension of the Tensor-Mass model to the
case of large displacement elasticity (in section 7). We also wish to thank Clé-
ment Forest and Jean-Christophe Lombardo for their numerous contributions
on force-feedback rendering, collision detection as well as mesh data structure.
This work was fueled with the stimulating remarks and propositions from our
INRIA colleagues who participated in the AISIM and CAESARE joint initia-
tives : Marie-Paule Cani, Marina Vidrascu, Marc Thiriet, Christian Laugier.

90

Also, we are grateful to Pr. Marescaux, Pr. Leroy, and Pr. Luc Soler from
the IRCAD research center for their long-term vision and for sharing their ex-
pertise of abdominal surgery with us. Finally, we would like to acknowledge
the strong support we received from Gilles Khan, INRIA Vice-President for
Research, during the di�erent stages of this research work.

91

Keyword Index
Boundary Conditions, 12, 18, 24,

25, 29, 45�46, 46, 48�50,
53, 55, 57, 72, 73, 90

Boundary Element Modeling, 22, 52,
52, 53

Data Structure, 12, 49, 53, 62�64,
69, 82, 89

Haptic Feedback, 2, 5, 6�7, 7�12,
25, 56, 58, 86, 88

Law of Hooke, 27, 78
Linear Elasticity, 21�22, 24�29, 34�

37, 41�42
Isotropic Material, 27, 34�37
Transversal Anisotropy, 27�29,

41�42
Linear Tetrahedron Element, 23�24,

29�32, 37�41, 43�45, 47,
60

Liver Anatomy and Physiology, 14,
14�21, 23�25, 45, 51, 63,
73, 74, 85, 89

Non-Linear Elasticity, 22, 74�88

Precomputed Linear Elastic Model,
1, 9, 10, 12�13, 24, 48�59,
59, 65, 71, 89, 90

Relaxation-based elastic Models, 68�
71, 71

Simulation of Cutting, 1, 3, 8, 10,
12, 13, 14, 22, 23, 49, 59,
60, 63�65, 68, 69, 71, 72,
74, 76, 82, 85, 88, 89

Spring-Mass Models, 12�13, 21, 22,
45, 67�68

Strain Tensor, 12, 24, 28, 30
Finite Strain, 74�78, 78�79, 82
In�nitesimal Strain, 25�26, 27,

29, 34, 37, 77

Tensor-Mass Models, 12�13, 59�68,
68, 71, 72, 74, 75, 80, 90

Visual Rendering, 2, 5, 6, 6, 7, 8, 8�
12, 23, 25, 51, 56, 58, 59,
62, 64, 65, 72, 74, 86, 88

92

List of Mathematical Symbols

fu Update frequency of the soft tissue model
t Discrete or continuous time variable

Xt Position the model at time t
Trelaxation Relaxation time

Tc Computation time
Tinteraction Latency caused by the software and harware architecture

∆t Time step used in the discretization of temporal derivatives
F Global force vector
K Global sti�ness matrix
U Global displacement vector
M Global mass matrix
C Global damping matrix
U̇ Global speed vector

Mrest Soft tissue Model at its rest position
Mdef Soft tissue Model at its deformed position

Ω Region of space for the rest con�guration
Φ(x, y, z) Deformation function that maps point (x, y, z) from

the rest con�guration to the deformed con�guration
X Point in the rest con�guration

U(X) Displacement function
C(X) Right Cauchy-Green strain tensor
E(X) Green-Lagrange strain tensor
I3 3× 3 identity matrix
EL Linearized strain tensor
eij Element of the linearized strain tensor

T(X) Cauchy stress tensor
W (X) Density of elastic energy
λ, µ Isotropic Lamé coe�cients
E, ν Isotropic Young modulus and Poisson ratio
a0 Unit vector along the direction of anisotropy for transverally isotropic materials

λa0 , µa0 Lamé coe�cients along the direction of anisotropy
∆λ, ∆µ Di�erence between the Lamé coe�cients along the direction of anisotropy

and those in the orthogonal plane
∆WAni(X) Additional term of the density of elastic energy caused by anisotropy

I4, I5 Deformation invariants estimated along the direction of anisotropy
pi Point of a tetrahedron in its rest position
qi Point of a tetrahedron in its deformed position
ui Displacement vector of a vertex of a tetrahedron
T Tetrahedron as a linear �nite element

hj(X) Shape functions associated with a linear tetrahedron

93

P 4× 4 matrix describing the shape functions
V (T) Volume of tetrahedron T
mi Area vector opposite to vertex i
Vi 6 times the volume of the tetrahedron made by

the origin o and vertices pi+1, pi+2 and pi+3

Ti Triangle opposite to vertex i
ni Normal vector at the triangle Ti opposite to vertex i in a tetrahedron
θi,j Angle between normal vectors of triangles Ti and Tj

Ai Area of triangle Ti

li,j Length of the edge connecting vertices i and j
fi Height of vertex o above triangle Ti

BT
i,j Element (i, j) of the 3× 3 sti�ness matrix for a tetrahedron T

made of an isotropic material
AT

i,j Element (i, j) of the 3× 3 sti�ness matrix for a tetrahedron T
made of an transversally isotropic material

Ki,j 3× 3 global sti�ness matrix between vertex i and j
ki,j Eigenvalue along the edge direction of matrix Ki,j

Wg(T) Work of gravity forces
Wp(T) Work of External Surface Pressure
Mi,j 3× 3 global mass matrix between vertex i and j
K?

i,j 3× 3 global sti�ness matrix between vertex i and j
that includes spring boundary conditions

Rg Global vector of gravity forces
Rb Global vector of boundary forces

94

References
[1] M. J. Ackerman. The visible human project. Proceedings of the IEEE :

Special Issue on Surgery Simulation, 86(3):504�511, March 1998.

[2] N. Ayache. Epidaure: a research project in medical image analysis, simu-
lation and robotics at INRIA. IEEE Trans. on Medical Imaging, October
2003. Invited Editorial.

[3] N. Ayache and H. Delingette, editors. International Symposium on Surgery
Simulation and Soft Tissue Modeling, LNCS 2673, Juan-Les-Pins, France,
jun 2003. Springer-Verlag. 386 pages.

[4] D. Bara� and A. Witkin. Large steps in cloth simulation. In ACM, editor,
Computer Graphics (SIGGRAPH'98), pages 43�54, Orlando (USA), July
1998.

[5] J. B. Bassingthwaighte. Strategies for the physiome project. Annals of
Biomedical Engineering, 28:1043�1058, 2000.

[6] K-L. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-
Hall, 1982.

[7] H. Bayraktar, M. Adams, A. Gupta, P. Papadopoulos, and T. Keaveny.
The role of large deformations in trabecular bone mechanical behavior. In
ASME Bioengineering Conference, Key Biscayne, FL (USA), June 2003.

[8] Steven E. Benzley, Ernest Perry, Brett Clark Karl Merkley, and Greg
Sjaardema. Comparison of all-hexahedral and all-tetrahedral �nite ele-
ment meshes for elastic and elasto-plastic analysis. In 4th International
Meshing Roundtable, pages 179�191. Sandia National Laboratories, Octo-
ber 1995.

[9] J. Besag. On the statistical analysis of dirty pictures. Journal of Royal
Statistical Society, 48(3):326�338, 1986.

[10] D. Bielser and M. H. Gross. Interactive simulation of surgical cuts. In
Proceedings of Paci�c Graphics 2000, pages 116�125, Hong-Kong, October
2000. IEEE Computer Society Press.

[11] F. Boux de Casson and C. Laugier. Modelling the dynamics of a human
liver for a minimally invasive simulator. In Proc. of the Int. Conf. on Med-
ical Image Computer-Assisted Intervention, Cambridge (GB), September
1999.

[12] M. Bro-Nielsen. Finite element modeling in surgery simulation. Proceed-
ings of the IEEE : Special Issue on Surgery Simulation, 86(3):490�503,
March 1998.

[13] M. Bro-Nielsen and S. Cotin. Real-time volumetric deformable models for
surgery simulation using �nite elements and condensation. In Eurograph-
ics'96, volume 3, pages 57�66, 1996.

[14] I.N. Bronshtein and K.A. Semendyayev. Handbook of Mathematics. Van
Nostrand Reinhold Company, 1985.

95

[15] J. D. Brown, J. Rosen, Y. Kim, L. Chang, M. Sinanan, and B. Hannaford.
In-vivo and in-situ compressive properties of porcine abdominal soft tissue.
In Medicine Meets Virtual Reality (MMVR'03), Newport Beach, USA,
January 2003.

[16] J. Canas and F. Paris. Boundary Element Method : Fundamentals and
Application. Oxford University Press, June 1997.

[17] F. J. Carter. Biomechanical testing of intra-abdominal soft tissue. In In-
ternational Workshop on Soft Tissue Deformation and Tissue Palpation,
Cambridge, MA, October 1998.

[18] P. G. Ciarlet. Mathematical elasticity Vol. 1: Three-dimensional elasticity.
North-Holland, Amsterdam, 1987. ISBN 0-444-70259-8.

[19] F. Cosmi. Numerical solution of plane elasticity problems with the cell
method. Computer Methods in Engineering and Sciences, 2(3), 2001.

[20] Ivan F. Costa and Remis Balaniuk. Lem - an approach for real time
physically based soft tissue simulation. In International Conference in
Automation and Robotics (ICRA'2001), Seoul, May 2001.

[21] S. Cotin, H. Delingette, and N. Ayache. Real-time elastic deformations of
soft tissues for surgery simulation. IEEE Transactions On Visualization
and Computer Graphics, 5(1):62�73, January-March 1999.

[22] S. Cotin, H. Delingette, and N. Ayache. Real-time elastic deformations of
soft tissues for surgery simulation. IEEE Transactions On Visualization
and Computer Graphics, 5(1):62�73, January-March 1999.

[23] S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model allowing
real-time cutting, deformations and force-feedback for surgery training
and simulation. The Visual Computer, 16(8):437�452, 2000.

[24] S. Cotin, H. Delingette, J.-M. Clement, V. Tassetti, J. Marescaux, and
N. Ayache. Volumetric deformable models for simulation of laparoscopic
surgery. In Proceedings of the International Symposium on Computer
and Communication Systems for Image Guided Diagnosis and Therapy,
Computer Assisted Radiology (CAR'96), volume 1124 of International
Congress Series. Elsevier, June 1996.

[25] Couinaud. Le foie, études anatomiques et chirurgicales. Masson, 1957.

[26] S. A. Cover, N. F. Ezquerra, and J. F. O'Brien. Interactively Deformable
Models for Surgery Simulation. IEEE Computer Graphics and Applica-
tions, pages 68�75, 1993.

[27] D. Dan. Caractérisation mécanique du foie humain en situation de choc.
PhD thesis, Université Paris 7, September 1999.

[28] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr.
Dynamic real-time deformations using space and time adaptive sam-
pling. Computer Graphics Proceedings, Aug 2001. Proceedings of SIG-
GRAPH'01.

96

[29] X. Decoret, G. Schau�er, F. Sillion, and J. Dorsey. Multi-layered impos-
tors for accelerated rendering. In Computer Graphics Forum 18:3 (Pro-
ceedings of Eurographics '99), volume 18, pages 61�73, 1999.

[30] H. Delingette. Towards realistic soft tissue modeling in medical simulation.
Proceedings of the IEEE : Special Issue on Surgery Simulation, pages 512�
523, April 1998.

[31] H. Delingette. General object reconstruction based on simplex meshes. In-
ternational Journal of Computer Vision, 32(2):111�146, September 1999.

[32] H. Delingette and J. Montagnat. Shape and topology constraints on para-
metric active contours. Journal of Computer Vision and Image Under-
standing, 83:140�171, 2001.

[33] Mathieu Desbrun and Marie-Paule Gascuel. Animating soft substances
with implicit surfaces. In Computer GRAPHICS (SIGGRAPH'1995), Los
Angeles, 1995.

[34] O. Deussen, L. Kobbelt, and P. Tucke. Using simulated annealing to
obtain a good approximation of deformable bodies. In Proc. Eurograph-
ics Workshop on Animation and Simulation, Maastricht (NL), September
1995. springer.

[35] J. Duncan and N. Ayache. Medical image analysis: Progress over two
decades and the challenges ahead. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(1):85�106, 2000.

[36] C. Forest, H. Delingette, and N. Ayache. Simulation of surgical cutting in
a manifold mesh by removing tetrahedra,. Medical Image Analysis, 2003.
submitted.

[37] Clément Forest, Hervé Delingette, and Nicholas Ayache. Cutting sim-
ulation of manifold volumetric meshes. In Modelling & Simulation for
Computer-aided Medicine and Surgery (MS4CMS'02), 2002.

[38] Clément Forest, Hervé Delingette, and Nicholas Ayache. Removing tetra-
hedra from a manifold mesh. In Computer Animation (CA'02), pages
225�229, Geneva, Switzerland, June 2002. IEEE Computer Society.

[39] L. France, J. Lenoir, P. Meseure, and C. Chaillou. Simulation of mini-
mally invasive surgery of intestines. In S. Richir, editor, Fourth Virtual
Reality International Conference (VRIC'2002), pages 21�27, 2002. ISBN
2-9515730.

[40] Laure France, Alexis Angelidis, Philippe Meseure, Marie-Paule Cani,
Julien Lenoir, François Faure, and Christophe Chaillou. Implicit repre-
sentations of the human intestines for surgery simulation. In Conference
on Modeling and Simulation for Computer-aided Medicine and Surgery
(MS4CMS'02), Rocquencourt, Novembre 2002.

[41] Y. C. Fung. Biomechanics - Mechanical Properties of Living Tissues.
Springer-Verlag, second edition, 1993.

97

[42] G. Picinbono and H. Delingette and N. Ayache. Non-linear and anisotropic
elastic soft tissue models for medical simulation. In ICRA2001: IEEE In-
ternational Conference Robotics and Automation, Seoul Korea, May 2001.
Best conference paper award.

[43] S. Gibson, J. Samosky, A. Mor, C. Fyock, E. Grimson, T. Kanade, R. Kiki-
nis, H. Lauer, and N. McKenzie. Simulating arthroscopic knee surgery
using volumetric object representations, real-time volume rendering and
haptic feedback . In J. Troccaz, E. Grimson, and R. Mosges, editors, Pro-
ceedings of the First Joint Conference CVRMed-MRCAS'97, volume 1205
of Lecture Notes in Computer Science, pages 369�378, March 1997.

[44] E. Gladilin. Biomechanical Modeling of Soft Tissue and Facial Expressions
for Craniofacial Surgery Planning. PhD thesis, Freie Univerisität Berlin
(Germany), October 2002.

[45] Stefan Gottschalk, Ming Lin, and Dinesh Manocha. Obb-tree: A hier-
archical structure for rapid interference detection. Proceedings of SIG-
GRAPH 96, pages 171�180, August 1996. ISBN 0-201-94800-1. Held in
New Orleans, Louisiana.

[46] R. Hodgskinson and J.D. Currey. Young modulus, density and material
properties in cancellous bone over a large density range. Journal of Ma-
terials Science: Materials in Medicine, 3:377�381, 1992.

[47] J. C. Houbolt. A recurrence matrix solution for the dynamic response of
elastic aircraft. Journal of Aeronautical science, 17:540�550, 1950.

[48] J. D. Humphrey, R. K. Strumpf, and F. C. P. Yin. Determination of a
Contitutive Relation for Passive Myocardium: I. A New Functional Form.
ASME Journal of Biomechanical Engineering, 112:333�339, August 1990.

[49] J. D. Humphrey and F. C. P. Yin. On Constitutive Relations and Fi-
nite Deformations of Passive Cardiac Tissue: I. A Pseudostrain-Energy
Function. ASME Journal of Biomechanical Engineering, 109:298�304,
November 1987.

[50] P. Hunter and A. Pullan. FEM/BEM Notes. Uni-
versity of Auckland, New-Zeland, 1997. available at
http://www1.esc.auckland.ac.nz/Academic/Texts/fembemnotes.pdf.

[51] Berci G. Hunter J.G., Sackier J.M. Training in laparoscopic cholecystec-
tomy : Quantifying the learning curve. journal of Endoscopic Surgery,
8:28�31, 1994.

[52] D. L. James and D. K. Pai. Artdefo accurate real time deformable objects.
In Computer Graphics (SIGGRAPH' 1999), pages 65�72, 1999.

[53] B. Joe. Geompack � a software package for the generation of meshes using
geometric algorithms. Journal of Advanced Eng. Software, 13:325�331,
1991.

[54] M. Kaiss and P. Le Tallec. La modélisation numérique du contact ÷il-
trépan. Revue Européenne des éléments Finis, 5(3):375�408, 1996.

98

[55] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, 1:321�331, 1988.

[56] M. Kauer, V. Vuskovic, J. Dual, Gabor Székely, and M. Bajka. Inverse
�nite element characterization of soft tissues. In 4th Int. Conf. on Medi-
cal Image Computing and Computer-Assisted Intervention (MICCAI'01),
volume 2208 of LNCS, pages 128�136, Utrecht, October 2001.

[57] J. Kaye, F. Primiano, and D. Metaxas. A 3d virtual environment for mod-
eling mechanical cardiopulmonary interactions. Medical Image Analysis
(Media), 2(2):1�26, 1997.

[58] Dave Knott and Dinesh Pai. Collision and interference detection in real-
time using graphics hardware. In Proceedings of Graphics Interface, Hal-
ifax, Canada, June 2003.

[59] Ch. Kuhn, U. Kühnapfel, H.-G. Krumm, and B. Neisius. A 'virtual reality'
based training system for minimally invasive surgery. In Proc. Computer
Assisted Radiology (CAR '96), pages 764�769, Paris, June 1996.

[60] U. Kuhnapfel, H. akmak, and H. Maa. Endoscopic surgery training us-
ing virtual reality and deformable tissue simulation. In Computers and
Graphics, 24:671�682, 2000., 2000.

[61] Z. Liu and L. E. Bilston. On the viscoelastic character of liver tissue:
experiments and modelling of the linear behaviour. Biorheology, 37:191�
201, 2000.

[62] Z. Liu and L. E. Bilston. Large deformation shear properties of liver tissue.
Biorheology, 39:735�742, 2002.

[63] J.-C. Lombardo, M.-P. Cani, and F.Neyret. Real-time collision detection
for virtual surgery. In Computer Animation, Geneva Switzerland, may
1999.

[64] Jean-Christophe Lombardo, Marie-Paule Cani, and Fabrice Neyret. Real-
time Collision Detection for Virtual Surgery . In Computer Animation,
pages 82�89, Geneva - Switzerland, May 1999.

[65] W. Lorensen and H.E. Cline. Marching cubes: a high resolution 3d sur-
face construction algorithm. ACM Computer Graphics (SIGGRAPH'87),
21:163�169, 1987.

[66] Jean Louchet, Xavier Provot, and David Crochemore. Evolutionary iden-
ti�cation of cloth animation model. In Workshop on Computer Animation
and Simulation (Eurographics'95), pages 44�54, 1995.

[67] A Lumsdaine and J Siek. The Matrix Template Library, 1998.
http://www.lsc.nd.edu/research/mtl/.

[68] R. H Macmillan. A new method for the numerical evaluation of determi-
nants. J. Roy. Aeronaut. Soc., 59(772), 1955.

99

[69] A. Manduca, R. Muthupillai, P. Rossman, J. Greenleaf, and L. Ehman. Vi-
sualization of tissue elasticity by magnetic resonance elastography. In Proc
of Visualization in Biomedical Imaging (VBC'96), pages 63�68, Hamburg,
Germany, 1996.

[70] B. Marcus. Hands on : Haptic feedback in surgical simulation. In Proc.
of Medecine Meets Virtual Reality IV (MMVR IV), pages 134�139, San
Diego, CA, January 1996.

[71] William Mark, Scott Randolph, Mark Finch, James Van Verth, and Rus-
sell M. Taylor II. Adding force feedback to graphics systems: Issues and
solutions. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Pro-
ceedings, Annual Conference Series, pages 447�452. ACM SIGGRAPH,
Addison Wesley, August 1996.

[72] W. Maurel, Y. Wu, and N. Magnenat Thalmann D. Thalmann. Biome-
chanical Models for Soft Tissue Simulation. ESPRIT Basic Research Se-
ries. Springer-Verlag, 1998.

[73] Cesar Mendoza Serrano and Christian Laugier. Realistic haptic rendering
for highly deformable virtual objects. In Proc. of the Int. Conf. on Virtual
Reality, Yokohama (JP), March 2001.

[74] K. Miller. Constitutive modelling of abdominal organs. Journal of Biome-
chanics, 33(3):367�373, 2000.

[75] J. Montagnat and H. Delingette. Globally constrained deformable models
for 3d object reconstruction. Signal Processing, pages 173�186, 1998.

[76] A. Nava, E. Mazza, F. Kleinermann, N. Avis, and J. McClure. Determina-
tion of the mechanical properties of soft human tissues through aspiration
experiments. In Proc. of Conference on Medical Robotics, Imaging And
Computer Assisted Surgery: MICCAI 2003, LNCS, Montreal, Canada,
November 2003.

[77] N. M. Newmark. A method of computation for structural dynamics. Jour-
nal of Engineering Mechanics Division, 85:67�94, 1959.

[78] A. O'Mahony, J. Williams, and J. Katz. Anisotropic elastic properties of
cancellous bone from a human edentulous mandible. In Proc. of ASME
Bioengineering'99 Conference, 1999.

[79] Steve Owen. A survey of unstructured mesh generation technology.
Technical report, Department of Civil and Environmental Engineering,
Carnegie Mellon University, 2000.

[80] X. Papademetris, P. Shi, D. P. Dione, A. J. Sinusas, R. T. Constable, and
J. S. Duncan. Recovery of soft tissue object deformation from 3d image se-
quences using biomechanical models. In XVI-th International Conference
on Information Processing In Medical Imaging, IPMI'99, pages 352�357,
Visegrád, Hungary, June 28 - July 2 1999.

[81] V.N. Parthasarathy, C.M. Graichen, and A.F. Hathaway. A comparison
of tetrahedron quality measures. Finite Elements in Analysis and Design,
15:255�261, 1993.

100

[82] G. Picinbono, H. Delingette, and N. Ayache. Non-Linear Anisotropic
Elasticity for Real-Time Surgery Simulation. Graphical Models, 65(5):305�
321, September 2003.

[83] G. Picinbono, J.-C. Lombardo, H. Delingette, and N. Ayache. Anisotropic
Elasticity and Forces Extrapolation to Improve Realism of Surgery Sim-
ulation. In ICRA2000: IEEE International Conference Robotics and Au-
tomation, pages 596�602, San Francisco USA, April 2000.

[84] G. Picinbono, J-C. Lombardo, H. Delingette, and N. Ayache. Improving
realism of a surgery simulator: linear anisotropic elasticity, complex inter-
actions and force extrapolation. Journal of Visualisation and Computer
Animation, 13(3):147�167, july 2002.

[85] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C. Cambridge Press, 1991.

[86] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in FORTRAN: The Art of Scienti�c Computing 2nd
ed. Cambridge University Press, Cambridge, England, 1992.

[87] M. A. Puso and J. A. Weiss. Finite Element Implementation of Anisotropic
Quasi-linear Viscoelasticity Using a Discrete Spectrum Approximation.
ASME Journal of Biomechanical Engineering, 120(1), February 1998.

[88] M. Putti and C. Cordes. Finite element approximation of the di�usion op-
erator on tetrahedra. SIAM Journal of Scienti�c Computing, 19(4):1154�
1168, July 1998.

[89] A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular �uid
dynamics: problems, models and methods. Computing and Visualization
in Science, 2 (2000), pp. 163�197., 2000.

[90] A. Radetzky. The simulation of elastic tissues in virtual medicine using
neuro-fuzzy systems. In Medical Imaging 98: Image Display, San Diego,
CA, February 1998.

[91] Youssef Saad. Iterative Methods for Sparse Linear Systems. WPS, 1996.

[92] I. Sakuma, Y. Nishimura, C. Kong Chui, E. Kobayashi, H. Inada, X. Chen,
and T. Hisada. In vitro measurement of mechanical properties of liver
tissue under compression and elongation using a new test piece holding
method with surgical glue. In International Symposium on Surgery Sim-
ulation and Soft Tissue Modeling, number 2673 in LNCS, pages 284�292,
Juan-Les-Pins, France, June 2003. Springer-Verlag.

[93] R. Satava. 1994 medicine meets virtual reality conference proceedings. In
Medicine 2001: The King Is Dead, 1994.

[94] R. Satava. Medical virtual reality : The current status of the future.
In Proc. of 4th conf.Medecine Meets Virtual Reality (MMVR IV), pages
100�106, 1996.

101

[95] W. J. Schroeder, J. Zarge, and W. Lorensen. Decimation of triangles
meshes. In Computer Graphics (SIGGRAPH'92), volume 26. ACM, Au-
gust 1992.

[96] M. Sermesant, Y. Coudière, H. Delingette, and N. Ayache. Progress to-
wards an electro-mechanical model of the heart for cardiac image analy-
sis. In IEEE International Symposium on Biomedical Imaging (ISBI'02),
pages 10�14, 2002.

[97] M. Sermesant, O. Faris, F. Evans, E. McVeigh, Y. Coudière, H. Delingette,
and N. Ayache. Preliminary validation using in vivo measures of a macro-
scopic electrical model of the heart. In N. Ayache and H. Delingette,
editors, International Symposium on Surgery Simulation and Soft Tissue
Modeling (IS4TM'03), volume 2673 of Lecture Notes in Computer Science.
Springer-Verlag Heidelberg, 2003.

[98] Francois X. Sillion, George Drettakis, and Benoit Bodelet. E�cient im-
postor manipulation for real-time visualization of urban scenery. In Pro-
ceedings of Eurographics'97, Budapest, Hungary, September 1997.

[99] Simail: product of Simulog S.A. - 1, rue James Joule - 78286 Guyancourt
Cedex - France, http://www.simulog.fr.

[100] Z. Soferman, D. Blythe, and N. John. Advanced graphics behind medical
virtual reality : Evolution of algorithms, harware and software interfaces.
Proceedings of the IEEE : Special Issue on Surgery Simulation, 86(3):531�
554, March 1998.

[101] L. Soler, H. Delingette, G. Malandain, J. Montagnat, N. Ayache, J.-M.
Clément, C. Koehl, O. Dourthe, D. Mutter, and J. Marescaux. Fully
automatic anatomical, pathological and fonctionnal segmentation from ct-
scans for hepatic surgery. In Medical Imaging 2000, San Diego, February
2000.

[102] L. Soler, G. Malandain, and H. Delingette. Segmentation automatique :
application aux angioscanners 3d du foie. Traitement du signal, 15(5):411�
431, 1998. in French.

[103] A.J.M. Spencer. Deformations of Fibre-Reinforced Materials. Clarendon
Press, Oxfordn, 1972.

[104] A.J.M. Spencer. Continuum Theory of Fiber-Reinforced Composites.
Springer-Verlag, New York, 1984.

[105] G. Szekely, M.Baijka, and C. Brechbuhler. Virtual reality based simula-
tion for endoscopic gynaecology. In proceedings of Medicine Meets Virtual
Reality (MMVR'99), pages 351�357, San Francisco (USA), 1999.

[106] M. Teschner, B. Heidelberger, M. Muller, D. Pomeranets, and M. Gross.
Optimized spatial hashing for collision detection of deformable objects.
In Proc. Vision, Modeling, Visualization VMV'03, Munich, Germany,
November 2003.

102

[107] M. Vidrascu, H. Delingette, and N. Ayache. Finite element modeling for
surgery simulation. In First MIT Conference on Computational Fluid and
Solid Mechanics, 2001.

[108] Vlachos, Peters, Boyd, and Mitchell. Curved pn triangles. In 2001 ACM
Symposium on Interactive 3D Graphics, 2001.

[109] Je�rey A. Weiss, John C. Gardiner, and Krista M. Quapp. Material
Models for the Study of Tissues Mechanics. Proc International conference
on Pelvic and Lower Extrimity Injuries, pages 249�261, December 1995.
Wash DC.

[110] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programing Guide.
Addison-Wesley, 1997.

[111] Y. Yamashita and M. Kubota. Ultrasonic characterization of tissue hard-
ness in the in-vivo human liver. In Proc. of IEEE Ultrasonics Symposium,
pages 1449�1453, 1994.

[112] Denis Zorin, Peter Schroeder, and Wim Sweldens. Interpolating subdivi-
sion for meshes with arbitrary topology. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, pages 189�
192. ACM Press, 1996.

103

