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ABSTRACT

Objective: To improve the planning of hepatic surgery, we have developed a fully automatic anatomicdl,
pathologica and functiona segmentation of the liver derived from aspird CT scan.

Materials and methods: From a 2mm thick enhanced spird CT scan, a fird sage automaticaly
delinestes <kin, bones, lungs, kidneys and spleen, by combining the use of thresholding, mathematica
morphology and distance maps. Next, a reference 3D modd is immerged in the image and automaticaly
deformed to liver contours. Then an automdic gaussans fitting on the imaging hisogran esimates the
intengties of parenchyma, vessds and lesons. This firgd result is next improved throughan origind
topologicd and geometrical andysis, providing an automatic ddinegtion of lesons and veins. Fndly, a
topologicd and geometricd anadyss based on medicad knowledge provides hepatic functiond
information invisble in medicd imaging: portd vein labding and hepdic anatomicad segmentaion
according to the Couinaud classfication

Results: Clinicad vdidation performed on more than 30 patients shows that this method's delinegtion of
anatomical structures is often more sengtive and more specific than manua ddinegtion by aradiologist.
Conclusion: This study describes the methodology used to creete the automatic segmentation of the liver
with delinegtion of important anatomical, pathologicd and functiond dructures from a routine CT scan.
Usng the methods proposed in this study, we have confirmed the accuracy and utility of the creetion of 3
— dimengond liver modd when compared with the conventiond reading of the CT scan by a radiologist.
This work, may dlow an improvement in preoperdive planning of hepatic surgery by more precisey
delineating liver pathology and its relation to norma hepatic sructures.  In the future this data may be
integrated with computer-assisted surgery and thus represents a first step towards the development of an
augmented redity surgica system.

Keywords: segmentation, gaussans fitting, mathematicd morphology, discrete topology, labeling,
hepatic surgery
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1. INTRODUCTION

One of the mgor gods of computerized medica imaging andyss is to automaticaly detect, identify and
delineate anatomica and pathological sructures in 3D medicd images. 3D modding of these dructures
then dlows for easer and more extensve visudization and exploitation of images. In hepdic surgery,
medica imaging is used to detect and locdize hepatic lesons and their reationship to vascular structures,
epecidly the portd vein that defines the hepatic functiond anatomy congsing of severd anatomica
segments?. There are severd different definitions for dividing the liver into functionaly meaningful
parts that represent the resection unit. Different authors have proposed the divison of the liver into two
hemilivers, or into four segments based on the Goldsmith and Woodburne definitio? or into eight sub-
segments based on the Couinaud definition’ which is today considered the international standard”.

In order to detect lesons and to locdize vascular networks defining the anatomica segments,
radiologigts currently use helicd Computed Tomography scan images with intravenous contrast infusion
(helicd CTI). In these images, tumors gppear as dark nodules within bright hepatic tissues whereas vessdl
trees gppear as a network brighter than the liver parenchyma. However, detection of the leson or
locdization of the vessds is often difficult to process due to a varidble image contrast between liver
parenchyma and vessdls, and aso due to an important image anisotropy, the dice thickness being three
times larger than the pixel width.

Therefore in hepetic surgery, one of the gods of computerized medicd imaging processing is to
automatically ddineste liver, lesons vessds and anatomicd ssgments from the imaging dudies. Severd
authors proposed to ddineste the liver contours from CTI images with an automatic®>®’®°, or semi-
automatic process'’. Severd methods use a deformable model, dither to directly ddlineate structures™’, or
to improve the results of a previous delineation technique®. In addition, vascular tree segmentation has
been performed in different studies 2131, Among these works, the method of Zahiten et d.*>*2 dlows
extraction of the porta vein from abdomind CT-scan images, usng a region growing technique. This
technique has the advantage of giving a topologicd information about the venous tree, which is useful for
building &l anatomical segments'®. However, since it requires a manudly-set threshold and an initiad seed
point, this technique is not fully automatic. Findly, there have been very few studies™®*® about the hepatic
leson dglineetion, sometimes peformed by the same methods used to isolate other anatomica
structures’.

Among al these studies, the work of Gapo et d.° is best suited for hepatic surgery planning since it
provides a generd solution dlowing the ddinegtion of the hepatic anatomy, even if the vascular sysem
may not be clearly delinested. But this method of liver segmentation does not provide good results with a
liver which @ntains a large sub-capsular tumor. Also, the work of the MEVIS team*>**4 performs portal
vein labding and anatomica segments ddineation, but it aways recondructs eight sub-segments even if
the paient has a different number of segments. Moreover, this segmentantion technique requires many
time-consuming interactions.

In this aticle, we propose an origind three step anatomicd segmentation method, based on the

trandation of anatomica knowledge into topologica, geometricd and morphologicd condraints. This
method dlows thus for autometic extraction of liver, hepatic vessds, hepatic lesons and dso of the

anaomicd segments with respect to the three most common definitions. hemilivers, Goldsmith and
Woodburne definition and Couinaud definition.

2. AUTOMATIC LIVER, LESIONSAND VEINOUS SYSTEMS DELINEATION

2.1. Patients dataset

This study has been performed on a set of 35 CT-scans with dices from 2 mm to 3 mm of thickness,
acquired after contrast agent injection at porta phase, from an helicd Semens Somatom 4 plus CT-scan.
The database is composed of 33 images with intravenous injection, and two portoscans. It includes



hedthy subjects, patients with lesons (cyst or tumors), and patients after segmentectomy. Furthermore,
the rate of contrast product infiltration into hepatic venous systems is quite variable from one patient to
another, due to adifficult evauation of the portd time.

2.2. First stage: skin, lungs, bones, kidneys, spleen and liver delineation and image impr ovement

This fird stage of our method automaticaly extracts step by step, the skin, lungs, bones, kidneys, the
gleen and the liver of a patient, from a CT-scan image. Our method condgts in trandating anatomica
information obtained by the medicd imaging and trandforming this information by the way of severd
ample intengties, morphologica, topologicd and geometricd condraints. The intengty in Houndidd
units of air, fat tissue, water and bones are known and are respectively -1000 HU, -120 HU to -80 HU, O
HU, and 500 HU to 3000 HU. Air is manly outsde the patient and in the lungs (some ar may be
eventudly found into the digestive system too). Isolating the ar dlows us to eedly extract the skin and
the lungs boundaries. A smple threshold does not dlow for isolating the bones. Because of the contrast
agent, others dructures, such as the aorta, appear bright. To overcome this, we first isolate the fa tissue
(thresholding followed by morphological operation). The bones are then characterized as the brightest
structures close to the fat tissue.

Kidney and spleen delinestion is more difficult due to ther intengty variation. We then propose a
solution based on the gray-levd hisogram andyds of the image limited to regions including the spleen
and kidneys. Indeed, the right inferior quarter of the image contains essentidly a part of the liver and the
right kidney, whereas the left inferior quarter of the image contains only the right kidneys and the soleen.
Thus, a comparative andyss of the gray-levd higograms dlows us to find the intengty range of kidneys,
gpleen and liver parenchyma, identically locdized on both histograms. We then ddineate the kidneys and
the spleen by performing athresholding followed by morphologica operators.

After dl of these anatomical dructures are removed from the origind image, we findly extract liver.
From severa existing methods, we chose to use the Montagnat and Delingette method® who proposed an
hybrid deformation framework that consder the globd transformations computed in the regigtration
framework'” @ a deformation fidd similar to the locd deformation field of the deformable modds'®*®
scheme. This method agpplies thus to each i) vertex of the mode with a locdity parameter |, a combined
force f(i):

f(i) = (1-1) * GlobalForce(i) + | * LocalForce(i) @

It is possble to goply to the model in this single framework completdy loca (=1), completely globa
(I=0) as wdl as any intermediate (0<I<1) force between those two ends. This framework introduces a
globa condraint in the deformation process that may be scde through the | parameter. It makes models
more rdiable: they ae less noise and outliers sengtive. Moreover, the geometric quaity of meshes
produced by the deformation scheme is better.

Application of this method to liver ddineation firs requires the initidization of a 3D reference mode
in the image. In order to obtain a liver contour by deformation, it is easer and more reliable to use an
initid modd with a smilar shgpe. This modd is a liver template computed onto visble human data of the
National Library of Medicine. Delineation is then composed of severad stages. Fig. 1 and 2 respectively
represent the liver template being bent dong each stage and its cut superimpostion onto on of the CT
scan dides.

(@) initiaization (b) rigid and affine registration  (c) hybrid deformation| low  (d) hybrid deformation| high
Figure 1. Shape evolution of the model along stages.
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(b) rigid and affineregistration  (c) hybrid deformationl low  (d) hybrid deformation| high

Figure 2. Evolution of the model cut on one slice of the 3D image.

(@) initidization

From the resulting liver delinegtion, we chose to reduce and improve the initid image in order to speed
the process and dso to improve the lesons and vessals delinegtion. Firdly, the extracted liver is used as a
mask, which reduces the initid image to the region of interest of the liver. Secondly, the reduced image is
filtered with the anisotropic diffusion detailed in 2. It then reduces the textured aspect of CT scan without
loss of dructure borders. As shown on Fig. 3, the textured aspect of the initid image is changed in
homogenous intendty areas, whereas borders separating parenchyma, vessels and dark areas are
preserved.

Figure 3. Reduced image before and after anisotropic diffusion, with zoom on two areas: area 1 (up) and area 2 (down)
2.3. Second stage : automatic delineation of lesions and vascular systems

We saw previoudy that Gao et a.® proposed a dlassification method of al internd structures of the liver.
To do this, the authors estimated the intengty digtributions of three tissue classes, lesons, parenchyma,
and vessdls, as trgpezoidd functions and used the percentage of voxels belonging to each class for the
visudization. We chose to modify their method by consdering that the didributions of the same three
tissue classes follow a normd law, these didributions being then used to consder thresholds dlowing
segmentation for each structure. The fitting of digtribution onto the gray level hisogram is performed by
the Levenberg and Marquardt’'s method®, which minimizes a least square criterion and which is currently
used for other organsin many articles™23:24.2°,

In the liver case, the mgor limitation of this method is the need to obtain a good initidization of the
digtribution parameters whereas only the pesk corresponding to the liver is usudly visble To fill this
handicap, we propose an origind resolution in two stages. The firs stage fits, on the gray-level histogram,
the gaussan curve that corresponds to the parenchyma whose peak is dways visble. The subtraction of
the reaulting gaussan from the hisogram provides thus digribution of points that do not belong to the
liver (with the some errors close to the firs adjustment). From this subtraction, the second stage initidizes
the two last gaussans and fits the three class gaussans on the initid gray-level hisogram. The thresholds
ae then edimated as the intensties for which two neghbor gaussans cross, defining thus S g, the
threshold separating the lesons voxds from the liver voxds, and Sy, the threshold separating the liver
voxels from the vessds voxes (Fig. 4).
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Figure 4. Classification result (left) from thresholding following the three gaussians fitting on the image histogram (right)

This ample thresholding implies misclassfication of the voxes of one class beng over the gaussan
crossng of the neighboring dass. So, the intendty information is not enough to obtan a saisfactory
delinegtion of anatomica and pathologicad structures. In order to improve this result, we have developed
origind methods based on the trandation of anatomicd information into topologicd and geometrica
congtraints which removes the misclassification of thresholding.

2.3.1. LesionsDdlineation

Our god is to remove fdse podtive of thresholding in order to extract dl lesons of only 3-mm of
thickness. In practice, radiologists limit ther andyss to lesons over 5-mm of thickness, but we chose to
reduce this minimal thickness in order to improve the rdiability of the method. From Gao et d. © work
that characterized the lesions by a nodular shape modeled in 2D by an dlipse, we chose to characterize
thisform in 3D by an dlipsoid (Fig. 5).

Figure5. Modeling of alesion by an eI'Iipsoid: Definition of ellipsoid axes (Ieft) from inertia axe of thereal lesion (right)

From this characterization, the radius (r1, r», r3) of the dlipsoid associated with each structure can be
easly evduaed through the computation of each inetia moments (1, |, Is) corresponding to the axes of

inetia(l 1, | 2, | 3), with the fallowing formula
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From these radius computed onto each connected components, we characterize a nodular shape by two
ratios Ry and R (Eq. 3), respectively representing the lengthening of the structure and compactness of the
dlipsoid associated to the initid Sructure. We fixed maxima lengthening Ry at 2.5, ensuring thus that the
dructure will not be overly lengthened and the rate of minimd filling R to 80%, ensuring thus that the
Structure will be quite compact.
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This shape is however not found for al lesons. Indeed, some lesions locdized at the periphery of the
liver in a 5-mm of thickness sub-capsular band, have a flattened shape surfaces with a nodular shaped
nudeus?®. On this kind of structure, morphological erosion can easily extract the centrd nudeus, which
then dlows for the computation of the same R; and R, raios. We chose to keep the maxima lengthening
R, & 25 but to increese the rae of minima filling R, to 90% in order to be more reliable on the
periphera structures of which the number of fase pogtive is more frequent.

All of this information dlows for removing fdse pogtives from the connected components of the
leson cdlass through three smple stages. The first stage redizes a morphologica opening with a 1.5-mm
of radius, which removes al components with a thickness under 3mm. The second stage computes the Ry
and R, ratios on dl resulting connected components, and removes those that are not within maxima
lengthening and minima filling condrants The third dage redizes a morphologicd eroson on Al
rgected components locdized liver in the 5-mm of thickness sub-capsular band. It then computes the Ry
and R, ratios on dl resulting connected components, and removes those tha are not within maxima
lengthening and minima filling condraints. Fndly, condrants dlow for extracting leson shaped
gructures from connected components extracted by theinitia thresholding.

2.3.2. Portal vein ddlineation

In regard to the vesss, the thresholding provides two kinds of misclassfication: the vessd voxes
dasdfied in the liver class, the fase negative, and the liver voxds dassfied in the vessd dass, the fdse
positive. It is dso important to notice that the different hepatic vascular networks are al grouped together
while didinction of the portd ven, hepaic vein and hepatic atery is useful information for surgicd
planning. We propose here a new method firstly to correct the fase negative and secondly to remove the
fdse pogitive and to ditinguish the different vascular networks.

The fdse negative correction functions by adding vessd voxes dassfied in the liver dass into the
vesse cdass. To accomplish this, two smple solutions can be performed. A first solution, the decreasing
of Sy threshold, removes the fdse negative, but a the same time it increases the number of fase
positives. A second solution performs a morphologicd closng on the thresholded image of vessds, but it
aso adds new fase pogitives (Fig. 6).

Figure 6. Zoom on one slice of theimage : after a thresholding with Sg, value (l€ft),
after athresholding with the Sy, threshold decreased respectively with 10 HU and 20 HU (middle),
and after amorphological closing onto the Sy thresholded image(right).

We propose to combine these two gpproaches by adding, in the thresholded image, the voxels resulting
from a morphological closng and whose intendty is higher than a given threshold. This threshold is
cdculated according to the distance D with the voxes resulting from the initid thresholding. Indeed, the
closer the point is to these voxds, the more likdly it represents the vessals. Therefore, the threshold can be
chosen far away from the initia threshold. Conversdly, the farther away a point s from these voxds, the
more likely it derives from the parenchyma Therefore, the threshold must be sdected close to the initid
threshold. We trandate this property by the Eqg. (4) that dlows for computing four S thresholds from the
esimated dengty didributions of the parenchyma fp and of the vessds fy (Fig. 7). This origind hybrid



method makes it possble to limit the adverse effects of each gpproach taken independently while
correcting false negatives, alowing thus to reconnect branches discomected by the initid thresholding

(Fig. 8).
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Figure 7. A distance map from voxels resulting to theinitial thresholding (left) and the estimated distribution of parenchyma
intensities and vesselsintensities (middle), combined to the Eq. (4) allowsto define four thresholds (right).

Figure 8. Result of the hybrid method combining morphological closing, distance analysis and thresholding.

The fdse negative correction being performed, the second stage consists of removing fadse postives
and to digtinguish the different vascular networks, which corresponds to four casesillustrated on Fig. 9.

(a) (b) (c) (d)
Figure 9. Four mistake cases: (a) misconnection between portal vein and hepatic vein, (b) misconnection between portal vein
and hepatic artery, (c) misconnection creating aloop in the portal vascular network, (d) misclassification of liver voxelsin the
vessels class (false positive).

The portd vein is tree shaped with severd smple properties: o loops, the reduction in-depth thickness
of the branches in the blood flow direction and the absence of obtuse angles in branch junctions. We
propose to use these geometrica and topologica properties as condraints in a vascular network covering.
We first smplify the vascular network by computing its skeleton, as in Zahlten et d.'2%3, but with the



Maandain and Bertrand method®’'?® that provides a skeleton geometrically and topologically much more
precise than the region-growing method. Although geometricdly and topologicaly correct, the resulting
skeleton has three principle drawbacks the line irregularity due to image sampling, the barbule presence
(smdl branches) due to skeetisation of the irregular contour shape, and the multiplicity of neighboring
junction points. The correction of these drawbacks conssts in reducing the skeleton by smoothing lines,
rgecting babules and fusng neighboring junction points. This firg treetment dlows then for
disconnecting the hepetic arteria network from the portal network ( Fig. 10).

Figure 10. Theinitial hepatic arterial network (U shaped on left) creates a set of barbules (small skeleton branchesin
middle). The erasing of barbules allows then for disconnecting arterial branches.

From this skeleton, we cover the network in width from the portd trunk to the smalest branches. The
porta trunk is located automaticaly by its anatomica postion characterized by antero-podterior ratio, one
of the most steble biometric variables in the human body*. At each junction, we can easily andyze the
median branch thickness, the angle of branches bifurcation or crossng and loop forming. The sysem can
then automatically remove branches that create loops, branches with a dgnificant thickness incresse
(higher than 2 mm) and branches with a too obtuse angle. The upper limit vaue of the obtuse angle
obtained has been determined in order to removed connections between portal branches and hepatic vein
branches. These atificid connections are due to the wdl known partia volume effect. Two principle
cases have been thus defined : Tangency and crossng (Fig. 11). The tangency is defined by a minima
angle of 135° between two branches Bl and B2 with a same origin J. The branch BJ is then removed. The
crossing @ follows the same idea. It is defined when amost 2 of 3 or more branches of a crossing have
a angle over 135°. In the example case of figure 11, B2 and B3 have a angle A2-3 over 135°. BJ and Bl
having an angle AJ-1 over 135°, B2 and B3 are removed.

[TANGENCY | |CROSSING]|

= =

=" Angle 3135°
Figure 11. 2 type of mistake connection between portal and hepatic veins removed using the angle val ue between branches.

Al-2

Findly, this geometrical and topological analyze dlows for removing nearly al mistake cases (Fig. 12).



a b c d
Figure 12. The four mistake classes correction:
(a) disconnection between portal vein and hepatic vein, (b) disconnection between portal vein and hepatic artery,
(c) disconnection of loopsin the portal vascular network, (d) removing of false positives.

3. AUTOMATIC PORTAL VEIN LABELING AND ANATOMICAL SEGMENTATION

In practice, the current procedure for radiological delinestion of anatomicd segments is based on the
concept of three verticd planes that divide the liver into four segments, and of a transverse scissura that
further subdivides the segments into two subsegments eact?. The three planes are defined from landmarks
based on supra-hepatic veins, and the transverse scissura is defined from landmarks based on the porta
ven. But, as Fasd et d.? showed, this delineation crestes too many errors and must be revised. Moreover,
their results show that only procedures that account for the entire porta venous digtribution pattern will
result in correct depiction of the anatomic redlity.

From this concluson, we defined an anatomical segmentation as the influence area of a set of portd
vein branches. According to this definition, the anatomical segmentation becomes a labeling program that
congsts of merging portad branches in two, five or height sets with respect to hemiliver, Goldsmith and
Woodburne's or Couinaud's segmentation (Fig. 13). Selle et a.™ dready propose this kind of definition,
but their merging method consds in conddering the eight mgor sub-tree into the portal networks. Thus,
their system will not be able to correctly label a patient’s portal vein after a segmentectomy, or a patient’s
portal vein with some topological exception as defined by Couinaud®.
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Figure 13. The three anatomical segmentations with respect to hemiliver (right and left liver), Goldsmith & Woodburne
(lateral, paramedian and dorsal right or left segments) and Couinaud (numbers).

We chose to define a new merging system that uses anatomica knowledge trandated into topological,
geometricd and morphologica condraints. This sysem firdly separates the liver into two hemilivers,
secondly separates each hemiliver in three segments (paramedian, lateral and dorsdl), and at last separates
severd ssgments into subsegment  according to the Couinaud's definition. Each of these labdings is
performed respectively with the same procedure. Firstly, we compute the influence area in the liver of dl
branches. We then obtain one volume of hepatic tissue per branch that corresponds to the more precise
anaomica sub-segmentation. But, this segmentation is too precise for surgeons, and does not correspond
to ther usud anatomical segmentation. We then merge these areas by giving the same labd to branches
having the same origin in the portd tree if the rexulting volume of the mergng aess verifies some



condraints trandated from definition of anatomica segmentation. These condraints reduce the number of
subsegments without merging two anatomica segments with respect to the usua definitions. In order to
give to each subsegment the same labd as that of the usud definitions, we regiser an initid segmented
model onto the patient’s liver using the Montagnat and Delingette's method®. We thus obtain a totaly
automatic labding and anatomical segmentation of the patient’s liver with respect to the three most
commonly used anatomica definitions.

4. RESULTS

In order to have a quantitative and objective estimation of the quadity of our method, we have performed a
vaidaion by comparison of our result with the manud ddinegtion of a radiologist. Firdly, where a
manua delinegtion requires more than 11 hours to ddineate porta vein and lesons, our method takes
only 15 minutes. Comparison of 5 patients shows that our method provides a precison of 2mm for liver
delinegtion and of less than 1-mm for other anatomicd and pathologicd dructures. The use of a
deformable liver mode obtains good ddinegtion of livers containing large sub capsular tumors that
cannot be delinested with current methods. But in five cases among the 35 CT-scans, corresponding to
patients with atypicd liver shape or after ssgmentectomy, the method was not able to provide a good
automatic result, due to liver contours being too far from the initid moded. An interactive modification of
the shgpe is then necessary which may then obtain acceptable results, but the time of computation then
necessarily increased.

Our autométic leson segmentation has reveded dl hypo-dense lesons over 3-mm of thickness in dl of
the CT scans evaluated (as compared to the 5-mm usudly required by the radiologist). Last, our results
show that the autometic porta vein labding provides exactly the same result as a manua one, including
the case of a patient after a ssgmentectomy.

From these firg resultss we have then verified on 6 different patients undergoing surgery that
recongruction results of our method before the surgery could precisdy guide and improve the surgica
procedure. Indeed, in one of the 6 cases, a amdl leson of 5.2-mm of thickness, detected and delineated by
our method but missed by the radiologidt, totdly modified the initid planning (Fig. 14). In two other
cases, our anatomica segmentation has accurately locdized the patient's tumor to a more precise
anatomicd segment than the initid preoperative dandard landmark-based anatomicd segmentation (Fig.
15). This ds0 resulted in a modification of the surgica planning vdidated intra-operatively and post-
operatively through an angpath control. In al cases, dlinicd vdidations during surgery have shown tha
results obtained by our automatic 3D segmentation were correct and add useful information that decreases
the time for intra- operative localization of anatomica and pathological structures,

Figure 14. Automatic delineation of tumors shows three small tumors not detected by the radiol ogist
(the encircle ones). Right image shows a zoom onto the left 6-mm thickness tumor.



Figure 15. Automatic delineation of atumor and the anatomical segments: The result shows that the segment 8
contains a part of the tumor which was initially not visible from the CT -scan but verified after surgery.

5. CONCLUSION

The origindity of this work lies in the full automation of the methods due to origind trandation of
anatomicad knowledge into topological and geometrical condraints. The use of deformable modds alows
thus automdic ddineation of livers with large sub-cgpsular tumors that classca methods do not
delineate, but requires interactive modifications for atypica liver shapes (about 15% of cases). In dl other
cases, the method offer a fully automatic 3D recondruction tool for liver surgery, providing not only
anaomicd and pathologicd dructures visble in the CT scan, but dso invisble functiond information. It
is thus the fird complete tool segmenting automaticaly and Smultaneoudy skin, bones, lungs, kidneys,
liver and its tumors, vessals and anatomica segments.

As the firg clinicd vaidaion seems to show, these origina tools could provide red assstance in hepatic
aurgicd plaming. Indeed, these techniques detects tumors from only 3 mm of thickness (7 mm less than
a cdasscd radiologicad andysds). It dso ads in the intra-operative locdization of dtructures (tumors,
anatomica segments).

We need now to peform a larger medica validation in order to confirm these encouraging results and to
improve the liver ssgmentation in order to have an automatic sysem working with atypica liver shapes.
The next step of our work will be then to per-operatively superimpose these 3D information onto the red
patient, providing thus an augmented redlity system for liver surgery.
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