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Abstract In this paper, we present a method to compute a statistical shape model
based on shapes which are represented by unstructured point sets with arbitrary
point numbers. A fundamental problem when computing statistical shape models
is the determination of correspondences between the points of the shape observa-
tions of the training data set. In the absence of landmarks, exact correspondences
can only be determined between continuous surfaces, not between unstructured
point sets. To overcome this problem, we introduce correspondence probabilities
instead of exact correspondences. The correspondence probabilities are found by
aligning the observation shapes with the affine Expectation Maximization - Iter-
ative Closest Points registration algorithm. In a second step, the correspondence
probabilities are used as input to compute a mean shape (represented once again
by an unstructured point set). Both steps are unified in a single optimization cri-
terion which depends on the two parameters ’ registration transformation’ and
’mean shape’. In a last step, a variability model which best represent the vari-
ability in the training data set is computed. Experiments on synthetic data sets
and real brain structure data sets are then designed to evaluate the performance of
our algorithm. The method is compared to a statistical shape model built on ex-
act correspondences. Results regarding the established measures ”generalization
ability” and ”specificity” show the relevance of our approach.

1 Introduction

One of the central difficulties of analyzing different organ shapes in a statistical man-
ner is the identification of correspondences between the points of the shapes. As the
manual identification of landmarks is not a feasible option in 3D, several preprocess-
ing techniques were developed to automatically find exact one-to-one correspondences
between surfaces which are represented by meshes [1,2,3,4]. A popular method is to op-
timize for correspondences and registration transformation as does the Iterative Closest
Points (ICP) algorithm [5] for point clouds. More elaborate methods directly combine
the search of correspondences and of the statistical shape model (SSM) for a given train-
ing set as proposed in [6,7] or the Minimum Description Length (MDL) approach to
statistical shape modeling [8,9]. The MDL is used to optimize the distribution of points
on the surfaces of the observations in the training data set when determining the best



SSM. For unstructured point sets, the MDL approach is not suited to compute a SSM
because it needs an explicit surface information. Another interesting approach proposes
an entropy based criterion to find shape correspondences, but requires implicit surface
representations [10]. Other works combine the search for correspondences with shape
based classification [11,12] or with shape analysis [13], however, these methods are not
easily adaptable to multiple observations of unstructured point sets. The approach in
[14] for unstructured point sets focuses only on the mean shape. The determination of
correspondences between unstructured point sets is especially difficult when one shape
features a certain structure detail and the other one does not, see Fig. 1. In all cases, en-
forcing exact correspondences for surfaces represented by unstructured point sets leads
to variability modes that not only represent the organ shape variations but also artificial
variations whose importance is linked to the local sampling of the surface points. To the
best of our knowledge, no methods in the literature exist for the construction of a SSM
based solely on unstructured point sets. We argue that when segmenting anatomical
structures in image data with important noise, the extracted surface points only repre-
sent probable surface locations. Based on this, it is very difficult to find the true shape
surface. Therefore we believe that a method for shape analysis should better rely only
on the point locations and not on surface information.
In this paper, we address the problem of building a SSM for shape observations rep-
resented by unstructured point sets with differing point numbers. In a first step, we
determine correspondences probabilities between the shape model and all observations.
We pursue a probabilistic concept by aligning the observations in a group-wise registra-
tion with the Expectation Maximization - Iterative Closest Point (EM-ICP) algorithm.
The rigid EM-ICP was first introduced in 2002 by Granger and Pennec and proved to be
robust, precise, and fast [15]. In this work, we generalize it to an affine transformation
class. The SoftAssign algorithm [16] has a probabilistic formulation which is closely
related but differs in that it gives the same role to the model and the observations. This
is justified for a pair-wise registration but not for a group-wise model to observation
registration.
In a second step, we use the resulting correspondence probabilities as input to compute
a mean shape for the training data set. We unify both steps under a unique global cri-
terion which depends on the two parameters ’ registration transformation’ and ’mean
shape’. The criterion is optimized iteratively with respect to both parameters.
In a last step, we compute the variability model of the SSM. The modes of variation
are computed using the standard Principal Component Analysis (PCA) on “virtual ex-
act correspondences” which are determined by transforming the original points of the
training shapes into ”virtual surface points” using the probabilistic correspondence in-
formation of the EM-ICP step.
Finally, a comparison of our SSM and a SSM based on exact correspondences in terms
of the established measures “generalization ability” and “specificity” is performed for
evaluation.
The remainder of this paper is organized as follows: The main steps of our algorithm -
the EM-ICP algorithm and the generation of the statistical shape model - are described
in section 2. In section 3, the evaluation of the affine EM-ICP and the SSM is presented.
Section 4 concludes the paper.
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Figure 1. A correspondence problem: One shape features two bumps, the other only one. How
can we determine correspondences between the two? Our approach establishes correspondence
probabilities between all points representing the shape surfaces.

2 Methods and Material

Our goal is to generate a SSM for a training data set of unstructured point sets which
optimally represents the observations by a mean shape and a variability model. There
are three steps on the way to compute the SSM: In the first step, we determine cor-
respondence probabilities between the shapes. This is done by realizing a group-wise
registration with the affine EM-ICP. In the second step, we define a criterion which
depends on the correspondence probabilities, the registration transformations and the
mean shape. The criterion is iteratively optimized with respect to all parameters in or-
der to compute the mean shape. In the third and last step, we compute the variability
with respect to the mean shape by transforming the original points of the training shapes
into ”virtual surface points” using the probabilistic correspondence information of the
EM-ICP step followed by a standard PCA.
This chapter is organized as follows: The concept of the EM-ICP, our generalization
to affine transformation classes and the role of the variance in the registration are ex-
plained in section 2.1. The subsequent generation of the SSM based on the correspon-
dence probabilities is described in section 2.2.

2.1 The affine EM-ICP Algorithm

The first step to compute a SSM is usually the determination of correspondences be-
tween the unstructured point set observations in the training data set. One of the first
methods in the literature is the Iterative Closest Points (ICP) registration algorithm [5]
which iteratively minimizes the sum of closest point distances between two shapes by
deforming one of the shapes. However, we think that the ICP poses a problem for ob-
servations which feature distinctive shape detail differences as shown in Figure 1. We
believe that it is advantageous to use correspondence probabilities instead of exact cor-
respondences. The EM-ICP algorithm is a convenient method to find those.
In the first part of this section, the concept of the EM-ICP is explained shortly for self-
completeness (more details can be found in [15]). Then, we generalize the optimization
of the transformation from rigid to affine transformation classes. Finally, we detail how
the multi-scale scheme was adapted.



Correspondences Probabilities with the EM-ICP The EM-ICP algorithm determines
the registration transformation T that best matches a model point set M ∈ (R3)Nm onto
an observation point set S ∈ (R3)Ns with Nm and Ns describing the number of points
of the model and the observation respectively. The focus lies on the probability of an
observation point si to be a measure of a transformed model point T ∗mj . In that way,
the point si is described as a displaced and noisy version of point mj . If the point si

corresponds exactly to the model point mj , the measurement process can be modeled
by a Gaussian probability distribution (see equation 1).

p(si|mj , T ) =
1

(2π)
3

2 |Σj |
1

2

exp(−
1

2
(si − T ? mj)

T .Σ−1
j (si − T ? mj)) (1)

where Σj represents the noise as the covariance of mj .
However, the observation point si can in fact be a measure of any of the model points,
so the probability distribution model of its spatial location is the mixture

p(si|M, T ) =
1

Nm

Nm∑

j=1

p(si|mj , T ). (2)

Unfortunately, even if we assume that all scene point measurements are independent,
no closed form solution exists for the maximization of p(S|M, T ). A solution is to
model the unknown correspondences H ∈ R

Ns×Nm as random hidden variables and to
maximize the log-likelihood of the complete data distribution p(S, H |M, T ) efficiently
using the EM algorithm. We denote E(Hij) as the expectation of point si being an
observation of point T ? mj (with the constraint

∑Nm

j E(Hij) = 1) and find

E(log p(S, H |M, T )) =
1

Nm

Ns∑

i

Nm∑

j

E(Hij) log p(si|mj , T ). (3)

In the following, we assume uniform priors on H .
In the Expectation-step, T is fixed and log p(S, H |M, T ) is estimated to compute
E(H):

P (Hij = 1) = E(Hij) =
exp(−µ(si, T ? mj))∑
k exp(−µ(si, T ? mk))

(4)

with µ(si, T ? mj) = 1
2 (si − T ? mj)

T .Σ−1
j (si − T ? mj).

In the Maximization-step, E(H) is fixed and the estimated likelihood is maximized
with respect to T . For this purpose, we do not have to take constants and normalizing
factors into account, hence, the associated criterion CEM to be optimized takes the form
as shown below:

CEM (T, E) =

Ns∑

i

Nm∑

j

E(Hij)(si − T ? mj)
T Σ−1

j (si − T ? mj). (5)



Without loss of generality, we assume from now on a homogeneous and isotropic Gaus-
sian noise with variance σ2 in order to simplify the equations. The optimal transforma-
tion is then found by

T̂ = argmin
T

1

σ2

Ns∑

i

Nm∑

j

E(Hij)‖si − T ? mj‖
2. (6)

We see that the elements of E(H) serve as weighting factors. The solution of this least-
squares estimation for a rigid transformation T can be seen in [15].

Generalization to Affine Transformation We want to be able to analyse the vari-
ability of a training data set with respect to different transformations. Therefore, we
generalize the EM-ICP to similarity and affine transformation classes.
If we deal with an affine transformation Taff it is Taff ? mj = Amj + t with the
transforming matrix A ∈ R

3x3 and the translation vector t ∈ R
3. In order to find the

best translation t we differentiate equation (5) with respect to t and obtain

∂CEM (t)

∂t
= −2

1

σ2

Ns∑

i

Nm∑

j

E(Hij)(si − Amj − t)

= −2
1

σ2
(

Ns∑

i

si − A

Nm∑

j

mj

Nm∑

i

E(Hij) − Nst) (7)

as
∑Nm

j E(Hij) = 1∀i. Thus, at the optimum we find

t̂ =
1

Ns

Ns∑

i

si − A
1

Ns

Nm∑

j

mj

Ns∑

i

E(Hij). (8)

We see that t̂ aligns the barycentre s̄ = 1
Ns

∑Ns

i si and the pseudo barycentre m̃ =
1

Ns

∑Nm

j mj

∑Ns

i E(Hij) of the two point clouds S and M . Using “barycentre” coor-
dinates s′i = si − s̄ and m′

j = mj − m̃ allows us to simplify the criterion into

C ′
EM (T, E) =

1

σ2

Ns∑

i

Nm∑

j

E(Hij)(s
′T
i s′i − 2s′

T

i Am′
j + m′

jA
T Am′

j). (9)

Next, we differentiate C ′
EM (T ) with respect to the affine transformation matrix A:

∂C ′
EM (A)

∂A
= −

2

σ2

Ns∑

i

Nm∑

j

E(Hij)s
′
im

′T
j +

2

σ2

Ns∑
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Nm∑

j

E(Hij)Am′
jm

′T
j

=
2

σ2
(−Γ + AΥ )

with Υ =
∑Ns

i

∑Nm

j E(Hij)m
′
jm

′T
j and Γ =

∑Ns

i

∑Nm

j E(Hij)s
′
im

′T
j , Υ, Γ ∈

R
3x3.



At the optimum we find

AΥ = Γ ⇔ A = ΓΥ−1 (10)

If Υ is singular (det(Υ ) = 0), we have to determine the pseudo-inverse Υ + instead of
the inverse Υ−1. From an implementational point of view, it is advantageous to always
determine the pseudo-inverse. As Υ is symmetric, we compute the pseudo-inverse using
the Jacobi method.
The resulting transformation T is applied to the points of the target cloud M before
the next Expectation step. The two EM-steps are alternated until |CEM (T, E)(i) −
CEM (T, E)(i−1)| < ε. A mathematical proof of convergence for the EM algorithm
is provided in [17].

Variance Multi-Scaling in the EM-ICP The choice of the variance in the EM-ICP
criterion (5) is important for the outcome of the registration. The behaviour of the EM-
ICP for extreme values of the variance is analysed in [18]. For very small variances, the
EM-ICP behaves similarly to the traditional ICP, that is, for a point si the closest point
mj is determined as exact correspondence. This can be seen by reformulating equation
(4) to

E(Hij) =
1

1 +
∑

k 6=j exp(
(si−T?mj)2−(si−T?mk)2

2σ2 )
=

1

1 +
∑

k 6=j rijk

. (11)

If T ? mj is the closest point to si, it is (si − T ? mj)
2 < (si − T ? mk)2 and therefore

limσ2→0 rijk = 0. If T ? mj is not the closest point to si, it is limσ2→0 rijk = ∞. That
results in the probability of correspondence E(Hij) = 1 if and only if T ? mj is the
closest point to si and else E(Hij) = 0.
For high variances, the EM-ICP simply aligns the barycentres and the inertia tensors
[18].
This behaviour is exploited to realize a multi-scale registration with respect to the vari-
ance. The EM-ICP is initialized with a great variance to ensure that shape positions,
rotation and sizes are aligned. The variance is then reduced in each iteration to cover
for shape details. σinitial and its decrease rate have to be carefully adapted to the data
at hand. We set σfinal to a value in the order of the average distance of one point to its
closest neighbour (surface sampling rate).

2.2 Generation of a Statistical Shape Model based on Correspondence
Probabilities

The basis for a SSM is a training data set which contains a number of segmented ob-
servations Sk. The SSM should represent the data in the training set as accurately as
possible. Furthermore, it should be able to match unknown observations of the same
(anatomical) structure. A popular method to represent a SSM is to use a 3D point dis-
tribution model as proposed in [19]. It generates a new observation x using the linear
equation based on the vector m representing the mean shape point coordinates and the
matrix P which is composed of the n eigenmodes of the variability model:

x = m + Pb, m ∈ R
3Nm , P ∈ R

3Nm×n (12)



where b ∈ R
n contains the deformation coefficients for each eigenmode.

In the following, we show a method to adapt this classical scheme to the framework of
our correspondence probability setting.

Computation of the Mean Shape Point Set In order to compute m̄, we need to deter-
mine correspondence probabilities between all Sk. To do so, we first choose one initial
mean shape M (0) and extend the criterion (5) to perform group-wise registration of
M (0) to all Sk:

Cglobal (T, E(H), M)

=
N∑

k

Nsk∑

i

Nm∑

j

E(Hkij
)(ski − Tk ? mj)Σ

−1
j (ski − Tk ? mj) (13)

where ski is a point of observation Sk, E(Hkij
) the correspondence probability between

model point mj and observation point ski, and Tk the registration transformation from
the model to Sk. The criterion is optimized alternately with respect to all Tk and E(Hk)
(see equations (4) and (6)) and M which is determined by a simple differentiation:

mj = (

N∑

k

AT
k Ak

Ns∑

i

Eikj)
−1

N∑

k

Ns∑

i

Ekkj
(AT

k (ski − tk)) (14)

Thus, in this framework, we realize the computation of the registration transformations,
the correspondence probabilities and the mean shape in a unified criterion.

Computation of the Variability Model For a SSM represented by a point distribution
model, the usual method to compute the modes of variation is to do a Principal Compo-
nent Analysis (PCA) regarding the mean shape point set and the corresponding points
on the observations. We introduce ”virtual corresponding points” s̆ kj for each mj and
each Sk by evaluating the mean position of the probabilistic correspondences:

s̆kj =

Ns∑

i

E(Hkij
)∑

i E(Hkij
)
(T−1

k ? sik). (15)

The s̆kj represent probable sampling points of an unknown underlying surface of ob-
servation Sk. We compute a set of s̆kj for each Sk and use the resulting sets of exact
correspondences (T ? mj , s̆kj) as input for the PCA.

3 Experiments and Results

We first conducted an experimental evaluation of the affine EM-ICP registration (sec-
tion 3.1) using synthetic data. Secondly, we evaluated the performance of our SSM in
comparison to a SSM built on exact correspondences on synthetic and real data (sec-
tion 3.2). Finally, we applied our SSM on real data for a classification problem. For
visualization purposes only, in the figures the shapes are represented by surface meshes
instead of the underlying unstructured point sets.



3.1 Evaluation of Affine EM-ICP

We tested the accuracy of the affine EM-ICP on synthetic registration problems. Our
data was a segmented kidney S which is represented by N = 10466 points si and has a
size of about 70mm×40mm×120mm. We generate a second kidney ST by deforming
S with a synthetic transformation Tsynth: ST = Tsynth ?S, see figure 2. Subsequently,
both point sets were decimated to Sd and Sd

T using a decimation algorithm which is
based on the technique presented in [20]. By choosing different decimation parameters
(different number or triangles, different point priority queues) for S and ST , we ensured
that the number of common conserved points (exact correspondences) between Sd and
Sd

T is less than 15%, so real conditions were simulated.
In order to quantify the accuracy of registration, we define a distance measure as the
normalized sum of quadratic distances between all corresponding points si and sT,i:

d(S, ST ) =
1

NS

NS∑

i=1

‖si − sT,i‖
2. (16)

In summary, the experiments were conducted as follows:

1. Choosing Tsynth to generate ST .
2. Decimation of S and ST .
3. Registration of Sd and Sd

T using the affine EM-ICP.
4. Applying the resulting transformation Tres to ST .
5. Computing the distance between S and Tres ? ST .

We tested for rigid, similarity, and affine Tsynth with different numbers of points and
variances. For an example see figure 2. We established that the affine EM-ICP registra-
tion results in a typical distance of d(S, Tres?ST ) ≈ 0.5mm for our data set. This value
lies in the same range as the average distance of one point in S to its closest neighbour
(0.74mm). The EM-ICP needs no previous rigid registration for the affine case. The
convergence rate depends on the choice of the initial variance and the reducing factor
in the multi-scale framework. Typically, 30 iterations suffice.

3.2 Performance Evaluation on Synthetic and Real Data

In order to assess the quality of the SSM based on correspondence probabilities, we
compared it to a SSM based on exact correspondences built for the same training data
set. In a first test, we apply the two SSMs to a synthetic training data set which contains
two distinguished shape classes. In a second test, we apply the two SSMs to brain data
and quantify the results.
The SSM based on exact correspondences is generated in a similar manner as proposed
in [4]:

1. Group-wise registration using the ICP algorithm.
2. Computing the mean shape on the exact correspondences found by the ICP.
3. Applying a PCA to determine the eigenmodes.

In the following, it will be called SSM-ICP.



(a) (b)

Figure 2. The original objects S (dark grey) and their transformed versions ST (light grey) (a)
before registration with d(S, ST ) = 40, 3mm and (b) after registration with d(S, Tres ? ST ) =
0.5mm. For the EM-ICP, the kidney was decimated from 10466 to 510 points on Sd and 521
points on Sd

T , we chose an initial sigma of 8mm, 30 iterations and a reducing factor of 0.9 (which
leads to a final sigma of 0.38mm).

Correspondence Probabilities versus Exact Correspondences: A Case Study We
argue that the determination of correspondences between unstructured point sets is es-
pecially difficult when one shape features a certain structure detail and the other one
does not. For an experimental evaluation, we generated a training data set containing
two distinctive shape classes. The data set consisted of 9 ellipsoids featuring a bump and
9 ellipsoids without bump. We deformed them with different affine transformations. For
4 observation examples, see figure 3.
We computed our SSM as well as the SSM-ICP and compared the results. The respec-
tive mean shapes and deformations according to the first mode of variation can be seen
in figure 4.
Results: The SSM based on the EM-ICP models the whole data set, it is able to repre-
sent the ellipsoids featuring a bump and those without as that deformation information
is included in its variability model.
The SSM based on the ICP is not able to model the bump. This is due to the fact that the
ICP only takes into account the closest point when searching for correspondence, thus,
the point on top of the bump is not involved in the registration process. The EM-ICP,
however, analyzes the correspondence probability of all points, therefore, also the point
on top of the bump is matched. We illustrated these two concepts in figure 5.

Generalization Ability and Specificity for a Brain Structure Data Set In order to
assess the quality of the SSM, we analyse the two established measures generalization
ability and specificity as proposed in [21] for our SSM and the SSM-ICP. A good gen-
eralization ability is important for recognition purposes as a SSM must be able to adopt
the shape of a new - unseen - observation which comes from the same (anatomical)
structure type. The specificity of a SSM must be high for shape prediction purposes as
the SSM should only adopt shapes similar to the ones in the underlying training set.
The training data set for this experiment consists of N = 24 left segmented puta-



Figure 3. Observation examples of a synthetic training data set featuring two distinctive shape
classes (ellipsoids with bump and ellipsoids without bumps).

a)

b)

Figure 4. Results of a SSM built on exact correspondences (a) and of a SSM built on correspon-
dence probabilities (b) for the training data shown in figure 3. Mean shape (middle), and the mean
shape deformed with respect to the first eigenmode, left:M̄ − 3λ1v1 and right:M̄ + 3λ1v1.

1 2 1 2

ICP SSM

Figure 5. One-to-one correspondence versus correspondence probabilities. Left: ICP registra-
tion, each point on contour 1 corresponds to the closest point on contour 2. Right: EM-ICP reg-
istration, each point on contour 1 corresponds with a certain probability to all points on contour
2.



a)
b)

c)

Figure 6. Shape analysis of the putamen. a) CT-images with segmented left putamen. b) Obser-
vation examples of the data set. c) Mean shape (middle) and its deformations according to the
first eigenmode (M̄ − 3λ1v1 and M̄ + 3λ1v1).

mens (approximately 20mm×20mm×40mm) which are represented by min 994 and
max 1673 points, see Figure 6a),b) for some shape examples. The MR images contain
255×255×105 voxels of size 0.94mm×0.94mm×1.50mm. The data was collected
in the framework of a study on hand dystonia.
We generated the SSM with the following parameters: Number of eigenmodes n = 18,
initial sigma in the EM-ICP σ = 4mm, EM-ICP iterations 10, variance multi-scaling
factor of the EM-ICP 0.85. Figure 6 shows the resulting mean shape and the deforma-
tions of the left putamen according to the variation modes.
We generated a SSM-ICP for the same data set with again 18 eigenmodes.
The generalization ability is tested in a series of leave-one-out experiments. We anal-
yse how closely the SSM matches an unknown observation. The SSM is first aligned
with the new observation. Then, equation (12) is optimized with respect to the defor-
mation coefficients b. The resulting coefficients are used to deform the aligned SSM in
order to optimize the matching. Finally, the distance of the deformed SSM to the left-
out observation is measured.
We performed this test for 7 different unknown observations and different numbers of
eigenmodes. The results obtained by our SSM and the SSM-ICP are shown in table 1.
In order to test the specificity, we generated random shapes x by using equation 12 and
determining b from a Gaussian distribution with σ equal to the standard deviation of the
SSM. We then computed the distance of the random shapes to the closest observation
in the training data set. The results for both SSMs and 500 random shapes can be seen
in table 2.
Results: For both performance measures, our SSM achieved superior results compared
to the SSM-ICP. Especially the values of the maximal distance show the benefit of the
new approach.
In the leave-one-out experiment, we showed that the number of eigenmodes is con-
trolling the accuracy of the deformed SSM. We found that the distance decrease when
deforming with 5 eigenmodes and when deforming with 15 eigenmodes is about 5%



Table 1. Shape distances found in generalization experiments (7 leave-one-out tests) with our
SSM approach and with the SSM-ICP approach.

SSM-ICP our SSM
5 variation modes
average mean distance + standard deviation in mm 0.634 ± 0.090 0.512 ± 0.083
average maximal distance + standard deviation in mm 4.478 ± 0.927 2.929 ± 0.576

10 variation modes
average mean distance + standard deviation in mm 0.623 ± 0.099 0.490 ± 0.088
average maximal distance + standard deviation in mm 4.449 ± 0.909 2.496 ± 0.445

18 variation modes
average mean distance + standard deviation in mm 0.610 ± 0.089 0.471 ± 0.076
average maximal distance + standard deviation in mm 4.388 ± 0.930 2.559 ± 0.563

Table 2. Shape distances found in specificity experiments (500 random shapes) with our SSM
approach and with an ICP+PCA approach using 18 eigenmodes.

SSM-ICP our SSM
average mean distance + standard deviation in mm 0.515 ± 0.117 0.463 ± 0.052

with the SSM-ICP and about 8% with our SSM. These results suggest that our SSM is
better able to cover for shape details.

3.3 Application Example on Brain Data

We employed the SSM algorithm for an automatical classification problem. The training
data set of the putamen (figure 6) consists of 12 healthy and 12 pathological observa-
tions. We used our SSM in order to detect shape differences between the healthy and
pathological observations.
We generated the SSM with the parameters given in section 3.2. We then analysed
the resulting deformation coefficients for the eigenmodes (equation (12)) in a k-means
clustering. In this case, no distinct shape classes were found (which confirms the pre-
sumption of the concerned physicians).

4 Discussion

In this paper, the problem of generating a statistical shape model for unstructured point
sets was explored. We proposed a novel algorithm which is based on correspondences
probabilities instead of exact correspondences between the point sets. Elaborate pre-
processing of the observations in the data set to establish correspondences is avoided,
no questionable correspondences between unstructured point sets are assumed, and the
number of points in the observations may vary.
The determination of the correspondence probabilities and the computation of the mean
shape were unified in one criterion which was optimized alternately. Following, the
modes of variation were computed with the PCA applied to sets of ’virtual exact corre-
spondences’ which were generated by evaluating the correspondence probabilities. An



interesting feature of the algorithm is that it can be used for non-spherical surfaces and
can be adapted to applications on data sets with different topologies as the connectivity
between points does not play a role.
Experiments showed that our algorithm leads to plausible results for different kind of
data. It seems to be robust to different initial mean shape choices and is stable even for
a small number of observations. In an experimental evaluation, we compared the per-
formance of our SSM to a SSM built on exact correspondences (Iterative Closest Points
and PCA) for the same data sets. On a data set featuring a typical correspondence prob-
lem, our approach succeeded to compute a representing mean shape and variability
model whereas the SSM based on exact correspondences failed. In an experiment on
real data, we showed that our approach leads to a better accuracy for the two established
SSM measures ’generalization ability’ and ’specificity’.
Currently, we are investigating the correspondence matrix as an indicator for the quality
of the point distribution in the model with respect to the observations in the data set.
This might help to analyze the quality of the established correspondences.
For further validation, we intend to study other kinds of data (e.g. hippocampus or
ganglion) whose shapes are less convex than the putamen. Indeed, this type of data is
typically requiring the use of SSMs for their automatic segmentation.
Moreover, the PCA on virtual correspondences proposed in this approach is not fully
coherent with the initial demand of correspondences probabilities. An interesting ex-
tension would be to develop a proper probabilistic model in order to unify the corre-
spondence probabilities, mean shape and modes of variation under one single global
criterion.
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