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Abstract

We propose three different physical models based on linear elasticity theory and finite-
elements modeling that are well-suited for surgery simulation. The first model combines pre-
computed deformations to deform in real-time large size meshes but does not allow any topo-
logical changes to the mesh. The second model is similar to the spring-mass models where
volumetric deformations and cutting operations can be simulated on small size meshes in real-
time. Finally, we have developped a third method combining the previous two solutions into a
hybrid model thus allowing the simulation of deformations and cutting on complex anatomical

structures.



1 Introduction

1.1 Minimally Invasive Surgery Simulation

The most recent major advance in the craft of abdominal surgery was the development of
laparoscopic surgery. In this type of surgery, abdominal operations such as hepatic surgery
are accomplished through small incisions rather than a large one that might be a foot long.
The abdomen is blown up with gas so that there is open space inside. A video camera is
introduced into the abdomen through one of the small incisions. The video image is magnified
and transmitted to a high resolution monitor, allowing the surgeon to see the abdominal anatomy
with great clarity.

If minimally invasive surgery drastically reduces the patient morbidity, it also significantly
degrades the surgeon access to the patient body. More precisely, the lack of tridimensional
perception and the necessity for a new and specific hand-eye coordination are the main impedi-
ments that a video-surgeon should overcome. In this scope, there is a large interest in developing
video-surgery simulation software for providing a comprehensive gesture training system. The
growing interest regarding surgical simulators is also related to the new perspectives offered by
the increase of computer power. Although this is an important factor in the development of a
real-time simulation system, the current performances of computers! does not allow for real-time
realistic? simulations: the development of new algorithms is still mandatory.

There are several key problems in the development of a surgical simulator (Ayache et al.,
1998). First of all, geometric and physical models of anatomical structures must be defined. The
geometry can be obtained from various medical image modalities, while the deformable nature
of the soft tissues are measured through biomechanical studies. Furthermore, all computation
must be performed fast enough to sustain real-time interactions. In the framework of surgical
simulation, real-time means that visual and haptic feedback can be reproduced at a correct
frequency. To support the user with visual feedback, a deformable model has to be updated in
less than 20 ms. To support haptic feedback, the computation time must typically be ten times
smaller. Being able to provide surgical realism at interactive rates of simulation is the most

challenging problem in surgical simulation.

1.2 State-of-the-art in Soft Tissue Modeling

The pioneering work of Terzopoulos (Terzopoulos et al., 1987), Waters (Waters, 1992) and Platt

(Platt and Barr, 1988) have shown the advantages of physically-based models over previous com-

'We do not consider the use of super computers or parallel machines.
By "realistic simulation" we mean that the perceptual information transmitted to the surgical trainee is accurate

to avoid the introduction of any incorrectness in the training process.



puter animation techniques. In the area of surgery simulation, a large variety of these models
have been implemented as described in a survey on this topic (Delingette, 1998). For instance,
great interest has been given to spring-mass models due to their simplicity of implementation
and their relatively low computational complexity (Baumann and Glauser, 1996; Meseure and
Chaillou, 1997; Kuehnapfel and Neisius, 1993). Kuehnapfel and Neisius (Kuehnapfel and Nei-
sius, 1993) present a simulation of endoscopic surgery based on a surface spring-mass model.
Although in this case the interactions are driven by instruments with motion sensors, no force
feedback is provided. The “chain-mail” system developed by Gibson et al. (Gibson et al., 1997)
takes into account the volumetric nature of organs with a deformation law derived from a
spring-mass model. This approach is computationally very efficient, but it is not well-suited for
interactive visual display and for identifying material parameters.

On the other hand, several authors have based their soft tissue models on continuum me-
chanics theory, and the use of elastic solids is widely described in the literature (Bainville et al.,
1995; Song and Reddy, 1995; Chen and Zeltzer, 1992; Speeter, 1992). Finite element methods
are often considered to be less efficient than spring-mass models. However, there is a growing
trend in using finite element soft tissue models for real-time computation, as shown for instance
by Szekely et al. (Szekely et al., 1998) who simulate the deformation of a non-linear elastic
material using a parallel processing architecture.

Several modifications and simplifications may be introduced to reduce computation time. In
particular, linear elasticity has often been used as a trade-off between biomechanical realism and
real-time computation. In (Bainville et al., 1995), Bainville defines the evolution of a set of rigid
and deformable solids under the influence of various forces. In this case, the deformation law is
represented by a hyper-elastic quasi-static model, associated to a finite element method for the
numerical resolution. Unfortunately, the computation times makes this approach unpractical
for real-time surgical simulation.

Also, in (Bro-Nielsen and Cotin, 1996), Bro-Nielsen et al. use a condensation technique (Zienkiewicz,
1977) in order to reduce the computation time in the deformation process of a linear elastic mate-
rial. With such an approach, the computation time required for the deformation of a volumetric
model can be reduced to the computation time of a model only involving its surface nodes.
In (Cotin et al., 1999), we have also proposed a method for real-time interaction with a volu-
metric deformable model of an organ. This method, based on a set of pre-computed equilibrium
solutions is very efficient but does not allow any topology changes, as needed to simulate tissue
cutting.

Indeed, methods based on stiffness matrix inverse pre-computation cannot be used to sim-
ulate soft tissue cutting or tearing, since the calculation cost of updating these matrices is too

high (Cotin, 1997). Few authors have proposed a method for simulating tissue cutting in the



framework of surgery simulation. Song and Reddy (Song and Reddy, 1995) have described a
technique for cutting linear elastic objects defined as finite element models. However, this tech-
nique was only applied to simple two dimensional objects. Another general approach used by
several researchers consists in using spring-mass models. By construction, the underlying geom-
etry of these models can easily be modified to represent topology changes. However, spring-mass
models are discrete representations of a continuum and the update of stiffness and mass values

— in order to have a realistic behavior after a cutting operation — is hard to handle.

1.3 Overview of the proposed approach

In this paper, we propose a new method for deforming and cutting soft tissue models with a large
number of vertices. Our approach is based on two separate soft tissue models: the first model,
previously described in (Cotin et al., 1999), can be deformed in an extremely efficient manner
(less than 3ms of computation time for our liver model). Then we introduce a new soft tissue
model, called tensor-mass model, that is defined as a linear elastic dynamic mesh that can be
cut and deformed with a computational complexity linear in the number of nodes. This model
is as simple to implement and as efficient as spring-mass models, but it is based on continuum
mechanics and linear elasticity theory. Its compact data structure makes it particularly well-
suited for the simulation of tearing and cutting. Finally, in order to use large soft tissue models,

we propose to combine these two approaches into an hybrid elastic model.

2 Linear elasticity

The physical behavior of a soft tissue model may be considered as linear elastic if the displace-
ments applied to it remain small (Fung, 1993; Maurel et al., 1998) (less than 10% of the typical
object size); as the displacements increase, the linear elastic approximation becomes less valid.
Although it is a major drawback of linear elasticity, the integration of force feedback in the sim-
ulation loop allows us to control the range of deformation. When the surgical trainee deforms
the virtual organ, the force applied in its hand will increase proportionally to the deformation,
thus preventing large deformations. Consequently, the displacements remain reasonably small.
Another interest of linear elasticity is the possibility to compute any mesh deformation from the
knowledge of a finite set of elementary deformations, as we will see in the next section.

First, let’s define a reference volumetric anatomical model Miy,itia1 corresponding to the
organ in its rest position. Under external constraints, for instance a surgical instrument, the
anatomical model Mj,isia1 will deform. We represent this deformation — the difference between
the current shape and the rest shape — by a displacement vector U(x,y, 2) for (x,y, 2) € Minitial
and we write Mdeformed = Minitia1 + U(2,y, 2). The displacement vector U(z,y, z) has three
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components:
u(z,y,2)
U(z,y,2) = 4 o(z,y,2)
w(z,y,2)

The displacement vector U(z,y, 2) does not characterize the deformation of the anatomi-
cal model. For instance, under a translation T of the model M, the displacement vector is
U(z,y,z) = T, but the model does not undergo any deformation. For a linear elastic mater-
ial, the elastic energy Wgysiic measuring the amount of deformation of Mgeformed, is defined
as (Ciarlet, 1987):

Wkiastic = %(tTE)2 + utrE? (1)

where

e the 3 X 3 symmetric matrix E (known as the Green-St Venant strain tensor) is defined as:
1 T
E=§(VU+VU ) (2)

e ) and p are the Lamé coefficients characterizing the stiffness of a material.

Equation (1), known as Hooke’s law, shows that the elastic energy of a deformable object is
a quadratic function of the displacement vector gradient.

In the following sections, we will place us in the framework of the finite element method and
assume that the object is represented by a conformal tetrahedral mesh. Then we can compute,
at each node i, a force F; corresponding to the derivation of the elastic energy with respect to

the node position P;:

_ OWElastic
Fi=op, ©

Because the elastic energy is quadratic with respect to the gradient of the displacement
vector, forces F; are linear functions of the displacement vectors of each node P;. By considering
the principle of least action, the state of equilibrium of the finite element model is reached when
the elastic energy is minimum. Furthermore, it can be shown that minimizing the elastic energy

of a three-dimensional object requires the solution of a linear system of the form:
Klu=f

where :

o [K] is the rigidity matrix describing both the topology and stiffness of the discrete repre-

sentation of the object,
e u is a vector that represents the displacement of all nodes,

o f is a vector that combines all external forces and boundary conditions.



In sections (3) and (4) we study successively a quasi-static and a dynamic model as a way
to compute the deformation of an elastic object and the forces resulting of this deformation.
Finally, we show in section (5) an hybrid approach, well suited for surgery simulation, which

combines the advantages of each model.

3 Quasi-Static pre-computed Linear Elastic Model

As stated in the introduction, surgical simulation requires visual feedback and, eventually, force
feedback, i.e. an update frequency up to 50Hz for the display and 300Hz for the forces®. When
solving a problem of linear elasticity with a finite element method, the number of mesh vertices
has a direct impact on the size of the matrices involved in the linear system [K]u = f. This
implies that even using more powerful computers, only deformable models with a small number
— several hundreds — of vertices could be simulated. Most anatomical structures have a rather
complex geometry and cannot be accurately described with such a limited number of vertices.

In order to speed up the interaction rate, we take advantage of the following inherent prop-
erties of linear elastic materials: the linearity and the superposition principle. We give here only
a very general description of the method, an extensive description can be found in (Cotin et al.,

1999). We first introduce a volumetric deformable model with the following properties:

1. The biomechanical properties of the model are approximated by a linear elastic law.

2. This model deforms under some boundary conditions expressed in terms of constrained

displacements and forces.

3. The model evolves in a quasi-static state: the position of the model at time t 4+ 1 is the
solution of the static problem with boundary conditions given at time ¢. This assumption
of quasi static evolution, made in many situations (Bainville, 1996; Kaiss, M. and Le Tallec,
P., 1996; Bro-Nielsen, 1996; Gourret et al., 1989), considers as negligeable the effect of the
acceleration and velocity in the computation of the deformation. This assumption has
several advantages, in particular a simplification of the problem to be solved but also a
suppression of the oscillations in the vicinity of the equilibrium as well as a reduction of
the complexity of the processing of the contacts between objects. However, it is unable
to exhibit any visco-elastic behavior since inertia is not taken into account. Consequently,
the soft tissue model immediately reaches its rest position when all the external forces are

released, without exhibiting any oscillations.

3The update frequency for haptic feedback depends on the stiffness of the object that is manipulated: the stiffer
the object, the higher the frequency.



Figure 1: Deformation of plate represented as a pre-computed linear elastic model : (left) initial position

(right) deformed position after imposing a displacement at the contact point with the stick.

Considering the above statements, interactive rates of deformation can be obtained in a

two-step process:

1. A pre-processing stage is used to compute a set of elementary deformations of the model.

2. Any deformation can be computed in real-time as a linear combination of the pre-computed
set of elementary deformations. The computational complexity is linear in the number of

surface nodes.

We use an iterative method — conjugate gradient with or without preconditioning — to solve
each linear system. During the simulation, very limited computations are required to get the
exact deformation of the anatomical object. An update rate of 500Hz has been reached with
a mesh having nearly 8000 tetrahedra on a 233 Mhz DEC Alphastation. We have developed a
first prototype of an hepatic surgery simulator (Cotin et al., 1996; Ayache et al., 1997) including
a force feedback device, based on this linear elastic soft tissue model.

The pre-processing stage can take between a few minutes and several hours depending on
the size of the model and on the desired level of accuracy. This is not a problem since the
result of the pre-processing stage can be saved for further simulations and therefore needs to be

performed only once for a given organ model.

4 Dynamic linear elastic model or tensor-mass system

4.1 Motivations

The previous approach is not suited to the simulation of cutting or tearing which requires to mod-

ify the model stiffness matrix. Indeed, to keep a realistic deformation model, the pre-computed



elementary deformations are only valid for a given configuration of the stiffness matrix. When
this matrix is modified, it is necessary to recompute these elementary deformations through a
new pre-processing stage which is far too computationnally intensive for real-time interaction
even with meshes having a few hundred nodes.

An alternative we propose in this section is to consider the evolution of a physical dynamic
model which can be approximately solved by an efficient real-time iterative approach. This
approach allows dealing with meshes of reasonable size — more than 2000 nodes for a computation
time less than 50 ms and therefore a frame rate of 20Hz — , and provides a good approximation
to the exact static equation.

The physical model is based on the Newtonian law of motion of each mesh point P;:

&P, __dP;
Taz T ar

where F; is obtained from the derivation of the elastic energy given by equation (3).
In the sequel of this section, we discuss the computation of F; in the framework of the finite
element method and numerical integration, followed by a comparison with the spring-mass

formulation and a presentation of simulation results.

4.2 Definition of a dynamic linear elastic finite element model

We assume that we have a conformal tetrahedral mesh — as defined in finite element theory —
describing the geometry of an anatomical structure. We denote Mjpuitia the mesh at its rest
position and P? the initial position of each vertex. We denote P; the vertex position of a
deformed mesh Mgeformed- The computation of the linear elastic force acting on each vertex

can be decomposed into three steps:
1. We first define the interpolation equations that give the displacement vector at a point
(z,v, z) inside a tetrahedron T; as a function of the 4 displacement vectors at each vertex.
2. We write the elastic energy of a tetrahedron as a function of these 4 displacement vectors.

3. We compute the elastic force F; applied to the vertex P;

4.2.1 Displacement Vector equation

Given a deformed model Mgeformed, We define the displacement vector for each point of the
mesh by linearly interpolating the displacement PIP; of the vertices inside each tetrahedron.
This amounts to choosing a linear finite element on each tetrahedron with C° continuity of the

displacement vector across the domain.



More precisely, if we write T; the tetrahedron defined by the four vertices POT,-(]') ,j=0,...,3,

in their rest position, then the vector displacement at a given point x = (z,y, z) is defined as:

3

7=0

where oij" (x) are the barycentric coordinates of the point x inside T;. In Appendix A, we show
that the shape functions afi (x) are linear with respect to the position x and that its position
derivative has a simple geometric meaning;:

da M7
ox — 6V(Ty)

where M ]T is the normal vector of the j** triangle in T; and V(T;) is the volume of T;. The
strain tensor E(x), defined in equation (2), is constant inside each tetrahedron since it is related

to the derivatives of the displacement vector.

4.2.2 Elastic energy

If we associate with each tetrahedron T; its linear elastic properties, i.e. the two Lamé coef-
ficients A; and p; then, using equation (1), we can express the elastic energy Wgiastic(T;) of
the tetrahedron T; as a quadratic function of the coordinates of {P;(;)} (see appendix B for
more details). The total elastic energy Wgigstic(Madeformed) required to deform Mipigia into

M eformed 1S the sum of the elastic energy associated to each tetrahedron.

4.2.3 Linear Elastic Force

Given the expression of the elastic energy, the force F; applied to a vertex P; is defined by:

aI/V]'Ela.s'tic (Mdeformed) 8WElastic (T])
Fi = — = R S
P, 2~ P,
T;€L(1)
where L(7) is the set of tetrahedra adjacent to vertex P;.

Within the tetrahedron Tj, the force Fr,(;) applied on vertex Pr;(;) takes the following form:

3
Fr,i) = Z [Kﬁi]Pg"i(k)PTi(k)
k=0

where [K;l;c] are 3 x 3 stiffness matrices or tensors. Given a tetrahedron 7; and its four vertices
P30y PT(1)s P 2)» P, (3), Wwe compute the six tensors (K] as follows:
1

(K] = 36V (1) ()\iMZ’i (M) + M (M) + pa(M M) [Id3x3]) (5)



with

1 0 0
Tdsxs]=10 1 0
0 0 1

In equation (5), M1 (MJT)T corresponds to the tensorial product between vector M}* and
vector M]T’ Moreover, equation (5) induces that [KEJ] = [K;.l;(‘]T, which is equivalent to state
that the rigidity matrix is symmetric.

It is important to notice that these stiffness matrices depend only on the material character-
istics within a tetrahedron — described by the Lamé coefficients A; and p; — and the geometry
of the tetrahedron T; at its rest shape. For a given vertex P;, the elastic force F; is the sum of
all contributions Fr,(;) from all adjacent tetrahedron T;:

F, = [Ki|P{P;+ Y [K;PIP; (6)
JEN(P;)
where [Kjj] is the sum of tensors [K:l:J] associated to the tetrahedra adjacent to P;, [Kj;] is the
sum of tensors [K:f’] associated to the tetrahedra adjacent to edge (7,j) and N(P;) is the list
of P; neighbors.

4.3 Data Structure

Given a tetrahedral mesh of a solid — in our case an anatomical structure — we designed a data
structure that describes the set of vertices, edges and tetrahedra of the mesh. For each vertex,
we store all adjacent tetrahedra, the current position P;, the rest position P{ and the tensor
[Kii]. For each edge, we store the two adjacent vertices as well as the tensor [Kj;] , as sketched
in figure (2). Finally for each tetrahedron, we store a reference to its four vertices and its six
edges as well as the Lamé coefficients \;, u; and the four vectors M; defined in equation (10).

See appendix (A) for more details.

4.4 Numerical Integration

We refer to the Newtonian differential equation (4) as the equation governing the motion of our
linear elastic model. This equation is related to the differential equation found in continuum
mechanics (Bathe, 1982):

MU +CU+KU =R (7)

Following finite elements theory, the mass matrix M and damping matrix C are sparse matrices
that are related to the physical properties of each tetrahedron. In our case, we consider that M

and C are diagonal matrices, i.e. that mass and damping effects are concentrated at vertices.
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Figure 2: Representation of the data structure of a tensor-mass model. The tensors are stored at each edge

and each vertex. The symmetry of the rigidity matrix enables to store only one tensor per edge.

This simplification called mass-lumping decouples the motion of all nodes and therefore allows
writing equation (7) as the set of independent differential equations (4) for each vertex.

Furthermore, we choose an explicit integration scheme where the elastic force is estimated
at time ¢ in order to compute the vertex position at time ¢ + 1:

m; Vi t+1 _ 2m; m; Vi i1
_ ) pttl _ F, Pt — p!
(At2 2At) i MVNTRE (At2 + 2At) i (8)

The key advantage of this explicit integration scheme is that no rigidity matrix inversion is
required for updating each vertex. After modifying the mesh topology, equation (8) is used
to update the vertex position without any additional computation besides the update of local
tensors [K;;] (see section 5.5). On the other hand, the use of an implicit integration scheme
would have entailed the inversion of the stiffness matrix every time the mesh topology would
have been altered.

Implicit schemes are unconditionally stable which implies that large time steps may be used.
However, these schemes require either to inverse a sparse matrix or to solve at each iteration
a linear system of equations, as proposed in (Baraff and Witkin, 1998). On the other hand,
explicit schemes are only conditionally stable and therefore they tend to converge more slowly
than implicit schemes. In order to have computation time smaller than 20ms, we have to use
explicit schemes since the time for solving a sparse linear system is too large by at least one
order of magnitude. For instance, computing one iteration step with the implicit scheme requires
from 10 s to 1 mn depending on the stiffness material when using a preconditionned conjugated
gradient method on a typical liver model. A discussion about explicit versus implicit schemes
is also proposed in (Bro-Nielsen, 1998).

In this explicit scheme, the critical time step — i.e. the higher time step that can be used

— is related to the highest eigenvalue of the rigidity matrix and to the local mass and damping
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values (see (Bathe, 1982) for more details). To optimize the time step, we use constant values
of the mass and damping values. Indeed, in (Bro-Nielsen, 1998), Bro-Nielsen proposed to use
mass and damping values proportional to the volume of each tetrahedra. However this approach
tends to create ill-conditioned iterative schemes (with low time-step) when dealing with meshes
having tetrahedra of different size. In our approach, the choice of the time-step is only related
to the stiffness of the soft tissue material and is independent of the elements size.

The speed of convergence is directly related to the time step and the damping values used
in equation 8. Optimal damping values may be experimentally obtained in order to minimize
the number of iterations to reach the equilibrium state. Furthermore, this number of itera-
tion is inversely proportional to the time step At. Finally, we use a fourth order Runge-Kutta
method (Press et al., 1991) for discretizing the time domain instead of the Euler method de-
scribed in equation 8. This method requires to evaluate four times the forces applied to P;(t)
in order to compute the next position P;(t + 1). In spite of this extra computational cost, our
conclusion is that the Runge-Kutta method allows using larger time steps — about ten times
larger — than the Euler method.thus leading to a speed-up factor of about two. This is partic-
ularly interesting when deforming stiff material which requires higher frequency computations

for realistic haptic feedback.

4.5 Simulation of Cutting and Tearing

One of the basic tasks in surgery simulation consists in cutting and tearing soft tissue. With
the dynamic linear elastic model, these tasks can be achieved in real-time.

We simulate the action of an electric scalpel — a bipolar cautery instrument — on soft tis-
sue by successively removing tetrahedra at places where the instrument is in contact with the
anatomical model. This approach implies that for realistic simulation, the tetrahedra must be
relatively small at the regions where the cutting may occur. Furthermore, in order to keep
the mesh conformal, additional tetrahedra may be automatically removed after checking the
local vertex and edge adjacency. Rather than removing tetrahedra, more sophisticated cutting
operations could be performed, for instance by locally remeshing around the contact zone.

When a collision between the instrument and a tetrahedron is detected, the local deformation
tensors associated with the tetrahedron are computed and then subtracted from the current
deformation tensors at the edges and vertices of the tetrahedron. Since the update of the
tensors is only local, this is performed in a very efficient way. For instance, when removing the
tetrahedron Ty, the 6 edge tensors [K ;] and the 4 vertex tensors [K ;] are updated by removing

the tensors [Kﬂj] and [K]T]'] associated with T;. More precisely, the following ten operations are
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performed :
(K] = (K] = [KF] (K] = K] — [K;]

Finally, we update the list of displayed triangles if a tetrahedron is located at the volumetric
model boundary. By locally updating tensors, the tissue has exactly the same behavior as if
we had removed the corresponding tetrahedra at its rest position. Because of the volumetric
continuity of finite element modeling, the deformation of the tissue is continuous and appears
very natural during the cutting.

In addition to cutting, the tearing of soft tissue can be simulated. The tearing occurs at
places where normal stress and shearing are too high. The basic algorithm is to compute a
local deformation measure for each tetrahedron. If this criterion is greater than a threshold,
the tetrahedron is removed and the tensors are locally updated. We have implemented three
geometric criteria for detecting highly deformed tetrahedra. These criteria are the relative
variation of volume, the mean relative elongation of the six edges and the maximum relative

elongation of the edges.

4.6 Spring-Mass Model versus Tensor-Mass Model

In a classical approach, a vertex P; in a spring-mass system, is submitted to an elastic force:

Fo= S k(PR - 1) mpEh ©)
JEN(P:) .
where N(P;) is the set of vertices P; adjacent to P;, k;; is the stiffness coefficient between
vertices P; and P, l?j is the rest length between P, and P;.
We have shown that every vertex in our dynamic linear elastic model is submitted to the force
of equation (6). Because of the similarity between the two approaches, we have coined the term
tensor-mass in order to describe this dynamic linear elastic model.

By comparing equations (6) and (9), it is clear that both dynamic models have the same
computational complexity which is linear in the number of edges. In practice, we were able to
reach an update frequency of 40 Hz * with a tetrahedral mesh having 760 vertices and about 4000
edges and similar results were obtained for a spring-mass system. The tensor-mass model does
not require any square root evaluation, but slightly more information must be pre-computed
than for spring-mass systems.

However, both approaches substantially differ in terms of biomechanical modeling. Spring-

mass systems constitute a discrete representation of an object and their behavior strongly depend

on the topology of the spring network. When a spring is removed or added it may change

4These computing times where obtained on a 233 Mhz DEC Alphastation.
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drastically the elastic behavior of the whole system. Conversely, our finite elastic model is a
continuous representation of the object and its behavior is independent of the mesh topology
(it mostly depends on the mesh resolution). This implies that when the mesh is cut, continuous
and natural behavior of the tissue is simulated.

Because all biomechanical data related to biological soft tissue are formulated as parame-
ters of the continuum mechanics (such as Young modulus or Poisson coefficients), it is a priori
difficult to model realistic soft tissue deformations with a spring-mass system. However, sev-
eral authors (Jean Louchet, 1995; Deussen et al., 1995) have developed genetic or simulated
annealing algorithms to identify springs parameters (stiffness and damping) from a set of known
deformations of an object.

Finally as previously mentioned, the linear elastic model is only valid for small displacements.
For instance, if a rigid transformation is applied to the rest shape Min;tiai, then the forces
applied to all vertices will not be null. On the opposite, a spring-mass model under the same
displacement would not deform, since the length of the springs are preserved under a rigid

transformation. The difference between these three soft tissue models is summarized in Table 1.

Pre-computed | Tensor-Mass Spring-Mass
Computational efficiency +-++ + +
Biomechanical Realism + + -
Cutting simulation - ++ +
Large displacements - - +

Table 1: Comparison between the three soft tissue models: pre-computed quasi-static, tensor-mass

and spring-mass models.

4.7 Examples

We present two examples of deformations generated by a tensor-mass model. Figure (3) shows
a volumetric plate being cut while its four corners are fixed. The cutting consists in selecting a
set of tetrahedra interactively with the mouse (figure 3 (a)) and then updating the local tensors
surrounding the removed tetrahedra. As more and more tetrahedra are removed, one can see
that the plate is deforming. This is due to the fact that the overall stiffness of the material is
modified by the cutting operation.

In figure (4), we show a cylinder that is deformed under a gravity force. Based on the
relative change of volume, the tearing algorithm removes automatically the tetrahedra where

the relative change of volume becomes greater than a given threshold, thus exhibiting a fracture.
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Figure 3: Cutting of a plate by removing tetrahedra. The plate deforms itself during the cutting operations
because each operation modifies the stiffness matrix. The plate model consists of 759 vertices and 2212

tetrahedra.

The cylinder is composed of 248 vertices and 889 tetrahedra.

5 Hybrid elastic model for surgery simulation

5.1 Motivations

We have previously described two linear elastic models that have the following properties:

1. The quasi-static pre-computed elastic model is extremely efficient but does not allow topol-

ogy change (cutting, tearing) (see section 4).

2. The dynamic elastic model (or tensor-mass model) requires more computation but autho-

rizes topology change (see section 5).

In this section, we propose to combine these two approaches in order to optimize the trade-off
between computation time and visual realism of the simulation.
The key idea consists in a separate modeling of two different types of anatomical structures

that usually appear in a surgical simulation:

e The anatomical structures that are the target of the surgical procedure. On these struc-

tures, tearing and cutting need to be simulated. In many cases, they correspond to patho-
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Figure 4: Fracture of a cylinder under the action of a gravity force.

logical structures and only represent a small subset of the anatomy that needs to be

visualized during the simulation.

e The anatomical structures that only need to be visualized or eventually deformed. They
contribute to the visual realism of the simulation but are not submitted to any surgical

action.

The former type of anatomical structures are good candidates for being modeled as tensor-
mass models whereas the latter should be modeled with a pre-computed linear model. However,
this approach is really optimal when different parts of the same anatomical structure can be
modeled either as a pre-computed elastic model or a tensor-mass model. This is a way to decrease
the number of tensor-mass elements to its minimum and therefore to increase the interactivity
of the overall simulation.

In the next sections, we describe how to connect these two linear elastic models together in
order to represent a global deformable object. We have called hybrid elastic model this combined

representation.

5.2 Hybrid elastic model

Let’s consider a hybrid elastic model Mpypriq composed of two different types of elements. We
denote as Maynamic the set of tensor-mass elements and we denote as Mquasi—static the set
of pre-computed linear elastic elements. Therefore a hybrid elastic model may be composed of
several pieces of tensor-mass models each corresponding to a structure that plays a role in the
surgical procedure. The model Maynamsc is connected to Mguasi—static by a set of common
vertices or connection nodes. These connection nodes define additional boundary conditions for
each model. As seen in figure (5.2), the two models may not be completely connected along

their common boundaries. Actually, a way to reduce the number of tensor-mass elements, is
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Figure 5: (a) Definition of the connection nodes in a hybrid elastic model; (b) Hybrid elastic model

with eight connection nodes.

to associate a fine pre-computed elastic model with a coarse tensor-mass model. As shown in
figure (5.2-b) , this incomplete connection entails some visual artifacts due to the non-continuity
between the two parts. However, if the connection part between the two elastic models is not
an important visual cue, a different mesh resolution can be used.

Since both linear elastic models follow the same physical law, the combination of these two
models should behave exactly as a global linear elastic model. To achieve this goal, the additional
boundary conditions imposed at the connection nodes must be consistent in terms of forces and

displacements for both models.

Boundary Conditions Quasi-static Pre-computed model | Tensor-Mass Model
Applied Forces No Yes
Constrained displacement Yes Yes

Table 2: Natural boundary conditions for the quasi-static and dynamic linear elastic models.

We have shortly summarized the “natural” boundary conditions for both elastic models in
Table (2). Since the pre-computed model only supports displacement boundary conditions,
Moaynamic Will constraint the displacements of the connection nodes whereas Mquasi—static aP-
plies a force on the connection nodes.

Figure (6) summarizes the computation loop of a hybrid model. The pre-computed elastic
model Mguasi—static is updated based on the imposed displacements on its boundary. These
displacements arise from the user interaction — action of a surgical tool for instance — and from

the motion of the connection nodes associated with a tensor-mass mesh. At this stage, the
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allowing for user interaction.

displacement of every surface node of Mguqasi—static 18 computed as well as the resulting force
at each constraint node - including the connection nodes.

After updating Mquasi—static, We update Maynamic based on the forces applied on the con-
nection nodes and the displacements imposed by the user interaction. New positions and forces
are computed for every node including the connection nodes. Again, the updated position of
the connection nodes constitute new displacement constraints for Mquasi—static-

In figure (7), we present an example of a hybrid cylinder model undergoing a deformation
under the action of a gravity force. The figure shows the different steps of the deformation
process and, on the right, the steady state reached by the model. At the equilibrium the forces
applied to all connection nodes are null and the displacement vector stabilizes to a constant
value. In this example, both quasi-static and dynamic models have the same elastic properties
since their governing equations use the same Lamé coeflicients. We have then verified that the
steady state reached by the hybrid model is the same as the steady state that would have reached

a single quasi-static or dynamic elastic model.

5.3 Surgery simulation on hybrid elastic models

To demonstrate the efficiency of our approach for performing surgery simulation, we have chosen
to simulate an hepatectomy. An hepatectomy consists in removing one of the eight anatomical
segments — Couinaud segments (Couinaud, 1957) — of a liver. In this example the segment

number six has to be removed. The shape of the liver was segmented using a deformable
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Figure 7: Deformation of a hybrid elastic model under a gravity force: the upper cylinder consists
of a pre-computed linear elastic model whereas the lower part is a tensor-mass model. The leftmost

figure corresponds to the initial position of the mesh and the rightmost figure to the steady state.

simplex mesh (Montagnat and Delingette, 1997) on a helicoidal CT-scan image of the abdomen.
This segmentation generates a triangulated surface. Then a tetrahedral mesh has been created
from this triangulation using the Simail (Simail: product of Simulog S.A. - 1, rue James Joule
- 78286 Guyancourt Cedex - France, ) commercial software. The resulting volumetric mesh is
composed of 1537 vertices and 7039 tetrahedra — see figure (8). About 18% ( 280 vertices and
1260 tetrahedra) of the liver hybrid mesh is modeled as tensor-mass system and the remaining
is defined as a pre-computed linear elastic model.

The surgery simulator consists of two force-feedback systems simulating the elongated sur-
gical instruments used in laparoscopy. These force-feedback devices are plugged into a PC
computer that is linked to a powerful computer (SGI Onyx2 Infinite Reality with 2 processors)
via an ethernet network. On that computer, the collision detection is performed as well as the
animation of the hybrid elastic model. The collision detection algorithm and some other details
on the hardware architecture of the simulator can be found in (Cotin et al., 1999). The link
between the two computers is only used to transmit force or position information at a high
speed.

In figure 9, we show different stages of the hepatectomy simulation. With these two virtual
instruments, it is possible to push any part of the liver (either represented with a quasi-static or

a dynamic model) and to cut any elements of the dynamic model located in the bottom part of
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Figure 8: Top: the hybrid liver model seen in wireframe. The upper mesh corresponds to the
pre-computed quasi-static elastic model whereas the bottom mesh corresponds to the tensor-mass
model. Bottom : the hybrid liver model seen in flat shading. The connection nodes ensure the

visual continuity between the two elastic models.



the screen. The first six pictures show the deformation of the model when the tool collides with
the dynamic model. Since both models have the same elastic characteristics, it is not possible
to visually distinguish the interface between the two different elastic models. In the current
implementation, once the tool collides with the mesh, it stays connected to the same triangle
during the collision, thus corresponding to a surface with infinite friction.

The last six pictures show the cutting of the liver segment by removing additional tetrahedra.
The cutting occurs for the tetrahedron being collided by the tool. One can notice that each part

of the hybrid model naturally deforms itself during the resection simulation.

6 Conclusion

We have presented three different soft tissue models based on linear elasticity. The first model,
introduced in (Cotin et al., 1999), is extremely efficient but does not allow the simulation of
cutting. The second model called “tensor-mass model” allows to simulate the dynamics of soft
tissue, similarly to spring-mass models. We believe that tensor-mass models are a convincing
alternative to using spring-mass models because of their simple implementation and because they
are based on a continuous representation of the tissue. We have shown that the simulation of
tearing and cutting procedures can be easily performed with these models due to their compact
data structure.

Finally, we have proposed hybrid elastic models that combine both previously described
elastic models therefore enabling to cut and deform large anatomical structures. With these
algorithms, we have demonstrated that it is possible to use meshes having more than 8000
tetrahedra for simulating surgical gestures including deformations and cutting.

This approach has mainly two limitations. First, the zones where a cutting gesture can take
place, are limited by the workstation computing power of workstation, the number of nodes of
the soft tissue to be cut, and the stiffness of that soft tissue. In our experiment, we were able
to use tensor-mass models large enough to simulate a realistic surgical gesture. However, for
stiff materials, using explicit integration schemes may not be suitable for a proper simulation.
To obtain more efficient algorithm, we are investigating several speed-ud algorithms based on
parallel-computation and mesh adaptation(Lombardo et al., 1999; Picinbonno and Lombardo,
1999).

The second limitation lies in the choice of the biomechanical behavior. Linear elasticity is
only valid for small displacements and small deformations. With a linear elastic model, as the
surgeon pushes his instrument along a given direction, the trajectory of mesh vertices follow a
straight line. To simulate gestures involving rotations of anatomical structures (such as rotating

a liver lobe), it is important to take into account large displacements. Also, since most biological
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Figure 9: Deformation and cutting of the hybrid elastic model.
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tissues behaves as non-linear materials, the support for large deformations is also needed for a
better visual and haptic feedback. Currently, we are developing soft tissue models with an

anisotropic and non-linear elastic behavior under large displacements.
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A Displacement inside a tetrahedron

Given a tetrahedron T; and its four vertices P, (o)vPOTi(1)vP0T,-(2)ng§ (3)> one computes the
displacement inside 7; through a linear interpolation of the four displacement Ur, ;).
Given a point x inside T}, its barycentric coordinates a]T" of Ur,(;) can be written as :
T
M (X —P741)
6V (T3)

where V (T;) is the volume of tetrahedron T; and M;‘F is the vector:

T z 21T
M; = [M7 M} M) (10)
0 0 0 0
Pri+1) APT 2y + Priga2) A Pras) + (11)
0 0
Pr+3) APT 1) (12)

M]T’ has a simple geometrical interpretation : Mfi is directed along the outer normal vector
of triangle opposite to P%(j) and ||Mf' || represents twice the area of the triangle opposite to

0
PTGy

The displacement U(x) is then written as:

3
7=0

B Elastic energy of a tetrahedron

The elastic energy of equation 1 can also be written as:
A
WEiastic = / (—(div U)? + ptr (VUTVU)
Minitial 2
—%chwl U||2) dz dy dz

Given the expression of the displacement vector U(x) inside a tetrahedron T; (see equation
13), we get the expression of the operator divergence divU, rotational curlU and the gradient

norm tr (VU?TVU). For instance, the divergence operator divU can be derived as follows :

oU; , U, , U,

dwl = oz % 0z
3 i 0o (x)U%, +‘9%‘T" (x)Uz,,) +‘90‘f" ()UZ ;)
B oz dy 0z
7=0
2. dal (x)
= I T3(5)
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In a similar way, the rotation and gradient norm operator are evaluated as follows :

i A U
curl U = Z T'(])

2
3
U
tr (VUTVU) = Z T WAV TG)

2
3
(M;.y)Ux;(5)
X ermy

=0
2
Z M Z UT (])
=0
Because the strain tensor E(x) is constant across T; (and consequently the elastic energy), to

obtain the elastic energy of tetrahedron T;, we multiply the constant elementary elastic energy

by the volume of T; :
Wrilastic(T3) =

V) (3

| >

(div U)? + pstr (VUTVU) — %chrl U||2>
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List of Figure Legends

Figure 1: Deformation of plate represented as a pre-computed linear elastic model
(left) initial position (right) deformed position after imposing a displacement at the

contact point with the stick.

Figure 2: Representation of the data structure of a tensor-mass model. The tensors are
stored at each edge and each vertex. The symmetry of the rigidity matrix enables to store

only one tensor per edge.

Figure 3: Cutting of a plate by removing tetrahedra. The plate deforms itself during the
cutting operations because each operation modifies the stiffness matrix. The plate model

consists of 759 vertices and 2212 tetrahedra.
Figure 4: Fracture of a cylinder under the action of a gravity force.

Figure 5: (a) Definition of the connection nodes in a hybrid elastic model; (b) Hybrid

elastic model with eight connection nodes.

Figure 6: Interaction loop for a hybrid elastic model. Both models are updated alter-

natively while allowing for user interaction.

Figure 7: Deformation of a hybrid elastic model under a gravity force: the upper
cylinder consists of a pre-computed linear elastic model whereas the lower part is a tensor-
mass model. The leftmost figure corresponds to the initial position of the mesh and the

rightmost figure to the steady state.

Figure 8: Top: the hybrid liver model seen in wireframe. The upper mesh corresponds
to the pre-computed quasi-static elastic model whereas the bottom mesh corresponds to the
tensor-mass model. Bottom : the hybrid liver model seen in flat shading. The connection

nodes ensure the visual continuity between the two elastic models.

Figure 9: Deformation and cutting of the hybrid elastic model.
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