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Abstract. A fundamental problem when computing statistical shape
models is the determination of correspondences between the instances of
the associated data set. Often, homologies between points that represent
the surfaces are assumed which might lead to imprecise mean shape and
variability results. We propose an approach where exact correspondences
are replaced by evolving correspondence probabilities. These are the ba-
sis for a novel algorithm that computes a generative statistical shape
model. We developed an unified MAP framework to compute the model
parameters (’mean shape’ and ’modes of variation’) and the nuisance
parameters which leads to an optimal adaption of the model to the set
of observations. The registration of the model on the instances is solved
using the Expectation Maximization - Iterative Closest Point algorithm
which is based on probabilistic correspondences and proved to be robust
and fast. The alternated optimization of the MAP explanation with re-
spect to the observation and the generative model parameters leads to
very efficient and closed-form solutions for (almost) all parameters. Ex-
perimental results on brain structure data sets demonstrate the efficiency
and well-posedness of the approach. The algorithm is then extended to
an automatic classification method using the k-means clustering and ap-
plied to synthetic data as well as brain structure classification problems.

1 Introduction

One of the central difficulties of analyzing different organ shapes in a statis-
tical manner is the identification of correspondences between the shapes. As
the manual identification of landmarks is not a feasible option in 3D, several
preprocessing techniques were developed to automatically find exact one-to-one
correspondences [1, 2] between surfaces. Some approaches solve this with a search
for the registration transformation using an atlas [3] or the ICP algorithm [4].
Other methods directly combine the search of correspondences and of the sta-
tistical shape model (SSM) [5–7]. However, exact correspondences can only be
determined between continuous surfaces, not between point cloud representa-
tions of surfaces. Thus, using imprecise homologies leads to variability modes
that not only represent the organ shape variations but also artificial variations



whose importance is linked to the local sampling. The SoftAssign algorithm tries
to solve this problem with some kind of probabilistic formulation [8]. Another
recent approach proposes an entropy based criterion to find shape correspon-
dences, but requires implicit surface representations [9]. Other recent methods
combine the shape analysis with the search for correspondences, however, these
methods are not easily adaptable to multiple observations of unstructured point
sets [10–12] or focus only on the mean shape [13]. In order to build an SSM based
on inexact correspondences between point clouds, we pursue a probabilistic con-
cept and base our work on a EM-ICP registration algorithm which proved to
be robust, precise, and fast [14]. In section 2, we realize a Maximum a Posteri-
ori (MAP) estimation of the model and observation parameters which lead to a
unique criterion. We then compute the mean shape and eigenmodes which best
fit the given data set by optimizing the global criterion iteratively with respect
to all model and observation parameters. A key part of our method is that we
can find a closed-form solution for almost each of the parameters. In particular,
the approach solves for the mean shape and the eigenmodes without the need of
one-to-one correspondences as is usually required by the PCA. Experiments in
section 3 demonstrate that the resulting deformation coefficients can be used as
an efficient measure to classify each observation.

2 Construction of the Statistical Shape Model

2.1 Model and Observation Parameters

In the process of computing the SSM, we distinguish strictly between model

parameters and observation parameters. The generative SSM is explicitly
defined by 4 model parameters:

– mean shape M̄ ∈ R
3Nm parametrized by Nm points mj ∈ R

3,
– eigenmodes vp consisting of Nm 3D vectors vpj ,
– associated standard deviations λp which describe - similar to the classical

eigenvalues in the PCA - the impact of the eigenmodes,
– number n of eigenmodes.

Using the generative model Θ = {M̄, vp, λp, n} of a given structure, the shape
variations of that structure can be generated by Mk = M̄ +

∑n
p=1

ωkpvp with
ωkp ∈ R being the deformation coefficients. The shape variations along the modes
follow a Gaussian probability with variance λp:

p(Mk|Θ) = p(Ωk|Θ) =

n
∏

p=1

p(ωkp|Θ) =
1

(2π)n/2
∏n

p=1
λp

exp

(

−

n
∑

p=1

ω2
kp

2λ2
p

)

. (1)

In order to account for the unknown position and orientation of the model in
space, we introduce the random (uniform) rigid or affine transformation Tk.
A model point mj can then be deformed and placed by Tk ⋆ mkj = Tk ∗ (m̄j +
∑

p ωkpvp). Finally, we specify the sampling of the model surface: Each sampling
(e.g. observation) point ski is modeled as a Gaussian measurement of a (trans-
formed) model point mkj . The probability of the observation p(ski|mkj , Tk)
knowing the originating model point mkj is given by



p(ski|mkj , Tk) = (2π)−3/2σ−1 exp(− 1

2σ2 (ski−Tk ⋆mkj)
T .(ski−Tk ⋆mkj). As we

do not know the originating model point for each ski, the probability of a given
observation point ski is described by a Mixture of Gaussians and the probability
for the whole scene Sk becomes:

p(Sk|M, Tk) =

Nk
∏

i=1

1

Nm

Nm
∑

j=1

p(ski|mkj , Tk). (2)

We summarize the observation parameters as Qk = {Ωk, Tk}. Notice that the
correspondences are hidden parameters that do not belong to the observation
parameters of interest.

2.2 Derivation of the Global Criterion Using a MAP Approach
When building the SSM, we deal with the inverse problem of the approach in
section 2.1: We have N observations Sk ∈ R

3Nk , and we are interested in the
parameters linked to the observations Q = {Qk} as well as the unknown model
parameters Θ. In order to determine all parameters of interest, we optimize a
MAP on Q and Θ rather than an ML to take into account that Q and Θ are not
independent.

MAP = −
N
∑

k=1

log(p(Qk, Θ|Sk)) = −
N
∑

k=1

log

(

p(Sk|Qk, Θ)p(Qk|Θ)p(Θ)

p(Sk)

)

. (3)

As p(Sk) does not depend on Θ and p(Θ) is assumed to be uniform, the global
criterion integrating our unified framework is the following:

C(Q, Θ) = −

N
∑

k=1

(log(p(Sk|Qk, Θ)) + log(p(Qk|Θ))) . (4)

The first term describes the ML criterion (2) whereas the second term is the prior
on the deformation coefficients ωkp as described in (1). Dropping the constants,

our criterion simplifies to C(Q, Θ) ∼
∑N

k=1
Ck(Qk, Θ) with

Ck(Qk, Θ) =
n
∑

p=1

(

log(λp) +
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kp
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 .(5)

This equation is the heart of the unified framework for the model computation
and its fitting to observations. By optimizing it alternately with respect to the
operands in {Q, Θ}, we are able to determine all parameters we are interested
in. Starting from the initial model parameters Θ, we fit the model to each of
the observations (section 2.3). Next, we fix the observation parameters Qk and
update the model parameters (section 2.4). Some terms will recur in the differ-
ent optimizations, so we introduce the following notation for the derivation of

the second term ξkij(Tk, Ωk, M̄ , vp, λp) = log
∑Nm

j=1
exp

(

−‖ski−Tk⋆mkj‖
2

2σ2

)

with

respect to one of the function’s parameters (let’s say x):

∂ξ

∂x
=

Nm
∑

j=1

γkij
(ski − Tk ⋆ mkj)

T

σ2

∂(ski − Tk ⋆ mkj)

∂x
(6)

where the weights γijk = exp
(

−
‖ski−Tk⋆mkj‖

2

2σ2

) [

∑Nm

l=1
exp

(

− ‖ski−Tk⋆mkl‖
2

2σ2

)]−1

are sometimes interpreted as soft labels/correspondences.



2.3 Mapping the Model to the Observations

Optimization with respect to the Transformations As no closed form
solution exists for the optimization of criterion (2), we employ an EM algo-
rithm where the correspondence probabilities between Sk and M are modeled
as the hidden variable Hk ∈ R

Nk×Nm . An instance point ski corresponds to a
model point mj with probability E(Hkij

). By computing the expectation of the
log-likelihood of the complete data distribution with Tk fixed, we find in the ex-

pectation step E(Hkij
) = γkij . As defined above, the γkij represent the weights

of each pair (ski, mj) in the criterion. Next, Tk = {Ak, tk} is computed in the
maximization step by maximizing the global criterion in (5) with all γkij fixed in
a closed-form solution. The implementation of the EM-ICP algorithm is realized
in a multi-scaling frame regarding the variance [14]. σinitial and its decrease rate
have to be carefully adapted to the data at hand (σfinal should be in the order
of the average point distance).

Optimization with respect to the Deformation Coefficients The obser-
vation parameter Tk and Θ are fixed, and we compute the ωkp which solve
∂Ck(Qk, Θ)/∂ωkp = 0. This leads to a matrix equation of the form Ωk =

(Bk−σ2Λnn)−1dk with dkp =
∑Nk

i=1

∑Nm

j=1
γkij(ski−tk−Akm̄j)

T Akvpj , dkp ∈ R

and bkqp =
∑Nk

i=1

∑Nm

j=1
γkijv

T
qjA

T
k Akvpj , bkqp ∈ R bkqp = bkpq.

2.4 Learning the Model from the Observations

Optimization with respect to the Standard Deviations The computation
of the optimal standard deviation λp with parameters M̄, vp and Qk fixed is
simply:

∂C(Q, Θ)

∂λp
=

N
∑

k=1

(

1

λp
−

ω2
kp

λ3
p

)

= 0 ⇔ λ2
p =

1

N

N
∑

k=1

ω2
kp. (7)

Optimization with respect to the Mean Shape Setting ∂C(Q, Θ)/∂m̄j to
0 and using the general derivation presented in (6), we find

m̄j =

(

N
∑

k=1

Nk
∑

i=1

γkijA
T
k Ak

)−1 N
∑

k=1

Nk
∑

i=1

γkijA
T
k (ski − tk −Ak

n
∑

p=1

ωkpvpj) (8)

Optimization with respect to the Eigenmodes (The parameters λp, M̄ and
Qk are fixed.) Let us first define the matrix V ∈ R

3Nm×n containing the eigen-
modes vp ∈ R

3Nm in its columns. The vpj ∈ R
3 referred to in the equations are

the eigenmode information associated to point m̄j . As we want the eigenmodes to
be orthonormal, we add a Lagrange multiplier by introducing the symmetric ma-
trix Z ∈ R

n×n to our global criterion in the form: Λ = C+ 1

2
tr
(

Z(V T V − In×n)
)

.
Deriving the Lagrangian with respect to vpj gives in the rigid case

∂Λ

∂vpj
=

n
∑

q=1

zqpvqj −

n
∑

q=1

bpqvqj + qpj

where qpj = 1

σ2

∑N
k=1

∑Nk

i=1
γkij(ski − tk −Akm̄j)

T ωkpAk, qpj ∈ R
3

and bpqj = 1

σ2

∑N
k=1

∑Nk

i=1
γkijωkqωkpI3×3 bpqj ∈ R

3×3.



Hence we find
∑n

q=1
vjq(zqp + bpqj) = qjp. We approach the problem regard-

ing each of the Nm bands [V ]{j} ∈ R
3×n of matrix V ∈ R

3Nm×n separately
with [V ]{j} = [vj1, ..., vjq , ..., vjn] and [V ]{j} (Bj + Z) = [Q]{j}. We iterate the
following two steps until ‖V t+1 − V t‖2 ≤ ǫ.

1. For Z known, we compute V : [V ]{j} = [Q]{j} (Bj + Z)
−1

for all model point
indices j. To enforce V to be orthonormal, we apply first a singular value
decomposition V = USRT and then replace V by URT .

2. For all [V ]{j} known, we determine Z: Z = V T Q̃ with [Q̃]{j} = [Q]{j} −

[V ]{j}Bj . As Z has to be symmetric, we set Z ← 1

2
(Z + ZT ).

3 Experiments and Results

3.1 Validation of Algorithm on Synthetic Data

We generated a data set consisting of ellipsoids with and without bump. Each
ellipsoid was transformed using a random affine transformation, and then an
uniform noise was added, see Fig. 1a) for some observation examples.

Building the SSM on Ellipsoids The data set contained 18 ellipsoids, half
with bump, half without. An initial mean shape was randomly chosen from the
data set, Fig. 1d). The results of the alignment as seen in Fig. 1b) were obtained
with the EM-ICP registration. The final mean shape and the deformations ac-
cording to the first eigenmode are depicted in Fig. 1d). As can be seen in Fig.
1c), all observation shapes can be generated using the resulting SSM and the de-
formation coefficients as Sk = M̄ +

∑

kp ωkpvp. Figure 1e) shows the converging
values of the global criterion (5) during the iterations of the SSM computation.
Since we discard eigenvectors whose standard deviation falls below a certain
threshold, n diminishes from 10 to 7 during computation. The results show that
the algorithm computes a representative SSM for a given data set.

Classification of Ellipsoids The deformation coefficients Ω computed during
the optimization of (5) serve as a classification measure regarding the shape of
the observations Sk. We formed feature vectors ωk = (ωk1, ωk2, ..., ωkn) and used
them as input for a k-means clustering. The resulting two classes coincide with
the ’bump’ and ’without bump’ classes with an average Rand index [15] of 0.95.
See Fig. 1f) for the values of the 2D feature vectors (ωk1, ωk2).

3.2 Shape Analysis of Brain Structure

Here, we focus on the putamen. The data set consists of N = 21 right and
left segmented instances (approximately 20mm × 20mm × 40mm) which are
represented by min 994 and max 1673 points, see Fig. 2a),b) for some shape
examples. The MR images (255× 255× 105 voxels of size 0.94mm× 0.94mm×
1.50mm) as well as the segmentations were kindly provided by the Hôpital La
Pitié-Salpêtrière, Paris, France. The data was collected in the framework of a
study on hand dystonia. We chose the following parameters as input: Number of
eigenmodes n = 20, initial sigma in the EM-ICP σ = 4mm, EM-ICP iterations
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Fig. 1. SSM on synthetic data set. Row a) shows 4 observation examples. Row b)
shows the same observation after being aligned to the mean shape. Row c) shows the
shapes generated by using the SSM and the deformation coefficients associated with the
observations. Row d) shows (from left to right) the initial mean shape (a randomly
chosen observation), the final mean shape, and the mean shape deformed with respect
to the first eigenmode (M̄ − 3λ1v1 and M̄ +3λ1v1). e): Values of global criterion after
each iteration. f): 2D deformation coefficient feature vectors (ωk1, ωk2) for the first two
eigenmodes, ’with bump’ observations (diamonds) and ’without bump’ (stars).
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Fig. 2. Shape analysis of the putamen. a) CT-images with segmented left putamen. b)
Observation examples of the data set. c) Mean shape (middle) and its deformations
according to the first eigenmode (M̄ − 3λ1v1 and M̄ + 3λ1v1). d) 2D deformation
coefficient feature vectors (ωk1, ωk2) for the first two eigenmodes, ’control’ observations
are represented as diamonds and ’patient’ as stars.

4, variance multi-scaling factor of the EM-ICP 0.7. The computation of the
SSM converges after 30 iterations. The resulting smooth mean shape and the
deformations according to the first two eigenmodes are shown Fig. 2c). In order
to analyse the shapes, again we formed feature vectors ωk = (ωk1, ωk2, ..., ωkn)
and used them as input for a k-means clustering. In this case, no two distinct
shape classes were found (Fig.2d)).



3.3 Practical Aspects

Initial Model Parameters As the computation of the observation parame-
ters is based on known model parameters Θ = {M̄, vp, λp}, we initialize M̄ with
one of the observations Sk in the given data set, preferably with a typical shape.
Next, by applying the EM-ICP registration, we evaluate the resulting correspon-
dence probabilities between M̄ and each Sk and determine “virtual“ one-to-one
correspondences. These are then used as input for the Principal Components
Analysis to compute the initial eigenvectors vp and the initial eigenvalues λp. In
order to test for the sensibility of our SSM computation with respect to the ini-
tialization, we compared the mean shape results which are obtained when using
dissimilar initial mean shapes M1 and M2 (e.g.the first two shapes in Fig. 2b)).
We established that M1 can be generated based on the SSM found with M2 with
statistically very small deformation coefficients ω1p: M1 = M2 +

∑

p ω1pvp with
e.g. ω11 = 3.8 << λ21 = 15.7.

Model Selection As we want to find a good balance between complexity and
simplicity of the model, we reduce the dimension of the eigenvector space dur-
ing the iterated computation of the parameters. If the standard deviation λp

becomes “too small”, the associated eigenmodes vp are no longer taken into ac-
count. Finally, we want to add the Bayesian Information Criterion [16] to our

global criterion with BIC(n, N, Nk) = C(Q, Θ) + n
2

log
∑N

k=1
Nk. The Bayesian

selection approach rates the goodness of a model based on the probability it
assigns to the observed data while preferring a more constrained model than the
Akaike Information Criterion. This suits our needs as we assume that several of
the eigenmodes only represent noise variations.

4 Discussion

We developed a novel algorithm to generate statistical shape models (SSMs)
which does not need one-to-one point correspondences but relies solely on point
correspondence probabilities for the computation of mean shape and eigenmodes.
Therefore, elaborate preprocessing of the observations in the data set to estab-
lish correspondences becomes obsolete, no questionable correspondences between
point clouds representing surfaces are assumed, and the number of points in the
observation may vary. The approach can be used for non-spherical surfaces and
can be adapted to applications on data sets with different topologies as the con-
nectivity between points does not play a role. We developed a mathematically
sound and unified framework for the computation of model parameters and ob-
servation parameters and succeeded in determining a closed form solution for
optimizing the associated criterion alternately for all parameters. Experiments
showed that our algorithm works well and leads to plausible results. It proved
to be robust to different initial mean shape choices and is stable even for a small
number of observations. The explicit computation of all parameters involved al-
lows a in-depth analysis of the data set. By evaluating the standard deviation
and associated deformation coefficients for each eigenmode and each observation,



a direct automatic classification of the data set is possible as we showed for the
synthetic data set. We then performed a shape analysis on a putamen data set
and found no statistically significant shape differences between dystonia patients
and control group after affine normalizations (which confirms the presumption
of the concerned physicians). From a theoretical point of view, a very powerful
feature of our method is that we are optimizing a unique criterion. Thus, the
convergence is ensured. However, the practical convergence rate has to be inves-
tigated more carefully. For instance, a fast decrease of the multi-scale variance
σ2 easily freezes the model in local minima. For further validation, we intend
to study other kinds of data (e.g. hippocampus or ganglion) whose shapes are
less convex than the putamen. In order to ensure robustness, we will extend the
distance measure in the EM-ICP to include the normals.
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