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Personalization of Cardiac Motion and Contractility
from Images using Variational Data Assimilation

H. Delingette, F. Billet, K. C. L. Wong, M. Sermesant, K. Rhode, M. Ginks, C. A. Rinaldi, R. Razavi, N. Ayache

Abstract—Personalization is a key aspect of biophysical models
in order to impact clinical practice. In this paper, we propose
a personalization method of electromechanical models of the
heart from cine MR images based on the adjoint method. After
estimation of electrophysiological parameters, the cardiac motion
is estimated based on a proactive electromechanical model. Then
cardiac contractilities on two or three regions are estimated by
minimizing the discrepancy between measured and simulation
motion. Evaluation of the method on three patients with infarcted
or dilated myocardium is provided.

Index Terms—Cardiac Modelling, Personalization

I. INTRODUCTION

The objective of biophysical cardiac modeling is to improve
the understanding of the cardio-vascular system by performing
numerical simulation of the cardiac function from its math-
ematical description. Simulations of the whole organ have
reached such a degree of realism that it is now possible to
compare them quantitatively with available cardiac images
and signals acquired routinely on patients. This has led to
a new vision and a potential impact of those models in the
clinical practice: improving the diagnosis of cardiac diseases
and planning therapies (such as Cardiac Resynchronization
Therapy [1]) from personalized biophysical models. Model
personalization consists in optimizing some parameters of the
model such that it behaves in adequacy with patient specific
datasets (images and signals). This personalization can be
split into two separate stages: geometrical personalization and
biophysical personalization (see Fig. 1).

In the former case, the computational mesh is built from
patient-specific anatomical images based on medical image
analysis algorithms. In the latter case, the parameters of the
models, initial and boundary conditions are optimized such
that cardiac simulations match observations from images.
Solving this inverse problem is a complex task for the fol-
lowing reasons: i) it is very time consuming and convergence
is not guaranteed; ii) the information extracted from images
is usually very sparse spatially and temporally iii) only a
subset of the parameters may be observed and thus estimated.
Furthermore, parameter estimation of dynamic systems often
leads to mathematically involved methods.

Several approaches for cardiac model personalization have
been proposed with various parameters to be optimized and
optimization methods. Moireau et al. [2] used reduced
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Fig. 1. Electromechanical Models Personalization from Images and Signals.

Unscented Kalman Filtering (rUKF) to estimate contractility
parameters from synthetic image sequences. Xi et al. [3]
compared rUKF and sequential Quadratic Programming (SQP)
for the estimation of passive stiffness parameters on synthetic
data. Wang et al. [4] estimated passive material stiffness with
a SQP method from tagged MRI and ex vivo DT-MRI of
canine hearts. Liu et al. [5] used extended Kalman Filtering to
estimate passive stiffness parameters on 2D slices from tagged
and cine MR canine images. In [6], Sundar et al. proposed
an adjoint method to estimate contractility parameters from
synthetic cardiac motion data.

In this article, we demonstrate a novel personalization
method of a 3D cardiac model from catheterized electrophys-
iology data and cine MR images from three patients. The
biophysical personalization is broken into three successive
stages: electrophysiology, kinematics and mechanical person-
alization. A first contribution of our approach is to include
an electromechanical model for the motion estimation stage
(kinematics personalization) in order to produce a regularized
motion. A second contribution is to propose an adjoint based
method to estimate contractility parameters on the right ven-
tricle (RV) and left ventricle (LV) as well as scar regions.
Finally, we present a first automated method for biophysical
personalization combining electrophysiology and mechanics.

II. ELECTROPHYSIOLOGY AND KINEMATICS
PERSONALIZATION

A. Electrophysiology Personalization

In order to avoid accumulating sources of uncertainties,
we are considering in this paper patient specific datasets that
include a rich description of cardiac electrophysiology. More
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precisely, in addition to the acquisition of anatomical and
cine-MR images, non-contact endocardial mappings have been
acquired at the St Thomas’ Hospital during electrophysiology
studies in an XMR suite [7] both in sinus rhythm and during
specific stimulation protocols. The extracted depolarization
and repolarization isochrones then serve as input information
to an electrophysiology personalization method [8] which
minimizes the discrepancy between measured and simulated
isochrones. Its output is a set of global parameters and
local parameters (electrical conductivities...) of the Mitchell-
Schaeffer electrophysiology model which allow to interpolate,
extrapolate and regularize the acquired isochrones. The per-
sonalized depolarization and repolarization times are then used
to control the active contraction force of the mechanical model
described in the next section.

B. Kinematics Personalization
Kinematics personalization consists in estimating the mo-

tion of cardiac structures from images. We use the same
electromechanical model both to regularize the cardiac motion
from cine-MR images and to estimate biophysical parameters.
Indeed, this leads to an estimation of velocity fields which is
consistent in terms of smoothness and spatial resolution with
the ones produced by our electromechanical model used for
the mechanical parameter estimation.

The kinematics personalization approach described in [9]
is based on a proactive deformable model [10] including
three mechanical components: transmembrane potential prop-
agation, active contraction forces, and passive biomechanics.
The two ventricles are meshed with tetrahedra from anatomical
MR images. The evolution of the displacement U of each
mesh node is governed by the following equation:

MÜ + CU̇ + KU = Fb + Fc + βFimg (1)

where M, C, and K are the mass, damping, and stiffness
matrices respectively, Fb is the external load from boundary
conditions (blood pressure, valves), Fc is the force vector for
active contraction. This contraction force is applied along a
local fiber orientation and is controlled by several parameters
including the maximum contraction parameter σ0. Further-
more, spring boundary conditions [10] are applied to points
located at the base of the ventricles.

In the kinematics personalization, we also add the term
Fimg corresponding to a force vector which tracks salient
image features in the image sequence. More precisely, Fimg
is computed using a 3D block-matching algorithm to attract
points towards the closest edge voxels. To balance between
motion regularization and data attachment, we set the β
parameters based on a sensitivity analysis [11]. Image forces
are not physiology based since their sole purpose is to help
tracking the cardiac motion. They are discarded during the
mechanical personalization.

III. MECHANICAL PERSONALIZATION BASED ON
VARIATIONAL DATA ASSIMILATION

A. Adjoint Method for Parameter Estimation
Parameter estimation of biophysical cardiac models is a

fairly new problem receiving a growing interest. Sequential

and variational methods are among the most popular data
assimilation techniques. Sequential methods such as rUKF
have been proposed recently for the parameter estimation
of contractility or passive stiffness parameters on synthetic
data [2], [3]. While very promising, these methods do not
handle well the phase changes of the cardiac cycle, which are
an important aspect of the heart behavior. Also, preliminary
work based on variational data assimilation (with [6] or
without [12] solving the adjoint equation) have also been
performed on synthetic data.

In this article, we use a variational data assimilation ap-
proach based on the adjoint model and evaluate it on three
cine MRI cases. It is based on the minimization of a functional
measuring the discrepancy between simulation and measure-
ments, in our case the node positions previously estimated
from the kinematics personalization using image forces:

F =

N∑
n=0

∑
i∈Vn

1

2
‖iY n

M −i Y n
K‖2

where N is the number of images in the image sequence, Vn
is the set of nodes visible in images n, iY n

M (resp. iY n
K) is

the position of the node i at time n of the mechanically (resp.
kinematically) personalized mesh.

Among the various parameters of the model, we choose
to estimate contractility parameters Σ0 = {σR

0 , σ
L
0 , σ

S
0 } of

the right and left ventricles and eventually scar regions.
Those parameters can be mostly observed during systole while
passive stiffness parameters can be mostly observed during
diastole. More precisely, to observe contractilities one would
need to measure also the endocardial pressure in addition to
cardiac motion. With only the latter, we can only estimate the
ratio between contractilities and passive stiffnesses which can
be considered as apparent contractilities.

The optimization of functional F(Σ0) is performed using a
quasi-Newton BFGS-B with bound constraint. This optimizer
requires the computation of the functional gradient with re-
spect to each contractility parameter σ0 which is performed
using the adjoint method. More precisely, the discretization
of Equation 1 with finite elements (in space) and Houbolt
integration scheme (in time) leads to a recurrence relation :
Kt+1Yt+1

M = At
0Y

t
M +At

1Y
t−1
M +At

2Y
t−2
M +Ft where Yt

M

is the node position vector at time t, Kt and {At
i} are stiffness

matrices and Ft is the force vector at time t. Therefore
minimizing functional F is equivalent to the minimization
under constraint:

L({Yt
M}, {Pt},Σ0) = F({Yt

M},Σ0)+
tf∑
t=0

(Pt)T

(
Kt+1Yt+1

M −
2∑

i=0

At
i Yt−i

M − Ft

)
where Pt is the Lagrange multiplier associated with the
recurrence relation at time t and tf is the total number of
iterations. In this functional, only the terms Ft and eventually
Kt, At depend on the contractility parameters Σ0. However,
∂L/∂Σ0 also involves the Lagrange multiplier Pt. By writing
that ∂L/∂Yt

M = 0, ∀t, one obtains a recurrence equation only
involving Pj , Yj and Aj

i j ∈ [t− 3, t+ 3] corresponding to
the adjoint model.
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In summary, to estimate ∂L/∂Σ0, we first compute the
Lagrange multipliers using the recurrence equation found by
setting ∂L/∂Yt = 0. This recurrence is solved backward start-
ing from Ptf = 0. We then compute ∂At

i/∂Σ0 and ∂Ft/∂Σ0

and finally obtain ∂L/∂Σ0 using chain rule derivation.
In our electromechanical model, ∂At

i/∂Σ0 = 0 and all
stiffness matrices are constant. However, we have to deal with
the isovolumetric contraction and relaxation phases which pro-
vide additional constraints. Also, we removed the Windkessel
model describing the hydraulic resistance and capacitance
in the pulmonary artery and aorta in order to decrease the
implementation complexity. This unfortunately also limits the
realism in the simulation of late ejection and early filling
phases. Our approach differs from [6], where the adjoint
method is considered in the continuous setting and then
discretized which may add inconsistent discretization errors.
The total computation times for one gradient estimation (with
forward and backward simulations) is around 45 min on a
regular PC, thus leading to computation times of 4 to 6 hours
for the mechanical personalization.

B. Calibration Phase

As any gradient-based optimization, our optimization ap-
proach is sensitive to initial values. Therefore, we perform a
calibration phase of the contractilities based on the ejection
fraction. More precisely, kinematics personalization with a
standard value of contractility (typically σ0 = 6 104Pa) is
first performed. This leads to a reasonable approximation of
the cardiac motion from which the ejection fraction of both
ventricles can be estimated. Then several simulations of the
electromechanical model are performed (without image forces)
with varying values of contractilities in both ventricles until an
ejection fraction close to the estimated ones is obtained. We
then restart the kinematics personalization with this calibrated
set of parameters.

IV. EVALUATION ON SYNTHETIC IMAGES

We evaluate the performance of the joint kinematics and
mechanics personalization method on synthetic data. Instead of
adding noise to a known simulation, we designed a more com-
prehensive approach by generating synthetic image sequences
using known motion and mechanical parameters. In this case,
we considered the electrophysiology and cine MRI dataset
from a patient with heart failure. A scar region was detected
from late-enhancement MRI and a tetrahedral mesh including
the scar region was created (see Fig. 2 (Middle)). We also used
patient-specific endocardial activation map measured with the
Ensite balloon (St Jude Medical), which was extrapolated to
the myocardial volume using an electrophysiological model.
The electromechanical model is then run with a fixed set of
contractilities in the LV, RV and scar region. We then use the
obtained motion field to generate a synthetic MRI sequence
from the end-diastolic image.

We apply the calibration stage for both right and left
ventricles to obtain a proper initial value of the contractilities
(see Fig. 3 (Left)), to find that 105Pa is a good initial
value. After kinematics personalization we obtain a mesh

which serves as a reference for the mechanics personalization.
After 7 iterations, the optimization stops and converges toward
contractility values very close from their reference values, with
an overestimation of the lowest contractility. On this synthetic
sequence, we achieve a good motion recovery, with an average
distance error of 0.15 mm between the personalized model
and the motion tracking model and an average distance error
of 0.14 mm (see Fig. 2 (Right)) with respect to the ground
truth (used to simulate images).

Fig. 2. (Left) Mesh and fiber orientation used for cardiac simulation; (Middle)
Scar regions; (Right) Cardiac meshes on long axis image slice; green: with
initial parameters; blue : after mechanics personalization; red : ground truth.
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Fig. 3. (Left) Calibration curve of contractility for the left ventricle; (Right)
Estimation of 3 regional contractilities.

V. EVALUATION ON CLINICAL DATA

This method was evaluated on the same data as the one
used for the synthetic case, but with the actual cine MR image
sequence. We estimated the apparent contractility parameters
σ0 for each of the three regions using the kinematics and
mechanics personalization method. The calibration phase leads
to an initial value of 105Pa for both ventricles. A good conver-
gence of the 3 parameters is reached with a lower contractility
parameter in the scar region as expected (see Fig. 4). The RV
contractility is greater than the LV one which may be explained
by a greater ejection fraction measured in the RV than in the
LV. The optimization decreases the mean distance error with
respect to tracked motion (distance between iY n

S and iY n
E )

over the whole cardiac cycle from 2.1 mm to 1.6 mm (see
Fig. 5). The average error is comparable to the in-plane image
voxel size (1.56 mm2) but the maximum distance error was
9.7 mm which is significant. The region of largest errors is
the base which may imply that the boundary conditions at the
base should be improved. However, this is also the region with
the largest longitudinal motion and thus with high uncertainty
in motion tracking also caused by the large slice thickness
(10 mm in such clinical routine sequences). The end diastole
is the time at which the average distance error is maximum
(2.32 mm). A quantitative comparison of motion with tagged
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Fig. 4. (Left) Estimation of the contractility parameters for 3 regions of the
myocardium; (Right) Estimated and measured pressure curve.
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Fig. 5. (Left) Cardiac meshes overlaid on image slice; green: with initial
contractility parameters; blue : after mechanics personalization; red : target
mesh (after kinematics personalization); movies are available as supplemen-
tary material; (Right) Contractility estimation for patients 2 and 3.

MRI in short axis slices for this patient appears to indicate an
excellent agreement for the radial motion (maximum errors of
1.2mm) but a decreased accuracy (average errors of 2.5mm)
for circumferential motion probably due to the aperture prob-
lem. In order to evaluate the realism of the personalized model,
we also compared the simulated pressure with the personalized
model to the pressure which was invasively measured on that
patient during the study. We obtained a fairly good match
of this pressure during the contraction phase (see Fig. 4).
The maximum value of the rise of pressure (dP/dt)max was
decreased from 148 kPa/s to 103 kPa/s after personalization to
be compared with a measured (dP/dt)max of 78 kPa/s. The
personalization approach was also applied to two additional
datasets (using also electrical mappings and cine-MRI) of
patients suffering from dilated cardiomyopathy. The estimated
contractilities for the RV and LV are rather low (see Fig. 5
(Right)), especially for patient 3. The adjoint method leads to a
decrease of the average distance error to 2.33 mm for patient
2 and 2.19 mm for patient 3 (see Fig. 6) for images with
respective isotropic voxel size of 1.44 mm and 1.52 mm. One
limitation of this work is that it is restricted to the estimation
of a limited number of contractility parameters defined on
prescribed regions. One could iteratively refine the number
of regions where parameters are estimated in a coarse to fine
manner like in [8].

VI. CONCLUSION

We presented a new method for the automated mechanical
personalization of cardiac models and applied it to several
clinical cases including electrophysiology and cine MRI data.
Those results are encouraging and their analysis can help

Fig. 6. Overlay of the cardiac mesh after kinematics personalization for
patient 2 (Left) and patient 3 (Right) with the same convention as Fig 5;
movies are available as supplementary material.

improving the model and the parameter set to be optimized.
Those personalized models may serve to plan various therapies
(e.g. Cardiac Resynchronization Therapy) by predicting the
cardiac function after testing several therapeutic strategies in
silico.
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